
IBM Watson made an impressive
introduction. In 2011, Watson
competed on one of America's
leading question and answer shows
against former winners Brad Rutter
and Ken Jennings. Watson received
the �rst place prize of $1 million.*

Watson is a question answering computer
system capable of answering questions posed
in natural language, developed in IBM's
DeepQA project by a research team led by
principal investigator David Ferrucci. Watson
was named after IBM's �rst CEO and
industrialist Thomas J. Watson. The computer
system was speci�cally developed to answer
questions on one of America's leading question
and answer shows.

Application development timeline

Example original document: CERT INT33-C
Rule - Parts
• IBM Watson works on Solr document

• Each rule or CWE resulted in about 11
Solr documents

• Whole rule or CWE is a Solr document

• Key sections are Solr documents

• Many different formats within document

• Corpus held about 15,000 documents

Application performance
Better Recall and Precision: Example: “What is
the risk of INT33-C”

Watson’s interfaces for cognitive querying
evolved over time
Organization of technology rapidly evolved

• Splitting some components into distinct ser-
vices

• Combining some services into usable
chunks

• Ease-of-use interfaces delivered in open
source (out of product cycle)

Project focused on using “Retrieve and Rank”
on BlueMix
• Available support from IBM

• Combined Watson Pathways for Concept Ex-
pansion, Concept Insights and Ques-
tion-and-Answer

Lessons learned from project

Prof. Eric Nyberg, Language Technologies Institute,
School of Computer Science, CMU

And our student interns: Christine Baek, Anire
Bowman, Skye Toor and Myles Blodnick

Team:
• 2 graduate students

• 2 undergraduate students

• 3-5 SwA experts

• No IBM Watson experience

• Used Python and JSON interfaces

• 11 weeks

Theory
Automated natural lan-
guage comprehension

Training uses about 150,000 questions
and answers

Practice
SME-driven Q&A
training

Research Review 2016Developing and IBM Watson Cognitive Processing Application
Supporting Application Security (Software Assurance)

*https://en.wikipedia.org/wiki/Watson_(computer)

INT33-C – Risk Overview

INTC33-C. Ensure that division and remainder operations
do not result …
https://www.securecoding.cert.org/…/c/INT33-C. =En-
sure+that+dividion+and+remaind…

UIMA (Unstructured
Information Management
Architecture) [Watson
Pathways]

QAAPI with BlueMix
infrastructure

Retrieve and Rank
(R&R) with BlueMix
infrastructure

R&R with Natural
Language
Classi�er (Beta)
with BlueMix
infrastructure

Question and
Answer (QAAPI)
with Local
infrastructure

INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors
The C Standard identifies the following condition under which division and remainder operations result in undefined behavior (UB):

UB Description

45 The value of the second operand of the / or % operator is zero (6.5.5).

Ensure that division and remainder operations do not result in divide-by-zero errors.

Division
The result of the / operator is the quotient from the division of the first arithmetic operand by the second arithmetic operand. Division operations are susceptible to divide-by-zero errors. Overflow can also occur during two's complement signed integer
division when the dividend is equal to the minimum (most negative) value for the signed integer type and the divisor is equal to -1. (See INT32-C. Ensure that operations on signed integers do not result in overflow.)

Noncompliant Code Example
This noncompliant code example prevents signed integer overflow in compliance with INT32-C. Ensure that operations on signed integers do not result in overflow but fails to prevent a divide-by-zero error during the division of the signed operands s_a and s_b:

#include <limits.h>

void func(signed long s_a, signed long s_b) {
 signed long result;
 if ((s_a == LONG_MIN) && (s_b == -1)) {
 /* Handle error */
 } else {
 result = s_a / s_b;
 }
 /* ... */
}

Compliant Solution
This compliant solution tests the division operation to guarantee there is no possibility of divide-by-zero errors or signed overflow:

#include <limits.h>

void func(signed long s_a, signed long s_b) {
 signed long result;
 if ((s_b == 0) || ((s_a == LONG_MIN) && (s_b == -1))) {
 /* Handle error */
 } else {
 result = s_a % s_b;
 }
 /* ... */
}

Disposition of materials
Government use rights apply. IBM Watson
software (and any dependencies) must be
licensed from IBM.

SparkCognition is an IBM Watson business
partner (independent software vendor) and has
licensed the project materials from CMU for use
in their products.

We want to thank and acknowledge
collaborators

SparkSecure team at SparkCognition

IBM Watson team at IBM

Contact: Mark Sherman | mssherman@cert.org
P22

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Get R&R

Examples
Working

Tuning
Precision

and Recall

UI Development

Corpus Development

1. Scrape
documents
for corpus

2. Format and
clean inputs to
expand corpus

3. Updated
training

4. Revise schema
and scraper

1 2 3

