
Vulnerability Discovery 

Focuses on vulnerability discovery in Things 
that have enough compute power to pose a 
threat to a network they are attached to, but 
not enough for somebody to think of them 
as a computer.
1. How do vulnerability discovery techniques for LPLB systems 
 differ from those for traditional computing systems? Are there 
 techniques that do not transfer well? Are there techniques 
 that have shown efficacy in traditional computing but have not 
 showed up on the LPLB side? Why?
2. What processes, tools, and techniques are most effective at 
 improving the security of LPLB systems? For developers and 
 creators of such systems For acquirers, deployers, and 
 operators of such systems
3. What metrics can be applied to assess the efficacy and/or 
 efficiency of those processes?

Vision: Automatically check DoD software 
systems for exploitable bugs
Discover vulnerabilities automatically in compiled x86 
applications 
• “Zero false positives” 
• Automatically generate an exploit for each vulnerability; 
 no source code necessary

This project combines expertise from both 
SEI/CERT and CMU

Task 1: Automated and Sound Vulnerability Discovery

Contact: Joji Montelibano <jmm137@cert.org>
©2014 Software Engineering Institute

Task 2: Low-Power Low-Bandwidth 
System Vulnerabilities

Verification

Program

Correctness Property
Un-exploitability Property

Incorrect
Exploit

Correct
Safe paths

A&SVD SEI/CERT

CMU ECE

Corpus distillation Parameter selection Black-box vulnerability 
discovery

(CEC)
Concrete Execution Client

(SES)
Symbolic Execution Server

Taint Tracker

OPERATING SYSTEMTARGET
MACHINE HARDWARE

Dynamic Binary
Instrumentator (DBI)

Virtualization Layer

Symbolic Evaluator

Path Selector

Exploit Generator

Checkpoint Manager

BINARY

INPUT
SPEC.

CHECK
POINTS

TEST
CASES

BUGGY
INPUTS

EXPLOITS

MAYHEM



Copyright 2014 Carnegie Mellon University 
 
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally 
funded research and development center. 
 
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and 
do not necessarily reflect the views of the United States Department of Defense. 
 
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE 
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO 
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, 
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, 
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON 
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM 
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. 
 
This material has been approved for public release and unlimited distribution except as restricted below. 
 
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal 
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and 
derivative works. 
 
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in 
written or electronic form without requesting formal permission. Permission is required for any other external and/or 
commercial use. Requests for permission should be directed to the Software Engineering Institute at 
permission@sei.cmu.edu. 
 
* These restrictions do not apply to U.S. government entities. 
 
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered marks of Carnegie Mellon University. 
 
DM-0001812 
	  


