
Scheduler
s s s

Prevented from
delaying other
tasks if overload

Only executed in given
periodic time budget

Calculate a
default safe
fast actuation
executed ”just
before” timing
budget expires:
kernel informs
task

Decide if
calculated

used too
old or not

Certifiable Distributed Runtime Assurance

Dio de Niz | dionisio@sei.cmu.edu
P10

Challenge
Assure Safety of Distributed Cyber-
Physical Systems
• Unpredictable Algorithms

(Machine Learning)
• Coordinating multiple vehicles

(distributed) to achieve mission

Solution
• Add simpler (verifiable) runtime

enforcer to make algorithms
predictable

• Formally specify, verify, and
compose multiple enforcers

• Enforcer intercepts/replaces
unsafe action at right time

Formalization (Time-Aware Logic)
State of system: variable values

• State variables: 𝑉𝑆
e.g., (x,y) position

• Action variables: 𝑉Σ
e.g., move-to(x,y) action

• System state: 𝑠:𝑉𝑆 ↦ 𝐷 ∈ 𝑆

• Actions: 𝛼:𝑉Σ ↦ 𝐷

• Behavior: periodic state transition
𝑅𝑃 (𝛼) ⊆ 𝑆×𝑆
𝑅𝑃 (𝛼,𝑠) = {𝑠′|(𝑠,𝑠′) ∈ 𝑅𝑃 (𝛼)}

• Safe state: 𝜙 ⊆ 𝑆

• Enforceable state:
𝜙 ⊇ 𝐶𝜙 = {𝑠│∃𝛼 ∈ Σ:𝑅𝑃 (𝛼,𝑠) ∈ 𝐶𝜙 }

• Safe Actuation
𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠) = {𝛼|𝑅𝑃 (𝛼,𝑠) ∈ 𝐶𝜙}

Timing enforcement
• Unverified software may never finish!
• => No action produced to be enforced!

Temporal enforcer
• Protect other tasks from bogus never-

ending (or large) executions
• Produce default safe actuation if task

takes too long

How
• Each task gets a CPU budget

stop task if budget exceeded
• If task about to exceed budget

execute safe action

Timing guarantees
• Never allow task to exceed budget
• Always execute actuation

Controller Logical
enforcer

at (x,y)

moveTo (x,y)

Safe actuation on timing enforcement

Enforcing Drone Virtual Fence

Enforcer

Composing enforcers
• System with multiple enforcers:

virtual fence+ collision avoidance
• Safe actions from different enforcers

may conflict
Drone at fence limit + other drone
approaching

• Enforcer composition to resolve conflicts
(1) priority based (2) utility maximization

Formalization
Enforcer: 𝑬:(𝑷, 𝑪𝝓, 𝝁, 𝑼)
𝜇(𝑠) ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠); 𝑈: utility

No conflict:
𝐸1 (𝑃1, 𝐶𝜙1, 𝜇1, 𝑈1), 𝐸2(𝑃2, 𝐶𝜙2, 𝜇2, 𝑈2)
𝜇1,2 : 𝜇1 ∩ 𝜇2

Conflict: Priority resolution
𝜇1,2 : 𝜇1 ∩ 𝜇1 ≠ ∅ ? 𝜇1 ∩ 𝜇2 : 𝜇1

Conflict: Utility maximization
𝜇1,2 : 𝜇1 ∩ 𝜇2 ≠ ∅ ? 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1 ∩ 𝜇2∑𝑈𝑖 (𝑠,𝛼′) :
𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1∑𝑈𝑖 (𝑠,𝛼′)

Enforcers allows
verification of complex CPS:
Autonomous Vehicles
• Limit misbehavior
• With Verifiable Enforcers
• Result: Verified whole system

Research Review 2017

(x,y)

Copyright 2017 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM17-0730
Certifiable Distributed Runtime Assurance

	Blank Page

