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Increasingly, software systems are composed 
at runtime. Yet, the impact of runtime 
composition on design quality is unknown. 
Static analysis, a state-of-the-practice approach, 
has demonstrated that dependency-caused 
design hotspots make security vulnerabilities 
more likely, but it does not detect the effect of 
dynamic dependencies.

In this work, we are creating tooling to identify dynamic 
dependencies as well as other information that is not 
available via static, parsing-based approaches, to both 
determine and augment the information that is missing 
in static approaches. 

Technical challenges:

1. Detecting dynamic dependencies (DDs)
2. Determining whether DDs create new kinds of

architectural flaws
3. Determining the consequences of DD-induced

design flaws
4. Proposing refactorings to remedy flaws

Two approaches employed:

Approach 1: Acme/Alloy-based Analysis

• defined a formal architectural model of the Android
framework as an architectural style in Acme

• used Soot to capture an abstract model of each app and
translated these models to a single architecture in Acme

• defined Acme invariants to check architecture properties
(e.g., apps cannot communicate implicit intents to apps
that have a lower trust level)

• translated these models to Alloy specifications
– checked that privilege escalation is not possible (or

provide a counter-example where it is possible)

Approach 2: Titan-based analysis

• reverse-engineering of architecture facts using Understand
• built static representations of architecture dependencies

as DSMs
• added historic dependencies from the revision history
• captured potential dynamic relationships as issues from

the issue list
• defined a new architecture view: the issue space
• showed that when a system has files revised in many

different issues—what we call a hotspot--these “shared”
files are connected

• these design dependencies are frequently only seen at run-
time and they almost always have design flaws leading to
bugs, security flaws, and maintenance problems

• thus they should be analyzed and refactored

Conclusions and Future Work 

Design flaws are introduced unknowingly by the daily 
activities of developers—adding features and fixing bugs. If 
left untreated they degrade the system over time, making it 
harder to understand, maintain, extend, and fix.

By considering dynamic information in conjunction with 
static information we can precisely locate such design flaws, 
and hence determine the root causes of bugs more quickly.

This information is not available solely via static analysis; 
dynamic dependencies must be considered. But such 
information is difficult to obtain. We have explored two 
methods for doing so.

These design flaws are the roots of technical debt.

In our future work, we are examining the relationship 
between such design flaws and security bugs.
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