
1
Auto-Active Verification of Software with

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Auto-Active Verification of Software with

Timers and Clocks (STAC)
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

Auto-Active Verification of

Software with Timers and

Clocks (STAC)
Sagar Chaki

Dionisio de Niz

Mark Klein

2
Auto-Active Verification of Software with

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0004125

3
Auto-Active Verification of Software with

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Motivation

STAC = software that accesses the system clock, exchanges clock values, and
uses these values to set timers and perform computation

• Key to real-time and cyber-physical systems

• Essential to keep software in sync with the physical world

• Examples = thread schedulers and time budget enforcers, distributed
protocols (e.g., plug-and-play medical devices)

Goal : Formally verify STACs at the source code level using deductive (aka auto-
active) verification

• Target: ZSRM mixed-criticality scheduler
- Performs thread CPU allocation and time budget enforcement

- Available as Linux kernel module implemented in C

- Currently we focus on ZSRM budget enforcement only

To our knowledge, the
first formally verified
and performant
timing enforcer

4
Auto-Active Verification of Software with

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Why Verify Source Code?

Push assurance closer to executable level

• Use verified compilers (e.g., CompCERT) to close the final gap

Don’t need to sacrifice performance

• Performance is a problem when we verify models

• And is a no-go for low-level system software

Easier to integrate with existing systems

• Linux kernel module means anyone using Linux can use it

• Can be modified to work with other OSs (ZSRM in VxWorks), such as SEL4

• What You Verify Is What You Execute!

5
Auto-Active Verification of Software with

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Why Use Auto-Active Verification?

Program 𝑷 Property 𝝋

No+CEX Yes+Proof

Auto-Active Verification

Contract 𝑪
Verification

Condition

SMT Solver

Soundness

Language expressivity

• Pointers, recursion, loops

Rich specification

• Quantifiers

• Predicates

• Separation

Tool maturity

• Frama-C
- https://frama-c.com/

- Contracts expressed in ACSL

Good Balance between human
intuition and brute force search

https://frama-c.com/

6
Auto-Active Verification of Software with

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Terminology

Threads/tasks

•𝑇 = {𝜏1, 𝜏2, … }

• Executes with preemption (i.e., broken up into chunks)
- Chunks not known at design time

• Initially each task is one continuous computation (e.g., a function)
- later we will add periods

Enforcer Functions 𝐸𝐹 = System calls ∪ Timer handlers

• Execute atomically (i.e., without preemption)

• System calls
- Task arrives : 𝑡𝑎(𝜏)

- Task departs : 𝑡𝑑(𝜏)

7
Auto-Active Verification of Software with

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Execution/Timeline

Time = Global “Newtonian” clock

• Flows monotonically, dense real-time

𝒕𝒂(𝝉𝟏) 𝝉𝟏 𝒕𝒂(𝝉𝟐) 𝝉𝟐 𝒕𝒅 𝝉𝟐 𝒕𝒂(𝝉𝟑) 𝝉𝟏 𝒕𝟏. 𝒉() 𝝉𝟑 𝒕𝒅(𝝉𝟑)

𝑐1 𝑐2 𝑐3 𝑐4

Timestamps

Execution 𝜋 = 𝑠1
𝛼1
𝑠2

𝛼2
𝑠3…𝑠𝑛−1

𝛼𝑛−1
𝑠𝑛

State 𝑠𝑖 = (𝑐𝑖 , 𝑟𝑖 , 𝑎𝑖)

𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10

8
Auto-Active Verification of Software with

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Thread CPU Usage

𝐶 𝜋, 𝜏 = total cpu usage by thread 𝜏 over execution 𝜋

• Add up durations of all the transitions labeled by 𝜏

𝒕𝒂(𝝉𝟏) 𝝉𝟏 𝒕𝒂(𝝉𝟐) 𝝉𝟐 𝒕𝒅 𝝉𝟐 𝒕𝒂(𝝉𝟑) 𝝉𝟏 𝒕𝟏. 𝒉() 𝝉𝟑 𝒕𝒅(𝝉𝟑)

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11

𝐶 𝜋, 𝜏1 = (𝑐3−𝑐2) + (𝑐8 − 𝑐7)
𝐶 𝜋, 𝜏2 = 𝑐5 − 𝑐4
𝐶 𝜋, 𝜏3 = 𝑐10 − 𝑐9

𝐶 𝜋, 𝜏 can never be measured precisely
But can be over-approximated!

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10

9
Auto-Active Verification of Software with

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Measuring Current Time

System calls and timer handlers use a special function 𝑛𝑜𝑤() to measure
current time

We assume that 𝑛𝑜𝑤() returns a value that is within the time boundary of
the transition in which it is executed

We assume that multiple calls to 𝑛𝑜𝑤() return strictly increasing values

• Implemented using hardware timestamp counter

𝒕𝒂(𝝉𝟏) 𝝉𝟏 𝒕𝒂(𝝉𝟐) 𝝉𝟐 𝒕𝒅 𝝉𝟐 𝒕𝒂(𝝉𝟑) 𝝉𝟏 𝒕𝟏. 𝒉() 𝝉𝟑 𝒕𝒅(𝝉𝟑)

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11

𝑐3 ≤ 𝑛𝑜𝑤() < 𝑐4 𝑐6 ≤ 𝑛𝑜𝑤() < 𝑐7 𝑐8 ≤ 𝑛𝑜𝑤() < 𝑐9

10
Auto-Active Verification of Software with

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Theorem: Over-Approximating CPU Usage

Key Result

11
Auto-Active Verification of Software with

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Using CPU Estimate to Enforce Budget

Each thread 𝜏 has a time budget 𝐵(𝜏)

𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑡𝑜 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑎𝑠 𝑤𝑒𝑙𝑙

12
Auto-Active Verification of Software with

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Verifying 𝑻𝒊𝒎𝒆𝒓(𝝉) on Source Code

Started with ZSRM implementation as Linux kernel module

Expressed 𝑇𝑖𝑚𝑒𝑟 𝜏 as ACSL annotations and verified with Frama-C

Complete source code with ACSL annotations publicly available

• http://www.andrew.cmu.edu/~schaki/misc/iccps17.tgz

• Compiles on recent Linux distributions

- Tested to demonstrate good performance

• Verifies with Frama-C Aluminium

• Paper under submission

13
Verifying Distributed Adaptive Real-Time (DART) Systems

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

SEI Research Review 2016

Auto-Active Verification of Software with

Timers and Clocks (STAC)
© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved

for public release and unlimited distribution.

QUESTIONS?

Please attend the poster session

