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Challenge
Assure Safety of Distributed Cyber- 
Physical Systems
• Unpredictable Algorithms

(Machine Learning)
• Coordinating multiple vehicles

(distributed) to achieve mission

Solution
• Add simpler (verifiable) runtime

enforcer to make algorithms
predictable

• Formally specify, verify, and
compose multiple enforcers

• Enforcer intercepts/replaces
unsafe action at right time

Formalization (Time-Aware Logic) 
State of system: variable values

• State variables: 𝑉𝑆
e.g., (x,y) position

• Action variables: 𝑉Σ
e.g., move-to(x,y) action

• System state: 𝑠:𝑉𝑆 ↦ 𝐷 ∈ 𝑆

• Actions: 𝛼:𝑉Σ ↦ 𝐷

• Behavior: periodic state transition
𝑅𝑃 (𝛼) ⊆ 𝑆×𝑆
𝑅𝑃 (𝛼,𝑠) = {𝑠′|(𝑠,𝑠′ ) ∈ 𝑅𝑃 (𝛼)}

• Safe state: 𝜙 ⊆ 𝑆

• Enforceable state:
𝜙 ⊇ 𝐶𝜙 = {𝑠│∃𝛼 ∈  Σ:𝑅𝑃 (𝛼,𝑠) ∈ 𝐶𝜙 }

• Safe Actuation
𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠) = {𝛼|𝑅𝑃 (𝛼,𝑠) ∈ 𝐶𝜙}

Timing enforcement
• Unverified software may never finish!
• => No action produced to be enforced!

Temporal enforcer
• Protect other tasks from bogus never-

ending (or large) executions
• Produce default safe actuation if task

takes too long

How
• Each task gets a CPU budget

stop task if budget exceeded
• If task about to exceed budget

execute safe action

Timing guarantees
• Never allow task to exceed budget
• Always execute actuation

Controller Logical
enforcer

at (x,y)

moveTo (x,y)

Safe actuation on timing enforcement

Enforcing Drone Virtual Fence

Enforcer

Composing enforcers 
• System with multiple enforcers:

virtual fence+ collision avoidance
• Safe actions from different enforcers

may conflict
Drone at fence limit + other drone
approaching

• Enforcer composition to resolve conflicts
(1) priority based (2) utility maximization

Formalization 
Enforcer: 𝑬:(𝑷, 𝑪𝝓, 𝝁, 𝑼)
𝜇(𝑠) ⊆ 𝑆𝑎𝑓𝑒𝐴𝑐𝑡(𝑠); 𝑈: utility

No conflict:
𝐸1 (𝑃1, 𝐶𝜙1, 𝜇1, 𝑈1 ), 𝐸2(𝑃2, 𝐶𝜙2, 𝜇2, 𝑈2 )    
𝜇1,2 : 𝜇1 ∩ 𝜇2

Conflict: Priority resolution
𝜇1,2 : 𝜇1 ∩ 𝜇1 ≠ ∅ ? 𝜇1 ∩ 𝜇2 : 𝜇1

Conflict: Utility maximization
𝜇1,2 : 𝜇1 ∩ 𝜇2 ≠ ∅ ? 𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1 ∩ 𝜇2∑𝑈𝑖 (𝑠,𝛼′ ) : 
𝑎𝑟𝑔𝑚𝑎𝑥𝛼∈𝜇1∑𝑈𝑖 (𝑠,𝛼′)

Enforcers allows  
verification of complex CPS: 
Autonomous Vehicles
• Limit misbehavior
• With Verifiable Enforcers
• Result: Verified whole system
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