
Analyzing and Specifying

Reusable Security Requirements

Donald G. Firesmith
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213-3890

+1 412 268-6874
dgf@sei.cmu.edu

ABSTRACT
A system cannot have high assurance if it has poor security,
and thus, requirements for high assurance systems will
logically include security requirements as well as
availability, reliability, and robustness requirements.
Unlike typical functional requirements, security
requirements can potentially be highly reusable, especially
if specified as instances of reusable templates. This paper
discusses the value of reusable parameterized templates for
specifying security requirements, provides an example of
such a template and its associated usage, and outlines an
asset-based analysis approach for determining the
appropriate actual parameters to use when reusing
parameterized templates to specify security requirements.

Keywords
Security requirements, requirements analysis, requirements
specification, reusable requirements

1 SECURITY REQUIREMENTS
Functionality and its associated functional requirements
tend to vary greatly between applications, especially across
different application domains. Look at any two
requirements specifications, and the main difference
between them will almost always be in the content and size
of their sections specifying functional requirements. Thus,
the functional requirements for an embedded avionics
application and an ecommerce website may have almost
nothing in common. However, the same cannot be said
about their security requirements, which tend to exhibit far
less variability. After all, both avionics applications and
ecommerce applications need to specify levels of
identification, authentication, authorization, integrity,
privacy, etc.

At the highest level of abstraction, every application tends
to have the same basic kinds of vulnerable assets (e.g.,
data, communications, services, hardware components, and
personnel). Similarly, these vulnerable assets tend to be
subject to the same basic kinds of security threats (e.g.,
theft, vandalism, unauthorized disclosure, destruction,
fraud, extortion, espionage, trespass, etc.) from attacks by
the same basic kinds of attackers (e.g., hackers, crackers,

disgruntled employees, international cyber-terrorists,
industrial spies, governmental spies, foreign military, etc.)
who can be profiled with motivations and their typical
levels of expertise and tools. Whereas the specific type of
attack (e.g., password sniffing, spoofing, viruses) may vary
greatly depending on the architecture under attack, the
similarity of threats and attackers tends to lead to
considerable uniformity when it comes to the architectural
security mechanisms (e.g., user IDs, passwords, encryption,
firewalls, antivirus software, intrusion detection systems,
etc.) that are used to protect these assets from the threats
posed by these attackers.

And security requirements tend to be even more
standardized than their associated security mechanisms.
For any given set of requirements, an architect can and
should typically identify and evaluate multiple different
architectures and architectural mechanisms before selecting
what he or she thinks will be the optimum way of fulfilling
the requirements. Thus, there are often many ways for an
architecture or security team to address a specific kind of
security requirement. For example, to address the
identification and authentication (i.e., verification of
identification) requirements, one has several choices of
architectural mechanisms beyond user IDs and passwords.
Specifically, architects and security engineers can base
identification and authentication mechanisms on:

• Who You Say You Are:

– Name, user identifier, or national identifier (e.g.,
social security number).

• What You Know:

– Your password or personal identification number
(PIN).

– Relatively private personal information such as the
last four digits of your social security number, your
mother’s maiden name, the name of your pet, etc.

• What You Have:

– Digital possessions such as a digital certificate or
token.

– Physical possessions such as an employee ID card, a
hardware key, or a smart card enabled with a public
key infrastructure (PKI).

• Who You Are:

– Physiological traits (e.g., finger print, hand print,
face recognition, iris recognition, and retina scan).

– Behavioral characteristics (e.g., voice pattern,
signature style, and keystroke dynamics).

Yet requirements teams should not constrain the
architecture and security teams by specifying unnecessary
security architecture mechanisms. They should rather
specify what is needed (e.g., a certain required level of
identification and authentication) rather than the
architectural security mechanisms by which they should be
achieved. This results in significantly more uniformity in
security requirements than in security mechanisms and
associated architectures.

Like any other type of quality requirement, security
requirements should be based on an underlying quality
model [1] [2] [3]. Security is a quality factor (i.e., attribute,
characteristic, or aspect), and it can be decomposed into
underlying quality subfactors [3] [4] such as:

• Identification, which is the degree to which a thing
identifies its externals (e.g., human users and external
applications) before interacting with them.

• Authentication, which is the degree to which something
verifies (i.e., confirms) the asserted identity of its
externals (e.g., human users and external applications)
before interacting with them.

• Authorization, which is the degree to which access and
usage privileges of authenticated externals exist and are
enforced.

• Immunity, which is the degree to which a thing protects
itself from infection by unauthorized malicious programs
(e.g., computer viruses, worms, Trojan horses, and
malicious scripts).

• Integrity, which is the degree to which communications
or [data, hardware, or software] components are
protected from intentional corruption (e.g., via
unauthorized creation, modification, deletion, or replay).

• Intrusion Detection, which is the degree to which
attempted or successful access or modification by
intruders (i.e., unauthorized individuals or programs) is
detected, recorded, and notified.

• Nonrepudiation, which is the degree to which a party to
an interaction (e.g., message, transaction) is prevented
from successfully denying having participated in all or
part of the interaction.

• Privacy (a.k.a., confidentiality), which is the degree to
which sensitive data and communications are kept
private from unauthorized individuals and programs.

• Security Auditing, which is the degree to which security
personnel are enabled to audit the status and use of

security mechanisms by analyzing security-related
events.

• Survivability, which is the degree to which a thing
continues to fulfill its mission by providing essential
services in a timely manner in spite of the presence of
attacks.

• Physical Protection, which is the degree to which a
thing protects itself from physical assault.

Whereas functional requirements can range over the entire
gamut of human imagination, security requirements specify
a required amount of a security subfactor and are thus quite
limited in scope. One form of reuse of security
requirements is then found in the reuse of the security
subfactors as a basis for organizing and identifying
different kinds of security requirements. For each security
subfactor in the quality model, there can be multiple
criteria (i.e., descriptions) that describe the existence of
that subfactor and measures (e.g., the percent of users
identified) that can be used to measure the degree of
existence of that subfactor [5]. A security requirement can
thus be defined as a specification of a minimum amount of
a security subfactor stated in terms of a security criterion
and its associated measure. Thus, one form of reuse when
specifying measurable and therefore testable security
requirements is the reuse of parameterized criteria (e.g.,
involving the protection of valuable assets from attacks by
attackers) and their associated measures (i.e., ways to
quantify the minimum acceptable level of the criterion).

2 REUSABLE SECURITY REQUIREMENTS
TEMPLATES

Based on the preceding discussion, the following facts
combine to strongly argue that highly reusable
requirements templates can be produced for reuse across
almost all applications and application domains:

• Requirements. Security requirements are at a higher
level of abstraction than security architectural
mechanisms.

• Security Subfactors. Only a small number of security
quality subfactors exist.

• Measures. For each security subfactor, only a small
number of associated measures exist.

• Criteria. Although there are potentially a large number
of application-specific security criteria, these can be
parameterized by:

– Asset. The valuable and vulnerable asset to be
protected by the security requirement. Although
different applications do not have the same assets,
they do tend to have the same kinds of assets. The
different assets of different applications are subject
to different levels of vulnerability.

– Threat. The threat the asset should be protected
against. Although different applications are not
subject to the same threats, but do tend to be subject
to the same kinds of threats. And the threats may

result in different negative outcomes if an associated
attack is successful.

– Attacker. Different applications tend to be targets
of different kinds of attackers with different profiles
(e.g., motivation, experience, and resources) who
launch different kinds of attacks at different levels of
sophistication. Nevertheless, the same kinds of
attackers with the same profiles tend to occur over
and over.

– Situation. The situation is what tends to be very
application specific and is typically the state of the
application during the attack, the communications
that are occurring, the services that are being
requested, the data that is being accessed, and the
transactions that are in progress.

Thus, applications tend to have similar classes of security
requirements that vary depending on the security subfactor
being specified and the associated criterion and measure
chosen to specify the minimum acceptable amount of that
security subfactor. Whereas the criticality and specific
parameters vary from application to application, a great
amount of reuse is available if one has a repository of
reusable security requirement templates that formalize the
commonality.

This high potential reusability of security requirements is
very beneficial because most requirements engineers have
had no training in identifying, analyzing, specifying, and
managing security requirements and most requirements
teams do no include subject matter experts in security.
Thus, most current requirements specifications 1) are
totally silent regarding security, 2) merely specify that “The
application shall be secure” or “Confidential data shall be
kept private.”, or 3) specify commonly-used security
mechanisms (e.g., encryption and firewalls) as architectural
constraints. In the first case, security too often falls
through the cracks and may (or may not) be properly
addressed during architecting (or even later when it is much
more expensive and difficult to be added to an existing
architecture that was not built to support it). In the second
case, proper security may still fall through the cracks and
often leaves the customer with the unjustified feeling that
they have adequately required security even though
specifying that “The application shall be secure” is hardly a
testable requirement. And the third case may unnecessarily
tie the architecture team’s hands by specifying an
inappropriate security mechanism (e.g., passwords rather
than biometrics). Whereas these problems may (or may
not) be mitigated by a proper security policy developed by
a security team, there is no guarantee that an appropriate
security policy will be ready in time to influence the
architecture team and the resulting application architecture.
And even if the security policy is developed early enough,
there is no guarantee that its implicit security requirements
will be consistent with the many other functional and
quality requirements in the requirements specification.

Ultimately, the best approach is to include explicitly
specified security requirements with the other quality
requirements so that they can all be analyzed, prioritized,
and traced, and so that trade-offs can be made to ensure that
all requirements are consistent and feasible. Finally,
reusable templates for security requirements will help
requirements and security teams realize that actual security
requirements are both valuable and feasible.

3 EXAMPLE TEMPLATE AND ITS USAGE

As an example of a reusable template for specifying
security requirements, consider the following template for
specifying integrity requirements:

• “The [application / component / data center / business
unit] shall protect the data it transmits from corruption
(e.g., unauthorized addition, modification, deletion, or
replay) due to [unsophisticated / somewhat sophisticated
/ sophisticated] attack during execution of [a set of
interactions / use cases] as indicated in [specified table].”

– [Table of interactions / use cases versus minimum
acceptable measurement level].

Collaborating with the security team, the requirements team
could reuse the preceding template to generate the
following integrity requirements:

• “The Global Personal Marketplace (GPM) system shall
protect the data it transmits from corruption (e.g.,
unauthorized addition, modification, deletion, or replay)
due to unsophisticated attack during execution of the
Buyer use cases as indicated in the following table”

Global Personal Marketplace
(GPM)

Buyer Use Cases

Minimum
Transmissions

Protected
from

Corruption

Buyer Buys Item at Direct Sale 99.99%

Buyer Modifies Bid on Item 99.99%

Buyer Modifies Sealed Offer 99.99%

Buyer Places Bid on Item 99.99%

Buyer Places Sealed Offer at
Decreasing Price Sale

99.99%

Buyer Reads Buyer Guidelines 99%

Buyer Registers Feedback about
Seller

99.99%

… …

GPM Notifies Buyer of 99.9%

Acceptance of Sealed Offer

GPM Notifies Buyer of Being
Outbid

99.9%

GPM Notifies Buyer of Canceled
Sale

99.9%

GPM Notifies Buyer of Relevant
Sale

99.9%

GPM Notifies Winning Buyer of
Auction Results

99.9%

4 REQUIREMENTS ANALYSIS FOR SECURITY
REQUIREMENTS

The preceding sections were primarily concerned with the
specification of security requirements using reusable
parameterized templates. But how should one determine
what actual values to use for these parameters? Typical
approaches of requirements analysis (e.g., functional
decomposition, use case modeling) were designed for the
analysis of functional requirements and are of little use
when analyzing most security requirements. And although
misuse cases can help the analyst analyze attacks [6] [7]
and security use cases [8] can help the analyst understand
the system’s desired response to these attacks, they still do
not adequately support determining the values of all of the
template’s parameters.

So the question remains: how do you fill in the parameters
in the reusable templates? It is the author’s contention that
any requirements analysis method for security requirements
should be asset-based [9]. Different applications have
different assets to be protected and failure to protect these
assets can result in negative outcomes ranging from minor
inconvenience to the potential of major lost of life and even
war. And different assets have different vulnerabilities and
are subject do different kinds of threats due to different
kinds of attacks by different kinds of attackers. Thus the
requirements analysis for security requirements should
begin with an asset analysis.

At the highest level, the requirements and security teams
could collaborate to perform the following general
procedure to analyze security requirements in an iterative,
incremental, parallel, and time-boxed manner:

1. Identify Valuable Assets. Identify the different kinds
of valuable assets (e.g., data, communications,
services, hardware components, and personnel).
Identification can be based on:
– The functional, data, and interface requirements,
– Interviews with stakeholders,
– Lists of assets generated during disaster recovery

planning, etc.

2. Identify Threats. Identify the general kinds of threats
(e.g., theft, vandalism, fraud, unauthorized disclosure,
destruction, extortion, espionage, trespass, etc.) to
which these assets may be subject. Identification can
be based on:
– Reusable tables of common threats and
– Essential (i.e., requirements level) misuse cases.

3. Identify Likely Attackers. Identify the types of
attackers who most threaten the vulnerable assets.
Identification can be based on:
– Existing reusable attacker profiles (e.g., in terms

of attacker motivation, experience level, and
resources).

– The identified threats to the valuable assets.
4. Estimate Vulnerability. Based on their associated

threats and attacker profiles, estimate how vulnerable
the assets would be to these threats if security
requirements are not specified to protect them (i.e.,
estimate the likelihood of a successful attack). Only
gross estimates of relative vulnerabilities may be
possible because of limited empirical data.

5. Determine Negative Outcomes. For each vulnerable
asset, determine the negative outcomes which could
result if the threats against the asset were to occur.

6. Prioritize Vulnerabilities. Prioritize the
vulnerabilities so that the most important
vulnerabilities (e.g., in terms of outcome and
likelihood) are handled first given the limited resources
of the requirements and security teams.

7. Identify Relevant Situation. Identify each functional
requirement (e.g., use case or use case path) involving
the asset and determine if a security requirement is
needed.

8. Consider Security Subfactor. For each relevant
situation, consider each security subfactor from the
quality model and determine if a security requirement
of that type is needed to limit the associated
vulnerability to an acceptable level.

9. Identify Relevant Template(s). For each relevant
security subfactor and situation, find the relevant
reusable template(s) for specifying requirements for
the relevant security subfactor in terms of the criteria
relevant to the vulnerability in that situation. If no
relevant template exists, the requirements team can
analyze the situation using security use cases in order
to help produce such a template.

10. Determine Security Criterion. For each relevant
template, determine the appropriate security criterion
and enter its parameters into the template using
information about the situation.

11. Determine Measure. Select the appropriate measure
for measuring the existence of the chosen security
criterion from the quality model and enter the measure
into the template.

12. Determine Required Level. Based on the
vulnerability of the asset, select a minimum acceptable
level of the measure for that criterion to limit the

associated vulnerability to an acceptable level and
enter the required level of the measure into the
template. A cost-benefit analysis may be used to
determine the appropriate level of the measure.

13. Specify Requirement. Instantiate the template based
on the actual parameters from the three previous steps
to produce an actual security requirement.

The above process is only one of several that could be used
to create security requirements based on the reuse of
parameterized templates for security use cases. More
important than the specific steps of the preceding process
or the order in which these steps are performed is that the
requirements and security teams use a documented process
with the following useful properties:
1. It is based on the vulnerable assets to be protected and

the seriousness of the negative outcomes that could
result if they are not protected.

2. It achieves high reuse via quality models and
parameterized templates.

3. It enables the requirements and security engineers to
determine appropriate values for the parameters in the
templates.

4. It addresses all significant issues including assets,
attackers, threats, outcomes, and vulnerabilities.

5. It ensures that no important types of security

5 CONCLUSION
As stated above, one solution to the problem of how to
analyze and specify security requirements is for the security
team to create and make available a set of parameterized
reusable templates that can be used by the requirements
team to engineer security requirements in a manner similar
to other types of requirements. By using a rigorous asset-
based security requirements analysis method, the quality
and appropriateness of the security requirements will rise
and the resulting architecture will be more likely to have
been designed from the beginning to properly support the
security requirements in addition to the functional
requirements and the other quality requirements such as
availability, capacity, extensibility, internationalization,
interoperability, maintainability, performance, portability,
reliability, robustness, usability, etc.). The publication of
such requirements templates has the potential for greatly
improving the quality of security requirements in actual
requirements specifications.

The members of the RHAS’03 workshop can discuss ways
to create, evaluate, and reuse parameterized templates for
security requirements. They can also discuss ways to
improve the requirements analysis approach for security
requirements suggested in this paper.

ACKNOWLEDGEMENTS
This work was triggered as a result of the author
discovering Gary Stoneburner’s work on security
protection profiles [10], which provides a parameterized set
of reusable security protection profiles for evaluating the
security of COTS software. I would also like to

acknowledge discussions with and reviews by Nancy Mead
and Carol Woody of the SEI.

REFERENCES
1. IEEE Std 1061-1992, IEEE Standard for a Software

Quality Metrics Methodology, 1992.

2. ISO/IEC 9126-1, Software Engineering – Product
Quality – Part 1: Quality Model, 2000.

3. OPEN Process Framework Web Site. Available at
<http://www.donald-firesmith.com/>

4. ISO/IEC 9126-2, Software Engineering – Product
Quality – Part 2: External Metrics, 2000.

5. Firesmith, D.G. Engineering security requirements.
Journal of Object Technology 2,1 (January-February
2003), 53-68. Available at
<http://www.jot.fm/issues/issue_2003_01/column6>

6. Alexander, I. Misuse case help to elicit nonfunctional
requirements, IEE CCEJ, 2001. Available at
<http://wwweasyweb.easynet.co.uk/~iany/consultancy/
papers.htm>

7 Sindre, G. and Opdahl, A. Templates for Misuse Case
Description, Seventh International Workshop on
Requirements Engineering: Foundation for Software
Quality (REFSQ’2001), (4-5 June 2001). Available at
<http://www.ifi.uib.no/conf/refsq2001/papers/p25.pdf>

8. Firesmith, D.G. Security use cases. Journal of Object
Technology 2,3 (May-June 2003), 53-64. Available at
 <http://www.jot.fm/issues/issue_2003_05/column6>

9. Alberts, C.J. et al., Operationally Critical Threat, Asset,
and Vulnerability EvaluationSM (OCTAVESM)
Framework, Technical Report CMU/SEI-99-TR-017
(1999). Available at
<http://www.sei.cmu.edu/publications/documents/99.re
ports/99tr017/99tr017abstract.html>

10. Stoneburner, Gary, CSPP- Guidance for COTS Security
Protection Profiles, NISTIR 6462, National Institutes of
Standards and Technology (NIST), U.S. Department of
Commerce, (December 1999), B-4-7. Available at
<http://csrc.nist.gov/publications/nistir/index.html>.

	Analyzing and Specifying Reusable S curity R quirements
	Abstract
	Security Requirements
	Reusable Security Requirements Templates
	Example Template and Its Usage
	Requirements Analysis for Security Requirements
	Conclusion
	Acknowledgements
	References

