
Research Review 2016Verifying Distributed Adaptive Real (DART) Systems

Contact: Sagar Chaki | chaki@sei.cmu.edu
P4

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

DMPL supports the right level of
abstraction. github.com/cps-sei/dart

Statistical Model Checking of Distributed Adaptive
Real-Time Software. David Kyle, Jeffery Hansen,
Sagar Chaki.In Proc. of Runtime Verifcation 2015

Challenge: compute the probability of
mission success & compare between
different adaptation strategies.
Solution: Statistical Model Checking

Low
Hazard
Area

High
Hazard
Area

Tight
FormationLoose

Formation

Demo

Adaptation: Formation change
(loose<-->tight)
Loose: fast but high leader
exposure
Tight: slow but low leader
exposure

Resultn

Batch Log and Analyze

SMC Client

SMC Aggregator

RE
acceptable?

Result

NO

YES

Future Work: Importance Sampling to reduce number of
simulations needed for “rare” events.

Each run of log-generator and log-analyzer occurs on a
VM. Multiple VMs run in parallel on HPC platform. Clients
added and removed on-the-�y.

Update
Result and

RE

Example: Self-Adaptive and Coordinated UAS Protection

DART Architecture

DART Process

Node k

DART Vision
A sound engineering approach based on
the judicious use of precise semantics,
formal analysis and design constraints
leads to assured behavior of (DART)
systems while accounting for
• critical requirements

• probabilistic requirements

• uncertain environments

• necessary coordination

• assurance at source code level

OS/Hardware

MADARA Middleware

1. ZSRM Schedulability(Timing)
2. Software Model Checking (Functional)
3. Statistical Model Checking (Probabilistic)

1. Enables compositional and requirement
speci�c veri�cation

2. Use proactive self-adaptation and mixed
criticality to cope with uncertainty and
changing context

Brings Assurance to Code
1. Middleware for communication
2. Scheduler for ZSRM
3. Monitor for runtime assurance

System + Properties
(AADL + DMPL) Veri�cation Code

Generation

Demonstrate on DoD-relevant model
problem (DART prototype)
•Engaged stakeholders
•Technical and operational validity

Software for probabilistic requirements,
e.g., adaptive path-planner to maximize
area coverage within deadline

Environment – network,
sensors, atmosphere,
ground etc.

Distributed
Shared
Memory

Sensors &
Actuators

Software for guaranteed requirements,
e.g., collision avoidance protocol must
ensure absence of collisions

Node 1

High-Critical
Threads
(HCTs)

H
C
T

H
C
T

Low-Critical
Threads
(LCTs)

Pipelined ZSRM Scheduling
• Reduces pipeline to

single-resource scheduling

• Avoids assuming worst
alignment in all stages

But need to deal with
transitive interferences due to
zero-slack

Ongoing work: theory worked
out, implementing scheduler
in Linux

Functional Veri�cation
Prove application-controller
contract for unbounded time
• Previously limited to

bounded veri�cation only

Prove controller-platform
contract via hybrid reachability
analysis
• Done by AFRL

Working on automation and
asynchronous model of
computation

2 4 6 8 100

t=0

t=1

p3p2

T1

p1

T2 T1 T2 T1 T2

p3p2

T1

p1

T2 T1 T2 T1 T2

T1 T2

p3p2

T1

p1

T1 T2

T2

t=1

t=0

Application

Controller

Platform

Assume-
Guarantee
Contract

Proof of
collision
avoidance

DART Node

End-to-End
Functional
Veri�cation of CPS

Resolves nondeterministic
choices to maximize expected
value of objective function

PRISM strategy
synthesis

Ongoing work: replace
probabilistic model
checking with dynamic
programming for speed.First choice independent

of subsequent
environment transitions

non-deterministic

probabilistic

deterministic

Assume-
Guarantee
Contract

Proactive Self-Adaptation Using Probabilistic Model Checking

system

environment

DMPL: DART Modeling and Programming Language

• C-like language that can express distributed, real-time systems

• Semantics are precise

• Supports formal assertions usable for model checking and
probabilistic model checking

• Physical and logical concurrency can be expressed in suf�cient
detail to perform timing analysis

• Can call external libraries

• Generates compilable C++

• Developed syntax, semantics, and compiler (dmplc)

log-
analyzelog-gen

Distributed Statistical Model Checking

overload

P1

P2

P3

P4

P5

ZSRM Mixed-Criticality Scheduler

OS/HW

MADARA

Scheduler

