
Contact: Aaron Ballman | aaron@aaronballman.com
P19

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Finish with a compelling rule that is applicable
to realworld code and can be automatically
enforced

Create a basic checker for the rule text

Create the stub rule text

E:llvm\2015>clang-tidy -checks=-*,cert-*
E:|Desktop\test1.cpp -- - std=c++14
2 warnings generated.
E:\Desktop\test1.cpp:7:7: warning: do not call ‘setjmp’;
consider using exception handling instead
[cert-err52-cpp] if (setjmp(env) == 0) {

ERR52-CPP. Do not use setjmp() or longjmp()
Created by Fred Long, last modified by Sandy Shrum about 2 hours ago
The C standard library facilities setjmp() and longjmp() can be used
to simulate throwing and catching exceptions. However, these facilities
bypass automatic resource management and can result in undefined
behavior, commonly including resource leaks, and denial-of-service
attacks.

Research Review 2016Establishing Coding Requirements for
Non-Safety-Critical C++ Systems

Writing secure C++ code is hard
and existing coding standards are
insuf�cient. Our research focuses
on educating developers about
C++ security issues through quality
secure coding rules and alerting
developers of security-related
de�ciencies in their source code
through automated checkers.

The CERT C++ Coding Standard comprises 83
C++-speci�c rules spread over 11 broad
categories of language constructs. Additionally,
the Standard references 79 (out of the 102)
rules from the CERT C Coding Standard that
also apply to C++. Each rule has a title,
introduction & normative text, followed by a
series of noncompliant code examples and
their accompanying compliant solutions. Each
rule also guides the user to the risks of failing
to comply with the rule, what kind of automated
detection mechanisms exist, what real-world
vulnerabilities have resulted from failing to
comply with the rule, and citations & related
material.

Modi�ed 137 C++-related rules and created an
additional 16 rules on our public Wiki, engaging
an average of 2000 unique visits per month.
Contributed 15 checkers to the Clang open
source C/C++ compiler, available by default for
10s of millions of programmers.

CERT C++ Coding Standard Rules

Example Rule

C Rules C++ Rules

Old New (FY16) Inapplicable to C++

Our Results: Sections
1. Declarations and Initialization (DCL)

2. Expressions (EXP)

3. Integers (INT)

4. Containers (CTR)

5. Characters and Strings (STR)

6. Memory Management (MEM)

7. Input Output (FIO)

8. Exceptions and Error Handling (ERR)

9. Object Oriented Programming (OOP)

10. Concurrency (CON)

11. Miscellaneous (MSC)

Research the kernel of a security-focused rule
Rule creation follows an iterative process
involving multiple parties:

Hackers, authors, the C++ committee, and the
C++ Standard itself help form the kernel of a
rule. External collaborators such as compiler
writers and users help iterate the rule concept
and checker behavior until it is solid and
applicable to real-world code.

The results are a more compelling rule and
automatic detection capabilities.

Our Results: Rules

JTC1/SC22/WG21 -- The C++ Standards
Committee
• Effective C++ Third Edition

• ISO

• IEC

• Common Vulnerabilities and Exposures

• Clang is the primary compiler for XCode and
is thus used to build all iOS and MacOS ap-
plications, as well as FreeBSD. And is sup-
ported by Microsoft Visual Studio and Linux.

120

100

80

60

40

20

0

As described in MSC55-CPP. Do not return from a function declared
[[noreturn]], functions declared with the [[noreturn]] attribute must not
return on any code path. If a function declared with the [[noreturn]]
attribute has a non-void return value, it implies that the function returns a
value to the caller even though it would result in undefined behavior.
Therefore, functions declared with [[noreturn]] must also be declared
as returning void.

Noncompliant Code Example
In this noncompliant code example, the function declared
with [[noreturn]] claims to return an int:
#include <cstdlib>

[[noreturn]] int f() {
 std::exit(0);
 return 0;
}

This example does not violate MSC55-CPP. Do not return from a function
declared [[noreturn]] because std::exit() is declared [[noreturn]],
so the return 0; statement can never be executed.

Compliant Solution
Because the function is declared [[noreturn]], and no code paths in
the function allow for a return in order to comply with MSC55-CPP. Do not
return from a function declared [[noreturn]], the compliant solution declares
the function as returning void and elides the explicit return statement:

#include <cstdlib>

[[noreturn]] void f() {
 std::exit(0);
}

Risk Assessment
A function declared with a non-void return type and declared with
the [[noreturn]] attribute is confusing to consumers of the function
because the two declarations are conflicting. In turn, it can result in misuse
of the API by the consumer or can indicate an implementation bug by the
producer.

Rule Severity Likelihood Remediation
Cost

Priority Level

DCL22-
CPP

Low Unlikely Low P3 L3

Automated Detection
Tool Version Checker Description

Clang 3.9 -Winvalid-noreturn

Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on
the CERT website.

Related Guidelines
SEI CERT C++
Coding Standard

MSC54-CPP. Value-returning functions must
return a value from all exit paths
MSC55-CPP. Do not return from a function
declared [[noreturn]]

Bibliography
[ISO/IEC 14882-2014] Subclause 7.6.3, "Noreturn Attribute"

DCL22-CPP. Functions declared with [[noreturn]]
must return void
Created by Aaron Ballman, last modified on Aug 24, 2016

