Auto-Active Verification of Software with Timers and Clocks (STAC)

Sagar Chaki
Dionisio de Niz
Mark Klein
Motivation

STAC = software that accesses the system clock, exchanges clock values, and uses these values to set timers and perform computation

- Key to real-time and cyber-physical systems
- Essential to keep software in sync with the physical world
- Examples = thread schedulers and time budget enforcers, distributed protocols (e.g., plug-and-play medical devices)

Goal: Formally verify STACs at the source code level using deductive (aka auto-active) verification

- Target: ZSRM mixed-criticality scheduler
 - Performs thread CPU allocation and time budget enforcement
 - Available as Linux kernel module implemented in C
 - Currently we focus on ZSRM budget enforcement only

To our knowledge, the first formally verified and performant timing enforcer
Why Verify Source Code?

Push assurance closer to executable level
 • Use verified compilers (e.g., CompCERT) to close the final gap

Don’t need to sacrifice performance
 • Performance is a problem when we verify models
 • And is a no-go for low-level system software

Easier to integrate with existing systems
 • Linux kernel module means anyone using Linux can use it
 • Can be modified to work with other OSs (ZSRM in VxWorks), such as SEL4
 • What You Verify Is What You Execute!
Why Use Auto-Active Verification?

Soundness
Language expressivity
- Pointers, recursion, loops

Rich specification
- Quantifiers
- Predicates
- Separation

Tool maturity
- Frama-C
 - https://frama-c.com/
 - Contracts expressed in ACSL

Good Balance between human intuition and brute force search
Terminology

Threads/tasks

- \(T = \{ \tau_1, \tau_2, \ldots \} \)
- Executes with preemption (i.e., broken up into chunks)
 - Chunks not known at design time
- Initially each task is one continuous computation (e.g., a function)
 - later we will add periods

Enforcer Functions \(EF = \text{System calls} \cup \text{Timer handlers} \)

- Execute atomically (i.e., without preemption)
- System calls
 - Task arrives : \(ta(\tau) \)
 - Task departs : \(td(\tau) \)
Execution/Timeline

Time = Global “Newtonian” clock
 • Flows monotonically, dense real-time

\[\text{Execution } \pi = s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} s_3 \cdots s_{n-1} \xrightarrow{\alpha_{n-1}} s_n \]

State \(s_i = (c_i, r_i, a_i) \)
Thread CPU Usage

$C(\pi, \tau) = \text{total cpu usage by thread } \tau \text{ over execution } \pi$

- Add up durations of all the transitions labeled by τ

$$C(\pi, \tau_1) = (c_3 - c_2) + (c_8 - c_7)$$
$$C(\pi, \tau_2) = (c_5 - c_4)$$
$$C(\pi, \tau_3) = (c_{10} - c_9)$$

$C(\pi, \tau) \text{ can never be measured precisely}$
$\text{But can be over-approximated!}$
Measuring Current Time

System calls and timer handlers use a special function `now()` to measure current time

We assume that `now()` returns a value that is within the time boundary of the transition in which it is executed

\[
c_3 \leq \text{now()} < c_4 \\
\text{ta}(\tau_1) \quad \tau_1 \quad \text{ta}(\tau_2) \quad \tau_2 \quad \text{td}(\tau_2) \quad \text{ta}(\tau_3) \quad \tau_1 \quad \text{t1.h()} \quad \tau_3 \quad \text{td}(\tau_3)
\]

We assume that multiple calls to `now()` return strictly increasing values

- Implemented using hardware timestamp counter
Theorem 1. For any execution $\pi = s_1 \xrightarrow{\alpha_1} s_2 \ldots s_{n-1} \xrightarrow{\alpha_{n-1}} s_n$ and thread τ, the following four conditions hold:

\begin{align*}
(C1) \quad & n > 1 \land \alpha_{n-1} = \tau \quad \Rightarrow \quad \tau.\text{start}(\pi) \leq c_{n-1} \\
(C2) \quad & n = 1 \lor \alpha_{n-1} \neq \tau \quad \Rightarrow \quad \tau.\text{start}(\pi) \leq c_n \\
(C3) \quad & n > 1 \land \alpha_{n-1} = \tau \quad \Rightarrow \quad C(\pi, \tau) \leq \tau.\text{usage}(\pi) + c_n - c_{n-1} \\
(C4) \quad & n = 1 \lor \alpha_{n-1} \neq \tau \quad \Rightarrow \quad C(\pi, \tau) \leq \tau.\text{usage}(\pi)
\end{align*}
Using CPU Estimate to Enforce Budget

Each thread τ has a time budget $B(\tau)$

Definition 3 (Timer). We say that a budget timer is always properly activated for a thread τ, denoted $\text{Timer}(\tau)$, if at the end of each execution $\pi = s_1 \xrightarrow{\alpha_1} s_2 \ldots s_{n-1} \xrightarrow{\alpha_{n-1}} s_n$ such that $\alpha_{n-1} \in F \land \text{sched}(s_n, \tau)$ there exists an active timer $t \in \alpha_n$ such that $t.c \leq c_n + B(\tau) - \tau$.usage.

Theorem 2. For any thread τ, if $\text{Timer}(\tau)$, then τ never exceeds its budget, i.e., at the end of each execution π, we have $C(\pi, \tau) \leq B(\tau)$.

Results extended to periodic threads as well
Verifying $\text{Timer}(\tau)$ on Source Code

Started with ZSRM implementation as Linux kernel module

Expressed $\text{Timer}(\tau)$ as ACSL annotations and verified with Frama-C

Complete source code with ACSL annotations publicly available

- http://www.andrew.cmu.edu/~schaki/misc/iccps17.tgz
- Compiles on recent Linux distributions
 - Tested to demonstrate good performance
- Verifies with Frama-C Aluminium
- Paper under submission
QUESTIONS?

Please attend the poster session