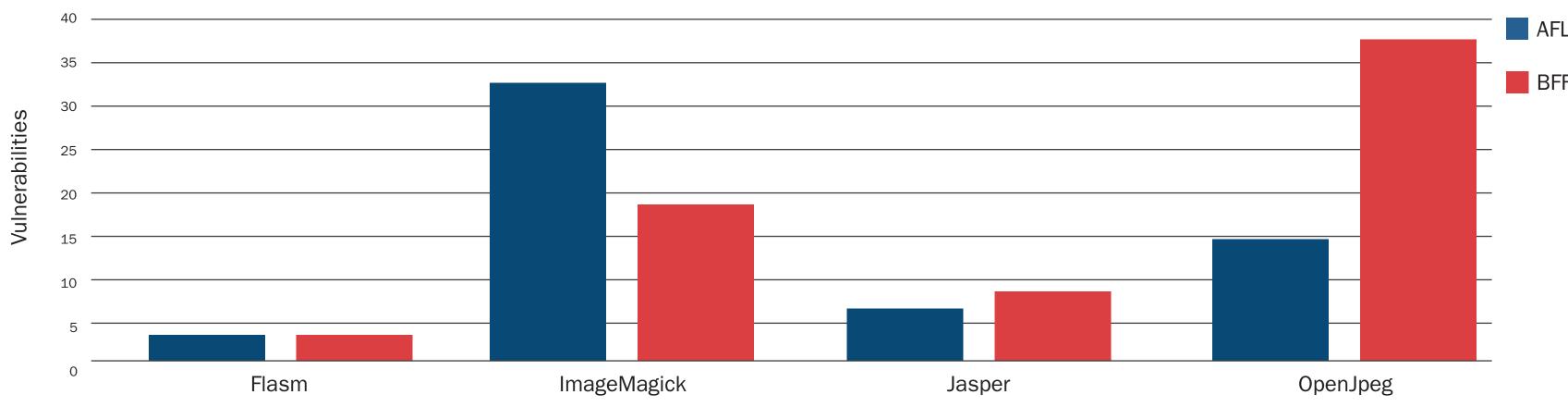

Vulnerability Discovery

Current vulnerability discovery techniques such as black-box fuzz testing and concolic testing are so effective that they routinely find hundreds of thousands of crashers, which crash the target program. We created a new methodology for precisely and naturally defining vulnerabilities through the creation of patches. We use our methodology to debunk three commonly held beliefs in fuzzing practice.


Misbelief 1: Stack backtrace hashing counts vulnerabilities

- # Vuls: Number of vulnerabilities a our methodology
- UC (Undercount): Average number to stack backtrace hashing
- OC (Overcount): Average number of vuls counted more than once by stack backtrace hashings

Misbelief 2: Sanitization never harms fuzzing performance

Misbelief 3: The AFL fuzzer always finds more vulnerabilities than non-guided fuzzers

Experiment setup.

We fuzzed Flasm, ImageMagick, Jasper, and OpenJpeg for a week under various configurations, which yielded hundreds of thousands of crashes. We patched each crash using our methodology, which yielded vulnerabilities for each program. We used this data to debunk the following beliefs shown on the right:

Program	# Vuls	UC	% Error	OC	% Error
Flasm	6	1.8	29%	410.9	6,848%
ImageMagic	31	1.9	6%	67.9	219%
Jasper	12	0.0	0%	226.4	1,887%
OpenJpeg	36	0.1	0%	267.5	743%
	Flasm ImageMagic Jasper	Flasm6ImageMagic31Jasper12	Flasm61.8ImageMagic311.9Jasper120.0	Flasm 6 1.8 29% ImageMagic 31 1.9 6% Jasper 12 0.0 0%	Flasm61.829%410.9ImageMagic311.96%67.9Jasper120.00%226.4

rch	Review	2016
ICII	UCAICM	ZUTO

clang-asanopt
clang-noopt
clang-opt
gcc-noopt
gcc-opt
softbound-noopt
sanitized runs

AFL Fuzzer

BFF Fuzzer