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Motivation

STAC = software that accesses the system clock, exchanges clock values, and 
uses these values to set timers and perform computation

• Key to real-time and cyber-physical systems

• Essential to keep software in sync with the physical world

• Examples = thread schedulers and time budget enforcers, distributed 
protocols (e.g., plug-and-play medical devices)

Goal : Formally verify STACs at the source code level using deductive (aka auto-
active) verification

• Target: ZSRM mixed-criticality scheduler
- Performs thread CPU allocation and time budget enforcement

- Available as Linux kernel module implemented in C

- Currently we focus on ZSRM budget enforcement only

To our knowledge, the 
first formally verified 
and performant 
timing enforcer
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Why Verify Source Code?

Push assurance closer to executable level

• Use verified compilers (e.g., CompCERT) to close the final gap

Don’t need to sacrifice performance

• Performance is a problem when we verify models

• And is a no-go for low-level system software

Easier to integrate with existing systems

• Linux kernel module means anyone using Linux can use it

• Can be modified to work with other OSs (ZSRM in VxWorks), such as SEL4

• What You Verify Is What You Execute!
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Why Use Auto-Active Verification?

Program 𝑷 Property 𝝋

No+CEX Yes+Proof

Auto-Active Verification

Contract 𝑪
Verification

Condition

SMT Solver

Soundness

Language expressivity

• Pointers, recursion, loops

Rich specification

• Quantifiers

• Predicates

• Separation

Tool maturity

• Frama-C
- https://frama-c.com/

- Contracts expressed in ACSL

Good Balance between human 
intuition and brute force search

https://frama-c.com/
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Terminology

Threads/tasks

•𝑇 = {𝜏1, 𝜏2, … }

• Executes with preemption (i.e., broken up into chunks)
- Chunks not known at design time

• Initially each task is one continuous computation (e.g., a function)
- later we will add periods

Enforcer Functions 𝐸𝐹 = System calls ∪ Timer handlers

• Execute atomically (i.e., without preemption)

• System calls
- Task arrives : 𝑡𝑎(𝜏)

- Task departs : 𝑡𝑑(𝜏)



7
Auto-Active Verification of Software with 

Timers and Clocks (STAC)

October 2016

© 2016 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved 

for public release and unlimited distribution.

SEI Research Review 2016

Execution/Timeline

Time = Global “Newtonian” clock

• Flows monotonically, dense real-time

𝒕𝒂(𝝉𝟏) 𝝉𝟏 𝒕𝒂(𝝉𝟐) 𝝉𝟐 𝒕𝒅 𝝉𝟐 𝒕𝒂(𝝉𝟑) 𝝉𝟏 𝒕𝟏. 𝒉() 𝝉𝟑 𝒕𝒅(𝝉𝟑)

𝑐1 𝑐2 𝑐3 𝑐4

Timestamps

Execution 𝜋 = 𝑠1
𝛼1
𝑠2

𝛼2
𝑠3…𝑠𝑛−1

𝛼𝑛−1
𝑠𝑛

State 𝑠𝑖 = (𝑐𝑖 , 𝑟𝑖 , 𝑎𝑖)

𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10
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Thread CPU Usage

𝐶 𝜋, 𝜏 = total cpu usage by thread 𝜏 over execution 𝜋

• Add up durations of all the transitions labeled by 𝜏

𝒕𝒂(𝝉𝟏) 𝝉𝟏 𝒕𝒂(𝝉𝟐) 𝝉𝟐 𝒕𝒅 𝝉𝟐 𝒕𝒂(𝝉𝟑) 𝝉𝟏 𝒕𝟏. 𝒉() 𝝉𝟑 𝒕𝒅(𝝉𝟑)

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11

𝐶 𝜋, 𝜏1 = (𝑐3−𝑐2) + (𝑐8 − 𝑐7)
𝐶 𝜋, 𝜏2 = 𝑐5 − 𝑐4
𝐶 𝜋, 𝜏3 = 𝑐10 − 𝑐9

𝐶 𝜋, 𝜏 can never be measured precisely
But can be over-approximated!

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10
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Measuring Current Time

System calls and timer handlers use a special function 𝑛𝑜𝑤() to measure 
current time

We assume that 𝑛𝑜𝑤() returns a value that is within the time boundary of 
the transition in which it is executed

We assume that multiple calls to 𝑛𝑜𝑤() return strictly increasing values

• Implemented using hardware timestamp counter

𝒕𝒂(𝝉𝟏) 𝝉𝟏 𝒕𝒂(𝝉𝟐) 𝝉𝟐 𝒕𝒅 𝝉𝟐 𝒕𝒂(𝝉𝟑) 𝝉𝟏 𝒕𝟏. 𝒉() 𝝉𝟑 𝒕𝒅(𝝉𝟑)

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8 𝑐9 𝑐10 𝑐11

𝑐3 ≤ 𝑛𝑜𝑤() < 𝑐4 𝑐6 ≤ 𝑛𝑜𝑤() < 𝑐7 𝑐8 ≤ 𝑛𝑜𝑤() < 𝑐9
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Theorem: Over-Approximating CPU Usage

Key Result
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Using CPU Estimate to Enforce Budget

Each thread 𝜏 has a time budget 𝐵(𝜏)

𝑅𝑒𝑠𝑢𝑙𝑡𝑠 𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑 𝑡𝑜 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑎𝑠 𝑤𝑒𝑙𝑙
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Verifying 𝑻𝒊𝒎𝒆𝒓(𝝉) on Source Code

Started with ZSRM implementation as Linux kernel module

Expressed 𝑇𝑖𝑚𝑒𝑟 𝜏 as ACSL annotations and verified with Frama-C

Complete source code with ACSL annotations publicly available

• http://www.andrew.cmu.edu/~schaki/misc/iccps17.tgz

• Compiles on recent Linux distributions

- Tested to demonstrate good performance

• Verifies with Frama-C Aluminium

• Paper under submission
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QUESTIONS?

Please attend the poster session


