
Vulnerability Discovery 

Focuses on vulnerability discovery in Things 
that have enough compute power to pose a 
threat to a network they are attached to, but 
not enough for somebody to think of them 
as a computer.
1. How do vulnerability discovery techniques for LPLB systems 
 differ from those for traditional computing systems? Are there 
 techniques that do not transfer well? Are there techniques 
 that have shown efficacy in traditional computing but have not 
 showed up on the LPLB side? Why?
2. What processes, tools, and techniques are most effective at 
 improving the security of LPLB systems? For developers and 
 creators of such systems For acquirers, deployers, and 
 operators of such systems
3. What metrics can be applied to assess the efficacy and/or 
 efficiency of those processes?

Vision: Automatically check DoD software 
systems for exploitable bugs
Discover vulnerabilities automatically in compiled x86 
applications 
• “Zero false positives” 
• Automatically generate an exploit for each vulnerability; 
 no source code necessary

This project combines expertise from both 
SEI/CERT and CMU

Task 1: Automated and Sound Vulnerability Discovery
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Task 2: Low-Power Low-Bandwidth 
System Vulnerabilities
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