
t = … + 1.01 xp – 2.03xexp + 1.02xe + …22

t = … + 1.01 (xp – 1.01xe)   + …2

t = … + 1.01 xp – 2.04xexp + 1.03xe + …22

Look for approximate
factorings

Accepting approximation
if error is small
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Input Attribution – The “Why” of SMC
Statistical Model Checking (SMC) provides an 
estimate on the probability 𝑃[ℳ⊨Φ] that a 
predicate Φ in a model ℳ is satis�ed, but does 
not address why a particular result was 
obtained. The goal of Input Attribution (IA) is to 
use machine learning techniques to synthesize 
an explanation for an SMC result in terms of the 
inputs. IA for SMC can be thought of as 
analogous to the counter-example in traditional 
model checking.

A good Input Attribution has the 
following properties:

1. Describes relationship that actually exists 
 in data

2. Is presented in a way that is quantitative 
 and understandable

3. Gives investigator new insights

4. Is resilient to randomness in the system

Example Scenario
Let (𝑥𝑝,𝑦𝑝) and (𝑥𝑒,𝑦𝑒) be random initial positions 
for a pursuer and an evader, respectively. The 
goal of the evader is to make it to one of several 
designated safe zones before it is caught by the 
pursuer. The SMC problem is to calculate the 
probability that the evader will escape. Intuitively, 
the probability of escape for the evader will 
depend on the initial distance between the 
pursuer and the evader, but can we synthesize 
this relationship purely from the SMC trials?

Approach – Logistic Regression
Logistic Regression (LR) is a regression model 
with a Boolean response variable based on the 
logistic function. A model 𝐿:𝑥 →ℛ is generated 
from a set if input vectors 𝑥𝑖 and corresponding 
Boolean responses 𝜙𝑖. 𝐿(𝑥𝑖) represents the log 
of the “odds” that the response 𝜙𝑖 is 1. The 
logistic function maps the log odds to a 
probability. The LR model is a linear function of 
the input variables with the form:

𝐿:𝑥 →𝛽0+𝛽1 𝑥1+𝛽2 𝑥2+…+𝛽𝑁 𝑥𝑁

Each coef�cient 𝛽𝑗 represents the factor by 
which the logit (log odds) of ℳ⊨Φ increases for 
each unit increase of 𝑥𝑗. However, not all input 

variables may be statistically signi�cant. When 
calculating each coef�cient 𝛽𝑗, a standard error 
𝑠𝑒(𝛽𝑗) that can be used to calculate a “p-value” 
indicating the signi�cance of each coef�cient is 
also produced. P-values greater than about 0.05 
indicate that a particular input variable is not 
signi�cant. The generated input attribution is 
formed from the 𝛽𝑗 terms that are considered 
statistically signi�cant.

Non-Linear Input Attribution
By expanding the Logistic model to include 
second order polynomial terms as: 

𝐿:{∀𝑗:𝑥𝑗,𝑥𝑗^2 }∪{∀𝑗,𝑘:𝑥𝑗 𝑥𝑘 }→ℛ
It is possible to discover more complex 
relationships among the input variables. 
After �ltering terms that are not statistically 
signi�cant, approximate factoring can be 
applied to pairs of terms to present the result 
in more human-readable form.

Validation
Even though LR analysis may indicate statistical 
signi�cance on one or more variables, the overall 
model must have a good �t to the data before an 
input attribution can be accepted. We use the 
AUC (Area Under Curve) of an ROC (Radar 
Operating Characteristic) analysis as a metric. 
Five-fold cross validation is performed and the 
average AUC is used. AUC represents the 
probability 𝑃[𝐿(𝑥𝑆𝐴𝑇 )>𝐿(𝑥𝑈𝑁𝑆𝐴𝑇 )] where 𝑥𝑆𝐴𝑇 
is an arbitrary satisfying input (𝜙=1) and 
𝑥𝑈𝑁𝑆𝐴𝑇 is an arbitrary unsatisfying input (𝜙=0). 
An AUC of 0.5 indicates the model is no 
better than guessing, while an AUC of 1.0 is a 
perfect model.

Experimental Results
We conducted SMC trials of the pursuer/evader 
scenario shown above using the V-REP 
simulation environment. Trials where conducted 
on a set if six 20-core blade servers. A target 
relative error of 0.01 was used which resulted in 
39,960 trials. The resulting “mission success” 
probability for the evader was 0.214. The LR 
analysis and input attribution was conducted 
using the R statistical system and resulted in 
the expression shown to the right.
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Input Attribution Results
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Approximate Factoring
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Conclusion
We applied SMC with Input Attribution to a 
pursuer/evader scenario. Intuitively we 
expected an Input Attribution indicating that 
increased initial distance between pursuer and 
evader should be correlated with improved 
chance of escape for the evader.

Factored Input Attribution
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Simulation data with input and 
predicate results xi,pi 
partitioned into 5 chunks

4 chunks used to 
create model L

5th chunk compared 
with model to create 
ROC curve. (repeated 
for each chunk)

Average AUC (Area 
Under Curve) for the 5 
folds represents 
quality of LR model.
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Statistical Model Checking (SMC) Basics

Relative Error

Statistical 
Model Checker

System ℳ that takes 
random inputs

Estimated Probability

Input 
Distribution f

System 
Property Φ

p = E[Iℳ⊨Φ(x)]

the Φ holds ℳ where:
• x = vector of random 
 variable
• Iℳ⊨Φ(x) = indicator 
 function that returns
 1 iff ℳ ⊨ Φ

Target Relative
Error RE(p)

Measure of accuracy for 
a prediction

De�ned as ratio of 
standard deviation to 
mean.  For a probability 
estimate, the estimated 
relative error is:

  
Number of samples to 
achieve a target relative 
error increases
• as target relative error 
decreases, or
• as estimated 
probability decreases

𝒑
𝝈(𝑹𝑬) = 

𝒑
1

(𝑹𝑬) 2~~N

pd
f

0.0005 0.0075 0.001 0.00125 0.0015
𝒑

Tight bound 
with low 
relative error

0.0005

pd
f

0.0075 0.001 0.00125 0.0015
𝒑

Looser bound 
with modest 
relative error




