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Problem 
The growing volume of streaming and 
archived surveillance video in the DoD is 
outpacing the ability of analysts to manually 
monitor and view it. There is a lack of 
automated tools available to assist analysts 
in monitoring real-time video or analyzing 
archived video.
Solution 
Inspired by the past research of CMU 
Machine Learning professor Dr. Eric Xing, 
we investigated a new unsupervised video 
summarization pipeline that functions on 
extracted clips of objects in motion, rather 
than whole frames. The goal of the summary 
is to identify the key ”object motion clips” 
occurring in the video.
Approach 
Unsupervised object-level video 
summarization with online motion 
auto-encoder

Results
Quantitative: Our results matched or 
exceeded competing algorithms on 
benchmark datasets (see Table 1)

Qualitative: In a user study, our approach 
received higher and more consistent 
evaluation scores (see Figure 1) 

Artifacts 
Software

• Prototype utilizing the unsupervised, online,
object-level video summarization pipeline

• Video Markup Tool for annotating spatial-
temporal object clips within video

Paper

• Submission to IEEE Transactions
on Cybernetics

Datasets

• “Orangeville” benchmark for object-level
summarization – dataset & annotations

• Annotations & model for vehicle detection
in FBI IR surveillance data

Future Work 
FY18 Project: Summarizing and Searching Video

• Finish investigation of current pipeline to
summarization of full-motion video (FMV)
datasets

• Unsupervised activity clustering, utilizing
object-motion clips as basis

• AFRL collaboration to explore applying
analysis techniques to existing DoD
problems
– e.g.,	Nothing	Significant	to	Report

In summary, we investigated object-level 
video summarization as an approach to 
identify the key segments in video with the 
final	goal	of	applying	these	techniques	to	
analyze real DoD surveillance data.
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Offline Training: Initialize auto-encoder by training 
on random bounding boxes from representative video 
in order to learn a basic reconstruction capability

Online Processing & Training: For each video 
being processed:
1. Detect object bounds in each frame
2. Track objects through frames
3. (Optional) Remove clips of still objects

– Useful for stationary camera
4. Segment object clips based on unique motion
trajectories
5. Extract appearance and context features from the
start, middle, and last frame of each clip
6. Feed the clip features through a three-layer, sparse,
long short-term memory (LSTM) auto-encoder

– Clips with high reconstruction error are
collected as the ”summary”

– As clips are processed, use them as online
training for the auto-encoder

Table 1: Object-level summarization results between competing approaches on 
Orangeville dataset

Figure 1: User study evaluation scores between competing approaches on 
Orangeville and Base Jumping datasets
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Unsupervised Object-Level Video Summarization
with Online Motion Auto-encoder Pipeline

Extract each frame from video

Appearance features (left) and context features (right) extracted and combined 
prior to auto-encoder (Fast R-CNN)

Detect objects in frame 
(Faster R-CNN)

Track objects through frames to obtain object clips 
(MDP Tracking)

Split object clip based on unique motion trajectories 
(Temporal superframe segmentation)
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