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Project Goals

We believe insider threat detection methods can be improved by
monitoring and analyzing features of user behavior not typically associated
with indicators of malicious insider behavior. Anomalous behaviors and
statistical outliers observed in such data sets may identify new indicators
or help reduce high false positive rates associated with existing indicators.

We have three specific goals for this project:

1) Detect account masquerading by monitoring for sudden and
significant changes in IT system interactions by the account user.

2) Develop unique profiles of individual users based on behavior
on IT systems.

3) Baseline individual user behavior and monitor for changes that
indicate potentially malicious insider behavior is likely to occur.

We intend to deliver the following outcomes:

1) A measure of confidence that the person currently interacting with
the IT system is or is not the authorized user.

2) Methods for collecting additional context of user behavior by which
insider threat and anomaly detection engines can determine with
higher confidence that suspicious behavior is likely to be malicious.

3) Visualization of these methods and metrics for analyst use.
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The Problem

We're not looking for a needle in a STACK of hay...
we're looking for a NEEDLE in a STACK OF NEEDLES

Our Approach

Researchers have proposed numerous methods for detecting anomalous
user behavior. We intend to focus on three methods in particular:

1) Classifier-Adjusted Density Estimation. This has been shown to be
effective for anomaly detection in data with high dimensionality
[Friedland 2014].

2) Latent Dirichlet Allocation (LDA). Robinson demonstrates a technique
using the LDA model, borrowed from natural language processing, to
identify malicious exfiltration events in a large data set of network
header information [Robinson 2010].

3) Multivariate Statistic Analysis of linguistic characteristics of user text.
Greitzer and Ferryman [Greitzer 2013] and Brown et al. [Brown 2013]
demonstrate that statistical analysis using a variant of Chebyshev’s
inequality can identify outliers in a population of linguistic
characteristics that correlate to persons with known psychological risk
indicators.
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Email avg | 6.78% 0.07% 0.35% 0.16% 3.04% 2.39% 0.63%

0.08% 0.21% 0.07%

Spokenavg | 9.75% 0.06% 0.05% 0.22% 5.25% 4.23% 0.99%

0.14% 0.29% 0.10%
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Data

Host Audit: application use, removable media, file activity, keystrokes,
registry entries, email activity, etc.

Network Activity: login events

Linguistic and Structural: word count, text structure, frequency of words
by category, etc.

Population Known Insiders
H, 50,000+ hosts, multiple features 400+
H, 20,000+ hosts, multiple features 100+

8 x 108 login events

L, Email text, 600 users 0
L, Transcripts of spoken words, 50+ speakers 0
L, Email text, 15,000+ users >0
L, Email text, 20,000+ users >0
L, Text messages, 50,000+ users >0
L, Transcripts of spoken words, 40+ speakers 40+
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Keydown-keydown latencies measured for 50 users [Killourhy 2008]
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