# Semiconductor Foundry Verification

# Detecting Counterfeit Electronics

#### **Motivation**

- Project aims at verifying history of chip design and manufacturing used in critical infrastructure.
- Unknown electronic components possess risk to secure operations.
- Analysis is done at the integrated circuit (IC) level. Verified information includes foundry info, design specifics, sources of 3rd party circuitry.
- Algorithms detect attribution with minimal human intervention.

#### **Research Goals**

- Well-established algorithmic approach to circuit component recognition based on behavioral matching of an unknown sub-circuit against a library of abstract components
- Leverage available component/foundry information to study the attribution impact and extract samples of sub-circuits.
- Measure logic gate density, metal layer routing, collections of logic gates.
- Analyze numerous different ICs for differentiating factors.
- Verify results on another relatively large set of various ICs.

#### Main Idea

- Semi-automated image processing to detect chip features
- Each layer is photographed and processed
- Relevant features extracted and checked against rules
- Fabrication facilities have design and fabrication requirements and tolerances

## Some potential examples fabrication requirements:

- No acute angles or angles of non-45 degree integer multiples
- All metal feature sizes must be multiples of X nm
- Metal layers will be copper

Failure to meet these rules flags chips as potential counterfeits

## **Experimental Results**

Counterfeit Examples. These two chips appear to be identical. The one on the left is counterfeit, the one on the right is authentic.





### **Integrated Circuit Fabrication**

- Doping agents, glasses, or metals on sili-
- Individual components nowadays are on the order of 100nm~10nm
- Chips are multi-layered · Bottom layer is transistors, other silicon features
- Layers above alternate:
  - Metal interconnects (copper/aluminum)
  - Vias (same material as metal)
  - Glass (Silicon Dioxide) between all of this, isolating the layers
- Topmost layer contains pads for connecting to packaging and an encapsulation layer

## **Same Foundry**





### **Different Foundries**





**Authentic Chip Delayered.** The process exposes additional features in layers below. Pads, metals and via sizes, distances between features and the edge of the die indicate manufacturing process and requirements of a specific foundry.





Counterfeit Chip Delayered. Similar process for counterfeit chip reveals features that are very different from the manufacturing process used in authentic IC.





## **Important Manufacturing Differences**



## **Project Outcomes**

Automated Analysis Framework. Square Area Density Based Spacial Cluster Analysis with Noise (SADBSCAN)





- Method of cluster analysis specifically designed for segmentation and area differentiation in images
- Weights the geographical difference as more important and mark these objects as different clusters
- Queries different regions separately and efficiently
- Calculates simple Euclidian distance of color values
- Combines clusters of pixels based not only on color similarities but also the "geographic" location
- Accurate feature detection with high speed parallel processing (10-15 minutes on 1GB image)
- Various additional analytical image processing and feature extraction methods implemented in plugins