
1

1

HANDBOOK
CMU/SEI-96-HB-002

Goal-Driven
Software Measurement
—A Guidebook
Robert E. Park
Wolfhart B. Goethert
William A. Florac
August 1996

Handbook
CMU/SEI-96-HB-002

August 1996

Goal-Driven Software Measurement
—A Guidebook

Robert E. Park

Wolfhart B. Goethert

William A. Florac

Software Engineering Measurement and Analysis

Unlimited distribution subject to the copyright

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest
of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is granted,
provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external and
commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or
disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government
purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Suite C201, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For information on
ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access to and
transfer of scientific and technical information for DoD personnel, DoD contractors and potential contractors, and
other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly:
Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvoir, VA 22060-
6218. Phone: (703) 767-8274 or toll-free in the U.S. — 1-800 225-3842).

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

…What measure is there of the relations of pleasure to pain
other than excess and defect, which means that they become
greater and smaller, and more and fewer, and differ in degree?
For if anyone says: “Yes, Socrates, but immediate pleasure
differs widely from future pleasure and pain”—to that I should
reply: And do they differ in anything but pleasure and pain?
There can be no other measure of them. And do you, like a
skillful weigher, put into the balance the pleasures and the
pains, and their nearness and distance, and weigh them, and
then say which outweighs the other? If you weigh pleasures
against pleasures, you of course take the more and greater; or
if you weigh pains against pains, you take the fewer and less;
or if pleasures against pains, then you choose that course of
action in which the painful is exceeded by the pleasant,
whether the distant by the near or the near by the distant; and
you avoid that course of action in which the pleasant is
exceeded by the painful. Would you admit, my friends, that
this is true?…

— Plato1

1 From Protagoras, in The Dialogues of Plato, translated by Benjamin Jowett, 4th ed., Vol. 1, pp. 183-
184. Oxford: Clarendon Press, 1953.

CMU/SEI-96-HB-002 i

Table of Contents

Preface ix

Acknowledgments xi

1 Introduction 1
1.1 Purpose 1
1.2 Outline 2

2 Foundations 3
2.1 Why Measure? 3
2.2 Measurement Elements 4

Entities and Attributes 4
Measurement Scales 8
Permissible Statistics 12
Scales Can Change as Knowledge Matures 14

2.3 Objective and Subjective Measures 14

3 A Process Model for Identifying and Defining Software Measures 15
3.1 Overview: The Precepts and the Process Steps 15
3.2 The Role of Mental Models 17
3.3 The Elements of Mental Models 18
3.4 The Importance of Environmental Factors 21

4 Applying the Goal-Driven Process 23
4.1 Step 1: Identify Your Business Goals 25

Business Goals 25
Exercise 1: Identifying Business Goals 26

4.2 Step 2: Identify What You Want to Know or Learn 27
Setting Out on the Path from Goals to Measures 27
Scenario 28
The Entity-Question List—A Template for Framing Questions 28
Examples 30
Exercise 2: Identifying What You Want to Know or Learn 32

4.3 Step 3: Identify Your Subgoals 33
Grouping Related Questions Helps Identify Subgoals 33
Examples 34
Exercise 3: Identifying Subgoals 38

4.4 Step 4: Identify the Entities and Attributes 39
Using Subgoals, Issues, and Questions to Identify Specific Entities

and Attributes 39
Exercise 4: Identifying Entities and Attributes 42

ii CMU/SEI-96-HB-002

4.5 Step 5: Formalize Your Measurement Goals 43
Measurement Goals Can Be Active or Passive 44
What Do Formal Goals Look Like? 44

Object 45
Purpose 46
Perspective 46
Environment 47

Examples of Formalized Measurement Goals 48
Maintaining Traceability 49
Exercise 5: Formalizing Measurement Goals 51

4.6 Step 6: Identify Quantifiable Questions and Indicators 53
The GQM Paradigm 53
Terminology and the Way It Shapes Our Use of GQM 53
GQ(I)M—Proceeding from Measurement Goals to Questions and

Indicators 54
Examples of Indicators 55
Validating Your Questions and Indicators 59
Exercise 6: Identifying Quantifiable Questions and Indicators 60

4.7 Step 7: Identify the Data Elements 61
Developing Focused Measures (Data Elements) 61
Exercise 7: Identifying the Data Elements to Be Collected 63

4.8 Step 8: Define Your Measures 65
The Role of Structured Frameworks 66
What Makes a Definition Operational? 67
Communication Precedes Repeatability 68
Examples of Operational Definitions 68

Example 1: Counts of Source Statements 69
Example 2: Defining and Using Arrayed Data—A Project

Tracking Example 72
Example 3: Effort Measures 74
Example 4: Milestones and Schedules 78
Example 5: Counts of Problems and Defects 80
Example 6: Defining Your Terms—What Does "Open" Mean

When Used to Describe Problems or Defects? 82
Creating Your Own Definition Frameworks 84
Dealing with Complexity 84
Exercise 8: Defining Software Measures 85

4.9 Step 9: Identify the Actions Needed to Implement Your Measures 87
Translating Measurement Definitions into Action Plans 87
Analysis 87
Diagnosis 89
Action 90
An Action Item Checklist 91
Exercise 9: Analysis, Diagnosis, Action 93

CMU/SEI-96-HB-002 iii

4.10 Step 10: Prepare a Plan 95
A Measurement Planning Template 95
Exercise 10: Writing the Plan 99

5 Following Through 101
5.1 Measurement Principles for Functional Managers 101
5.2 Measurement Principles for Project Managers 101
5.3 Measurement Principles for Project Teams 101
5.4 General Principles 102

6 Putting It All in Context 103

References 105

Appendix A: Exercises and Worksheets 109
Exercise 1: Identifying Business Goals 111
Exercise 2: Identifying What You Want to Know or Learn 113
Exercise 3: Identifying Subgoals 117
Exercise 4: Identifying Entities and Attributes 121
Exercise 5: Formalizing Measurement Goals 123
Exercise 6: Identifying Quantifiable Questions and Indicators 127
Exercise 7: Identifying Data Elements 133
Exercise 8: Defining Measures 135
Exercise 9: Analysis, Diagnosis, Action 137
Exercise 10: Preparing Your Measurement Plan 143

Appendix B: Checklists and Forms for Defining Measures 145

iv CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 v

List of Figures

Figure 2-1: Examples of Resource Measures 5

Figure 2-2: Examples of Product Measures 6

Figure 2-3: Examples of Process Measures 7

Figure 2-4: Measurement Scales 9

Figure 2-5: Examples of Statistical Uses Appropriate to Measurements Made
on Different Classes of Scales 12

Figure 3-1: A Process Model for Selecting Software Measures 16

Figure 3-2: A Generic Process Model 18

Figure 3-3: An Expanded Process Model 19

Figure 3-4: Potentially Measurable Elements (Entities) in a Software Process
Model 20

Figure 4-1: Roadmap for the Goal-Driven Measurement Process 23

Figure 4-2: The First Target—Identify Your Business Goals 25

Figure 4-3: Identifying Business Goals 26

Figure 4-4: The Second Target—What Do You Want to Know? 27

Figure 4-5: Scenario 28

Figure 4-6: Entity-Question List (Part 1): Inputs and Resources 30

Figure 4-7: Entity-Question List (Part 2): Internal Artifacts 30

Figure 4-8: Entity-Question List (Part 3): Activities and Flowpaths 31

Figure 4-9: Entity-Question List (Part 4): Products and By-products 31

Figure 4-10: A Template for Generating Entity-Question Lists 32

Figure 4-11: The Third Target—Clearly Identified Subgoals 33

Figure 4-12: Identifying Related Questions (Part 1) 34

Figure 4-13: Identifying Related Questions (Part 2) 35

Figure 4-14: Identifying Related Questions (Part 3) 35

Figure 4-15: Summary of Groupings 36

Figure 4-16: Derived Subgoals—A Project Manager's Perspective of the Goal
"Improve Customer Satisfaction" 37

Figure 4-17: A Template for Mapping from Questions to Subgoals 38

Figure 4-18: The Fourth Target—Refined Entities and Attributes 39

Figure 4-19: A Project Manager's Questions Related to Change Management 40

Figure 4-20: Entity and Attributes Associated with Question #1 41

Figure 4-21: Entity and Attributes Associated with Question #2 41

Figure 4-22: Entity and Attributes Associated with Question #3 42

vi CMU/SEI-96-HB-002

Figure 4-23: A Template for Recording Entities and Attributes 42

Figure 4-24: The Fifth Target—Measurement Goals 43

Figure 4-25: Examples of Active and Passive Goals 44

Figure 4-26: A Template for Stating Measurement Goals 45

Figure 4-27: A Template for Stating the Object of Interest 45

Figure 4-28: A Template for Defining the Purpose of a Measurement Activity 46

Figure 4-29: A Template for Defining the Measurement Perspective 47

Figure 4-30: A Template for Characterizing the Environment in Which
Measurements Will Be Made 48

Figure 4-31: A Formally Stated Measurement Goal (Example 1) 48

Figure 4-32: A Formally Stated Measurement Goal (Example 2) 49

Figure 4-33: A Formally Stated Measurement Goal (Example 3) 49

Figure 4-34: Maintaining Traceability to Business Goals—Theory 50

Figure 4-35: Maintaining Traceability to Business Goals—Practice 50

Figure 4-36: Mapping from Subgoals to Structured Statements of
Measurement Goals 51

Figure 4-37: The Sixth Target—Quantifiable Questions and Indicators 54

Figure 4-38: A Measurement Goal 55

Figure 4-39: Problem Type vs. Finding Activity 56

Figure 4-40: Age of Peer Reviews 56

Figure 4-41: Process Models Help Us Construct Indicators—Fault Stream
Analysis 57

Figure 4-42: Faults as a Cost Driver 57

Figure 4-43: Shift in Fault Distributions as Process Maturity Increases 58

Figure 4-44: Effort Versus Experience—(a) Expected and (b) Observed 59

Figure 4-45: Moving from Measurement Goals to Quantifiable Questions and
Indicators 60

Figure 4-46: The Seventh Target—Data Elements and Measures 61

Figure 4-47: Using Indicators to Identify Data Elements 62

Figure 4-48: Taking Inventory—Mapping Measures to the Indicators They
Serve 62

Figure 4-49: Identifying Data Elements and Mapping Them to Needs 63

Figure 4-50: The Eighth Target—Defined Measures 65

Figure 4-51: A Checklist-Based Definition for Source Lines of Code 70

Figure 4-52: The Case of Disappearing Reuse 72

Figure 4-53: A Summary of Arrayed Data for Tracking Development Progress 73

CMU/SEI-96-HB-002 vii

Figure 4-54: Using a Definition Checklist to Specify the Collection of Arrayed
Data 73

Figure 4-55: A Checklist-Based Definition for Measuring Effort Expended 75

Figure 4-56: A Checklist-Based Definition for Defining Schedule Milestones 78

Figure 4-57: A Checklist-Based Definition for Counting Defects 80

Figure 4-58: A Simple Process Model for Defect Tracking 82

Figure 4-59: A Checklist-Based Definition for Defect States 83

Figure 4-60: Constructing Operational Definitions 85

Figure 4-61: GQM Provides Traceability Back to Measurement Goals 87

Figure 4-62: The Ninth Target—The Facts Needed to Prepare an Effective
Action Plan 87

Figure 4-63: Taking Inventory 88

Figure 4-64: Sources for Problem-Tracking Data 89

Figure 4-65: Evaluating Abilities of Existing Data to Satisfy Needs 90

Figure 4-66: Action Item Checklist 92

Figure 4-67: Action Planning Status 92

Figure 4-68: Identifying Implementation Tasks and Assessing Their Status 93

Figure 4-69: The Tenth Target—A Plan for Implementing the Measures 95

Figure 5-1: A Measurement Process Architecture 103

viii CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 ix

Preface

Software engineering has been defined as "the disciplined application of engineering,
scientific, and mathematical principles, methods, and tools to the production of quality
software" [Humphrey 89]. Its domain includes activities such as planning, estimating,
modeling, designing, implementing, testing, maintaining, and managing. One's prospects for
success in executing and improving these activities rise significantly when decisions can be
based on factual, quantitative information—knowledge that can be obtained only by
observing and measuring the products, processes, and resources involved. But one of the
dangers in enterprises as complex as software development and support is that there are
potentially so many things to measure that we are easily overwhelmed by the opportunities.
For measurement to be cost effective, it must be designed and targeted to support the
business goals of the organization.

The process that we describe in this guidebook will help you find and define software
measures that directly support your organization's business goals. By ensuring traceability
to well-identified goals, the activities that result will be better able to stay focused on their
intended objectives.

We have chosen a tutorial style for describing the goal-driven process because it provides a
good way for guiding people through the steps that we advocate. The risk here is that our
classroom tone may suggest that the steps in the process are simply student exercises.
They are not. Rather, they (and the techniques that we illustrate) are elements in a very
practical process that can help you organize the efforts of your own process improvement
teams—especially as they plan and initiate measurement activities.

We encourage you to use this handbook as a process guide. Your measurement planning
teams should treat the exercises in Chapter 4 and Appendix A as assigned tasks and
perform them in the order presented, with iterations where needed. If they do this, they (and
you) will end up with clearly focused and well-defined measures that can be implemented
and applied consistently by everyone in your software organization.

x CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 xi

Acknowledgments

The following people have contributed to this work, either as reviewers of earlier drafts or as
members of the team that generated the ideas and charts we use in the SEI course:
Engineering an Effective Software Measurement Program. We thank them for helping us
make this guidebook (and our course materials) as readable and useful as possible.

Steven Burke
Computer Sciences Corporation

Anita Carleton
Software Engineering Institute

Suzanne Couturiaux
Software Engineering Institute

Gary Ford
Software Engineering Institute

Will Hayes
Software Engineering Institute

Jim Herbsleb
Software Engineering Institute

Andy Huber
Data General

Nancy Mead
Software Engineering Institute

Jim Rozum
Software Engineering Institute

Bob Stoddard
Texas Instruments

David Zubrow
Software Engineering Institute

Michael Zuccher
Software Engineering Institute

xii CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 1

Goal-Driven Software Measurement—A Guidebook

1 Introduction

The business of pinning numbers on things—which is what we
mean by measurement—has become a pandemic activity in
modern science and human affairs. The attitude seems to be:
if it exists, measure it. Impelled by this spirit, we have taken
the measure of many things formerly considered to lie beyond
the bounds of quantification. In the process we have
scandalized the conservatives, created occasional chaos, and
stirred a ferment that holds rich promise for the better ordering
of knowledge.

— S. S. Stevens, 1959

1.1 Purpose
This guidebook shows you how to identify and define software measures to support your
own organization's business goals. The process that we illustrate produces measures that
provide insights into the management issues that are most important to you. These
measures are traceable back to your business goals, so that your data-collection activities
are better able to stay focused on their intended objectives.

We call this process goal-driven measurement. In goal-driven measurement, the primary
question is not "What metrics should I use?", but "What do I want to know or learn?"
[Rombach 89]. Because the answers depend on your goals, no fixed set of measures is
universally appropriate. So instead of attempting to develop generic, all-purpose lists of
questionably useful measures, we have prepared this guidebook to describe an adaptable
process that teams and individuals can use to identify and define measures that provide
insights into their own management issues.

Our intended audiences are program managers, project managers, process managers,
process improvement teams, and measurement teams. If you are among the people who
manage, measure, or improve software activities, the methods in Chapter 4 and the
exercises in Appendix A can help you identify what you should be measuring and
understanding in order to make your own organizations and processes successful.

2 CMU/SEI-96-HB-002

1.2 Outline
This chapter explains the purpose of the guidebook and identifies the intended audience.

Chapter 2 reviews some of the foundations of software measurement. It introduces
important terms and concepts that are used in Chapters 3 and 4.

Chapter 3 gives an overview of the goal-driven measurement process. It introduces the
concept of mental models and illustrates the roles that mental models play in providing
insights and focus for the process steps that follow.

Chapter 4 contains the heart of the guidebook. The materials in this chapter are presented
as a sequence of tutorials, each supported by examples, exercises, and worksheets. Many
of the materials were developed originally for a three-day course which we teach at the
Software Engineering Institute and for sponsoring organizations [SEI 96]. The order of
presentation in this guidebook follows that of our classroom delivery.

Chapter 5 briefly summarizes some important recommendations that we have collected from
organizations that have implemented software measurement activities.

Chapter 6 closes the loop by relating the goal-driven measurement process back to
elements that are inherent in the basic structure of any business management process.

Appendices A and B contain instructions, worksheets, and forms that you can reproduce
and use as you and your teams plan and execute your own measurement activities.

CMU/SEI-96-HB-002 3

2 Foundations

2.1 Why Measure?

Apparently—all other things being equal—it is better to
measure than not to measure.

— C. West Churchman, 1959

The only sustainable competitive advantage you can achieve
is to learn faster than your competitors.

— David Kreutzer, 1995

Ignorance is a voluntary misfortune.

— Nicholas Ling

There are four reasons for measuring software processes, products, and resources:

• to characterize

• to evaluate

• to predict

• to improve

We characterize to gain understanding of processes, products, resources, and
environments, and to establish baselines for comparisons with future assessments.

We evaluate to determine status with respect to plans. Measures are the sensors that let us
know when our projects and processes are drifting off track, so that we can bring them back
under control. We also evaluate to assess achievement of quality goals and to assess the
impacts of technology and process improvements on products and processes.

We predict so that we can plan. Measuring for prediction involves gaining understandings of
relationships among processes and products and building models of these relationships, so
that the values we observe for some attributes can be used to predict others. We do this
because we want to establish achievable goals for cost, schedule, and quality—so that
appropriate resources can be applied. Predictive measures are also the basis for
extrapolating trends, so estimates for cost, time, and quality can be updated based on
current evidence. Projections and estimates based on historical data also help us analyze
risks and make design/cost tradeoffs.

4 CMU/SEI-96-HB-002

We measure to improve when we gather quantitative information to help us identify
roadblocks, root causes, inefficiencies, and other opportunities for improving product quality
and process performance. Measures also help us plan and track improvement efforts.
Measures of current performance give us baselines to compare against, so that we can
judge whether or not our improvement actions are working as intended and what the side
effects may be. Good measures also help us communicate goals and convey reasons for
improving. This helps engage and focus the support of those who work within our
processes to make them successful.

2.2 Measurement Elements

Quantities are measurements of qualities.

— Paul Kirchner

Measurement is the process by which numbers or symbols are assigned to attributes of
entities in the real world in such a way as to characterize the attributes by clearly defined
rules [Fenton 95]. Thus, measurement requires

• entities (objects of interest)

• attributes (characteristics of entities)

• rules (and scales) for assigning values to the attributes

In general, the class or amount of an attribute is what we measure.

This means that, before we can measure, we must clearly identify the entities and attributes
we will address and the rules we will use to assign values to the attributes.

Entities and Attributes
There are several kinds of entities that we may wish to describe. Examples include

products artifacts organizations

processes activities environments

resources agents constraints

Entities can also be sets or collections of other entities. For example, a software process
may contain many subprocesses and flowpaths, each producing, transforming, or
transmitting products and by-products. The individual products, by-products, subprocesses,
flowpaths, and data elements within these entities are themselves entities that organizations
may want to characterize in consistent, well-understood ways. Similarly, a historical
database (an entity) may contain many measurement results (other entities), together with
their associated descriptions and definitions.

CMU/SEI-96-HB-002 5

Attributes are characteristics or properties of entities. Just as a person (entity) can be
described by characteristics such as height, color of eyes, sex, IQ, age, and years of
experience (attributes), so can software entities be described by attributes such as size,
cost, elapsed time, effort expended, response time, transaction rates, number of defects
found, and operational reliability. The art of measurement lies in deciding which attributes to
use to give useful pictures of the entities we deal with.

Some authors have proposed taxonomies for classifying software entities. Fenton, for
example, says that an entity is either a product, a process, or a resource [Fenton 91].
Armitage et al, on the other hand, use a classification scheme based on artifacts, activities,
and agents [Armitage 94]. Both schemes have advantages and disadvantages. Neither
seems to deal naturally with low-level entities such as defects. (Is a defect a product, a
process, or a resource?…An artifact, activity, or agent?) And both taxonomies seem
awkward when addressing environmental elements.

Fortunately, we do not have to resolve the ambiguities and clashes here. In goal-driven
measurement, we do not need to ensure that entities are assigned to proper classes. So it
matters little which structure is best—or even correct. We use Fenton's and Armitage's
taxonomies interchangeably, primarily as prompters, to help us identify elements and
attributes that we can study, manage, or improve. In practice, we find that using more than
one taxonomy often helps give additional insights.

Figures 2-1 through 2-3 show some examples of entities that software organizations
produce, use, or manage. Each entity is accompanied by attributes that characterize the
entity and measures that could be used to quantify the attributes. These lists could easily be
expanded, but we suggest waiting until we have introduced a framework for identifying the
specific business and measurement goals that are important to your own organization.
Otherwise it is easy to become overwhelmed by the opportunities.

Resource
Entities

Attributes Possible Measures

assigned
staff

team size number of people assigned

experience years of domain experience

years of programming experience

CASE tools type name of type

is_used? yes/no (a binary classification)

time start date, due date calendar dates

elapsed time days

Figure 2-1: Examples of Resource Measures

6 CMU/SEI-96-HB-002

Product
Entities

Attributes Possible Measures

system size number of modules

number of bubbles in a data-flow
diagram

number of function points

number of physical source lines
of code

number of memory bytes or
words required (or allocated)

defect density defects per KSLOC

defects per function point

module length physical source lines of code

logical source statements

percent reused ratio of unchanged physical lines
to total physical lines, comments
and blanks excluded

unit number of linearly
independent
flowpaths

McCabe complexity

document length number of pages

line of code statement type type names

how produced name of production method

programming
language

language name

defect type type names

origin name of activity where introduced

severity an ordered set of severity classes

effort to fix staff-hours

age (of open defects) elapsed time (days) since receipt
of defect report

Figure 2-2: Examples of Product Measures

CMU/SEI-96-HB-002 7

Process
Entities

Attributes Possible Measures

development
process

elapsed time calendar days

working days

milestones calendar dates

development effort staff-hours, days, or months

phase containment percent of total defects found in
phase where introduced

process compliance percent of tasks complying with
standard procedures or directives

performance number of tests passed divided
by number of tests executed

detailed
designing

elapsed time calendar days

working days

design quality defect density: number of design
defects found in down-stream
activities divided by a measure of
product size, such as function
points or physical source lines of
code.

testing volume number of tests scheduled

progress number of tests executed

number of tests passed

maintenance cost dollars per year

staff-hours per change request

change
request
backlog

size number of change requests
awaiting service

estimated effort (staff-hours) for
pending requests

Figure 2-3: Examples of Process Measures

8 CMU/SEI-96-HB-002

Measurement Scales
The discussion on scales that follows is somewhat more detailed and theoretically oriented
than the guidelines and examples in the rest of this guidebook. It can be skipped at first
reading. Although it is important to know how scales can affect (and sometimes limit) the
things we can legitimately do with measurement results, you need not let this topic sidetrack
you now. Be sure to come back and read it later, though.

Scales provide values and units for describing attributes. For example, a person's height
may be 68 inches, his weight may be 163 pounds, his eyes may be brown, and his disposi-
tion may be aggressive. Similarly, a software project may produce 39,000 lines of code,
have a planned completion date of 30 August, use 11,243 staff-hours of effort, and have an
application type classified as real-time command and control. Each of these observations
has been quantified (or labeled) with a value from a (presumably) well-defined scale.

As we shall see, scales for assigning values to attributes need not always be quantitative,
nor are subjectively determined values necessarily undesirable. But wherever measurement
occurs, and whatever its form, it always requires well-defined scales for capturing and
recording measured results.

Measurement scales are derived from the rules that we use for assigning values to
attributes. Different rules lead to different scales. Figure 2-4 shows a system for classifying
measurement scales that is based on the transformations that can be made to a scale
without changing the structure of the scale [Stevens 51, Stevens 59, Fenton 91].

Transformations that do not change the structure of a scale are called admissible
transformations.1 Admissible transformations limit the ways we can validly use
measurement results. For example, statements and inferences based on data from
measurement scales are meaningful if and only if their truth (or falsity) remains unchanged
under all admissible transformations of all the scales involved. Thus the admissible
transformations associated with each scale have important implications about what we can
and cannot validly do when we use data to compute the values (statistics) that we use in
charts, analyses, and management reports.

Figure 2-4 lists five types of scales—nominal, ordinal, interval, ratio, and absolute [Roberts
79]. The ordering is from the least restrictive admissible transformations to the most
restrictive. The basic empirical operations associated with the scales then range inversely
from the most restrictive to the least restrictive. These empirical operations are cumulative
in the sense that measurements made with one of these scales may also be used as inputs
to any of the empirical operations associated with any scale that precedes it in the list.

Other scales such as log-interval and difference scales are possible, but they have less
practical use [Stevens 59, Krantz 71, Roberts 79, Luce 90].

1 Transformations are mappings such as y = ax, y = ax + b, or (more generally) y = f(x).

CMU/SEI-96-HB-002 9

Scale
Type

Admissible
Transformations

Basic Empirical
Operations

Examples

nominal Any one-to-one
transformation

determination of
equality

labels or classifications such as

programming language names
(Ada, C, C++, Fortran, JOVIAL,
CMS-2, Pascal)

job functions (engineer,
manager, programmer, QA
person, customer support
person)

activities (analyzing, designing,
coding, testing)

customer IDs

problem types

numbering of football players

ordinal y2 ≥ y1 iff x2 ≥ x1
(strictly
monotone
increasing
transformation)

the above, plus
determination of
greater or less

rankings or orderings such as

hardness of minerals

intelligence scores (raw scores)

severity and priority
assignments

CMM maturity levels

subjective evaluations made
with Likert scales or low-
medium-high ratings

street numbers

interval y = ax + b, a > 0
(positive linear
transformation)

the above, plus
determination of
the equality of
intervals or
differences

clock time

calendar date

temperature in degrees
Fahrenheit or Celsius

intelligence scores (“standard
scores”)

ratio y = ax, a > 0
(similarity
transformation)

the above, plus
determination of
the equality of
ratios

time intervals

cost, effort (staff-hours), length,
weight, & height

temperature in degrees Kelvin

absolute y = x (identity) the above, plus
determination of
equality with
values obtained
from other scales
of the same type

counting

probability

Figure 2-4: Measurement Scales

10 CMU/SEI-96-HB-002

The following paragraphs describe the five scales and point out some of the limitations
associated with using each scale.

Nominal: A nominal scale provides a name or label as the value for an attribute. The order
of values on the scale has no significance. Familiar examples include the color of a person's
hair (red, brown, black, blonde, etc.), numbers for football players (nominal values limited to
one player per number), and identifying attributes such as part numbers, job codes, defect
classes, language names, and statement types (nominal values where several entities can
share a common label). Any one-to-one mapping is an admissible transformation.

Nominal measures are often used to classify entities so that they can be sorted prior to
counting the number of occurrences or aggregating measured values. For example, we
may want to know the number of executable source statements that we have in a software
program. The process of assigning a statement to a class such as executable, as opposed
to data declaration or comment, is a measurement made according to a nominal scale.
Similarly, we may want to know the number of direct labor hours that were expended by our
quality assurance people. Here the labels direct and quality assurance are values on
nominal scales.

In these examples, the terms executable, data declaration, comment, direct, and quality
assurance are (nominal) labels that we use to describe attributes like source statement
types, labor classes, and personnel classes. The subsequent counting of occurrences (or
summing of values) to obtain totals leads us beyond nominal measures to the use of either
absolute or ratio scales. Ratio and absolute scales will be discussed shortly in the
paragraphs that follow.

When analyzing nominal measures, we are usually limited to nonparametric or distribution-
free statistics such as modes and frequency counts or the use of contingency coefficients
and chi-square tests. Many computations that make sense for higher order scales serve
only to produce results that have little meaning. For example, although we could compute
the average number worn by players at a football game, the result has little practical
significance. Similarly, average defect classes, average hair colors, and the standard
deviations of part numbers or job codes are unlikely to have useful interpretations.

Ordinal: An ordinal scale permits measured results to be placed in ascending (or
descending) order. However, distances between locations on the scale have no meaning.
The Capability Maturity Modelsm for Software (CMMsm), for instance, provides a 1-to-5
(integer-valued) ordinal scale for summarizing the results of process capability assessments
and evaluations [Paulk 93a, Paulk 93b]. But there is no concept or distance associated with
this scale, so we have no idea how far a CMM Level 4 rating is from Level 3. Nor is there

sm CMM and Capability Maturity Model are service marks of Carnegie Mellon University.

CMU/SEI-96-HB-002 11

any implication that a Level 2 rating is twice as high as Level 1. Similar observations hold
true for other ordinal measures such as defect severities and change-request priorities.

Ordinal scales remain ordinal scales when transformed by any monotonically increasing
function (e.g., y = ln x, z = a + 5x2, etc.). The function does not have to be continuous, nor
must it pass through the origin. Rank-order statistics, plus all statistics applicable to nominal
scales, can be used with ordinal measures. But computing averages, such as, "The
average CMM levels for these organizations is 2.3" and "The average severity level for
design defects is 3.16," is inconsistent with the use of an ordinal scale. These kinds of
computations can lead to misinterpretations and invalid conclusions.

As with nominal scales, valid analyses of ordinal data will usually require nonparametric or
distribution-free methods. But the range of possibilities with ordinal data is somewhat wider.
For example, because the scale is ordered, run tests and sign tests are now possible.

Interval: An interval scale adds the concept of distance. If the temperature reached 40ºF
today and 20ºF yesterday, we can say that the difference is 20ºF—but we cannot say that it
was twice as warm today as it was yesterday. These limitations exist because the
Fahrenheit scale has no concept of an origin (true zero-value). Interval scales permit us to
add and subtract values, and we can make statements such as, "The average daily peak
temperature was 30ºF." Interval scales remain interval scales when multiplied by positive
constants or translated laterally. Any transformation of the form y = a + bx, (b > 0), is
admissible. The permissible statistics are all the statistics that apply for ordinal scales, plus
arithmetic means.

Clock times, calendar dates, and normalized intelligence scores are examples of frequently
used measures from interval scales.

Ratio: A ratio scale adds an origin (a meaningful, nonarbitrary zero value). With a true
origin, division and multiplication become meaningful, and all the mathematical operations
that we customarily use for real numbers are legitimate. Ratio scales remain ratio scales
when multiplied by any positive constant. Permissible statistics include ratios and
percentages, as well as all statistics that apply to interval scales.

Examples of familiar measures that use ratio scales include personnel attributes such as
height, weight, and age. Examples more directly related to software include development
cost, integration cost, time between failures, and schedule length.

Absolute: Absolute scales are special cases of ratio scales in which the only admissible
multiplier is 1. They often arise (in a discrete form) out of attributes that are simple counts of
frequencies of outcomes measured on nominal or ordinal scales. For example, counting the
number of occurrences in each of several nominal classes (e.g., the number of design
defects, code defects, etc.) is an instance of the use of an absolute (counting) scale for the
attribute "number of occurrences found." Likewise, the number of executable source
statements and the number of programmers assigned are familiar software examples.

12 CMU/SEI-96-HB-002

Counts are measures on absolute scales in the sense that once the counting rules are
defined, there is one and only one way to count. Any count that is multiplied by a constant
other than 1.0 or that has its origin shifted is no longer a count. Moreover, if N "things" are
counted, the interpretation of N as a number of "things" remains the same for all counting
scales, regardless of the "things" counted or the reasons for counting.

Permissible Statistics
As pointed out in the preceding paragraphs, the types of computations that are appropriate
depend on the kinds of scales that we use. Figure 2-5, which is adapted from [Stevens 59],
relates four of the scales to some of the statistical measures that may be appropriately used
with each scale. As in Figure 2-4, this table is cumulative. A statistic applicable to any given
scale type will be applicable to all scale types that follow it in the list. In general, the more
restrictive the admissible transformations, the more unrestricted the statistics. Thus, nearly
all statistics are applicable to measurements made on ratio scales, but only a very limited
group of statistics may be applied to measurements made on nominal scales. The basic
rule is this: Having measured a set of items by assigning values in accordance with a set of
rules, we are free to change the assignments by any group of transformations that preserves
the empirical information contained in the scale [Stevens 59].

Scale
Type

Measures
of

Location

Measures
of

Dispersion

Measures of
Association or

Correlation

Significance
Tests

nominal mode information
(H)

information transmitted
(T)

contingency correlation

chi-square

ordinal median percentiles rank-order correlation sign test

run test

interval arithmetic
mean

standard
deviation

average
deviation

product-moment
correlation

t test

F test

ratio geometric
mean,
harmonic
mean

percent
variation

correlation ratio

Figure 2-5: Examples of Statistical Uses Appropriate to Measurements Made on
Different Classes of Scales

CMU/SEI-96-HB-002 13

The classifications in Figures 2-4 and 2-5 are based on ideas reported by S. S. Stevens in
1946 [Stevens 46, Stevens 51, Stevens 59]. The discussions in [Stevens 51], pp. 23–30,
are perhaps the most instructive we have read. It is worth your while to have at least one
person on your measurement team review these materials. Familiarity with the issues that
Stevens discusses can help avoid pitfalls caused by overreliance on "intuitive common
sense."

Zuse and Fenton also give brief descriptions of the scale types and relate them to formal
measurement structures [Zuse 91, Fenton 91]. Krantz et al. and Roberts present even more
penetrating discussions in their books on the foundations of measurement [Krantz 71,
Roberts 79].

Stevens's scheme for classifying measurement scales has drawn criticism from several well-
known statisticians [Velleman 93]. The major point that the statisticians make is that, when
analyzing data, one should never use scale types to (prematurely) select or restrict statistical
methods. The reason is that the nature of a scale will often change, depending on the
questions that we ask and on additional information that may become available.2 In short,
scale types are not fundamental attributes of data. Rather, they derive from both how the
data are obtained and what we conclude from the data. So, don't let your knowledge of
scale types overly dominate the types of analyses you consider. Instead, use your
knowledge of measurement scales to test the consistency of your reasoning and the validity
of the conclusions you reach.

Despite the cautions that statisticians raise, they do agree that an understanding of
measurement scales and the associated admissible transformations can help ferret out
nonsense. In particular, conclusions reached will ultimately require that the data belong to
one or another type of measurement scale. Once we have arrived at a conclusion, we
should always check whether the measurement scales that are required for that conclusion
to hold are consistent with the data that were used and the way they were collected.

2 Velleman and Wilkinson [Velleman 93] provide several interesting examples. In one, a raffle was
held at a conference based on tickets allotted at the door. A winning number, 126, was selected and
announced. One participant compared it to her ticket to see if she had won, thus interpreting "126"
correctly as a nominal value. Another, assuming that the tickets were issued sequentially (which they
were), compared his ticket (number 56) to the winning number and realized that he had arrived too
soon, thus interpreting the values ordinally. With data about the rate and regularity of arrivals, he
might have tried to estimate how long he should have delayed his arrival so as to reduce the 70-ticket
difference between his ticket number and the winner's, thus treating the numbers as interval scale
values. The first person then looked around the room and observed, "It doesn't look like there are
126 people here." Here she was assuming that tickets were issued consecutively, beginning with
number "1," and was interpreting the numbers as ratio scale values.

14 CMU/SEI-96-HB-002

Scales Can Change as Knowledge Matures
Measurement can progress from lower to higher scales as societies, organizations, and
practices mature. Stevens provides an illuminating example [Stevens 59]:

We can imagine, for example, that certain Eskimos might speak of
temperature only as freezing or not freezing and, thereby, place it on a
nominal scale. Others might try to express degrees of warmer and colder,
perhaps in terms of some series of natural events, and thereby achieve an
ordinal scale. As we all know, temperature became an interval scale with the
development of thermometry, and, after thermodynamics had used the
expansion ratio of gases to extrapolate to zero, it became a ratio scale."

— S. S. Stevens, 1956

There is an important lesson here for software engineers and managers—do not expect that
everything you will want to measure can be expressed with ratio scales today. Software
engineering is a young discipline. Just as with Stevens's Eskimos, it may take us time to
evolve to where our measurement practices become comparable with those of other
disciplines. Be willing to start with nominal and ordinal scales, just to get measurement
started. But be mindful of the limitations of the computations and interpretations that you
can make with the kinds of data you collect, and look for opportunities to evolve your
measurement practices toward scales that provide greater information.

2.3 Objective and Subjective Measures
There is a tendency in some circles to say that all measurements must be objective. We
emphatically disagree. Insisting on objectivity misses the point that objective and subjective
measurements often address fundamentally different needs. Moreover, the real issues are
not objectivity versus subjectivity, but consistency, repeatability, and the minimization of
measurement errors and noise.

While it is admirable to strive for measurements that are as objective as possible, you
should not hesitate to use subjective measurements when the information they provide
helps you characterize, evaluate, predict, or improve your processes or products. Cost
estimators, for example, have been doing this for years—especially when they use
subjectively determined factors as inputs to parametric cost models like SLIM, SEER-SEM,
PRICE S, or COCOMO. In fact, the inputs to these models—objective and subjective
together—are often excellent vehicles for summarizing the contextual information that we
must have to correctly interpret the results of software measurement activities.

When you do use subjective measurements, though, you should always strive to introduce
processes that continually improve the consistency with which the measurements get made
and recorded. Models, tools, training, tracking, trend analyses, and feedback are useful
techniques that can help you achieve this goal.

CMU/SEI-96-HB-002 15

3 A Process Model for Identifying and Defining
Software Measures

Now, things do not, in general, run around with their measures
stamped on them like the capacity of a freight-car: it requires a
certain amount of investigation to discover what their
measures are.

— Norbert Wiener, 1920

This chapter provides an overview and roadmap for the goal-driven measurement process
that we describe in Chapter 4. The emphasis throughout goal-driven measurement is on
gathering information that helps you achieve your business goals—and on maintaining
traceability from measures back to business goals, so that measurement efforts do not
wander astray.

The structure of the goal-driven measurement process draws extensively on ideas and
experience reported by Victor Basili and Dieter Rombach [Basili 88, Basili 89, Rombach 89].
The process dynamics and several of the illustrations that we use have their origins in
measurement process guidelines developed by the ami ESPRIT project [ami 92, Pulford 96].
The goal-driven measurement process also incorporates experience that we have gained at
the Software Engineering Institute in designing and using checklist-based frameworks for
defining software measures and communicating measurement results [Florac 92, Goethert
92, Park 92, SEI 96].

3.1 Overview: The Precepts and the Process Steps
The goal-driven measurement process is based on 3 precepts, and it consists of 10 steps.
The three precepts are

• Measurement goals are derived from business goals.

• Evolving mental models provide context and focus.

• GQ(I)M1 translates informal goals into executable measurement structures.

The 10 steps are

1. Identify your business goals.

1 GQ(I)M is an acronym for goal-question-(indicator)-measure. The "I" in parentheses distinguishes
this from the closely related GQM methodology introduced and described by Basili and Rombach
[Basili 88, Basili 89, Rombach 89]. Our use of GQ(I)M is described in Sections 4.5–4.8.

16 CMU/SEI-96-HB-002

Business Goals

What do I want
to achieve?

Subgoals

To do this, I
will need to…

Mental Model

receives produces
holds

<The Process>

consists of

entities entities

attributes attributes

Measurement Goals

Questions

Indicators

Measures

G1

Q1

I2

Q2 Q3

I1 I3 I4

M1 M2 M3

G2

What do I want
to know?

entities

attributes

Implementation
Plan

- Goals
- Scope
- Activities

•
•
•

Definitions

1

2

3 4

5

6

7

109
definition
checklist
_____ ✔
_____ ✔
_____ ✔
_____ ✔
_____ ✔

supplemental
rules form

xx_________

xx_________

xx_________

8

Analysis &
Diagnosis

Figure 3-1: A Process Model for Selecting Software
Measures

2. Identify what you want to know or learn.

3. Identify your subgoals.

4. Identify the entities and attributes related to your subgoals.

5. Formalize your measurement goals.

6. Identify quantifiable questions and the related indicators that you will use to
help you achieve your measurement goals.

7. Identify the data elements that you will collect to construct the indicators
that help answer your questions.

8. Define the measures to be used, and make these definitions operational.

9. Identify the actions that you will take to implement the measures.

10. Prepare a plan for implementing the measures.

Figure 3-1 shows a graphical
view of the process model
that guides our steps (the step
numbers are circled). We will
use excerpts from this model
in Sections 1 through 10 of
Chapter 4 to highlight our
progress. We will also
illustrate the importance of the
precepts as we describe the
process steps.

But before describing the
process steps, it is useful to
reflect briefly on the roles that
mental models play in guiding
our perceptions of the
business issues that we
manage when we develop
and support sof tware
systems. These roles and the
elements associated with
mental models are discussed
in the sections that follow.
They will be illustrated in more
detail when we walk through
the process steps.

CMU/SEI-96-HB-002 17

3.2 The Role of Mental Models
The driving forces in goal-driven measurement are the business goals of your organization
and the information that you would like to have about your products, processes, and
resources to help you meet these goals.

The primary mechanisms for translating these goals into issues, questions, and measures
are the mental models that you have for the processes you use. These mental models gain
substance and evolve as you begin to make them explicit. They are the engines that
generate the insights that guide you to useful measures and actions.

Although mental models are abstractions, they are far from artificialities. We all use mental
models every day to provide contexts and frameworks for translating observations into
conclusions and actions. These personal mental models are seldom stated in explicit
ways—but they always exist, if only in our minds. We derive these models from our
personal experiences, and they exist even if we don't think consciously about them. They
provide the contexts for interpreting and acting on the data we see in everyday life.

Although mental models are powerful tools, their full power will never be realized while they
exist solely in your mind. Mental models must be made explicit if they are to be effective
vehicles for framing concerns and sharing knowledge with others. They must also be made
explicit if they are to become productive bases for team-oriented process-improvement
activities.

Peter Senge and Charlotte Roberts make the above points very effectively in The Fifth
Discipline Fieldbook [Senge 94]. They also provide examples of techniques that can be
used in team settings to elicit and formulate explicit representations of mental models so that
they can become productive bases for discussion and action.

Figure 3-1 on the preceding page is our top-level diagram for the mental model that we use
for the goal-driven measurement process. This model has been invaluable in identifying
issues that need to be addressed and in guiding us toward a consistent methodology.

As you begin applying the steps of the goal-driven process to identify and define your own
software measures, you should construct flowgraphs or other diagrams of the processes
that you manage or work within. When you do this, you will find several things happening:

• Process entities such as inputs, outputs, tasks, and flowpaths will become
immediately visible.

• You will be led easily and naturally to identifying attributes of process and
product entities about which information will be useful.

• You will find that you have vehicles (process models) that enable you to
communicate your goals, concerns, questions, and interpretations to others.

18 CMU/SEI-96-HB-002

receives produces
holds

<The Process>

consists of

entities entities

attributes attributes

entities

attributes

Figure 3-2: A Generic Process Model

• By explicitly stating your mental models as process models, you will help
ensure that all who work on the processes have the same picture of the issues
that need to be addressed.

• By stating your models explicitly, others can now help you evolve them and
make them more exact. This will improve your ability to identify key issues and
subgoals and to formulate questions that give insights into factors that affect
achievement of the subgoals.

• The explicit process models will provide contexts for you and others to interpret
and act on measurement results.

In short, flowgraphs are tools for visualizing processes. They use the power of pictures to
communicate complex relationships with clarity in small amounts of time. Drawing a
flowgraph is often a vital first step in continuous process improvement because it helps
define the object of one's efforts. Whether the project involves one person or many, proper
visualization of the process is essential to having people work on the right thing. This is
especially true with administrative systems, where the flowgraph may be the only way to
make the process visible [Wheeler 92].

If your organization has defined processes that it uses (and reuses) for its software
activities, these make excellent starting points for formulating and evolving mental models to
guide you through the steps in the goal-driven measurement process.

3.3 The Elements of Mental Models
Mental models of processes summarize relationships that exist among the elements
associated with the processes. Although many kinds of models are possible, simple
flowgraphs are a good place to start. They will help you initiate productive discussions that
explore the needs and options
associated with your business
and technical goals.

Figure 3-2 il lustrates a
flowgraph for a generic process
model. Figure 3-3 shows how
expanding the central box
helps identify internal entities
and their attributes. Often the
power of flowgraphs is not
realized unti l expanded
versions such as Figure 3-3
are created.

CMU/SEI-96-HB-002 19

receives produces
holds

consists of
receives produces

holds

consists of

receives produces
holds

consists of

receives produces

<The Process>

entities

attributes

entities

attributes

entities

attributes

Figure 3-3: An Expanded Process Model

When we examine flowgraphs of processes, we find that they deal with four types of
elements:

• things they receive (inputs and resources)—these are used or consumed

• things they produce (outputs)—these include products, by-products, and effects

• things they consist of (activities, flowpaths, and agents)—the structure of the
process

• things they hold or retain (internal artifacts, such as inventory and work in
process)

Each "thing" or element in a process is an entity, and each entity has attributes that relate
either directly or indirectly to business goals. Elements with significant effects or that yield
important insights are the ones that your mental process models should emphasize.

This taxonomy of inputs, outputs, activities, and internal artifacts leads naturally to useful
mental models, as well as to checklists and other tools that help us identify the entities and
attributes that we manage and improve to achieve our goals. For example, Figure 3-4 lists
several entities that you may want to identify and consider as candidates for measurement
in your processes. We suggest that you refer to this table when you begin to create
flowgraphs for your mental models. It may call things to your attention that you might
otherwise overlook.

20 CMU/SEI-96-HB-002

To help keep you alert to opportunities and to show how general the input-process-output
concepts of flowgraphs like Figures 3-2 and 3-3 are, we have included some nonsoftware
entities in the lists.

A Process:

Receives Consists of Holds Produces

resources
people
facilities
tools
money

consumables
time
fuel
energy
effort
raw materials

guidelines and
directions

policies
procedures
goals
constraints
rules
laws
regulations
training
instructions

products and by-
products from other
processes

processes
tasks
steps
activities
subprocesses
transformations
reviews
inspections

controllers
flow controllers
sensors
signal processors
gates
throttles
valves

flowpaths
product paths
resource paths
data paths
control paths

buffers and dampers
queues
stacks
bins
reservoirs
accumulators
conveyors

inventory

materials

work in process

tools

data

knowledge

experience

products
requirements
specifications
plans
architectures
preliminary

designs
detailed designs
reviewed designs
code
reviewed code
integrated code
tested code
test cases
test results
tested components
change requests
documentation
defects
defect reports
data
acquired materials

by-products
knowledge
experience
skills
process

improvements
waste & scrap
heat, light, & noise
pollution
data
good will
satisfied

customers

Figure 3-4: Potentially Measurable Elements (Entities) in a Software Process Model

CMU/SEI-96-HB-002 21

3.4 The Importance of Environmental Factors

No count or measurement has any meaning apart from its
context.

— David Wheeler, 1995

You may also have occasion to measure or characterize entities that lie outside your
process models. For example, it is important to keep in mind that every process operates in
an environment that contributes to or detracts from its prospects for success. The kinds of
products you have historically produced, the nature of your physical facilities, and the types
of customers and markets you deal with can all significantly influence the performance of
your process. Quantitative information about these environmental factors will help you and
others interpret data that are gathered from the entities that you examine. This contextual
information also helps you identify barriers to success and opportunities for improvement—
two activities that are inherent in achieving almost all business goals.

It is important, too, to remember that processes have customers, both internal and external,
who you may want to characterize. This is especially so when you have goals related to
marketing or satisfying customer needs.

22 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 23

4 Applying the Goal-Driven Process

Without the right information, you're just another person with
an opinion.

— Tracy O'Rourke, CEO of Allen-Bradley

The goal-driven process begins with identifying business goals and breaking them down into
manageable subgoals. It ends with a plan for implementing well-defined measures and
indicators that support the goals. Along the way, it maintains traceability back to the goals,
so that those who collect and process measurement data do not lose sight of the objectives.

This chapter contains the heart of the guidebook. The materials in Sections 4.1 through
4.10 are presented as a sequence of tutorials, supported by examples. Each section ends
with an exercise. You should treat the exercises as tasks to be performed by your
measurement planning team(s), with iteration where needed. If you do this, you should end
up with clearly defined measures that can be implemented and applied consistently by
everyone in your organization, in ways that directly support your business goals. Figure 4-1
provides a roadmap for the process steps that we will cover.

Section Process Step

4.1 Identify your business goals.

4.2 Identify what you want to know or learn.

4.3 Identify your subgoals.

4.4 Identify the entities and attributes related to your
subgoals.

4.5 Formalize your measurement goals.

4.6 Identify quantifiable questions and the related indicators
that you will use to help you achieve your measurement
goals.

4.7 Identify the data elements that you will collect to
construct the indicators that help answer your questions.

4.8 Define the measures to be used, and make these
definitions operational.

4.9 Identify the actions that you will take to implement the
measures.

4.10 Prepare a plan for implementing the measures.

Figure 4-1: Roadmap for the Goal-Driven Measurement Process

Appendix A contains detailed instructions for the exercises that are at the end of each
section, together with forms and templates that measurement planning teams can use to

24 CMU/SEI-96-HB-002

help structure their tasks. We suggest that you reproduce these instructions and use them
as handouts to guide your teams' activities. You may also reproduce and adapt the
checklists and forms in Appendix B to help create operational definitions for your measures.
Guidelines and examples for using the checklists can be found in [Park 92], [Goethert 92],
and [Florac 92].

CMU/SEI-96-HB-002 25

4.1 Step 1: Identify Your Business Goals

In truth, a good case could be made that if your knowledge is
meagre and unsatisfactory, the last thing in the world you
should do is make measurements. The chance is negligible
that you will measure the right things accidentally.

— George Miller, a psychologist

Business Goals
The first step in identifying and defining software measures is to identify the business goals
that drive your organization's efforts (Figure 4-2). As Lynch and Cross point out in their book
Measure Up!, business goals are often a function of where you sit [Lynch 91]. The focus in
departments and work centers differs from the focus in the business units they report to.
Nevertheless, the goals in hierarchical organizations are related, and they all come down to
competing on the basis of productivity, flexibility, and customer satisfaction. Goals framed in
terms of these concerns by business units lead, in departments and work centers, to more
specialized goals that address issues of quality, delivery, cycle time, and waste.

Business Goals

What do I want
to achieve?

Subgoals

To do this, I
will need to…

What do I want
to know?

1

Figure 4-2: The First Target—Identify
Your Business Goals

Since the goal-driven measurement process
in this guidebook is designed to help teams
reason from general business goals to
specific measures and indicators, it can be
initiated at any organizational level where
goals can reasonably be identified. Entering
at a high level with goals such as "Reduce
cycle time" or "Improve customer satisfaction"
has the advantage of ensuring traceability of
the resulting measures back to the primary
business goals at that level. The
disadvantage is that iteration may be needed
with Steps 2 and 3 (and possibly Step 4) in
order to push the implications of these goals
down to levels where specific measures can
be effectively formulated. Entering the goal-
driven process at lower levels avoids some of this work, but increases the likelihood of
starting with goals whose traceability to higher level objectives may be less than apparent.
This could affect the support you receive from higher level managers.

Regardless of the level, the important thing is to get started. The goal-driven process is
sufficiently flexible to allow you to enter it at any level where valid goals can reasonably be
identified. Perhaps the best advice we can give you is to begin with the goals of the person

26 CMU/SEI-96-HB-002

whose sponsorship will be most important to implementing and sustaining the resulting
measurement efforts. This person could be a senior executive with broad responsibilities.
Or, if you reside within a project team, it could be your software project manager.
Identifying, defining, and implementing measures does not have to be an organization-wide
program. It can be initiated at any level where quantitative information about products,
processes, or resources would improve your abilities to plan, control, and improve your
processes.

When you do begin the process, Step 1 (identifying business goals) is usually best done in
team settings, with managers participating. This helps ensure that you start with the right
goals, and that important things are not overlooked. Findings and action items from
software process assessments and software risk assessments make good starting points for
identifying goal-driven measures, as do outputs from strategic planning exercises.
Structured brainstorming and the Nominal Group Technique (NGT) can be helpful methods
for identifying and prioritizing your goals [Scholtes 90]. In addition, interviewing business
managers can be an excellent way to gain insights into the way business goals are
perceived and translated into lower level goals and objectives.

The product of Step 1 is a prioritized set of business goals. It is wise to have these goals
reviewed by upper-level managers before proceeding further, to ensure that your priorities
are appropriate and that nothing important has been overlooked or misinterpreted.

Exercise 1: Identifying Business Goals
Use structured brainstorming or the Nominal Group Technique to generate a list of the
business goals that drive your own software processes. Merge similar goals and sort the
results into a prioritized list. Figure 4-3 illustrates this step. Reproducible instructions for
this exercise are presented in Appendix A.

 Complete the
following statement:

 One of our principal
business goals is…

Business Goals

What do I want
to achieve?

Subgoals

To do this, I
will need to…

What do I want
to know?

Business Goal #1:

Business Goal #2:

Business Goal #3:

								 °
								 °
								 °
Business Goal #n:

Figure 4-3: Identifying Business Goals

CMU/SEI-96-HB-002 27

4.2 Step 2: Identify What You Want to Know or Learn

A prudent question is one-half of wisdom.

— Francis Bacon

Setting Out on the Path from Goals to Measures
With your business goals identified, the next step is to begin identifying what you would like
to know in order to understand, assess, predict, or improve the activities related to achieving
your goals. By asking questions such as

"What activities do I manage or execute?"

and

"What do I want to achieve or improve?"

and by completing statements such as

"To do this, I will need to…",

you can begin identifying the quantitative information that you would like to have. You
should repeat these questions several times as you break top-level goals down into specific
things that you want to accomplish and issues that you will need to address. The ellipse in
Figure 4-4 highlights this part of the process and shows how it draws upon your mental
model of the processes you manage.

Business Goals

What do I want
to achieve?

To do this, I
will need to…

Mental Model

receives produces
holds

<The Process>

consists of

entities entities

attributes attributes

What do I want
to know?

entities

attributes

Figure 4-4: The Second Target—What Do You Want to Know?

28 CMU/SEI-96-HB-002

Scenario
We use several examples in the materials that follow to show you how entities, attributes,
and evolving mental models help guide and focus the goal-driven process. To give
substance to these examples, we offer the scenario shown in Figure 4-5.

Scenario

• Your organization has just completed a software process
assessment.

• One of the findings was that your projects are delivering
software functions and documentation on time, but
customers are not as satisfied as you would like them to be.

• The related action item is: Improve customer satisfaction.

• Your process improvement team has identified this action
item as one of its primary goals.

• You are a project manager, and you need a set of measures
that will help your project make progress toward this goal.

Figure 4-5: Scenario

So, your first goal—and the one we illustrate in Sections 4.2 through 4.3—will be to improve
customer satisfaction. You (and others in your organization) may have other goals that are
just as important, but we will focus on this one now. The goal-driven measurement process
can (and should) be applied later to your other goals as well.

The Entity-Question List—A Template for Framing Questions
The tool we recommend to help identify and frame questions is called an entity-question list.
Our example of the use of this tool is patterned after a similar illustration in the ami
handbook [ami 92]. The sequence of tasks is as follows:

1. Start with one of the top-level goals that your team identified in Step 1.

2. Identify the persons or groups whose concerns your team will address.
(This may be you or the organization you lead.) This defines your
perspective and the roles that you and the team will assume in Tasks 3
through 6 here and in the remaining steps of the goal-driven measurement
process.

3. Create rough sketches (mental models) of the relevant processes that you,
in your role, manage or affect. As you do this, be guided by what you want
to achieve and the issues you will have to address to achieve it.

CMU/SEI-96-HB-002 29

4. List the important things (entities) in your processes that you, in your role,
manage or influence. Make sure that you address each of the four kinds of
process entities below:

– inputs and resources
– products and by-products
– internal artifacts such as inventory and work in process
– activities and flowpaths

You may also want to list some of the environmental entities outside your
processes that affect your work.

5. For each entity, list questions that, if answered, would help you, in your
role, plan and manage progress toward your goals. For example:

– How big is it?
– How much is there?
– How many components?

– How fast is it?
– How long does it take?
– How much does it cost?

6. Then step back and look at your process as a whole to see if you have
missed anything. By asking questions such as

– Is the process stable?
– How is it performing now?
– What limits our capability?
– What determines quality?
– What determines success?
– What things can we control?

– What do our customers want?
– What limits our performance?
– What could go wrong?
– What might signal early warnings?
– How big is our backlog?
– Where is backlog occurring?

and most importantly

– How will we know?

you may discover additional entities whose properties may be worth
measuring.

7. Repeat Tasks 1–6 for your other goals.

When listing questions related to entities (Task 5 above), do not spend excessive time trying
to frame the perfect question. Precise framing of questions will come later—you are still
early in the goal-driven process. Your questions at this point can be either very general or
quite specific. The important thing is to get your concerns on the table so that you can use
them to help elaborate your mental model, and so that they can set the stage for identifying
and articulating subgoals in Step 3 of the goal-driven process (Figure 3-1).

Note that Task 7 of Step 2 does not have to be performed immediately after Tasks 5 and 6.
Usually it is best to continue on through Step 7 of the goal-driven measurement process, to
the point where you have clearly identified the data elements that address one or two of your
business goals, before branching off on additional goals. This helps keep the goal-driven
process manageable. Ultimately, though, you will want to give priority to measures that

30 CMU/SEI-96-HB-002

address more than one goal. This is especially true when you begin to reduce the large set
of potential measures to the ones that are most valuable to you. There are no universal
guidelines for when to address additional goals—it all depends on the situation. You and
your team will have to judge this for yourselves.

Examples
Figures 4-6 through 4-9 on the following pages list some of the entities and questions that
might concern the project manager in our example scenario when he or she is trying to
improve customer satisfaction. Your lists for your own organizations or projects will likely be
more encompassing.

Entities managed by
a project manager Questions related to customer satisfaction

Inputs and resources

people Are our people qualified to produce the results the
customer wants?

Is personnel turnover hampering product quality?

subcontractors Are the practices of our subcontractors consistent
with those of the activities they support?

computers Is the target system meeting its performance
requirements?

Is the target system reliable?

customer change
requests

Do customer change requests contain the
information that we must have to produce timely
and effective changes?

Figure 4-6: Entity-Question List (Part 1): Inputs and Resources

Entities managed by
a project manager Questions related to customer satisfaction

Internal artifacts

customer change
requests (work in
process)

How large is our backlog of customer change
requests?

Where are the backlogs occurring?

Figure 4-7: Entity-Question List (Part 2): Internal Artifacts

CMU/SEI-96-HB-002 31

Entities managed by
a project manager Questions related to customer satisfaction

Activities & flowpaths

development Is development progress visible to the customer?

testing Are our testing procedures adequate for the
operational use of the system?

Does the customer accept the testing procedure
and test results?

fixing Is the response time for fixing bugs compatible with
customer constraints?

Is change control adhered to?

Are high-priority changes getting implemented in a
timely fashion?

Are status and progress visible to the customer?

Figure 4-8: Entity-Question List (Part 3): Activities and Flowpaths

Entities managed by
a project manager Questions related to customer satisfaction

Products and by-
products

documents Are the documents we produce readable?

Is it possible to trace system features from one
document to the next?

Are documents concise and complete?

Is the terminology correct?

source code &
compiled products

Is the source code consistent with the documents?

Is the source code error free?

Does source code follow programming standards?

Is the system response time adequate?

Is the man-machine interface satisfactory?

plans Are plans consistent with customer constraints?

Are they kept up to date?

Are plans and changes communicated to the
customer?

budget Are budgets consistent with plans?

Are budgets consistent with customer constraints?

Figure 4-9: Entity-Question List (Part 4): Products and By-products

32 CMU/SEI-96-HB-002

As you generate entity-question lists, keep in mind that your purpose is simply to identify
things that you want to know or understand. You do not have to classify them correctly. It is
much more important to produce a useful list of entities and questions than to worry about
getting elements assigned to their correct slots.

Exercise 2: Identifying What You Want to Know or Learn
Select one of the goals you identified in Exercise 1. With your team, perform Tasks 1
through 6 of the sequence that we just outlined to fill in the template shown in Figure 4-10.
Repeat the process, as appropriate, for your remaining goals. Appendix A contains
instructions and full-sized templates to support you in this exercise.

(Remember that the scenario we have used is only an illustration. In this exercise and those
that follow, you should focus not on our scenario, but on your own business goals and on
using your goals to identify and define the measurements you will make to help you achieve
the goals.)

Entities of Interest Questions Related to Business Goal(s)

Products and by-
products

Inputs and resources

Internal artifacts (work
in process, backlogs,
inventory, etc.)

Activities and
flowpaths

Figure 4-10: A Template for Generating Entity-Question Lists

CMU/SEI-96-HB-002 33

4.3 Step 3: Identify Your Subgoals

Measurements are important, but what is measured is more
important.

— Francis S. Patrick

Grouping Related Questions Helps Identify Subgoals
The third step in the goal-driven process is to translate your top-level goals into subgoals
that relate specifically to activities that you manage or perform. You can use the entity-
question lists from Exercise 2 to help you do this.

The ellipse in Figure 4-11 shows where we are in the process. The questions that were
prompted by the evolving mental model of your operational process(es) point, either
implicitly or explicitly, to entities and attributes associated with achieving your goals. You
now need to identify the questions that you have about the entities, then group them and
identify the issues they address. You will then be able to translate the results into
manageable subgoals. (If you are familiar with team-based problem-solving processes, you
will recognize this as a convergent step that organizes and structures the results of the
divergent process we used to generate the entity-question lists.)

Business Goals

What do I want
to achieve?

Subgoals

To do this, I
will need to…

Mental Model

receives produces
holds

<The Process>

consists of

entities entities

attributes attributes

What do I want
to know?

entities

attributes

3

Figure 4-11: The Third Target—Clearly Identified Subgoals

34 CMU/SEI-96-HB-002

Examples
Figure 4-12 shows some results for our example scenario. Here, the groupings are easily
identified. For example, the first four questions listed for products and by-products address
documentation. This issue is grouped already, since we generated the questions by
focusing on the document entities we produce.

Entities managed by
a project manager Questions related to customer satisfaction

Products and
byproducts

documents Are the documents we produce readable?

Is it possible to trace system features from one
document to the next?

Are documents concise and complete?

Is the terminology correct?

source code &
compiled products

Is the source code consistent with the documents?

Is the source code error free?

Does source code follow programming standards?

Is the system response time adequate?

Is the man-machine interface satisfactory?

plans Are plans consistent with customer constraints?

Are they kept up to date?

Are plans and changes communicated to the
customer?

budget Are budgets consistent with plans?

Are budgets consistent with customer constraints?

#2

#1

Figure 4-12: Identifying Related Questions (Part 1)

As we scan down the entity-question list, we see that the next five questions relate to the
quality and performance of the software product. This concern continues in Figures 4-13
and 4-14. Since this seems to be a consistent theme, we elect to collect these questions as
group #2.

CMU/SEI-96-HB-002 35

Entities managed by
a project manager Questions related to customer satisfaction

Inputs and resources

people Are our people qualified to produce the results the
customer wants?

Is personnel turnover hampering product quality?

subcontractors Are the practices of our subcontractors consistent
with those of the activities they support?

computers Is the target system meeting its performance
requirements?

Is the target system reliable?

customer change
requests

Do customer change requests contain the
information that we must have to produce timely
and effective changes?

#2

Figure 4-13: Identifying Related Questions (Part 2)

Entities managed by
a project manager Questions related to customer satisfaction

Activities & flowpaths

development Is development progress visible to the customer?

testing Are our testing procedures adequate for the
operational use of the system?

Does the customer accept the testing procedure
and test results?

fixing Is the response time for fixing bugs compatible with
customer constraints?

Is change control adhered to?

Are high-priority changes getting implemented in a
timely fashion?

Are status and progress visible to the customer?

#2

#2

Figure 4-14: Identifying Related Questions (Part 3)

36 CMU/SEI-96-HB-002

As we continue identifying principal themes or issues, we collect the questions related to
each issue and transfer them to a new list, sorted by issue. Figure 4-15 shows the results
for our scenario. Keep in mind that the groupings will always be somewhat arbitrary, since
they are based on the team's perceptions of central themes. Moreover, it is perfectly
appropriate for a question to be repeated in more than one grouping.

Questions related to customer satisfaction

Grouping #1

(documents)

Are the documents we produce readable?

Is it possible to trace system features from one
document to the next?

Are documents concise and complete?

Is the terminology correct?

Grouping #2

(software product)

Is the source code consistent with the
documents?

Is the source code error free?

Does source code follow programming
standards?

Is the system response time adequate?

Is the man-machine interface satisfactory?

Is the target system meeting its performance
requirements?

Is the target system reliable?

Is change control adhered to?

Are our testing procedures adequate for the
operational use of the system?

Grouping #3

(project
management)

Are plans consistent with customer constraints?

Are they kept up to date?

Are budgets consistent with plans?

Are budgets consistent with customer
constraints?

Grouping #4

(change
management)

Do customer change requests contain the
information that we must have to produce timely
and effective changes?

How large is our backlog of customer change
requests?

Is the response time for fixing bugs compatible
with customer constraints?

Is change control adhered to?

Are high-priority changes getting implemented in
a timely fashion?

Figure 4-15: Summary of Groupings

CMU/SEI-96-HB-002 37

Questions related to customer satisfaction

Grouping #5

(communications)

Are plans and changes communicated to the
customer?

Is development progress visible to the customer?

Does the customer accept the testing procedure
and test results?

Are status and progress of change requests
visible to the customer?

Other Are our people qualified to produce the results the
customer wants?

Is personnel turnover hampering product quality?

Are the practices of our subcontractors consistent
with those of the activities they support?

Figure 4-15: Summary of Groupings (Part 2)

The groupings of issues and questions then translate naturally into candidate subgoals,
which can be prioritized. The results for our scenario are illustrated in Figure 4-16. In the
real world, you would want to validate these subgoals with your customer(s) to ensure that
you are addressing their true concerns. This would also help you assign priorities to your
subgoals.

Derived Subgoals

Subgoal #1 Improve readability and traceability of
documents.

Subgoal #2 Improve reliability and performance of
released code.

Subgoal #3 Improve monitoring of plans and
budgets.

Subgoal #4 Improve performance of the change
management process.

Subgoal #5 Improve communications with the
customer.

Figure 4-16: Derived Subgoals—A Project Manager's Perspective of the Goal "Improve
Customer Satisfaction"

The issues in the training scenario we have been using have mapped nicely, one-to-one,
into subgoals. This will not always happen in real life. In your work, you may find several
issues mapping into a single subgoal, or single issues mapping into several subgoals.

38 CMU/SEI-96-HB-002

There is nothing wrong with this—formal decomposition of business goals is not what we are
after. The point is simply to arrive at rational subgoals that

• can be addressed by managerial or technical actions

• point us toward focused measurement goals

If your list of groupings is long and you perceive it leading to many measures, your teams
may want to assign priorities to the issues and sort them into rough priority order. This will
help them focus on first things first in the steps that follow.

Exercise 3: Identifying Subgoals
Review your entity-question lists from Exercise 2 and identify related questions. Group
related questions and identify the issues they address. (Issues are the central themes that
caused you to view the questions as related.)

Hint: If you write each question on a separate piece of paper (or Post-It, 3x5 card, etc.), your
team will be able to rearrange the questions and experiment with alternative groupings.

Use the issues and their associated questions to formulate and state manageable subgoals
that are derived from the goals and questions you identified in Exercise 2.

A template for this exercise is illustrated in Figure 4-17. Appendix A contains reproducible
worksheets that you can use to record your groupings and subgoals.

Groupings Questions Related to
Business� Goal(s)

Grouping #1

Grouping #2

Grouping #3

Grouping #4

()

()

()

()

Derived Subgoals

Subgoal 1

Subgoal 2

Subgoal 3

Subgoal 4

Figure 4-17: A Template for Mapping from Questions to Subgoals

CMU/SEI-96-HB-002 39

4.4 Step 4: Identify the Entities and Attributes

Measurement presupposes something to be measured, and,
unless we know what that something is, no measurement can
have any significance.

— Peter Caws, 1959

Using Subgoals, Issues, and Questions to Identify Specific Entities and
Attributes

You now have a list of manageable subgoals, together with lists of related issues and
questions. The next step is to use the questions to refine your mental model(s) and the
entities and attributes associated with them (the ellipse in Figure 4-18). This will set the
stage for formulating the well-stated measurement goals that you will use subsequently in
Step 6 to start the GQ(I)M process. It may also lead to refining your questions, issues, and
subgoals. After all, since your mental models are evolving, there is no reason to suspect
that you have gotten everything exactly right the first time.

Business Goals

What do I want
to achieve?

Subgoals

To do this, I
will need to…

Mental Model

receives produces
holds

<The Process>

consists of

entities entities

attributes attributes

What do I want
to know?

entities

attributes

4

Figure 4-18: The Fourth Target—Refined Entities and Attributes

You should begin this step by making a preliminary sketch of your mental model(s) for the
process(es) you manage or execute. Then list questions that you believe to be important to
answer. These questions are usually ones associated with your highest priority subgoals.
This sketching and listing is an iterative process—your sketches will suggest questions, and
your questions will lead you to refine your sketches. Similar iterations are likely to occur in
later steps as well, as you continue to flesh out your mental model(s).

Once you have a list of questions, you should examine each question and identify the
entities that are implicit in it. Then list the pertinent attributes associated with each entity.

40 CMU/SEI-96-HB-002

Pertinent attributes are those which, if quantified, help you answer your question or establish
a context for interpreting the answers. Pertinent attributes are usually cited in the question,
either explicitly or implicitly. Identifying the entities may also cause you to think of other
questions and attributes. Your list of entities and the attributes for each entity are the
principal outputs of this step. The attributes will become candidates for the things you will
measure.

Figures 4-19 through 4-22 illustrate this process. Figure 4-19 lists the questions that our
project manager had with respect to grouping #4 (change management). Figures 4-20
through 4-22 then focus on individual questions from that list. For each question, the figures
identify the entity cited. Then they list attributes that, if measured, would help shed light on
the issue that motivated the question.

When listing attributes, it is useful to keep in mind the distinction between attributes (the
characteristics of an entity) and measures (the scales and rules used to assign values to
attributes). Many teams tend to get overly specific when they build their initial lists of
attributes. Others sometimes argue unproductively about the differences between attributes
and measures. While the distinctions can be important, they are not important here. The
point now is simply to identify key characteristics of the entity and its environment that will
help shed light on the question. Building lists of specific measures too soon tends to overly
constrain your views and keep you from recognizing other measurement options and
opportunities.

To avoid focusing on detailed measures too soon, you should consciously scrub each list,
looking for entries that seem to imply unique measures. When you find one, do as we have
done in Figure 4-20: identify the broader characteristic of interest (e.g., size) and then list
your prospective measures as examples of how to measure that characteristic. You may
find that this helps you identify other useful measures and attributes.

Grouping #4

(change
management)

Do customer change requests contain the
information that we must have to produce timely
and effective changes?

How large is our backlog of customer change
requests?

Is the response time for fixing bugs compatible
with customer constraints?

Is change control adhered to?

Are high-priority changes getting implemented in
a timely fashion?

Derived Subgoal Improve performance of the change management
process.

Figure 4-19: A Project Manager's Questions Related to Change Management

CMU/SEI-96-HB-002 41

Subgoal 4: Improve Performance of the Change
Management Process

Question 1:

• Do change requests received from customers
contain the information that we must have to
produce timely and effective changes?

Entity

• the set of change requests received from customers

Attributes

• size (e.g., the number of change requests received)

• adequacy (e.g., the percentage of change requests
with all required fields filled in correctly)

• defect distribution (e.g., for each required field, the
percentage of requests

- with that field omitted
- with that field filled in incorrectly)

Figure 4-20: Entity and Attributes Associated with Question #1

Subgoal 4: Improve Performance of the Change
Management Process

Question 2:

• How large is our backlog of customer change
requests?

Entity

• the backlog of customer change requests

Attributes

• size of backlog (backlog = change requests
received but still in the pipeline)

• size of queues/stacks/bins awaiting action at each
stage of the change management process

• total effort (estimated) required to clear the backlog

Figure 4-21: Entity and Attributes Associated with Question #2

42 CMU/SEI-96-HB-002

Subgoal 4: Improve Performance of the Change
Management Process

Question 3:

• Is the response time for fixing bugs compatible with
customer constraints?

Entity

• the change management process

Attributes

• the customer’s expectation for cycle time

• the frequency distribution of time from receipt of a
change request until it is implemented

• the frequency distribution of time from receipt of a
change request until it is installed at the customer’s
site

• average amount of time that requests spend at
each step of the change process

Figure 4-22: Entity and Attributes Associated with Question #3

Exercise 4: Identifying Entities and Attributes
Review the groupings your team identified in Exercise 3. List the entities and attributes
associated with each question. Your results will become the basis for formalizing the
measurement goals in Step 5. A template for recording your results is illustrated in Figure 4-
23. A full-sized, reproducible worksheet is presented in Appendix A.

 Question
•

 Entity
•

 Attributes
•
•
•
•
•
•

Figure 4-23: A Template for Recording Entities and Attributes

CMU/SEI-96-HB-002 43

4.5 Step 5: Formalize Your Measurement Goals

…if one is to make a formal measurement, one must accept
responsibility for making some effort to define one's purpose.

— Paul Kirchner

Up to this point, you have been focusing on identifying business goals and things that affect
your achievement of those goals. You are now ready for the fifth step—translating your
issues and concerns into clearly stated measurement goals. You will be guided here by the
subgoals you identified in Step 3 (Section 4.3) and the refinements you made to your mental
model(s) in Step 4 (Section 4.4). The ellipse in Figure 4-24 shows where we are in the goal-
driven measurement process.

Business Goals

What do I want
to achieve?

Subgoals

To do this, I
will need to…

Mental Model

receives produces
holds

<The Process>

consists of

entities entities

attributes attributes

Measurement Goals G1 G2

What do I want
to know?

entities

attributes

5

Figure 4-24: The Fifth Target—Measurement Goals

The purpose of Steps 1 through 4 has been to get to a point where the goal-question-metric
(GQM) paradigm of Basili and Rombach [Basili 88, Basili 89, Rombach 89] can be applied
effectively. As we shall see in Section 4.6, supplementing the paradigm by adding an
"indicator" step between the Q and M of GQM is usually helpful.1 But first, you should
establish a solid foundation for GQ(I)M by identifying your measurement goals and
preparing structured statements for them. The structured aspect is important, because it will
help you ensure that key points are not overlooked when you set about defining and
collecting measures.

1 By "indicator," we mean a picture or display of the kind one would like to have to help answer the
question. Our experience is that sketches of such pictures and displays help significantly in
identifying and defining appropriate measures.

44 CMU/SEI-96-HB-002

Measurement Goals Can Be Active or Passive
When defining structured measurement goals, it helps to keep in mind that there are two
kinds of goals: active and passive. Awareness of this and of the distinctions between active
and passive goals may alert you to important opportunities.

Active measurement goals are directed toward controlling processes or causing changes to
products, processes, resources, or environments. These are the kinds of goals that are
commonly found in project management and process improvement activities.

Passive measurement goals, on the other hand, are meant to enable learning or
understanding. They are fundamental to improving our understanding to the point where
well-chosen, active measurement goals can be formulated. Passive goals are often
accomplished by characterizing objects of interest according to some productivity or quality
model. Figure 4-25 shows some examples of active and passive goals.

Active Goals Passive Goals

Meet the scheduled completion date

Reduce variability

Improve product reliability

Improve the productivity of the
process

Improve time-to-market

Reduce employee turnover

Understand the current development
process

Identify root causes

Assess product maintainability

Identify capabilities and trends, so
that we can better predict future
performance

Understand relationships among
attributes, so that we can develop
models for predicting and estimating

Figure 4-25: Examples of Active and Passive Goals

In Chapter 2 we listed four reasons for measuring software processes, products, and
resources: to characterize, to evaluate, to predict, and to improve. As Figure 4-25 suggests,
active goals are usually associated with evaluating and improving, while passive goals are
more often linked to characterizing and predicting.

Many organizations become so focused on active goals that they give short shrift to the
value of information associated with passive goals. You, of course, will not fall into this trap.

What Do Formal Goals Look Like?
Well-structure measurement goals have four components:

• an object of interest (an entity)

• a purpose

CMU/SEI-96-HB-002 45

Object of interest: ___________

Purpose:
__________ the __________ in order to __________ it.

Perspective:
Examine the ______________
from the point of view of (the) ___________________.

Environment:
___________, ___________, ___________, ___________,
___________, ___________, ___________, ___________,

Figure 4-26: A Template for Stating
Measurement Goals

Object of interest:
a process, product,

_____________________ resource, task,
activity, agent,
artifact, metric,
environment,
<entity>, etc.

Figure 4-27: A Template for Stating the Object
of Interest

• a perspective

• a description of the environment and constraints

Figure 4-26 is a template for stating
structured measurement goals. Figures
4-27 through 4-30 are supporting
templates for constructing the principal
elements of Figure 4-26. We have
adapted these templates from ideas and
materials that have been developed by
Victor Basili and Dieter Rombach [Basili
88, Basili 89, Rombach 89].

The following paragraphs describe the
elements of a measurement goal and
the supporting templates. Full-sized templates and a worksheet for stating measurement
goals are presented in reproducible form in Exercise 5 of Appendix A.

Object
The object of interest may be a product, process, resource, agent, artifact, activity, metric, or
environment. It may also be a set or collection of other entities or objects. In short, any
"thing," real or abstract, that you want to describe or know more about is a potential object
for measurement.

Thus, an object is an entity. But it is not just any entity. Rather, it is the specific entity that
you want to describe with measured values.

Sometimes we have situations where one person's attribute becomes another's object for
measurement. For example, at a macro-level many people perceive things like quality and
complexity to be attributes of software and software processes. But since there are (and
can be) no single measures for these kinds of abstract concepts, the only logical approach is
to treat the concepts as entities which we characterize (measure, describe) in terms of more
concrete attributes or dimensions.

In all cases, though, it is important to
have (and keep) a clear picture of what
we are looking at. By explicitly identify-
ing the object that we seek to describe,
we are able to keep a common picture
in the minds of all team members.
Figure 4-27 is a simple template for
stating the object of interest.

46 CMU/SEI-96-HB-002

Purpose
The purpose of a measurement activity may be to understand, predict, plan, control,
compare, assess, or improve some productivity or quality aspect of the object. Examples of
aspects that can be assessed, understood, predicted, planned, improved, or controlled
include

• cost

• size

• reliability

• test coverage

• responsiveness

• peer review effectiveness

• process compliance

• time to market

• quality

• customer satisfaction

Purpose:
characterize,

_______________ analyze,
evaluate, etc.

the ___________ <entity>, <aspect>,
<attribute(s)>, etc.

understand, baseline,
in order to __________ it. predict, plan, control,

assess, compare,
improve, etc.

Figure 4-28: A Template for Defining the
Purpose of a Measurement Activity

Since an aspect can involve several
attributes, it is usually best to defer
identifying specific attributes until we
have formulated not only our purpose,
but also the other parts of our
measurement goal.

The purpose of any measurement
activity should be stated explicitly.
Figure 4-28 is a structured template
for doing this. Examples of
completed purpose statements will be
presented shortly, in Figures 4-31
through 4-33.

Perspective
The perspective identifies who is
interested in the measurement results. It identifies the principal viewpoint that is to guide the
measurement activity, such as that of the developer, maintainer, manager, or customer.
The perspective is stated to clarify the purpose of the measurement activity.

Example: The goal of improving productivity may take on entirely different meanings,
depending on who you are and where you sit. For instance, if you are a software engineer,
improving productivity may mean increasing the amount of code produced per staff-hour. If
you are a project manager, your view of improving productivity may mean bringing your
project in on schedule. And if you hold a corporate position, you may take improving
productivity to mean increasing revenues or returns on investment [Rombach 89].

CMU/SEI-96-HB-002 47

Perspective:
Examine the ___________ modifiability, quality,

changes, defects,
defect types, backlog,
behavior, stability,
progress, <specific
attribute(s)>, etc.

from the point of view developer, manager,
of (the) _______________. customer, engineer,

process improvement
team, SEPG, senior
management, etc.

Figure 4-29: A Template for Defining the
Measurement Perspective

When those who define measures
and collect data understand the
perspectives of the people who use
the data they collect, they will be
much more likely to construct and
apply measures in ways that give real
value and avoid misinterpretations.

Figure 4-29 is a structured template
for stat ing a measurement
perspective.

Environment
A description of the environment provides a context for interpreting measurement results.
When the context is not made explicit, it may not be understood by all who use the reported
data. The chances for misuse are then high, and erroneous conclusions can easily be
reached.

The environment includes everything that affects or is affected by the object to be
measured. In particular, it includes all significant constraints on the object of measurement
(time, resources, unusual performance criteria, etc.), as well as constraints on the scope or
time span of the measurement process itself.

For example, if you use data about project size, cost, and time to look at trends in
productivity improvement, it helps to know the kind of application the data come from,
whether the product was developed under contract or not, and if the project was accelerated
to meet externally specified schedules.

Similarly, if the purpose is to analyze an organization’s problem-reporting process in order to
improve its effectiveness, the environment may include

• the maintenance process

• the work facilities and supporting tools

• the organizational structure

• the maintained products

• the time span and names of projects examined

Descriptions of environments are, by their very nature, open ended. You will avoid
floundering, and the information you provide will be most useful, if you focus on two aspects:

1. What makes this product, process, or setting similar to others that people
may be familiar with. This provides the context for comparisons.

48 CMU/SEI-96-HB-002

2. What makes this product, process, or setting different from others that
people may be familiar with. This provides the context for exploring,
understanding, and accounting for differences.

 Environment
• List or otherwise describe the environmental

factors and related parameters that one should
understand to put the observed results in context.

• Focus on describing similarities to (and differences
from) other familiar products, processes, and
settings. This information becomes part of the
database for future comparisons.

• Factors and parameters to consider include
- application factors - customer factors
- people factors - methods
- resource factors - tools
- process factors - constraints

Figure 4-30: A Template for Characterizing the
Environment in Which Measurements Will Be

Made

Figure 4-30 illustrates the kinds of
issues that should be addressed
when describing the measurement
environment.

Examples of Formalized
Measurement Goals
Figures 4-31 through 4-33 show
examples of formally stated
measurement goals. The
environment section in each has been
abbreviated to keep the examples
concise. In your work, you will
usually find it useful to provide more
complete characterizations of your
environments than our figures illustrate.

(Note: At this point we leave our "customer satisfaction" scenario, so that you can see how
goal-driven methods apply in other scenarios as well.)

 Object of interest
• The peer review process at plant XYZ

 Purpose
• Evaluate the peer review process in order to identify

opportunities for improving its effectiveness.

 Perspective
• Examine the controllable factors, costs, and results

from the point of view of a process improvement
team.

 Environment
• New development. Military avionics. CMM Level 2

(working on Level 3). 8000 people in plant. 2000
software developers. Customer is the DoD.
Constraints: Examine projects completing unit
testing 1 Jan 93–30 Jun 95. Exclude reused modules.

Figure 4-31: A Formally Stated Measurement Goal (Example 1)

CMU/SEI-96-HB-002 49

 Object of interest
• The peer review process at plant XYZ

 Purpose
• Characterize the peer review process in order to

predict its impact on future projects.

 Perspective
• Examine the effectiveness of peer reviews from the

point of view of managers, planners, and cost
estimators of new projects.

 Environment
• New development. Military avionics. CMM Level 2

(working on Level 3). 8000 people in plant. 2000
software developers. Customer is the DoD.
Constraints: Examine projects completing unit
testing 1 Jan 93–30 Jun 95.

Figure 4-32: A Formally Stated Measurement Goal (Example 2)

 Object of interest
• The software development process at plant XYZ

 Purpose
• Evaluate the extent to which the software

organization is using peer reviews prior to unit
testing in order to assess the organization’s
compliance with policies and directives.

 Perspective
• Examine the coverage and consistency of peer

reviews from the perspective of a software process
assessment team.

 Environment
• New development. Military avionics. CMM Level 2

(working on Level 3). 8000 people in plant. 2000
software developers. Customer is the DoD.

Figure 4-33: A Formally Stated Measurement Goal (Example 3)

Maintaining Traceability
As you develop structured measurement goals, it is wise to maintain traceability back to the
subgoals and business goals that motivated each measurement goal. Then, if questions
arise later about the wording or intent of a measurement goal, people will be able to look
back to the origins of the goal and make implementation decisions that are consistent with
your business objectives.

50 CMU/SEI-96-HB-002

Business
Goal 1

Question 1

Measurement
Goal 1

Question 2 Question 3 Question m

• • •

• • •

• • •

Business
Goal 2

Business
Goal n

Subgoal 1 Subgoal 2 Subgoal j• • •

Measurement
Goal 2

Measurement
Goal 3

Measurement
Goal k

Figure 4-34: Maintaining Traceability to Business
Goals—Theory

Business
Goal 1

Measurement
Goal 1

• • •

• • •

Business
Goal 2

Business
Goal n

Subgoal 1 Subgoal 2 Subgoal j• • •

Measurement
Goal 2

Measurement
Goal 3

Measurement
Goal k

•
•
•

•
•
•

•
•
•

Figure 4-35: Maintaining Traceability to Business
Goals—Practice

This concept of traceability is
illustrated in Figure 4-34.
Ideally (in theory) we would like
to have full traceability back to
our business goals. But full
traceability may be difficult,
since the process that we used
to move from high-level goals to
concrete and enactable
subgoals used informal
groupings of sometimes loosely
related questions. Moreover,
when we posed the questions,
we made no attempt then to
make them precise. That
comes later, in Steps 6 and 7. We simply used the early questions to help us interpret the
top-level goals and restate them as manageable subgoals. In some cases, questioning
paths will be retraceable, but in others they may not. In practice, the picture will often be
more like the one in Figure 4-35, where measurement goals are traceable (easily) only to
business subgoals.

Whether you can draw useful, traceable paths from your subgoals all the way back to your
top-level business goals, only you can determine. If you can, and if this provides context for
the efforts (and decisions) that are yet to come, we encourage you to record the paths. As a
minimum, though, you should explicitly record the paths from your measurement goals back
to your business subgoals, as
illustrated in Figure 4-35. In
simple situations, graphs like
Figure 4-35 may suffice. In
other cases, especially if you
have many measures or
subgoals, matrix representa-
tions or alternative structures
may be more appropriate. You
may find it possible to borrow
some mapping techniques or
tools from the people in your
organizat ion who have
experience in requirements
tracing or quality function
deployment (QFD).

CMU/SEI-96-HB-002 51

Exercise 5: Formalizing Measurement Goals
The objective of this exercise is to translate your subgoals, entities, attributes, and questions
into formal measurement goals. Each measurement goal will identify an object of interest
and the purpose, perspective, and environment that will guide the specific questions to be
addressed. These measurement goals will provide the ground rules for your subsequent
measurement activities. Figure 4-36 illustrates these objectives. The tasks are

1. Review the subgoals, questions, entities, and attributes you identified in
Exercises 3 and 4.

2. Identify the activities that you propose to undertake to get the information
you need.

3. Express your goals for these activities as structured statements that
identify the object, purpose, perspective, environment, and constraints
associated with each measurement activity.

4. Identify and record the business subgoal(s) that each measurement goal
addresses.

Templates for constructing structured measurement goals and a worksheet for recording the
results are presented in Appendix A.

Business
Subgoals

Measurement Goals

• Object of Interest

• Purpose

• Perspective

• Environment and Constraints�

Figure 4-36: Mapping from Subgoals to Structured Statements of Measurement Goals

52 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 53

4.6 Step 6: Identify Quantifiable Questions and Indicators

The GQM Paradigm
The structured measurement goals constructed in Step 5 provide a solid foundation for the
goal-question-metric (GQM) steps that come next. In fact, you have already completed the
first step of GQM—stating your measurement goals. You are now ready to pose
quantifiable questions and to formulate indicators that support the questions. This is Step 6.

GQM is useful because it facilitates identifying not only the precise measures required, but
also the reasons why the data are being collected. The "why?" is important because it
defines how the data should be interpreted, and it provides a basis for reusing measurement
plans and procedures in future projects and activities [Rombach 89].

Terminology and the Way It Shapes Our Use of GQM
But first, a few words about terminology. When we talk about goals in the GQM paradigm,
we mean measurement goals, not business goals. In fact, the whole purpose of Steps 1
through 4 has been to get to the point where we can formulate clearly stated measurement
goals that support our business objectives. In our experience, GQM is unlikely to be
productive if applied at too high a level. Trying to jump directly from high-level business
goals to software measures is too big a leap. Business goals must first be decomposed and
refined to a point where meaningful entities, purposes, perspectives, and environments can
be identified. When goals are stated at too high a level, GQM easily leads to vaguely stated
questions. Vague questions shed little light on the measures that are needed to understand
the fundamental attributes of the processes and products that people manage.

Our second point about terminology is that, from now on (except in quotations), we will
never use the word "metric." To us, the M in GQM stands for Measure, not Metric. The
problem with "metric" is not that no one knows what it means, but that everyone thinks it
means something different. Measurement, on the other hand, has a generally accepted
definition. For example:

Measurement: the assignment of numerals to objects or
events according to [a] rule [Stevens 59].

Measurement: the process by which numbers or symbols are
assigned to attributes of entities in the real world in such a way
as to characterize the attributes by clearly defined rules
[Fenton 91, Fenton 95].

This view of measurement as a mapping from the real world to a numeric or symbolic
system has been a subject of study for years, and much foundational knowledge has been
accumulated. See, for example, our discussion in Chapter 2 on measurement scales and

54 CMU/SEI-96-HB-002

their relationships to permissible statistics. You can also find whole reference works on the
subject of measurement—[Krantz 71], [Roberts 79], and [Ghiselli 81] for example. Some of
these (e.g., [Ghiselli 81]) provide excellent discussions of important issues such as
measurement reliability and validity—subjects that are important, but beyond the scope of
this guidebook. To the best of our knowledge, there are no equivalent foundational works
on the subject of "metrics." Since our goal is to see a practice of software measurement that
rests on firms foundations, it seems wise to begin where the foundations are strongest.
There is no reason that we know of why software measurement should be approached
differently from measurement in any other domain.

Our third point is that we use the term "indicator" to mean a display of one or more
measurement results that is designed to communicate or explain the significance of those
results to a reader. This lets us distinguish clearly between the concept of communication
and that of measure, something that users of the term "metrics" often do not do. Our use of
the word "indicator" is consistent with the definitions that appear in [Baumert 92] and [PSM
96].

So, why all this fuss over terminology? As we pointed out in Section 4.5, we have found it
helpful to insert an "Indicator" step in the GQM paradigm, making it GQ(I)M. We do this
because seeing how measurement data will be displayed helps point to and clarify exactly
what we must measure. This puts us in a better position to construct operational
specifications for the data we wish collected.

GQ(I)M—Proceeding from Measurement Goals to Questions and Indicators
The ellipses in Figure 4-37 show where we are in the goal-driven measurement process.

Measurement Goals

Questions

Indicators

Measures

G1

Q1

I2

Q2 Q3

I1 I3 I4

M1 M2 M3

G2

6

Figure 4-37: The Sixth Target—Quantifiable Questions and Indicators

When identifying questions and defining indicators, it is important to keep in mind the goal(s)
you are addressing and how the measurement results will be used. In rapidly changing
environments, precise numbers and elaborate statistical analyses are often less valuable
than simpler answers to insightful, well-directed questions. For example, knowing that the

CMU/SEI-96-HB-002 55

 Object of interest
• The software development process at plant XYZ

 Purpose
• Analyze the software defects introduced during

development in order to identify opportunities for
reducing costs and improving product quality.

 Perspective
• Examine defect insertion, detection, and repair from

the point of view of a process improvement team.

 Environment
• Telephone trunking and switching. CMM Level 2

(working on Level 3). 3000 people in plant. 800
software developers. Coding is done in C and
assembly. Constraints: Examine only projects
completing unit testing since 1 Jan 93.

Figure 4-38: A Measurement Goal

most costly failures are usually
detected or prevented by
techniques X and Y may be
almost as useful as knowing
the exact percentages or
confidence intervals, yet far
easier to determine [Rombach
89].

Step 6 is best illustrated by an
example. Suppose you have
the measurement goal shown
in Figure 4-38.

Some questions you might ask
are

• Where are defects being found?

• Where are the defects being introduced?

• Are the right defects being fixed first?

• Where do we stand with respect to our subgoal of improving phase
containment?

Some of the charts (indicators) that we have seen used to address questions like these are
illustrated in Figures 4-39 through 4-43.

Examples of Indicators
Figure 4-39 gives a picture of where problems of different types are being found. Among
other things, it shows that the largest set of design problems is being found during system
testing. Requirements problems, on the other hand, seem to be getting discovered relatively
earlier, closer to where they are introduced. Moving the detection of design problems
forward may be an issue that you will want to address. Figure 4-39 also shows that nearly
10% of the total problems are not being found until after systems have been fielded, and that
this includes a surprisingly large portion of the total documentation errors. These may also
be symptoms that are worth attention.

Figure 4-40 shows that useful indicators come in many forms. Not all are graphs. This table
shows one way of summarizing the observed performance of an organization in addressing
its action items from peer reviews. It displays the current backlog as a joint distribution of
severity and age. The chart suggests that high-severity items are getting taken care of first,
but that the process may be a bit slower than desired. Additional information—such as
product size, number of peer reviews, development status, and number of action items

56 CMU/SEI-96-HB-002

completed—would be useful to help put the total number of backlogged action items in
perspective.

Req'ts Design Code & UT Integ & Test System Test Field Use
0

10

20

30

40

Req'ts
Design
Code
Documentation
Test Case

Finding Activity

Percent
of
Total
Problems

Problem Type

Figure 4-39: Problem Type vs. Finding Activity

x ≤ 30 30 < x ≤ 60 60 < x ≤ 90 x > 90

Number of Peer Review Action Items
That Have Been Open x Days

Severity 1

Severity 2

Severity 3

Severity 4

Severity 5

Severity
Levels Totals

Totals

2 1

3 1

3 2

4 3 3 2

8 6 3 3

1

1 1

 20 13 8 6

 3

 5

 7

12

20

47

Figure 4-40: Age of Peer Reviews

Figure 4-41 shows one organization's perception of current relations that exist between
where software faults are injected and where they are found [Carleton 94]. It illustrates
clearly how having a mental model of a process helps identify measurable attributes, and
how mental models can be used to set and communicate goals. Organizations operating at
Level 3 of the CMM have defined processes that can often be used as a basis for mental
models and graphical communications.

CMU/SEI-96-HB-002 57

Require-
ments

Implemen-
tationDesign

Require-
ments

Review
Code

Review
Design
Review

Functional
Test

Field
Use

System
Test

Development Process Time

Fault Finding Process

Stream of Faults

10% 40% 50%

50%3% 5% 7% 25% 10%

Goal:
<25%

Goal:
<5 %

Figure 4-41: Process Models Help Us Construct Indicators—Fault Stream Analysis

Figure 4-42 sheds additional light on the fault stream analysis depicted in Figure 4-41. It
translates the insertion and detection distributions into trajectories and adds information
about the costs for eliminating faults. The illustration comes from a German company, so
the costs are shown in thousands of Deutschmarks (KDM). Cost distributions like this, even
if approximate, help us look at the economic consequences of current conditions and
proposed actions. This often permits more informed decision making than is possible with
simple Pareto charts.

KDM=kilo-deutsch marks

Require-
ments

Design Coding Functional
Test

System
Test

Field
Use

10%

40%
50%

50%

3% 5% 7% 25%
10%

~1.KDM ~1.KDM ~1.KDM
~6.KDM

~12.KDM

~20.KDM

Fault
Origin

Fault
Detection

Cost per
Fault

KDM=kilo-deutsch marks

Figure 4-42: Faults as a Cost Driver

58 CMU/SEI-96-HB-002

Figure 4-43 shows the same organization's perception of the forward shift in fault detection
distributions that they expect to realize as they move up the maturity scale of the SEI's
Capability Maturity Model [Paulk 93a]. As in Figure 4-42, the problem-insertion distribution
is displayed at the top and the cost of fixing a defect is at the bottom. Rows 1–5 then depict
the anticipated shifting of detection frequencies as the organization improves its maturity.
These perceptions (and the economic analyses they enable) can be useful in motivating
process improvement activities. They can also be used as references for interpreting status
and trends in the organization's measured (actual) detection distribution.

Require-
ments

Design Coding Functional
Test

System
Test

Field
Use

Phase

Fault
Introduction
Distribution

Fault
Detection

Distribution

Relative
Fault
Cost

Process
Maturity

Level

5

4

3

2

1

10% 40% 50%

5% 20%
40%

20%
10% <5%

3% 20% 5%

0%

0%

0%

2% 32% 8%

0% 3% 30% 50%

0% 2% 15%
50% 33%

1 1
6

12

20

1

17%

12%

30%
30%

20% 38%

Figure 4-43: Shift in Fault Distributions as Process Maturity Increases

CMU/SEI-96-HB-002 59

Validating Your Questions and Indicators
As you can see, constructing useful indicators is a highly creative process. Unfortunately, it
is often easy to construct nifty indicators that mislead both the creators and their audiences.
Therefore, before you leave Step 6, you should review your proposed indicators to ensure
that the pictures they present validly address the questions you have asked. This is best
illustrated by an example.

Suppose that you propose to collect data to examine the effects of analyst and programmer
experience on development effort. You are likely to be expecting that effort (staff-hours) will
decrease as the experience of the people assigned increases, as in Figure 4-44(a).

Effort

Experience

Effort

Experience

(a) Expected (b) Observed

Figure 4-44: Effort Versus Experience—(a) Expected and (b) Observed

Now look ahead a bit. Suppose that after you collect your data, you find that it shows effort
increasing with increasing experience, as in Figure 4-44(b)! Will you be willing to accept and
act on this observation? We suspect that your answer is "No!" What, then, is wrong? What
is missing?

The most likely explanation is that other things have not remained the same, and that
concomitant changes in factors you have not asked about have clouded the issue. For
example, if projects with higher team experience are larger in size or more technologically
demanding or inflicted with overly aggressive schedules, then you might well see measured
effort decrease as experience goes down. This could happen, for instance, if it is your
practice to assign your less experienced people to the simplest projects.

The solution: When examining relationships between personnel experience and effort, ask
also about other factors that might vary with experience. For example, "Do our team
assignment practices vary with project difficulty (i.e., the need for experience)? If so, you
will probably want to ask additional questions that enable you to characterize project
difficulty (size, application type, reuse, schedule acceleration, etc.). Answers to these
questions will better enable you to validly interpret the indicators you plot.

The moral: Envisioning unexpected results is an excellent way to help you refine your
questions and indicators.

60 CMU/SEI-96-HB-002

Exercise 6: Identifying Quantifiable Questions and Indicators
Select one of your measurement goals. Identify quantifiable questions related to this goal
that you would like answered. Prepare sketches for displays (indicators) that will help you
address your questions and communicate the results of your analyses to others, as shown
in Figure 4-45. Prioritize the indicators and identify the ones that will be most useful to you.
Repeat these steps for your other measurement goals.

Measurement Goals

• Object of Interest
• Purpose
• Perspective
• Environment
 and Constraints�

Question 1

Question 2

Question 3

Question 4

Threshold

Program

%
Comment
Lines

80

20
40
60

100

IndicatorsExercise 4

Exercise 5

Figure 4-45: Moving from Measurement Goals to Quantifiable Questions and Indicators

A worksheet for recording your results is in the materials for Exercise 6 in Appendix A.

CMU/SEI-96-HB-002 61

4.7 Step 7: Identify the Data Elements

There is measure in all things.

— Horace (Quintus Horatius Flaccus)

Developing Focused Measures (Data Elements)
With pictures of what you want to plot and display in hand, we now turn to identifying the
data elements that you will have to collect to create the displays. The path you have
followed to this point ensures that the data you will be collecting have clearly defined
management purposes. They are not data for data's sake alone. The ellipse in Figure 4-46
shows where we are in the goal-driven measurement process.

Measurement Goals

Questions

Indicators

Measures

G1

Q1

I2

Q2 Q3

I1 I3 I4

M1 M2 M3

G2

7

Figure 4-46: The Seventh Target—Data Elements and Measures

In this step and the next, you have two things to do:

1. Identify the data elements.

2. Define how the measures will be collected.

We deal with the first task here. Task 2 is the subject of Section 4-8.

Task 1 is highlighted by the bold ellipse in Figure 4-47. To complete this task, you simply
make a list of all the data elements that you will need to collect to construct your indicators.
As you do this, it will help in the prioritizing to come if you map these data elements back to
the indicators they serve. Figure 4-48 illustrates this idea. Among other things, you will be
interested in seeing which measures are able to serve multiple needs.

62 CMU/SEI-96-HB-002

Measurement Goal(s)

Question 1 Question 2 Question n

N
u

m
b

er

WeeksReporting
Periods

Total
SLOC Planned

Actual

T
ro

u
b

le
 R

ep
o

rt

Module

• • •

SLOC Staff-Hours Trouble Reports Milestone Dates

definition
checklist
_____ ✔
_____ ✔
_____ ✔
_____ ✔
_____ ✔

supplemental
rules form

xx_________

xx_________

xx_________

Figure 4-47: Using Indicators to Identify Data Elements

Source lines of code

Development staff-hours

Defects found in testing

Milestone completion dates for…

Number of work units completed

Ind-1 Ind-2 Ind-3 Ind-4

✔ ✔

✔

✔

✔

✔

✔

✔

Measures that serve multiple indicators
may have greater value.

Figure 4-48: Taking Inventory—Mapping Measures to the Indicators They Serve

CMU/SEI-96-HB-002 63

Exercise 7: Identifying the Data Elements to Be Collected
Review your results (the questions and indicators) from Exercise 6. Identify the data
elements that you will have to collect to construct your indicators. List these data elements
and map them back to your indicators, as illustrated in Figures 4-48 and 4-49.

Instructions for this exercise and a worksheet for recording your results are presented in
Appendix A.

80

20
40
60

100

Indicators

Data Elements
Required

 Indicator
a b c d e

Description of data element

Threshold

Program

%
Comment
Lines

Exercise 5
Exercise 6

a

b

c

of commented lines

total # of lines

program name

x
x
x

…
…

x
x

x

x

Figure 4-49: Identifying Data Elements and Mapping Them to Needs

64 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 65

4.8 Step 8: Define Your Measures

It is a common human weakness to imagine that because a
metric is intended to measure something, it actually does!

— source unknown

In the opinion of many people in industry, there is nothing
more important for the transaction of business than use of
operational definitions. It could also be said that no
requirement of industry is so much neglected.

— W. Edwards Deming, 1986

Data without definitions are indistinguishable from numbers.

– source unknown

Now that you have identified your measures, you must define them. Names for measures
alone do not suffice. You must be able to tell others exactly how each measure is obtained,
so that they can interpret the values correctly. The bold ellipse in Figure 4-50 shows
schematically where we are in the goal-driven measurement process.

Measurement Goal(s)

Question 1 Question 2 Question n

N
u

m
b

er

WeeksReporting
Periods

Total
SLOC Planned

Actual

T
ro

u
b

le
 R

ep
o

rt

Module

• • •

SLOC Staff-Hours Trouble Reports Milestone Dates

definition
checklist
_____ ✔
_____ ✔
_____ ✔
_____ ✔
_____ ✔

supplemental
rules form

xx_________

xx_________

xx_________

Figure 4-50: The Eighth Target—Defined Measures

66 CMU/SEI-96-HB-002

The Role of Structured Frameworks
Measurement of software products and processes is not new. Some organizations have
been measuring for years. As a minimum, we have all dealt with development schedules.
Many organizations have also recorded effort expenditures, perhaps weekly, if for no other
reason than to ensure that employees get paid. Some organizations use this data in
conjunction with measures of software artifacts to track and control progress, especially if
developing products under contract. Some of these organizations have structured
estimating processes that use empirical models to help them translate records from past
projects into bids, proposals, and plans for future work.

But despite all this measurement activity, few in the software industry would call
measurement a success story. This is especially true when we attempt to use data that
were collected or reported by someone else. Some reasons for our lack of success are

• Different users of measurement data have different needs. Data collected for
one purpose may not be suitable for another, because the rules used for
collecting the data are inconsistent with the ways others want to use the data.

• Different organizations have different established practices. In many cases
these practices have sound reasons behind them and should not be changed.
Moreover, it may be difficult and often impractical to change the way an
organization collects data, just to satisfy an external need.

• Unambiguous communication of measurement results is inherently difficult.
Even if someone understands perfectly well how their data are collected, it is
not easy for them to communicate adequate descriptions of their operational
rules to others. These rules may be complex, and they may never have been
stated explicitly.

• Structured methods for communicating measurement results seldom exist.
What you think you hear is often not what they meant to say. This, in a way,
restates the ambiguity point just made, but frames it so as to suggest a
potential solution.

Our proposal, then, is to use structured frameworks to help us define, implement, and
communicate operational definitions for software measures. The primary issue is not
whether a definition for a measure is correct, but that everyone understand—completely—
what the measured values represent. Only then can we expect people to collect values
consistently, and only then can others interpret the results correctly and apply them to reach
valid conclusions.

Communicating clear and unambiguous definitions is not easy. Having structured methods
for identifying all the rules that are used to make and record measurements can be very
helpful in ensuring that important items of information do not go unmentioned. When
designing structured methods for defining measures, you should keep in mind that things
that do not matter to one user are often important to another. This means that measurement
definitions—and frameworks for recording the definitions—usually become larger and more

CMU/SEI-96-HB-002 67

encompassing than the definitions most organizations have traditionally used. This is all the
more reason to have a structured approach. Definition deals with details, and structured
methods help ensure that all details get addressed and recorded.

What Makes a Definition Operational?

An operational definition puts communicable meaning into a
concept.…Without operational definition, a specification is
meaningless.

— W. Edwards Deming, 1986

Recall that measurement implies the existence of rules for the
assignment of numbers, labels, vectors, etc. Where the rules
are unknown or nonexistent we do not consider this to be
measurement…

— Martin Shepperd and Darrel Ince, 1993

Operational definitions tell users how data are collected. As Deming said often in his
lectures, "If you change the method, you change the result!" When users of data do not
know how the data were collected, they easily make invalid assumptions. This leads to
incorrect interpretations, improper analyses, and erroneous decisions.

Operational definitions must satisfy two important criteria:

• Communication: Will others know what has been measured, how it was
measured, and what has been included and excluded?

• Repeatability: Could others, armed with the definition, repeat the
measurements and get essentially the same results?

These criteria are closely related. In fact, if you cannot communicate exactly what was done
to collect a set of data, you are in no position to tell someone else how to do it. Far too
many organizations propound measurement definitions without first determining what users
of the data need to know about the measured values in order to use them intelligently. It is
no surprise, then, that measurements are often collected inconsistently and at odds with
users' needs. When it comes to implementation, rules such as "Count all noncomment,
nonblank source statements" are open to far too many interpretations to provide repeatable
results.

Stephen Kan [Kan 95] provides an illuminating example: Suppose you are interested in
measuring the height of school children, say between the ages of 3 and 12. If you define
height simply as standing height, measured in inches, you will get one set of results. You
will get quite another if you define height to be standing height (exclusive of piled up hair and

68 CMU/SEI-96-HB-002

hats), measured in inches, with shoes off, on a recently calibrated school scale, by a trained
nurse, between 8 and 9 o'clock in the morning. Which set of height measurements would
you expect to be more reliable, more consistent across schools, and more fit for informed
interpretation?

Unfortunately, the software world abounds with nonoperational pseudodefinitions that are
even more loosely stated than the definition for height in Kan's example. For instance, "Our
measure for software size is the number of noncomment, nonblank, executable source
statements" and "Our measure for cost is the total direct labor hours from the start of the
project" are two examples of definitions that are so ill-specified that unrepeatable results and
misinterpretations of reported values are almost guaranteed. We will illustrate some
checklist-based techniques for making definitions like these more operational shortly.

Communication Precedes Repeatability
Although communicating measurement definitions in clear, unambiguous terms requires
effort, there is good news as well. When someone can describe exactly what has been
collected, it is easy to turn the process around and say, "Please do that again." Moreover,
you can give the description to someone else and say, "Please use this as your definition,
but with these changes." In short, when we can communicate clearly what we have
measured, we have little trouble creating repeatable rules for collecting future data.

The moral: One should not attempt to tell others how to measure until they have clear
structures for describing the data that they use today.

Examples of Operational Definitions

Before we can assign numbers to our observations, we must
understand the process by which we obtained them in the first
place.

— Gerald Weinberg, 1993

The only communicable meaning of a word, prescription,
instruction, specification, measure, attribute, regulation, law,
system, edict is the record of what happens on application of a
specified operation or test.

— W. Edwards Deming, 1986

…if there is no criterion for determining whether a given
numeral should or should not be assigned, it is not
measurement.

— S. S. Stevens, 1959

CMU/SEI-96-HB-002 69

The three SEI reports that were cited earlier provide frameworks and examples for
constructing operational definitions for some frequently used software measures [Park 92,
Goethert 92, Florac 92]. These frameworks are based on checklists, supplemented by
forms that summarize operational information not amenable to checklist treatment. The
central theme in the checklists lies in stating exactly what is included in—and excluded
from—reported results. The supplemental forms describe how the inclusions and exclusions
were (or are to be) accomplished. These operational practices should be part of an
operational definition, since they affect the way measured results should be interpreted.

Although the first (and most important) use of definition checklists and supplemental forms is
to let users of data know exactly how data were obtained, the same framework can be used
to specify how future measurements are to be made. The latter "let me tell you what to do"
approach is the one we usually see in software organizations, but without visible structures
for ensuring that the measurement instructions will be interpreted and executed consistently
by all who collect the data.

The references we cited [Park 92, Goethert 92, Florac 92] show how checklists can be used
to construct and communicate operational definitions for software measures. Examples 1
through 6 on the pages that follow use excerpts from these checklists to illustrate the kinds
of issues that must be identified, resolved, and communicated if measurement definitions
are to be consistently employed and correctly interpreted. You should ensure that your
organization goes to equivalent levels of detail when defining each software measure it
uses.

Example 1: Counts of Source Statements

There's no sense being precise about something when you
don't even know what you're talking about.

— John von Neumann

Figure 4-51 shows the first two pages of a checklist for one of the software size definitions
illustrated in [Park 92]. This checklist makes explicit what many people mean when they
define their size measure to be noncomment, nonblank, source statements (NCNBSS). As
you can see, the definition is quite detailed. But without this level of detail, not everyone will
have the same understanding. It then becomes easy either to measure incorrectly or to
misinterpret measured results.

The full checklist in [Park 92] contains additional pages that spell out the specific rules used
with different programming languages—for example, do counts include null statements,
begin and end labels, curly braces on lines by themselves, with and use clauses, continue
statements, or keywords such as interface, implementation, forward, procedure
division, and end declaratives. Knowledge of these practices is needed for consistent
counting and for correctly interpreting the data that are collected.

70 CMU/SEI-96-HB-002

At first glance, the source statement counting checklist may seem excessively detailed. But
the issues that it makes visible are exactly those that must be dealt with by the people who
build or operate measurement tools like source code counters. If your definitions do not get
down to details like these, you will essentially be saying, "I don't care how you do it—you
make the decisions!" Tool builders and users will then do something that seems reasonable
to them, but you (and others) will never know what that is, and inconsistency and ambiguity
will abound. You may end up with numbers, but they will not be measures.

 Definition Checklist for Source Statement Counts

Definition name: Physical Source Lines of Code Date: 8/7/92
(basic definition) Originator: SEI

Measurement unit: Physical source lines ✔

Logical source statements

Statement type Definition ✔ Data array Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence -> 1 ✔

2 Nonexecutable
3 Declarations 2 ✔

4 Compiler directives 3 ✔

5 Comments
6 On their own lines 4 ✔

7 On lines with source code 5 ✔

8 Banners and nonblank spacers 6 ✔
9 Blank (empty) comments 7 ✔

10 Blank lines 8 ✔
11
12
How produced Definition ✔ Data array Includes Excludes

1 Programmed ✔

2 Generated with source code generators ✔

3 Converted with automated translators ✔
4 Copied or reused without change ✔

5 Modified ✔

6 Removed ✔

7
8

Origin Definition ✔ Data array Includes Excludes
1 New work: no prior existence ✔

2 Prior work: taken or adapted from
3 A previous version, build, or release ✔
4 Commercial, off-the-shelf software (COTS), other than libraries ✔

5 Government furnished software (GFS), other than reuse libraries ✔

6 Another product ✔

7 A vendor-supplied language support library (unmodified) ✔

8 A vendor-supplied operating system or utility (unmodified) ✔

9 A local or modified language support library or operating system ✔

10 Other commercial library ✔

11 A reuse library (software designed for reuse) ✔
12 Other software component or library ✔

13
14
Usage Definition ✔ Data array Includes Excludes

1 In or as part of the primary product ✔

2 External to or in support of the primary product ✔

3

Figure 4-51: A Checklist-Based Definition for Source Lines of Code

CMU/SEI-96-HB-002 71

Definition name: Physical Source Lines of Code
(basic definition)

Delivery Definition ✔ Data array Includes Excludes
1 Delivered
2 Delivered as source ✔

3 Delivered in compiled or executable form, but not as source ✔
4 Not delivered
5 Under configuration control ✔

6 Not under configuration control ✔

7
Functionality Definition ✔ Data array Includes Excludes

1 Operative ✔

2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes) ✔
4 Nonfunctional (unintentionally present) ✔

5
6

Replications Definition ✔ Data array Includes Excludes
1 Master source statements (originals) ✔

2 Physical replicates of master statements, stored in the master code ✔

3 Copies inserted, instantiated, or expanded when compiling or linking ✔

4 Postproduction replicates—as in distributed, redundant, ✔
or reparameterized systems

5
Development status Definition ✔ Data array Includes Excludes

Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned ✔

2 Designed ✔
3 Coded ✔

4 Unit tests completed ✔

5 Integrated into components ✔

6 Test readiness review completed ✔

7 Software (CSCI) tests completed ✔

8 System tests completed ✔

9
10
11
Language Definition Data array ✔ Includes Excludes

List each source language on a separate line.
1 Separate totals for each language ✔

2 Job control languages
3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Figure 4-51: A Checklist-Based Definition for Source Lines of Code
(Page 2)

72 CMU/SEI-96-HB-002

Example 2: Defining and Using Arrayed Data—A Project Tracking Example
When measuring software attributes, we often need more than just single numbers. Instead,
we almost always want to identify and understand relations within and among sets of entities
or attributes. Figure 4-52 is an interesting example, based on size measures. It shows what
one organization observed as it tracked its progress on a development project. The job was
started with the expectation that nearly half the product could be constructed from existing
components. As time passed, they found that many of the components they had planned to
reuse failed to meet the requirements of the product. This led to extensive, unplanned
modifications and to additional development effort and cost. Early warnings like those made
visible by Figure 4-52 were used to alert managers that action was needed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

100

200

Copied

Modified
Programmed

Contract Month

Source Lines
(thousands) Planned

Figure 4-52: The Case of Disappearing Reuse

Charts like Figure 4-52 cannot be created with single measures alone. Instead, we need
arrays of data, collected periodically. A 3-by-4 array of the kinds of information we often
want is illustrated in Figure 4-53. Because arrays are often used to relate data within (or
among) software measures, effective frameworks for defining software measures should
provide means for defining the elements of these arrays.

CMU/SEI-96-HB-002 73

sy
st

em
 te

st
s

 c
om

plet
ed

in
te

gra
te

d

unit
te

st
ed

co
ded

Status

How
Produced

programmed

copied

modified

24,246 11,560

232 4,212 6,332

44 843 455

0

0

0

5,678

Figure 4-53: A Summary of Arrayed Data for Tracking Development Progress

Figure 4-54 shows one way to do this. Here two sections of the SEI size checklist have
been used to specify exactly which data elements will be collected to construct the table
illustrated in Figure 4-53. The checks in the "data array" boxes say that the counts for three
"how produced" classes are to be arrayed against counts for "development status." ([Florac
92] illustrates an alternative way to specify arrays.) Figure 4-54 shows only a portion of the
checklist. We must still use the sections that describe the rules for the remaining attributes,
since including or excluding values for those attributes could affect measured results.

How produced Definition Data array ✔ Includes Excludes
1 Programmed ✔
2 Generated with source code generators ✔
3 Converted with automated translators ✔
4 Copied or reused without change ✔
5 Modified ✔
6 Removed ✔
7
8

Development status Definition Data array ✔ Includes Excludes
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned ✔
2 Designed ✔
3 Coded ✔
4 Unit tests completed ✔
5 Integrated into components ✔
6 Test readiness review completed ✔
7 Software (CSCI) tests completed ✔
8 System tests completed ✔
9

10
11

Figure 4-54: Using a Definition Checklist to Specify the Collection of Arrayed Data

74 CMU/SEI-96-HB-002

Example 3: Effort Measures
Figure 4-55 on the next three pages shows how a checklist similar to the size checklist can
be used to define measures of development effort. The information provided by the
completed checklist is typical of the degree of understanding that cost estimators should
have as a basis for planning and estimating future projects. Note that the checks in the
rightmost column ask for not just one measured value, but for breakouts of total effort into
regular time and overtime work, effort applied for each major functional component, effort for
integrating the results into builds (or releases), and effort for system-level development
activities. The important thing that the checklist does for each breakout is to make explicit,
via the other attributes, exactly what is included in and excluded from each breakout.

The format of the checklist in Figure 4-55 does not have explicit facilities like the data array
boxes in the size checklist for defining arrays of measured values. Instead, it has a third
column (Report totals) that was designed to be used to designate one-dimensional arrays
within individual attributes. Our experience at the time that the checklist was created
suggested that multidimensional arrays of effort data were seldom used or needed. If you
do want multidimensional arrays, you can do one of two things. Either

(a) add a fourth column, as in the quality checklist in Example 5, or

(b) use symbols (a, b, c, etc.) in the "Report totals" column to define structures
where one attribute's values will be arrayed against those of another
attribute.

CMU/SEI-96-HB-002 75

 Staff-Hour Definition Checklist

Definition Name: Total System Staff-Hours Date: 7/28/92
 For Development Originator:

 Page: 1 of 3

 Totals Totals Report
Type of Labor include exclude totals

Direct ✔
Indirect ✔

Hour Information
Regular time ✔

Salaried ✔
Hourly ✔

 Overtime ✔
Salaried

Compensated (paid) ✔
Uncompensated (unpaid) ✔

Hourly
 Compensated (paid) ✔

Uncompensated (unpaid) ✔

Employment Class

Reporting organization
 Full time ✔
 Part time ✔
 Contract
 Temporary employees ✔

Subcontractor working on task with reporting organization ✔
Subcontractor working on subcontracted task ✔
Consultants ✔

Labor Class
 Software management

Level 1 ✔
Level 2 ✔

Level 3 ✔
Higher ✔

Technical analysts & designers
 System engineer ✔

 Software engineer/analyst ✔

 Programmer ✔

 Test personnel
CSCI-to-CSCI integration ✔

IV&V ✔

Test & evaluation group (HW-SW) ✔
 Software quality assurance ✔

 Software configuration management ✔

Program librarian ✔

Database administrator ✔

 Documentation/publications ✔

 Training personnel ✔

 Support staff ✔

Figure 4-55: A Checklist-Based Definition for Measuring Effort Expended

76 CMU/SEI-96-HB-002

Definition Name: Total System Staff-Hours Page: 2 of 3
 For Development

 Totals Totals Report
include exclude totals

Activity
Development

Primary development activity ✔
Development support activities

Concept demo/prototypes ✔

Tools development, acquisition, installation, & support ✔

Non-delivered software & test drivers ✔

Maintenance

Repair ✔

Enhancements/major updates ✔

Product-Level Functions

CSCI-Level Functions (Major Functional Element) ✔

Software requirements analysis ✔

Design
Preliminary design ✔

Detailed design ✔

Code & development testing

 Code & unit testing ✔

Function (CSC) integration and testing ✔

CSCI integration & testing ✔

IV&V ✔

Management ✔

Software quality assurance ✔

Configuration management ✔

Documentation ✔

Rework
Software requirements ✔

Software implementation

Re-design ✔

Re-coding ✔

Re-testing ✔

Documentation ✔

Build-Level Functions (Customer Release) ✔

(Software effort only)

CSCI-to-CSCI integration & checkout ✔

Hardware/software integration and test ✔

Management ✔

Software quality assurance ✔

Configuration management ✔

Documentation ✔

IV&V

Figure 4-55: A Checklist-Based Definition for Measuring Effort Expended (Page 2)

CMU/SEI-96-HB-002 77

Definition Name: Total System Staff-Hours Page: 3 of 3
 For Development

 Totals Totals Report
Product-Level Functions continued include exclude totals

System-Level Functions ✔

(Software effort only)
System requirements & design

System requirements analysis ✔

System design ✔

Software requirements analysis ✔

Integration, test, & evaluation
System integration & testing ✔
Testing & evaluation ✔

Production and deployment ✔
Management ✔

Software quality assurance ✔

Configuration management ✔

Data ✔

Training
Training of development employees ✔

 Customer training ✔

Support ✔

Figure 4-55: A Checklist-Based Definition for Measuring Effort Expended (Page 3)

78 CMU/SEI-96-HB-002

Example 4: Milestones and Schedules
Figure 4-56 shows how a checklist can be used to define the milestones for which calendar
dates are to be reported. The codes in the rightmost column of the checklist show the
criteria that are used for determining when each milestone will be considered met. These
codes are explained at the bottom of the checklist pages.

Schedule Checklist Date:
Part A: Date Information Originator:

Page 1 of 3

Project will record planned dates: Yes ✔ No
If Yes, reporting frequency: Weekly Monthly ✔ Other: ____________

Project will record actual dates: Yes ✔ No
If Yes, reporting frequency: Weekly Monthly ✔ Other: ____________

Number of builds

Repeat Relevant dates
Milestones, Reviews, and Audits Include Exclude each build reported*
 System-Level

System requirements review ✔
System design review ✔

 CSCI-Level
Software specification review ✔ 2,3,6
Preliminary design review ✔ 2,3,6
Critical design review ✔ ✔ 2,3,6
Code complete ✔ ✔ 1
Unit test complete ✔ ✔ 6
CSC integration and test complete ✔ ✔ 5
Test readiness review ✔ ✔ 3
CSCI functional & physical configuration audits ✔ ✔ 3

 System-Level
Preliminary qualification test ✔ 3
Formal qualification test ✔ 3
Delivery & installation ✔
Other system-level: Delivery to prime contractor ✔ 3

*Key to indicate “relevant dates reported” for reviews and audits
 1 - Internal review complete
 2 - Formal review with customer complete
 3 - Sign-off by customer
 4 - All high-priority action items closed
 5 - All action items closed
 6 - Product of activity/phase placed under configuration management
 7 - Inspection of product signed off by QA
 8 - QA sign-off
 9 - Management sign-off
10 - ______________________
11 - ______________________

Figure 4-56: A Checklist-Based Definition for Defining Schedule Milestones

CMU/SEI-96-HB-002 79

Page 2 of 3
Part A: Date Information (cont.)

Repeat Relevant dates
Deliverable Products Include Exclude each build reported*
 System-Level

Preliminary system specification ✔
System/segment specification ✔

System/segment design document ✔
Preliminary interface requirements spec. ✔
Interface requirements specification ✔

Preliminary interface design document ✔ 3
Interface design document ✔ 1,3,5,6
Software development plan ✔ 3,5,6
Software test plan ✔ 3,5,6
Software product specification(s) ✔

Software user’s manual ✔
Software programmer’s manual ✔
Firmware support manual ✔

Computer resources integrated support doc. ✔
Computer system operator’s manual ✔ 1,6

 CSCI-Level
Preliminary software requirements spec(s) ✔ 3
Software requirements specification(s) ✔ 1,3,5,6
Software preliminary design document(s) ✔ 1,3,5,6
Software (detailed) design document(s) ✔ ✔ 1,3,5,6
Software test description(s) (cases) ✔ ✔ 1,3,5,6
Software test description(s) (procedures) ✔ ✔ 1,3,5,6
Software test report(s) ✔ ✔ 3,7
Source code ✔ ✔ 1,2,3,6,7
Software development files ✔

Version description document(s) ✔

*Key to indicate “relevant dates reported” for deliverable products
1 - Product under configuration control
2 - Internal delivery
3 - Delivery to customer
4 - Customer comments received
5 - Changes incorporated
6 - Sign-off by customer
7 - IV&V sign-off
8 -

Figure 4-56: A Checklist-Based Definition for Defining Schedule Milestones (Page 2)

There is one important milestone issue that these examples do not address: the criteria that
are used to determine when the project starts. If you use or adapt forms like Figure 4-56 for
schedule checklists in your organization, you will want to add a means for defining and
recording the entry criteria for the beginning of projects. Then, when project costs are
recorded for all work done from the start to the end of a project, you will know exactly what
work is encompassed.

80 CMU/SEI-96-HB-002

Example 5: Counts of Problems and Defects
Figure 4-57 on this page and the next shows a structured method for defining the data to be
extracted from a problem- or defect-tracking system. The Include and Exclude columns
address issues that collectors of data must pin down to ensure that the counts they get are
what they want. They also make explicit the measurement practices that users of problem
counts need to know about to use the information correctly. The checklist gives an orderly
way for addressing the issues and communicating the measurement rules that are used.

Problem Status Include Exclude Value Count Array Count
Open ✔ ✔

Recognized ✔
Evaluated ✔
Resolved ✔

Closed ✔ ✔
Problem Type Include Exclude Value Count Array Count
Software defect

Requirements defect ✔ ✔

Design defect ✔ ✔

Code defect ✔ ✔

Operational document defect ✔ ✔

Test case defect ✔

Other work product defect ✔

Other problems
Hardware problem ✔
Operating system problem ✔
User mistake ✔

Operations mistake ✔
New requirement/enhancement ✔

Undetermined
Not repeatable/Cause unknown ✔
Value not identified ✔

Uniqueness Include Exclude Value Count Array Count
Original ✔
Duplicate ✔ ✔

Value not identifed ✔
Criticality Include Exclude Value Count Array Count

1st level (most critical) ✔ ✔

2nd level ✔ ✔
3rd level ✔ ✔
4th level ✔ ✔

5th level ✔ ✔

Value not identified ✔

Urgency Include Exclude Value Count Array Count
1st (most urgent) ✔
2nd ✔

3rd ✔
4th ✔

Value not identified ✔

Figure 4-57: A Checklist-Based Definition for Counting Defects

CMU/SEI-96-HB-002 81

Finding Activity Include Exclude Value Count Array Count
Synthesis of

Design ✔

Code ✔

Test procedure ✔
User publications ✔

Inspections of
Requirements ✔

Preliminary design ✔
Detailed design ✔

Code ✔

Operational documentation ✔
Test procedures ✔

Formal reviews of
Plans ✔
Requirements ✔

Preliminary design ✔
Critical design ✔

Test readiness ✔
Formal qualification ✔

Testing
Planning ✔

Module (CSU) ✔
Component (CSC) ✔

Configuration item (CSCI) ✔
Integrate and test ✔

Independent verif. and valid. ✔

System ✔
Test and evaluate ✔

Acceptance ✔

Customer support
Production/deployment ✔

Installation ✔
Operation ✔

Undetermined
Value not identified ✔

Finding Mode Include Exclude Value Count Array Count
Static (non-operational) ✔
Dynamic (operational) ✔

Value not identified ✔

Figure 4-57: A Checklist-Based Definition for Counting Defects (Page 2)

Formats for checklists like those in Figure 4-57 should be tailored to the problem-tracking
process that is used within your organization. These processes and the terms they employ
vary from organization to organization. You should make sure that the checklists you use to
define problem and defect counting fit your needs. This is true for other measures as well.

82 CMU/SEI-96-HB-002

Example 6: Defining Your Terms—What Does "Open" Mean When Used to Describe
Problems or Defects?

When constructing rules for counting problems and defects, you should be sure to define
your terms. This is especially true when terms or the meanings of terms can vary from time
to time or from organization to organization. Once again, checklists can provide useful
structures. Figure 4-59 shows an example.

To understand Figure 4-59, a sketch of the scenario may help. This scenario is shown in
Figure 4-58 (yet another example of a mental model). In this scenario, problem reports are
classified as recognized (i.e., open) when certain minimum criteria are met. Subsequently,
when additional criteria are satisfied, they are reclassified as evaluated. Then they go into a
problem resolution process, which ends with each problem report assigned to one of three
resolved states—resolved (nondefect-oriented), resolved (defect-oriented), or resolved
(duplicate). The problem report is then closed.

The checklist in Figure 4-59 lists the states and identifies the exit criteria that problems or
defects must satisfy to pass to the next state [SEI 96, Florac 92].

Substates
of ‘Open”
(Example)

1

2

3

4

5

Recognition

.

Evaluation

.

Criteria

Criteria

Close

Criteria

Recognized

Evaluated

Closed

Resolution
(NDOP)
Criteria

Resolved

Resolution
(DOP)

Resolution
(DUP)

Criteria

Criteria

Resolved

Resolved

Resolution

Process

Exit state

NDOP = nondefect-oriented problem
DOP = defect-oriented problem
DUP = duplicate

Figure 4-58: A Simple Process Model for Defect Tracking

CMU/SEI-96-HB-002 83

I. Open and
close criteria

II. Identifying
substates

Problem Status Definition Rules
Product ID: Example Status Definition ID: Customer probs
Finding Activity ID: Customer Support Definition Date: 06/30/92

Section I
When is a problem considered to be Open? When is a problem considered to be Closed?
A problem is considered to be Open when A problem is considered to be Closed when
all the attributes checked below have a all the attributes checked below have a
valid value: valid value:

✔ Software Product Name or ID Date Evaluation Completed
✔ Date/Time of Receipt Evaluation Completed By

Date/Time of Problem Occurence Date Resolution Completed
✔ Originator ID Resolution Completed By

Environment ID Projected Availability
Problem Description (text) Released/Shipped
Finding Activity Applied
Finding Mode ✔ Approved By
Criticality ✔ Accepted By

Section II
What Substates are used for Open?
Name # Name

1 Recognized 6
2 Evaluated 7
3 Resolved-NDOP (nondefect-oriented) 8
4 Resolved-DOP (defect-oriented problem) 9
5 Resolved -DUP (duplicate) 10

III. Defining
substate
criteria

IV. Identifying
transition
rules

Problem Status Definition Form-2
Product ID: Example Status Definition ID: Customer probs
Finding Activity ID: Customer Support Definition Date: 06/30/92
Section III
What attributes are unconditionally required to have values as criteria for each substate?
Attribute Substate Number
Name 1 2 3 4 5 6 7 8 9 10

1 Problem ID ✔ ✔ ✔ ✔

2 Software Product Name or ID ✔ ✔ ✔ ✔ ✔
3 Date/Time of Receipt ✔ ✔ ✔ ✔ ✔

4 Date/Time of Problem Occurence ✔ ✔ ✔ ✔

5 Originator ID ✔ ✔ ✔ ✔ ✔
6 Environment ID ✔ ✔ ✔ ✔

7 Problem Description (text) ✔ ✔ ✔ ✔

8 Finding Activity ✔ ✔ ✔ ✔
9 Finding Mode ✔ ✔ ✔ ✔

10 Criticality ✔ ✔ ✔ ✔

11 Problem Type ✔ ✔ ✔ ✔
12 Uniqueness ✔ ✔ ✔ ✔

13 Urgency ✔ ✔ ✔ ✔

14 Date Evaluation Completed ✔ ✔ ✔ ✔
15 Evaluation Completed By ✔ ✔ ✔

16 Date Resolution Completed ✔ ✔ ✔

17 Resolution Completed By ✔ ✔ ✔
18 ID of Original Problem ✔

19 Changes Made To ✔

20 Related Changes ✔
21 Defect Found In ✔
22 Defects Caused By ✔

23 Projected Availability ✔

24 Released/Shipped
25 Applied
26 Approved By: ✔ ✔ ✔

27 Accepted By: ✔ ✔ ✔
Section IV
List the substates with conditional attribute values Substates affected
Substate # Conditional Attribute/Value Substate # Attribute Numbers

2 Problem Type = not a software 3 11
defect

2 Problem Type = software defect, 4 11, 12
Uniqueness = Original

2 Problem Type = software defect, 5 11,12
Uniqueness = duplicate

Figure 4-59: A Checklist-Based Definition for Defect States

84 CMU/SEI-96-HB-002

Creating Your Own Definition Frameworks
There are many measures for which checklists and descriptive forms do not yet exist. When
your teams propose measures that have no current checklists, you should challenge them to
develop similar (or equivalent) vehicles for communicating the rules and procedures that
they want used to capture and record their data. Checklists are useful, especially when
inclusion and exclusion decisions affect results.

Whatever frameworks you choose, your structured methods must tell people who collect
data exactly what is to be included in (and excluded from) the values they report to you.
Where it makes a difference—and it usually does—they must also describe how the
measurements will be carried out. An appropriate definition framework ensures that any
variation in the method for measuring that could affect either the values themselves or the
way they should be interpreted gets described.

When constructing measurement definition checklists and supporting forms, you will find that
the surest way to ensure full coverage and achieve consensus is to focus not on telling
people what they should do, but on identifying what you and others need to know to use the
data correctly. Not only will this minimize controversy and confrontation, but once you have
a structure that communicates all relevant information about a measurement's result, it is
easy to use that structure to tell others how to collect the data you want.

Dealing with Complexity
Although definition checklists sometimes seem longer than you would like them to be, they
are actually quite efficient vehicles for identifying and communicating many of the details
that affect the values obtained when measurements are made. Effective checklists seem
long at times because they are making visible many of the issues, assumptions, and
decisions that have historically gone unrecorded. When details such as rules for inclusion
and exclusion are not made explicit, users of data are forced to guess. Often they guess
incorrectly, assume things that are not true, and end up misusing or misinterpreting the
reported values. When checklists are too brief, they may not be identifying all the important
issues.

An important side benefit of definition checklists (and their supporting forms) is that they can
be used as mechanisms for identifying and resolving the differing needs of different users.
Checklists are very productive guides in group settings for helping teams step through
issues one at a time—identifying individual needs, negotiating consensus, and recording
decisions as they go.

CMU/SEI-96-HB-002 85

Exercise 8: Defining Software Measures
Choose one of your indicators for definition. If suitable checklists and forms are available for
defining the data elements in this indicator, use them to create explicit definitions
(specifications) for the measurements that must be made to meet the requirements for the
indicator. Repeat these steps until you have created clearly defined rules for all of the data
elements that you will use to build the indicator. Figure 4-60 illustrates this process.

80

20
40
60

100

Indicators

Data Elements
Required

 Indicator
a b c d e

Definitions for
data elements

Threshold

Program

%
Comment
Lines

a

b

c

of commented lines

total # of lines

program name

x
x
x

…
…

x
x

x

x

definition
checklist
_____ ✔
_____ ✔
_____ ✔
_____ ✔
_____ ✔

supplemental
rules form

xx_________

xx_________

xx_________

Figure 4-60: Constructing Operational Definitions

Repeat the exercise for your other indicators. If checklists and supporting forms do not
exist, create them (or construct alternative structured formats) to ensure that you have
workable vehicles for communicating operational definitions for all the data elements you
use.

Checklists and supporting forms for defining some frequently used software measures have
been illustrated in this chapter. Blank, reproducible copies are presented with the materials
for this exercise in Appendix A. More detailed advice, together with examples and
guidelines for using these checklists, are available in [Florac 92], [Goethert 92], and [Park
92].

86 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 87

Measurement
Goal 1

Question 1

Measure 1

Question 2 Question 3 Question m

Measure 2 Measure k

• • •

• • •

• • •

Measurement
Goal 2

Measurement
Goal n

Indicator 1 Indicator 2 Indicator j• • •

Measure 3

Figure 4-61: GQM Provides Traceability Back to
Measurement Goals

4.9 Step 9: Identify the Actions Needed to Implement Your
Measures

What has puzzled us before seems less mysterious, and the
crooked paths look straighter as we approach the end.

— Jean Paul Richter

Translating Measurement Definitions into Action Plans
You now have indicators that address your questions and operational definitions for the
measures you want to collect. Moreover, the GQ(I)M process that you followed has given
you traceability from your
measures back to the questions
and measurement goals that
motivated them (Figure 4-61).
Since you have previously traced
the measurement goals back to
business subgoals (Figure 4-35
and Exercise 5), you have a clear
means for ensuring that the
measures your organization
implements and uses stay focused
on business needs.

Your ninth step is to assemble

Measurement Goal(s)

N
u

m
b

er

WeeksReporting
Periods

Total
SLOC Planned

Actual

T
ro

u
b

le
 R

ep
o

rt

Module

Question 1 Question 2 Question n• • •

SLOC
Staff-Hours
Trouble Reports
Milestone Dates

definition
checklist
_____ ✔
_____ ✔_____ ✔
_____ ✔
_____ ✔

supplemental
rules form

xx_________

xx_________

xx_________

Analysis &
Diagnosis

Plan
- Goals
- Scope
- Activities

•
•
•

9

Figure 4-62: The Ninth Target—The Facts Needed
to Prepare an Effective Action Plan

information about the current
status and use of your measures,
so that you can prepare an
effective plan for implementing the
measures you have defined
(Figure 4-62). The three words
that should guide you are analysis,
diagnosis, and action.

Analysis
Analysis means probing for facts
that help you understand where
you are starting from. This
involves identifying the measures
that your organization is using now
and understanding how it is
collecting them. This information

88 CMU/SEI-96-HB-002

What software processes are sources for data?

✔ = estimates from project management

 Planned Actual

Size ✔ Configuration Management

Effort ✔ Labor Tracking

Quality ✔ Problem Tracking

Schedule ✔ Configuration Management

Figure 4-63: Taking Inventory

determines your starting point for implementing the goal-driven measures you have defined.
If your organization is like most, you will not be starting from scratch. Some measurement
activities will already be in place. It usually makes sense to build on things that are currently
in use, strengthening them in the process, and refocusing them were necessary. In
measurement, just as in life, evolution meets less resistance than revolution.

When analyzing your existing measures and measurement practices, you should ask
questions like these:

• What data elements are required for my goal-driven measures?

• Which data elements are collected now?

• How are they collected?

• What are the processes that provide the data?

• How are the data elements stored and reported?

As you sort through these
issues, you may find it helpful
to use tabular displays to
summarize what you learn.
Figure 4-63 illustrates one
possible summary. Here the
sources for planned and actual
values for one organization's
current management measures
are identified and listed
opposite the issue they
address.

Although displays like Figure 4-63 are helpful, you will find them even more useful if you list
explicit measures, not just broad measurement classes. For example, there are many
possible measures for size, and the organization could be using more than one. By naming
explicit measures instead of simply what they are attempting to measure, you help focus
attention on finding all possible sources and on matching the sources to the data used. For
example, it could be that while the configuration management group does report
measurements for size, these are not the values that are used by estimators and managers
for project estimating and tracking.

When you dig for data, be persistent. There are often more potential data sources than are
initially apparent. Again, mental models of your processes help. For example, several
sources often exist for data about defects and problems. Figure 4-64 is typical of many
organizations. Here people who build products (product synthesis) write problem reports,
teams that inspect products (as in peer reviews) prepare inspection reports, participants in
formal milestone reviews produce action items, test groups produce test reports, and

CMU/SEI-96-HB-002 89

Problem
Report

Inspection
Report

Review
Report

Test
Report

Customer
Problem

Product
Synthesis

Inspections Reviews Testing
Customer
Support

Activity-Specific Databases

Problem
Tracking
Data

Analysis and Corrective Actions

Figure 4-64: Sources for Problem-Tracking Data

customer support groups document customer problems. All of these reports are followed by
analysis and corrective action, and the results and status are usually recorded somewhere,
often in a database. Since there may be more than one database, you will want to find all of
them to understand what they can give you. So dig, and be thorough. You may be
surprised at what you find.

Diagnosis
Diagnosis means evaluating the data elements that your organization is collecting now,
determining how well they meet the needs of your goal-driven measures, and proposing
appropriate actions for

• using the data

• adapting the data to your needs

• adapting your needs to the data

• obtaining what is missing

Where analysis is fact finding, diagnosis is evaluative and judgmental. When diagnosing,
you are identifying alternatives and setting the stage for finding solutions. You are asking
questions such as

• What existing measures and processes can be used to satisfy our data
requirements?

• What elements of our measurement definitions or practices must be changed
or modified?

• What new or additional processes are needed?

90 CMU/SEI-96-HB-002

Figure 4-65 shows a useful way to relate the data that you need to the data that your
organization now uses. Here you begin by summarizing your results from Exercises 6, 7,
and 8. Then you assess the suitability and availability of existing data and identify current
and potential sources for this information and for the other data elements you need. Figure
4-65 also illustrates a coding scheme for classifying degrees of availability. You may use
this scheme or devise another that serves your needs better.

Indicators a b c d e

Data Indicator

Element a b c d e Avail Source
X X + QA
X X O CM

X X - ?
X X OO Etc.

X + •

1

2
3

4

5
6 X - - •

Available

Not explicitly available

 - can be derived from other data

 - can be obtained via minor effort

Not available now

Impossible to obtain or extremely difficult

+

 0

 00

-

- -

Code Meaning

Figure 4-65: Evaluating Abilities of Existing Data to Satisfy Needs

Action
Action means translating the results of your analyses and diagnoses into implementable
steps. It is concerned with finding solutions and with making the solutions happen. It
includes identifying tasks and assigning responsibilities and resources.

Action starts with identifying the elements that you will build on or address in your
measurement plan. Some things you will want to do before writing the plan are

• Identify the sources of data within your existing software process(es).

• Define the methods that will be used to collect and report the data.

• Identify (and specify) the tools that will be required to support collecting,
reporting, and storing the data.

• Determine your requirements for points in time and frequencies of
measurement.

• Document your data collection procedures in detail.

- Identify responsible persons and organizations.
- Determine where, how, and when to collect and report.
- Create sketches for the data collection records you will use.

• Determine who will use the data.

• Define how the data will be analyzed and reported.

• Prepare a data definition and collection process guide.

CMU/SEI-96-HB-002 91

You should also analyze your data storage and access requirements. This includes
identifying or determining

• your historical retention needs

• who will collect, store, maintain, and access the data

• the organizational levels to be served (serving more than one organizational
level often translates into a need for more than one database.)

• the granularity of the data

• the procedures to be used for dynamically editing and verifying data as it is
entered into the database

• the number of people with access to the data

• the need for recording the definitions associated with the data, so that users
can tie the data to the descriptive information that is needed to use the data
correctly

In addition, you should pay close attention to issues of data privacy, wherever they may be
encountered. This is especially important for data that could be used (or perceived to be
used) to evaluate the performance of individuals or teams. Much anecdotal evidence exists
to suggest that the surest way to make measurement fail is to have people suspect that the
measures might be used against them.

An Action Item Checklist
When you are preparing to write your measurement plan, it helps to have a checklist to
ensure that nothing gets overlooked. We offer the one in Figure 4-66.

This checklist can easily be transformed into a display for summarizing your status with
respect to defining the measurement process you intend to implement. This is illustrated in
Figure 4-67. Here codes are used to show the status of each task. Actions to complete
these tasks are things that you will want to address as you prepare your measurement
implementation plan.

92 CMU/SEI-96-HB-002

Action Item Checklist

• Define the data elements (Exercise 8).

• Define the frequencies of collection and the points in the process
where measurements will be made.

• Define the timelines required for moving measurement results
from the points of collection to databases or users.

• Create forms and procedures for collecting and recording the data.

• Define how the data are to be stored and how the data will be
accessed. Identify who is responsible for designing the database
and for entering, retaining, and overseeing the data.

• Determine who will collect and access the data. Assign respon-
sibilities for these actions.

• Define how the data will be analyzed and reported.

• Identify the supporting tools that must be developed or acquired to
help you automate and administer the process.

• Prepare a process guide for collecting the data.

Figure 4-66: Action Item Checklist

Data element

Planning tasks 1 2 3 4 5 6 7

Data elements defined Y N 60% Not
Doc'd Y?

Data collection frequencies and points
in the software process defined 50% N 60% Not

Doc'd

Timelines defined for getting measure-
ment results to databases and users N N 30% Not

Doc'd

Data collection forms defined N N N N

Data collection procedures defined N N

Data storage, database design, and
data retention responsibilities defined N N

Who will collect and who will access
the data identified N N

Analysis processes defined N N

Reporting processes defined N N

Supporting tools identified and made
available N N

Process guide for data definition and
collection prepared Y

Figure 4-67: Action Planning Status

CMU/SEI-96-HB-002 93

Exercise 9: Analysis, Diagnosis, Action
Review the indicators and data elements that you identified and defined in the preceding
exercises. Analyze the extent to which your organization meets the measurement needs for
these data elements now. Identify (diagnose) what else your organization must do to meet
these needs. Prepare summaries of the results and of the status of your analyses,
diagnoses, and planning activities. Figures 4-65 and 4-67 can be used as templates for
your summaries. Figure 4-68 illustrates the process flow for this exercise.

List of
data

elements
1 2 3 4 5 6

Data Element

Data element defined

Collection Procedure def.

Collection frequency def.

Etc.

Planning TasksAvail Source

1
2
3
4
5
6

80

20
40
60

100

Indicators
Threshold

Program

%
Comment
Lines

Figure 4-68: Identifying Implementation Tasks and Assessing Their Status

94 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 95

4.10 Step 10: Prepare a Plan
Once you know what you have to start with (analysis), how well your present measures
meet your business needs (diagnosis), and the actions that you will to take to meet the
remaining needs (action), you are ready to prepare a plan for implementing the actions you
have identified. Your 10th and final step in this guidebook is to write your plan. The ellipse
in Figure 4-69 shows where we are in the goal-driven process.

Measurement Goal(s)

N
u

m
b

er

WeeksReporting
Periods

Total
SLOC Planned

Actual

T
ro

u
b

le
 R

ep
o

rt

Module

Question 1 Question 2 Question n• • •

SLOC
Staff-Hours
Trouble Reports
Milestone Dates

definition
checklist
_____ ✔
_____ ✔
_____ ✔
_____ ✔
_____ ✔

supplemental
rules form

xx_________

xx_________

xx_________

Analysis &
Diagnosis

Plan
- Goals
- Scope
- Activities

•
•
•

10

Figure 4-69: The Tenth Target—A Plan for Implementing the Measures

A Measurement Planning Template
On the next three pages, we offer a template to help you identify and structure the key
issues that your plan should address. You (or your organization) may have other formats
that you prefer. If so, by all means use any reasonable alternative that works well for you in
your environment. But whatever the structure of your plan, be sure to address the issues
that appear in our template. Each has been derived from accumulated experience in
implementing action items in real-world, people-centered environments.

96 CMU/SEI-96-HB-002

Measurement Implementation Plan (a Template)

1. Objective
List the principal objective(s) of this measurement implementation effort. Identify the
measures to be implemented, explain why they are important to your organization,
and summarize the expected outcomes.

2. Description
Outline the origins of the plan, describe the goals and scope of the activities
encompassed, and explain how the measures and efforts in the plan relate to other
efforts and activities. The subsections that provide this information are described
below.

Background

Give a brief history of the events that have led to or motivated this plan. Describe the
origins of the plan, the work that has been done to date, who participated, and
(optionally) the process that was used. Relate the planned actions to other existing or
concurrent measurement activities within your organization and (if appropriate) in
those of your customers or suppliers.

Goals

List and explain the goals that motivate and guide the activities under this plan. This
section identifies three kinds of goals: (a) business goals, (b) measurement goals, and
(c) the goals of this plan.

• The business goals frame the importance of the program and the level of
support to be provided by senior executives.

• The measurement goals are more detailed and more specific. They guide the
methods that will be used for collecting, storing, and using measured results.
Each measurement goal should be identified and related to one or more of the
business goals.

• The goals for this plan are more operationally oriented. They specify the
outcomes that are sought. What do you want to achieve? How will you know
when you are done? Often the most effective way to express these goals is in
terms of exit criteria or criteria for success.

Scope

Relate the measures that this plan implements to the measurement goals they serve
and describe their range of application. Do the measures apply to new projects only?
To development projects? To procurement actions? To maintenance projects? To
contractors and subcontractors? To large or small programs? To only certain
divisions or departments?…etc.? Who are the major stakeholders? Who will be

CMU/SEI-96-HB-002 97

affected by the measurement practices, processes, and methods? Who will use the
results? Identify the time span over which this plan is to be effective.

Relationship to Other Software Process Improvement Efforts

Describe how the measurement efforts in this plan relate to other process
improvement activities at your organization. Explain how the efforts relate to any
goals or actions your organization may have established with respect to the CMM, the
Baldrige Award, or ISO 9000 certification.

Relationship to Other Functional Activities

Describe how the measurement efforts in this plan relate to (and interface with) other
functional groups and activities at your organization, such as cost estimating, time and
effort reporting, cost accounting, procurement, technical writing, and quality
assurance.

3. Implementation
Describe the actions that are to be taken to implement the measures identified in
Section 2. For example, will you use pilot projects? Will you use focused subsets of
the measures, perhaps locally, before broad organization-wide implementation? Put
together a comprehensive strategy that addresses all aspects of implementation,
including the tools and training needed to introduce, use, and sustain effective
measurement. Address data-storage issues and the steps for incorporating these
measures and measurement practices into your organization's policies, procedures,
practices, and training curricula. Describe how you will use the measured results and
how you will obtain feedback to continuously improve the measurement processes.
Describe your plans for identifying problem areas and successes, and for publishing
success stories and lessons learned. The subsections that provide this information
are described below.

Activities, Products, and Tasks

Describe how the effort is to be accomplished. Partition the effort into manageable
activities, products, and tasks that can be used as a basis for planning, reporting,
management, and control. For each activity, product, or task, state the objective and
identify the principal subtasks. Identify all sequences and dependencies that affect
either the schedule or assignment of resources. Where possible, identify the entry
and exit conditions that will determine start and completion of the task.

Schedule

Describe when each of the activities, products, or tasks is to be accomplished. Use
Gantt charts, PERT charts, or alternative displays where appropriate to describe
sequences and dependencies. Translate key actions, events, and deliverables into
milestones so that performance can be tracked against plans.

98 CMU/SEI-96-HB-002

Resources

Describe the resources that are being allocated to this effort. Address personnel,
money, facilities, teaming plans, computer resources, etc.

Responsibilities

Name the individuals or groups that will be responsible for overseeing, planning,
implementing, managing, approving, and funding this effort. Assign responsibility and
authority for acquiring tools, for training, and for implementing and operating
databases.

Measurement and Monitoring

Describe how the progress of implementing these measures will be measured,
analyzed, and reported. Identify replanning points and describe how significant
schedule deviations or changes and revised funding needs will be handled.

Assumptions

Identify the key assumptions upon which this plan is based. Key assumptions are
ones which, if not satisfied, pose risks for successful implementation.

Risk management

Describe how you will identify, assess, track, and do contingency planning for the risk
factors associated with the measurement implementation efforts covered by this plan.
Describe the actions that will be taken to monitor the assumptions, and provide
mechanisms for reacting if assumptions are not met. Also, identify all places where
planned schedules and resources differ from estimates and describe the actions that
are being taken to make the planned outcomes achievable.

4. Sustained Operation
Describe the actions that will be taken to sustain and use the measures implemented
in Section 3. Assign resources and responsibilities and make provisions for
continuing evolution. Describe the practices that will be used to evaluate and monitor
the effectiveness of the measures and to assess their business value and their effects
on organizational performance. Alternatively, if appropriate, provide direction and
resources for preparing an operational plan for sustaining the collection, use,
retention, evolution, and evaluation of these measures.

CMU/SEI-96-HB-002 99

Exercise 10: Writing the Plan
With the results from Exercises 1 through 9 in hand, you have most of the information that
you need to begin planning actions to implement the measures you have defined. Your final
assignment is to write an action plan. You will, of course, follow through by getting approval
for your plan and by implementing and tracking the measurement and management actions
that are called for in the plan.

The template that was presented on the previous pages provides a generic outline for the
major topics that your plan should address. You may use this template as a guide for your
plan, or you may select an alternative structure that better meets your needs.

100 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 101

5 Following Through

This chapter summarizes significant recommendations that others have reported or that we
have observed from working with organizations that have implemented various aspects of
software measurement.

5.1 Measurement Principles for Functional Managers
• Set clear goals.

• Get your staff to assist in defining your measures.

• Provide active management oversight—ask for and use the data.

• Understand the data that your people report to you.

• Never use measurement data to reward or punish the people who make the
measurements, and ensure that they understand that you and everyone else
will obey this rule.

• Establish practices that protect anonymity. Provisions for protecting anonymity
build trust and foster the collection of reliable data.

• Support your people when their reports are backed by data useful to the
organization.

• Do not emphasize one measure or indicator to the exclusion of others.

5.2 Measurement Principles for Project Managers
• Know the strategic focus of your organization and emphasize measures that

support the strategy.

• Gain agreement with your teams on the measures that you will track, and
define the measures in your project plan.

• Provide regular feedback to your teams about the data they have collected.

• Do not measure individuals.

5.3 Measurement Principles for Project Teams
• Do your best to report accurate, timely data.

• Help management focus project data on improving your software processes.

• Do not use software measures to brag about how good you are, or you will
encourage others to use other data to show the opposite.

102 CMU/SEI-96-HB-002

5.4 General Principles
• Software measurement must not be a strategy unto itself.

• Integrate software measurement with your overall strategy for software process
improvement. You should have (or develop) such a strategy in conjunction with
your software measurement plan.

• Start small with common goals and issues.

• Design a consistent measurement process that

- is linked to organizational goals and objectives
- includes rigorous definitions
- continuously evolves

• Test the measures and processes you design before implementing them
broadly.

• Measure and monitor the effectiveness of your software measures and
measurement activities.

CMU/SEI-96-HB-002 103

Identify scope
• objectives
• issues
• measures

Define procedures
• measures
• collection
• analysis
• feedback

Evolve process
• evaluate progress
• evaluate process

Analyze data
• prepare reports
• present reports
• review and revise
 procedures

Collect data
• record and store data
• review and revise
 procedures

Planning Implementing

Improving

Recognition
of the need for
measurement

Figure 5-1: A Measurement Process Architecture

6 Putting It All in Context

Paul Kirchner, at the December 1956 meetings of the American Association for the
Advancement of Science, listed seven elements that he believed to be inherent in the basic
structure of a business measurement process [Kirchner 59]. These elements, phrased here
as steps, are as follows:

1. Determine the objective of the business entity—the purpose which is to be
served in a particular situation.

2. Determine the types of factors which might serve to attain the objective.

3. Select the key aspects of the factors—the aspects which are to be
measured.

4. Choose
(a) a measuring method
(b) a measuring unit

5. Apply the measuring unit to the object to be measured—the central action
of measurement.

6. Analyze the measurement—relating it to other measurements (other in
time or in kind).

7. Evaluate the effectiveness of the measurement by determining the extent
to which it assisted in attaining the objective.

Although we were not aware of Kirchner's views at the time we developed the materials in
Chapter 4, we are heartened to see how closely the goal-driven measurement process
mirrors his observations. In fact, Kirchner's elements, when phrased as actions, do an
admirable job of putting the steps of this guidebook into the larger contexts of software mea-
surement architecture
[McAndrews 93] and
implementation [SEI 96].
Figure 5-1, which is taken
from these references,
shows a top-level view of
the process model that
has been guiding us. As
you can see, both we and
McAndrews have been
faithful to Kirchner's
calling.

104 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 105

References

[ami 92] The ami Handbook: A Quantitative Approach to Software
Management. London, England: The ami Consortium, South Bank
Polytechnic, 1992.

[Armitage 94] Armitage, James W. & Kellner, Marc I. "A Conceptual Schema for
Process Definitions and Models," 53-165. Proceedings of the 3rd
International Conference on the Software Process . Reston, Va.,
Oct. 10-11, 1994. IEEE Computer Society Press, 1994.

[Basili 88] Basili, Victor R. & Rombach, H. Dieter. "The TAME Project:
Towards Improvement-Oriented Software Environments." IEEE
Transactions on Software Engineering, Vol. 14, No. 6 (June 1988):
758-773.

[Basili 89] Basili, Victor R. “Using Measurement for Quality Control and
Process Improvement.” Second Annual SEPG Workshop, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, Pa.,
June 21-22, 1989.

[Baumert 92] Baumert, John H. Software Measures and the Capability Maturity
Model (CMU/SEI-92-TR-25, ADA 257 238). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University, 1992.

[Carleton 94] Carleton, Anita; Rozum, James; & Paulish, Daniel. Engineering a
Software Measurement Process for Your Organization. Tutorial
notes, SEPG National Meeting, April 1994.

[Caws 59] Caws, Peter. "Definition and Measurement in Physics," 3–17.
Measurement: Definitions and Theories, C. West Churchman &
Philburn Ratoosh, ed. New York, N.Y.: John Wiley & Sons, Inc.,
1959.

[Churchman 59] Churchman, C. West. "Why Measure?," 83–94. Measurement:
Definitions and Theories, C. West Churchman & Philburn Ratoosh,
ed. New York, N.Y.: John Wiley & Sons, Inc., 1959.

[Deming 86] Deming, W. Edwards. Out of the Crisis. Cambridge, Mass.:
Massachusetts Institute of Technology, Center for Advanced
Engineering, 1986.

[Fenton 91] Fenton, Norman E. Software Metrics: A Rigorous Approach.
London: Chapman & Hall, 1991.

[Fenton 95] Fenton, Norman E. & Whitty, Robin. "Introduction," 1-19. Software
Quality Assurance and Measurement, A Worldwide Perspective,
Norman Fenton, Robin Whitty, and Yoshinori Iizuka, ed. London:
International Thomson Computer Press, 1995.

106 CMU/SEI-96-HB-002

[Florac 92] Florac, William A. et al. Software Quality Measurement: A
Framework for Counting Problems and Defects (CMU/SEI-92-TR-
22, ADA 258 556). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, September 1992.

[Ghiselli 81] Ghiselli, Edwin E.; Campbell, John P.; & Zedeck, Sheldon.
Measurement Theory for the Behavioral Sciences. San Francisco,
Calif.: W. H. Freeman and Company, 1981.

[Goethert 92] Goethert, Wolfhart B. et al. Software Effort Measurement: A
Framework for Counting Staff-Hours (CMU/SEI-92-TR-21, ADA 258
279). Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, September 1992.

[Humphrey 89] Humphrey, Watts S. Managing the Software Process. Reading,
Mass.: Addison-Wesley, 1989.

[Kan 95] Kan, Stephen H. Metrics and Models in Software Quality
Engineering. Reading, Mass.: Addison-Wesley, 1995.

[Kirchner 59] Kirchner, Paul. "Measurements and Management Decisions," 64–
82. Measurement: Definitions and Theories, C. West Churchman &
Philburn Ratoosh, ed. New York, N.Y.: John Wiley & Sons, Inc.,
1959.

[Krantz 71] Krantz, David H.; Luce, R. Duncan; Suppes, Patrick; & Tversky,
Amos. Foundations of Measurement, Vol.1. New York, N.Y.:
Academic Press, 1971.

[Luce 90] Luce, R. Duncan; Krantz, David H.; Suppes, Patrick; & Tversky,
Amos. Foundations of Measurement, Vol.3. San Diego, Calif.:
Academic Press, 1990.

[Lynch 91] Lynch, Richard L. & Cross, Kelvin F. Measure Up!. Cambridge,
Mass.: Blackwell Publishers, 1991.

[McAndrews 93] McAndrews, Donald R. Establishing a Software Measurement
Process (CMU/SEI-93-TR-16, ADA 267 896). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University, July
1993.

[Park 92] Park, Robert E. et al. Software Size Measurement: A Framework
for Counting Source Statements (CMU/SEI-92-TR-20, ADA 258
304). Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, September 1992.

[Paulk 93a] Paulk, Mark C. et al. Capability Maturity Model for Software,
Version 1.1 (CMU/SEI-93-TR-24, ADA 263 403). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University,
February 1993.

CMU/SEI-96-HB-002 107

[Paulk 93b] Paulk, Mark C. et al. Key Practices of the Capability Maturity Model,
Version 1.1 (CMU/SEI-93-TR-25, ADA 263 432). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University,
February 1993.

[PSM 96] Practical Software Measurement: A Guide to Objective Program
Insight. Washington D.C.: Joint Logistics Commanders, Joint Group
on Systems Engineering, March 1996.

[Pulford 96] Pulford, Kevin; Kuntzmann-Combelles, Annie; & Shirlaw, Stephen.
A Quantitative Approach to Software Management: The ami
handbook. Worthingham, England: Addison-Wesley, 1996.

[Roberts 79] Roberts, Fred S. Measurement Theory with Applications to
Decisionmaking, Utility, and the Social Sciences. Reading, Mass.:
Addison-Wesley, 1979.

[Rombach 89] Rombach, H. Dieter & Ulery, Bradford T. "Improving Software
Maintenance Through Measurement." Proceedings of the IEEE,
Vol. 77, No. 4 (April 1989): 581-595.

[Scholtes 90] Scholtes, Peter R. The Team Handbook. Madison, Wisconsin:
Joiner Associates, Inc., 1990.

[SEI 96] Engineering an Effective Measurement Program: Course Notes.
Pittsburgh, Pa: Software Engineering Institute, Carnegie Mellon
University, June 1996.

[Senge 94] Senge, Peter M. The Fifth Discipline Fieldbook. New York, N.Y.:
Doubleday, 1994.

[Shepperd 93] Shepperd, Martin & Ince, Darrel. Derivation and Validation of
Software Metrics. Oxford: Clarendon Press, 1993.

[Stevens 46] Stevens, S. S. "On the Theory of Scales of Measurement."
Science, Vol. 103, No. 2684 (1946): 677–680.

[Stevens 51] Stevens, S. S. "Mathematics, Measurement, and Psychophysics,"
1–49. Handbook of Experimental Psychology, S. S. Stevens, ed.
New York, N.Y.: John Wiley & Sons, Inc., 1951.

[Stevens 59] Stevens, S. S. "Measurement, Psychophysics, and Utility," 18–63.
Measurement: Definitions and Theories, C. West Churchman &
Philburn Ratoosh, ed. New York, N.Y.: John Wiley & Sons, Inc.,
1959.

[Velleman 93] Velleman, Paul W. & Wilkinson, Leland. "Nominal, Ordinal, and
Ratio Typologies Are Misleading." The American Statistician, Vol.
47, No. 1 (February 1993): 65–72.

108 CMU/SEI-96-HB-002

[Weinberg 93] Weinberg, Gerald M. Quality Software Management, Vol. 2: First-
Order Measurement. New York, N. Y.: Dorset House Publishing,
1993.

[Wheeler 92] Wheeler, Donald J. & Chambers, David S. Understanding Statistical
Process Control. Knoxville, Tenn.: SPC Press, 1992.

[Wiener 20] Wiener, Norbert. "A New Theory of Measurement: A Study in the
Logic of Mathematics." Proc. London Math. Soc., Ser. 2, 19 (1920):
181–205.

[Zuse 91] Zuse, Horst. Software Complexity: Measures and Methods. Berlin:
Walter de Gruyter, 1991.

CMU/SEI-96-HB-002 109

Appendix A: Exercises and Worksheets

This appendix contains instructions and supporting materials for the exercises in Chapter 4.

The pages in this appendix are designed to be reproduced and used as worksheets to guide
the activities of your measurement definition teams. You may make as many copies of each
page as you wish.

110 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 111

Exercise 1: Identifying Business Goals
The objective of this exercise is to identify the principal business goals that relate to issues
that concern you. These will form the starting point for identifying and defining traceable
measures in the exercises that follow.

Directions (team exercise)

1. Generate ideas for completing the following statement:

“One of our principal business goals is…”

2. Group your responses with those of your teammates.

3. Merge similar goals and sort them into a rough priority order.

4. Prepare a chart or table to summarize your results.

Business Goals

What do I want
to achieve?

Subgoals

To do this, I
will need to…

What do I want
to know?

112 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 113

Exercise 2: Identifying What You Want to Know or Learn
The objective of this exercise is to identify things that you would like to know to help you
understand, assess, predict, control, improve, or motivate elements of your organization with
respect to achieving your business goals.

Directions

1. Select one or more of your business goals.

2. Identify the persons or groups whose concerns your team will address.
(This may be you or the organization you lead.) This defines your
perspective and the roles that you and the team will assume in Tasks 3
through 6 here and in the remaining steps of the goal-driven measurement
process.

3. Create rough sketches (mental models) of the relevant processes that you,
in your role, manage or affect. As you do this, be guided by what you want
to achieve and the issues you will have to address to achieve it.

4. List the important things (entities) in your processes that you, in your role,
manage or influence. Make sure that you address each of the four kinds of
process entities below:

– inputs and resources
– products and by-products
– internal artifacts such as inventory and work in process
– activities and flowpaths

You may also want to list some of the environmental entities outside your
processes that affect your work.

5. For each entity, list questions that, if answered, would help you, in your
role, plan and manage progress toward your goals. For example:

– How big is it?
– How much is there?
– How many components?

– How fast is it?
– How long does it take?
– How much does it cost?

6. Then step back and look at your process as a whole to see if you have
missed anything. By asking questions such as

– Is the process stable?
– How is it performing now?
– What limits our capability?
– What determines quality?
– What determines success?
– What things can we control?

– What do our customers want?
– What limits our performance?
– What could go wrong?
– What might signal early warnings?
– How big is our backlog?
– Where is backlog occurring?

114 CMU/SEI-96-HB-002

and most importantly

– How will we know?

you may discover additional entities whose properties may be worth
measuring.

7. Prepare entity-question lists to summarize your results.

A worksheet to support these tasks is provided on the following pages.

Business Goals

What do I want
to achieve?

To do this, I
will need to…

Mental Model

receives produces
holds

<The Process>

consists of

entities entities

attributes attributes

What do I want
to know?

entities

attributes

CMU/SEI-96-HB-002 115

Worksheet—A Template for Recording Entities and Questions

Entities of
Interest

Questions Related to Business Goal(s)

Products and by-
products

Inputs and resources

116 CMU/SEI-96-HB-002

Entities of
Interest

Questions Related to Business Goal(s)

Internal artifacts (work
in process, backlogs,
inventory, etc.)

Activities and
flowpaths

CMU/SEI-96-HB-002 117

Exercise 3: Identifying Subgoals
The objective of this exercise is to identify and formulate subgoals that directly support the
business goals and questions you identified in Exercise 2.

Business Goals

What do I want
to achieve?

Subgoals

To do this, I
will need to…

Mental Model

receives produces
holds

<The Process>

consists of

entities entities

attributes attributes

What do I want
to know?

entities

attributes

Directions

1. Group the questions you identified in Exercise 2 into related topics. Use
copies of Worksheet 1 (or an equivalent template) to list your results.

2. Use the related topics to formulate a set of subgoals that support your
higher level business goals.

3. Prepare tables or charts to summarize your results. Worksheet 2 is an
example template for this summary.

Groupings Questions Related to
Business� Goal(s)

Grouping #1

Grouping #2

Grouping #3

Grouping #4

()

()

()

()

Derived Subgoals

Subgoal 1

Subgoal 2

Subgoal 3

Subgoal 4

118 CMU/SEI-96-HB-002

Worksheet 1: Template for Grouping Related Questions

Groupings
(Issues)

Questions Related to Business Goal(s)

Grouping #____

()

Grouping #____

()

CMU/SEI-96-HB-002 119

Worksheet 2: Template for Derived Subgoals

Derived Subgoals

Subgoal #1

Subgoal #2

Subgoal #3

Subgoal #4

Subgoal #5

Subgoal #6

Subgoal #7

Subgoal #8

Subgoal #9

Subgoal #10

120 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 121

Exercise 4: Identifying Entities and Attributes
The objective of this exercise is to identify the specific entities and attributes associated with
your principal subgoals. The results will form the basis for formalizing your measurement
goals (Exercise 5).

Business Goals

What do I want
to achieve?

Subgoals

To do this, I
will need to…

Mental Model

receives produces
holds

<The Process>

consists of

entities entities

attributes attributes

What do I want
to know?

entities

attributes

Directions

1. Select one of the subgoals your team identified in Exercise 3.

2. Review the related issue(s) and questions.

3. For each question, identify the entity (or entities) that the question seeks
information about.

4. For each entity, list attributes that, if quantified, would help you answer the
question. A worksheet for summarizing your results is on the next page.

 Question
•

 Entity
•

 Attributes
•
•
•
•
•
•

122 CMU/SEI-96-HB-002

Worksheet for Entities and Attributes

Goal, Issue,
or Grouping:

Question

Entity

Attributes

CMU/SEI-96-HB-002 123

Exercise 5: Formalizing Measurement Goals
The objective of this exercise is to translate your subgoals, entities, attributes, and questions
into formal measurement goals. Each measurement goal will identify an object of interest
and the purpose, perspective, and environment that will guide the specific questions to be
addressed. These measurement goals will provide the ground rules for your subsequent
measurement activities.

Business Goals

What do I want
to achieve?

Subgoals

To do this, I
will need to…

Mental Model

receives produces
holds

<The Process>

consists of

entities entities

attributes attributes

Measurement Goals G1 G2

What do I want
to know?

entities

attributes

• Object of interest
• Purpose
• Perspective
• Environment and constraints

Directions

1. Review the subgoals, questions, entities, and attributes you identified in
Exercises 3 and 4.

2. Identify the activities that you propose to undertake to get the information
you need.

3. Express your goals for these activities as structured statements that
identify the object, purpose, perspective, environment, and constraints
associated with each measurement activity.

4. Identify and record the business subgoal(s) that each measurement goal
addresses.

Templates and forms to support these tasks are reproduced on the following pages.

124 CMU/SEI-96-HB-002

Templates

Object of interest: ___________

Purpose:
__________ the __________ in order to __________ it.

Perspective:
Examine the ______________
from the point of view of (the) ___________________.

Environment:
___________, ___________, ___________, ___________,
___________, ___________, ___________, ___________,

Object of interest:
a process, product,

_____________________ resource, task,
activity, agent,
artifact, metric,
environment,
<entity>, etc.

Purpose:
characterize,

_______________ analyze,
evaluate, etc.

the ___________ <entity>, <aspect>,
<attribute(s)>, etc.

understand, baseline,
in order to __________ it. predict, plan, control,

assess, compare,
improve, etc.

CMU/SEI-96-HB-002 125

Perspective:
Examine the ___________ modifiability, quality,

changes, defects,
defect types, backlog,
behavior, stability,
progress, <specific
attribute(s)>, etc.

from the point of view developer, manager,
of (the) _______________. customer, engineer,

process improvement
team, SEPG, senior
management, etc.

 Environment
• List or otherwise describe the environmental

factors and related parameters which one should
understand to put the observed results in context.

• Focus on describing similarities to (and differences
from) other familiar products, processes, and
settings. This information becomes part of the
database for future comparisons.

• Factors and parameters to consider include
- application factors - customer factors
- people factors - methods
- resource factors - tools
- process factors - constraints

126 CMU/SEI-96-HB-002

Worksheet for Measurement Goals

Subgoal(s)

Measurement Goal # :

Object of Interest:

Purpose:

Perspective:

Environment and Constraints:

CMU/SEI-96-HB-002 127

Exercise 6: Identifying Quantifiable Questions and Indicators
The objective of this exercise is to translate your measurement goals into indicators that
enable you to examine quantifiable questions and communicate the results to others.

Measurement Goals

• Object of interest
• Purpose
• Perspective
• Environment
 and constraints�

Question 1

Question 2

Question 3

Question 4

Threshold

Program

%
Comment
Lines

80

20
40

60

100

Indicators

Directions

1. Select one of your measurement goals.

2. Identify quantifiable questions related to this goal that you would like
answered. Worksheet 1 on the next page is a template that you can use
for listing your questions.

3. Prepare sketches for displays (indicators) that will help you address your
questions and communicate the results of your analyses to others. The
pages following Worksheet 1 give some examples of indicators that others
have used.

4. Identify the indicators that you believe will be most useful.

5. Repeat Steps 1–4 for your other measurement goals.

6. Prioritize your indicators, to help you focus on the most important
measures first.

128 CMU/SEI-96-HB-002

Worksheet 1— Measurement Questions

Measurement Goal # :

Questions: Relative to this measurement goal, questions that we would like answered are:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

CMU/SEI-96-HB-002 129

Indicators—To Prompt Your Thinking

Examples of indicators that others have used are shown here and on the pages that follow.

Reporting Periods

Cumulative
Staff-hours

Planned

Actual

Months

M10 M11M4 M5 M6 M7 M8 M9

50

100

150

200

250

300

Designed

Coded

Integrated

Plan

Actual

Units
Completed

130 CMU/SEI-96-HB-002

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

100

200

Copied
Modified
Programmed

Contract Month

Source Lines
(thousands)

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

Rolling three month totals

Customer ID

Number
of Unique
Problems

CMU/SEI-96-HB-002 131

151050
0

20

40

60

80

Total

Closed

Unevaluated

Open

Number of Weeks

N
u

m
b

er
 o

f
P

ro
b

le
m

s

Documentation defect

Enhancement request

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

20

40

60

80

100

120

Software failures

Cause unknown

User mistake

Operational mistake

Hardware failure

Months after Product Release

N
u

m
b

er
 o

f
U

n
iq

u
e

P
ro

b
le

m
s

132 CMU/SEI-96-HB-002

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

Severity 1

Severity 2

Severity 3

Severity 4

Severity 5

N
u

m
b

er
 o

f
O

p
en

 U
n

iq
u

e
P

ro
b

le
m

s

Weeks of Age

20181614121086420
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Version 1.0

Version 1.1

 Version 1.2

Months after Product Release

Defects
per
KSLOC

CMU/SEI-96-HB-002 133

Exercise 7: Identifying Data Elements
The objectives of this exercise are to identify

1. the data elements that you must collect to construct the indicators that you
identified in the previous exercise

2. how you want the data elements to be defined, so that the indicators will
show what they purport to show

80

20
40
60

100

Indicators

Data Elements
Required

 Indicator
a b c d e

Definitions of data elements

Threshold

Program

%
Comment
Lines

a

b

c

of commented lines

total # of lines

program name

x
x
x

…
…

x
x

x

x

Directions:

1. Review your results from Exercise 6 (the questions and indicators you
identified).

2. Identify the data elements that you will have to collect to construct your
indicators.

3. Use the worksheet on the next page to list the data elements and map
them back to your indicators.

134 CMU/SEI-96-HB-002

Worksheet: List of Required Data Elements

Indicator

What data are required? a b c d e

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

CMU/SEI-96-HB-002 135

Exercise 8: Defining Measures
The objective of this exercise is to construct operational definitions for the data elements you
will be collecting. You should tell both the collectors and the users of the data exactly what
is included in and what is excluded from the measured values, as well as how the data
elements are collected.

Checklists and forms that can help you define some of the potentially useful measures are
presented in Appendix B. The use of these checklists and forms is discussed and illustrated
in [Florac 92], [Goethert 92], and [Park 92]. These reference materials also contain
examples of forms that can be used to record and report measurement results.

Directions:

1. Choose one of your indicators for explicit definition.

2. If checklists and forms exist for defining the data elements that you will use
to construct your indicators, then use them to create definitions
(specifications) for the data that you will collect to meet the requirements
for this indicator.

Alternatively, if checklists and supporting forms do not exist, create them
(or construct other structured formats) as necessary, to ensure that you
have operational definitions for all data to be collected. This means that
people collecting the data must know exactly what is to be included in and
excluded from measured values. When the methods used to collect the
data could change either the results or the interpretation of the results,
ensure that these methods are described.

(Note: When constructing checklists and supporting forms for defining
measures, we have found it most productive to focus not on telling others
what to do, but on identifying what you and others need to know to use the
data correctly. Once you do this, it is easy to turn the process around to
tell others how to collect the data you want.)

3. Repeat Steps 1 and 2 until you have defined explicit data collection rules
for all of your data elements.

136 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 137

Exercise 9: Analysis, Diagnosis, Action
The objective of this exercise is to identify the actions that must be taken to get your
measurement process up and running. The results will help you prepare a measurement
plan for your organization.

Directions:

1. Start with the indicators and data elements that you identified and defined
in Exercises 6, 7, and 8.

2. Analyze the extent to which your organization meets the measurement
needs for these data elements now.

3. Identify (diagnose) what else your organization must do to meet these
needs.

4. Prepare a summary of your analysis, diagnosis, and action-planning
status. Use the outlines, questions, and worksheets that follow as guides.

138 CMU/SEI-96-HB-002

Outline

Analysis

• What data elements are required? (List the data elements your team identified
in Exercise 8.)

• What data are currently being collected that would support your needs?
Assess the availability and source for each data element. Organize and
summarize your results. The figures below show possible ways to do this. A
template for the second layout is attached (Worksheet #1).

What software processes are sources for data?

✔ = estimates from project management

 Planned Actual

Size ✔ Configuration Management

Effort ✔ Labor Tracking

Quality ✔ Problem Tracking

Schedule ✔ Configuration Management

Data Indicator
Element a b c d e Avail Source

X X + QA
X X O CM

X X - ?
X X OO Etc.

X + •

1
2

3
4
5
6 X - - •

Available

Not explicitly available

 - can be derived from other data

 - can be obtained via minor effort

Not available now

Impossible to obtain or extremely difficult

+

 0

 00

-

- -

Code Meaning

• What processes are used to collect the data? How are the data being collected
now?

• Are the data stored and retained? Is the information accessible? Who is
responsible?

• What tools are available or used to collect, aggregate, and report the data?

CMU/SEI-96-HB-002 139

Diagnosis

• Does the collected data satisfy your requirements? What's missing or needs
improvement?

• Can your existing measurement process(es) be used?

• How frequently should your data be collected?

• Will data collection procedures and recording forms be required?

• Will new or additional tools be required to collect or use this data?

Action

Based on your analysis and diagnosis of the measurement needs in your organization and
on your assessment of your current status, identify the tasks that must be accomplished to
establish a defined measurement process in your organization. Use Worksheet #2 (or an
alternative format) to summarize your status. The figure below gives an example.

Data element

Planning tasks 1 2 3 4 5 6 7
Data elements defined Y N 60% Not

Doc'd
Y?

Data collection frequencies and points
in the software process defined 50% N 60% Not

Doc'd

Timelines defined for getting measure-
ment results to databases and users N N 30% Not

Doc'd

Data collection forms defined N N N N

Data collection procedures defined N N

Data storage, database design, and
data retention responsibilities defined N N

Who will collect and who will access
the data identified N N

Analysis processes defined N N

Reporting processes defined N N

Supporting tools identified and made
available N N

Process guide for data definition and
collection prepared Y

140 CMU/SEI-96-HB-002

In
d

ic
at

o
rs

D
at

a
E

le
m

en
t

a
b

c
d

e
f

A
va

il.
S

o
u

rc
e

1 2 3 4 5 6 7 8 9 10 11 12

A
va

ila
b

ili
ty

 C
o

d
es

C
od

e
M

ea
ni

ng
+

 A
va

ila
bl

e
 N

ot
 e

xp
lic

itl
y

av
ai

la
bl

e
0

 -

 c
an

 b
e

de
riv

ed
 fr

om
 o

th
er

 d
at

a
00

 -

 c
an

 b
e

ob
ta

in
ed

 v
ia

 m
in

or
 e

ffo
rt

–

N
ot

 a
va

ila
bl

e
no

w
 –

 –

Im
po

ss
ib

le
 to

 o
bt

ai
n

or
 e

xt
re

m
el

y
di

ffi
cu

lt

W
o

rk
sh

ee
t

#1
:

S
u

m
m

ar
y

o
f

D
at

a
N

ee
d

s
an

d
 A

va
ila

b
ili

ty

CMU/SEI-96-HB-002 141

Worksheet #2: Status

Data element

Planning tasks 1 2 3 4 5 6 7

Data elements defined

Data collection frequencies and points
in the software process defined

Timelines defined for getting measure-
ment results to databases and users

Data collection forms defined

Data collection procedures defined

Data storage, database design, and
data retention responsibilities defined

Who will collect and who will access
the data identified

Analysis processes defined

Reporting processes defined

Supporting tools identified and made
available

Process guide for data definition and
collection prepared

142 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 143

Exercise 10: Preparing Your Measurement Plan
The objective of this exercise is to produce an action plan that implements the measures
you have defined. A generic outline for the major topics that your plan should address was
presented in Section 4.9. You may use that outline as a template for your plan, or you may
select an alternative structure that better meets your needs. You will, of course, follow
through by getting approval for the plan and by implementing and tracking the measurement
and management actions that are called for in the plan.

Directions:

1. Write a plan for implementing the measures you have defined. Use the
results of Exercise 9 as your starting point and the template in Section 4.9,
together with your results from Exercises 1 through 8, as your guides.

2. Get approval, endorsement, and resources for your plan from your senior
managers.

3. Implement the plan.

144 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 145

Appendix B: Checklists and Forms for Defining Measures

This appendix contains examples of checklists and forms that many organizations have
found useful for creating and communicating their definitions of some frequently used
software measures. These materials are reproduced here so that they will be easily
accessible to you when you are accomplishing Exercise 8. You may copy these materials or
adapt them to suit your own needs.

For explanations of these materials and for guidelines and examples of their use, please see
[Park 92], [Goethert 92], and [Florac 92]. We suggest that your teams obtain copies of these
reports and read them, so that they can take advantage of the ideas that are discussed and
illustrated therein. This will help you avoid many of the pitfalls of pseudodefinitions that have
trapped other organizations.

146 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 147

 Problem Count Definition Checklist-1
Software Product ID []
Definition Identifier: [] Definition Date []
Attributes/Values Definition [X] Specification []
Problem Status Include Exclude Value Count Array Count

Open
Recognized
Evaluated
Resolved

Closed
Problem Type Include Exclude Value Count Array Count

Software defect
Requirements defect
Design defect
Code defect
Operational document defect
Test case defect
Other work product defect

Other problems
Hardware problem
Operating system problem
User mistake
Operations mistake
New requirement/enhancement

Undetermined
Not repeatable/Cause unknown
Value not identified

Uniqueness Include Exclude Value Count Array Count
Original
Duplicate
Value not identifed

Criticality Include Exclude Value Count Array Count
1st level (most critical)
2nd level
3rd level
4th level
5th level

Value not identified
Urgency Include Exclude Value Count Array Count

1st (most urgent)
2nd
3rd
4th

Value not identified

The use of this checklist is discussed in CMU/SEI-92-TR-22 [Florac 92].
This work has been sponsored by the U.S. Department of Defense. Page 1

148 CMU/SEI-96-HB-002

 Problem Count Definition Checklist–2
Software Product ID []
Definition Identifier: [] Definition Date []
Attributes/Values Definition [X] Specification []
Finding Activity Include Exclude Value Count Array Count

Synthesis of
Design
Code
Test procedure
User publications

Inspections of
Requirements
Preliminary design
Detailed design
Code
Operational documentation
Test procedures

Formal reviews of
Plans
Requirements
Preliminary design
Critical design
Test readiness
Formal qualification

Testing
Planning
Module (CSU)
Component (CSC)
Configuration item (CSCI)
Integrate and test
Independent verif. and valid.
System
Test and evaluate
Acceptance

Customer support
Production/deployment
Installation
Operation

Undetermined
Value not identified

Finding Mode Include Exclude Value Count Array Count
Static (non-operational)
Dynamic (operational)
Value not identified

Page 2

CMU/SEI-96-HB-002 149

Problem Count Request Form
Product ID, Ver/Rel: [] Problem Count Def ID: []
Date of Request: [] Requester’s Name or ID: []
Date Count to be made: []
Time Interval for Count: From [] To []

Aggregate Time By: Day Week Month Year
Date opened
Date closed
Date evaluated
Date resolved
Date/time of occurence

Report Count By: Attribute Select Special Instructions
Sort Order Value, or Comments

Originator Sort Order
Site ID
Customer ID
User ID
Contractor ID
Specific ID(s) list

Environment Sort Order
Hardware config ID
Software config ID
System config ID
Test proc ID
Specific ID(s) list

Defects Found In:
Select a configuration Type of Artifact
component level: Requirement Design Code User Document

Product (CSCI)
Component (CSC)
Module (CSU)
Specific (list)

Changes Made To:
Select a configuration Type of Artifact
component Level: Requirement Design Code User Document

Product (CSCI)
Component (CSC)
Module (CSU)
Specific (list)

The use of this checklist is discussed in CMU/SEI-92-TR-22 [Florac 92].
This work has been sponsored by the U.S. Department of Defense.

150 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 151

Problem Status Definition Rules
Product ID: Status Definition ID:
Finding Activity ID: Definition Date:

Section I
When is a problem considered to be Open? When is a problem considered to be Closed?
A problem is considered to be Open when A problem is considered to be Closed when
all the attributes checked below have a all the attributes checked below have a
valid value: valid value:

Software Product Name or ID Date Evaluation Completed
Date/Time of Receipt Evaluation Completed By
Date/Time of Problem Occurence Date Resolution Completed
Originator ID Resolution Completed By
Environment ID Projected Availability
Problem Description (text) Released/Shipped
Finding Activity Applied
Finding Mode Approved By
Criticality Accepted By

Section II
What Substates are used for Open?
Name # Name

1 6
2 7
3 8
4 9
5 10

The use of this checklist is discussed in CMU/SEI-92-TR-22 [Florac 92].
This work has been sponsored by the U.S. Department of Defense. Page 1

152 CMU/SEI-96-HB-002

Problem Status Definition Form-2
Product ID: Status Definition ID:
Finding Activity ID: Definition Date:
Section III
What attributes are unconditionally required to have values as criteria for each substate?
Attribute Substate Number
Name 1 2 3 4 5 6 7 8 9 10

1 Problem ID
2 Software Product Name or ID
3 Date/Time of Receipt
4 Date/Time of Problem Occurence
5 Originator ID
6 Environment ID
7 Problem Description (text)
8 Finding Activity
9 Finding Mode

10 Criticality
11 Problem Type
12 Uniqueness
13 Urgency
14 Date Evaluation Completed
15 Evaluation Completed By
16 Date Resolution Completed
17 Resolution Completed By
18 ID of Original Problem
19 Changes Made To
20 Related Changes
21 Defect Found In
22 Defects Caused By
23 Projected Availability
24 Released/Shipped
25 Applied
26 Approved By:
27 Accepted By:

Section IV
List the substates with conditional attribute values Substates affected
Substate # Conditional Attribute/Value Substate # Attribute Numbers

Page 2

CMU/SEI-96-HB-002 153

 Staff-Hour Definition Checklist

Definition Name: Date:
 Originator:

 Page: 1 of 3

 Totals Totals Report
Type of Labor include exclude totals

Direct
Indirect

Hour Information
Regular time

Salaried
Hourly

 Overtime

Salaried
Compensated (paid)
Uncompensated (unpaid)

Hourly
 Compensated (paid)

Uncompensated (unpaid)

Employment Class

Reporting organization
 Full time

 Part time

 Contract
 Temporary employees

Subcontractor working on task with reporting organization
Subcontractor working on subcontracted task

Consultants

Labor Class
 Software management

Level 1
Level 2

Level 3

Higher

Technical analysts & designers
 System engineer

 Software engineer/analyst

 Programmer

 Test personnel
CSCI-to-CSCI integration
IV&V
Test & evaluation group (HW-SW)

 Software quality assurance

 Software configuration management

Program librarian

Database administrator

 Documentation/publications

 Training personnel
 Support staff

The use of this checklist is discussed in CMU/SEI-92-TR-21 [Goethert 92].

This work has been sponsored by the U.S. Department of Defense. Page 1

154 CMU/SEI-96-HB-002

Definition Name: Page: 2 of 3

 Totals Totals Report
include exclude totals

Activity
Development

Primary development activity

Development support activities
Concept demo/prototypes

Tools development, acquisition, installation, & support

Nondelivered software & test drivers

Maintenance

Repair

Enhancements/major updates

Product-Level Functions

CSCI-Level Functions (Major Functional Element)

Software requirements analysis

Design
Preliminary design

Detailed design

Code & development testing

 Code & unit testing

Function (CSC) integration and testing

CSCI integration & testing

IV&V

Management

Software quality assurance

Configuration management

Documentation

Rework

Software requirements

Software implementation

Redesign

Recoding

Retesting

Documentation

Build-Level Functions (Customer Release)
(Software effort only)

CSCI-to-CSCI integration & checkout

Hardware/software integration and test
Management

Software quality assurance

Configuration management

Documentation

IV&V

Page 2

CMU/SEI-96-HB-002 155

Definition Name: Page: 3 of 3

Product-Level Functions continued Totals Totals Report
 include exclude totals

System-Level Functions

(Software effort only)
System requirements & design

System requirements analysis

System design

Software requirements analysis

Integration, test, & evaluation
System integration & testing

Testing & evaluation

Production and deployment

Management

Software quality assurance

Configuration management

Data

Training
Development employees

 Customer

Support

Page 3

156 CMU/SEI-96-HB-002

 Supplemental Information Form

 Staff-Hours Measurement

Definition Name:

Project Name:

Hour Information
Indicate the length of the following:

Hours
Standard work day
Standard work week
Standard labor month

Labor Class Information
Describe the typical responsibilities and duties for the labor categories indicated.

Labor Class Description
Software Management

Level 1

Level 2

Level 3

Level 4

Technical analysts and designers

Programmer

Test personnel

Others

Product-Level Functions
Describe at what level(s) (major functional element, customer release,
and/or system) staff hours are counted for the functions indicated.

Function Level
Management

Software quality assurance

Configuration management

Documentation

Other

The use of this checklist is discussed in CMU/SEI-92-TR-21 [Goethert 92].
This work has been sponsored by the U.S. Department of Defense.

CMU/SEI-96-HB-002 157

Schedule Checklist Date:
Part A: Date Information Originator:

Page 1 of 3

Project will record planned dates: Yes No
If Yes, reporting frequency: Weekly Monthly Other: ____________

Project will record actual dates: Yes No
If Yes, reporting frequency: Weekly Monthly Other: ____________

Number of builds

Repeat Relevant dates
Milestones, Reviews, and Audits Include Exclude each build reported*

 System-Level
System requirements review
System design review

 CSCI-Level
Software specification review
Preliminary design review
Critical design review
Code complete
Unit test complete
CSC integration and test complete
Test readiness review
CSCI functional & physical configuration audits

 System-Level
Preliminary qualification test
Formal qualification test
Delivery & installation
Other system-level:

*Key to indicate “relevant dates reported” for reviews and audits
 1 - Internal review complete
 2 - Formal review with customer complete
 3 - Sign-off by customer
 4 - All high-priority action items closed
 5 - All action items closed
 6 - Product of activity/phase placed under configuration management
 7 - Inspection of product signed off by QA
 8 - QA sign-off
 9 - Management sign-off
10 - ______________________
11 - ______________________

The use of this checklist is discussed in CMU/SEI-92-TR-21 [Goethert 92].
This work has been sponsored by the U.S. Department of Defense. Page 1

158 CMU/SEI-96-HB-002

Page 2 of 3
Part A: Date Information (cont.)

Repeat Relevant dates

Deliverable Products Include Exclude each build reported*
 System-Level

Preliminary system specification
System/segment specification
System/segment design document
Preliminary interface requirements spec.
Interface requirements specification
Preliminary interface design document
Interface design document
Software development plan
Software test plan
Software product specification(s)
Software user’s manual
Software programmer’s manual
Firmware support manual
Computer resources integrated support doc.
Computer system operator’s manual

 CSCI-Level
Preliminary software requirements spec(s)
Software requirements specification(s)
Software preliminary design document(s)
Software (detailed) design document(s)
Software test description(s) (cases)
Software test description(s) (procedures)
Software test report(s)
Source code
Software development files
Version description document(s)

*Key to indicate “relevant dates reported” for deliverable products
1 - Product under configuration control
2 - Internal delivery
3 - Delivery to customer
4 - Customer comments received
5 - Changes incorporated
6 - Sign-off by customer
7 -
8 -

Page 2

CMU/SEI-96-HB-002 159

Schedule Checklist, cont. Page 3 of 3
Part B: Progress/Status Information

Project will record planned progress: Yes No
If Yes, reporting frequency: Weekly Monthly Other:

Project will record actual progress: Yes No
If Yes, reporting frequency: Weekly Monthly Other:

Work Unit
Activities Work Units Completion Criterion*

CSCI requirements analysis Requirements documented or specified
CSCI preliminary design Requirements allocated to CSCs

CSCs designed
CSCI detailed design CSUs designed
CSU coding and unit testing Lines coded

Lines unit tested
Number CSUs coded
Number CSUs unit tested
Number lines unit tested

CSCI integration Number of CSUs integrated
Number of lines integrated

CSCI testing Number of tests passed

*Key to indicate “Work Unit Completion Criterion”
 1 - None specified
 2 - Peer review held
 3 - Engineering review held
 4 - QA sign-off
 5 - Manager or supervisor sign-off
 6 - Inspected
 7 - Configuration controlled
 8 - Entry in employee status report
 9 - No known deficiencies
10 - Reviewed by customer
11 - All relevant action items closed
12 - ______________________
13 - ______________________

Page 3

160 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 161

 Definition Checklist for Source Statement Counts

Definition name: Date:
Originator:

Measurement unit: Physical source lines
Logical source statements

Statement type Definition Data array Includes Excludes
When a line or statement contains more than one type,
classify it as the type with the highest precedence.

1 Executable Order of precedence -> 1
2 Nonexecutable
3 Declarations 2
4 Compiler directives 3
5 Comments
6 On their own lines 4
7 On lines with source code 5
8 Banners and nonblank spacers 6
9 Blank (empty) comments 7

10 Blank lines 8
11
12
How produced Definition Data array Includes Excludes
1 Programmed
2 Generated with source code generators
3 Converted with automated translators
4 Copied or reused without change
5 Modified
6 Removed
7
8

Origin Definition Data array Includes Excludes
1 New work: no prior existence
2 Prior work: taken or adapted from
3 A previous version, build, or release
4 Commercial, off-the-shelf software (COTS), other than libraries
5 Government furnished software (GFS), other than reuse libraries
6 Another product
7 A vendor-supplied language support library (unmodified)
8 A vendor-supplied operating system or utility (unmodified)
9 A local or modified language support library or operating system

10 Other commercial library
11 A reuse library (software designed for reuse)
12 Other software component or library
13
14
Usage Definition Data array Includes Excludes
1 In or as part of the primary product
2 External to or in support of the primary product
3

The use of this checklist is discussed in CMU/SEI-92-TR-20 [Park 92].
This work has been sponsored by the U.S. Department of Defense. Page 1

162 CMU/SEI-96-HB-002

Definition name:

Delivery Definition Data array Includes Excludes
1 Delivered
2 Delivered as source
3 Delivered in compiled or executable form, but not as source
4 Not delivered
5 Under configuration control
6 Not under configuration control
7

Functionality Definition Data array Includes Excludes
1 Operative
2 Inoperative (dead, bypassed, unused, unreferenced, or unaccessed)
3 Functional (intentional dead code, reactivated for special purposes)
4 Nonfunctional (unintentionally present)
5
6

Replications Definition Data array Includes Excludes
1 Master source statements (originals)
2 Physical replicates of master statements, stored in the master code
3 Copies inserted, instantiated, or expanded when compiling or linking
4 Postproduction replicates—as in distributed, redundant,

or reparameterized systems
5

Development status Definition Data array Includes Excludes
Each statement has one and only one status,
usually that of its parent unit.

1 Estimated or planned
2 Designed
3 Coded
4 Unit tests completed
5 Integrated into components
6 Test readiness review completed
7 Software (CSCI) tests completed
8 System tests completed
9

10
11
Language Definition Data array Includes Excludes

List each source language on a separate line.
1
2 Job control languages
3
4 Assembly languages
5
6 Third generation languages
7
8 Fourth generation languages
9

10 Microcode
11

Page 2

CMU/SEI-96-HB-002 163

Definition name:
Includes Excludes

Clarifications (general) Listed elements are assigned to
1 Nulls, continues, and no-ops statement type –>
2 Empty statements (e.g., “;;” and lone semicolons on separate lines)
3 Statements that instantiate generics
4 Begin…end and {…} pairs used as executable statements
5 Begin…end and {…} pairs that delimit (sub)program bodies
6 Logical expressions used as test conditions
7 Expression evaluations used as subprogram arguments
8 End symbols that terminate executable statements
9 End symbols that terminate declarations or (sub)program bodies

10 Then, else, and otherwise symbols
11 Elseif statements
12 Keywords like procedure division, interface, and implementation
13 Labels (branching destinations) on lines by themselves
14
15
16
Clarifications (language specific)
Ada
1 End symbols that terminate declarations or (sub)program bodies
2 Block statements (e.g., begin…end)
3 With and use clauses
4 When (the keyword preceding executable statements)
5 Exception (the keyword, used as a frame header)
6 Pragmas
7
8
9

Assembly
1 Macro calls
2 Macro expansions
3
4
5
6

C and C++
1 Null statement (e.g., “;” by itself to indicate an empty body)
2 Expression statements (expressions terminated by semicolons)
3 Expressions separated by semicolons, as in a "for" statement
4 Block statements (e.g., {…} with no terminating semicolon)
5 “{”, “}”, or “};” on a line by itself when part of a declaration
6 “{” or “}” on line by itself when part of an executable statement
7 Conditionally compiled statements (#if, #ifdef, #ifndef)
8 Preprocessor statements other than #if, #ifdef, and #ifndef
9

10
11
12

Page 3

164 CMU/SEI-96-HB-002

Definition name:
Includes Excludes

CMS-2 Listed elements are assigned to
1 Keywords like SYS-PROC and SYS-DD statement type –>
2
3
4
5
6
7
8
9

COBOL
1 “PROCEDURE DIVISION”, “END DECLARATIVES”, etc.
2
3
4
5
6
7
8
9

FORTRAN
1 END statements
2 Format statements
3 Entry statements
4
5
6
7
8

JOVIAL
1
2
3
4
5
6
7
8

Pascal
1 Executable statements not terminated by semicolons
2 Keywords like INTERFACE and IMPLEMENTATION
3 FORWARD declarations
4
5
6
7
8
9

Page 4

CMU/SEI-96-HB-002 165

Definition name:
Includes Excludes

Listed elements are assigned to
1 statement type –>
2
3
4
5
6
7
8
9

10
11
12

Summary of Statement Types
Executable statements

Executable statements cause runtime actions. They may be simple statements such as
assignments, goto’s, procedure calls, macro calls, returns, breaks, exits, stops, continues, nulls,
no-ops, empty statements, and FORTRAN’s END. Or they may be structured or compound
statements, such as conditional statements, repetitive statements, and “with” statements.
Languages like Ada, C, C++, and Pascal have block statements [begin…end and {…}] that are
classified as executable when used where other executable statements would be permitted. C
and C++ define expressions as executable statements when they terminate with a semicolon,
and C++ has a <declaration> statement that is executable.

Declarations
Declarations are nonexecutable program elements that affect an assembler’s or compiler’s
interpretation of other program elements. They are used to name, define, and initialize; to
specify internal and external interfaces; to assign ranges for bounds checking; and to identify
and bound modules and sections of code. Examples include declarations of names, numbers,
constants, objects, types, subtypes, programs, subprograms, tasks, exceptions, packages,
generics, macros, and deferred constants. Declarations also include renaming declarations, use
clauses, and declarations that instantiate generics. Mandatory begin…end and {…} symbols that
delimit bodies of programs and subprograms are integral parts of program and subprogram
declarations. Language superstructure elements that establish boundaries for different sections
of source code are also declarations. Examples include terms such as PROCEDURE DIVISION,
DATA DIVISION, DECLARATIVES, END DECLARATIVES, INTERFACE, IMPLEMENTATION,
SYS-PROC, and SYS-DD. Declarations, in general, are never required by language
specifications to initiate runtime actions, although some languages permit compilers to
implement them that way.

Compiler Directives
Compiler directives instruct compilers, preprocessors, or translators (but not runtime systems)
to perform special actions. Some, such as Ada’s pragma and COBOL’s COPY, REPLACE, and
USE, are integral parts of the source language. In other languages like C and C++, special
symbols like # are used along with standardized keywords to direct preprocessor or compiler
actions. Still other languages rely on nonstandardized methods supplied by compiler vendors.
In these languages, directives are often designated by special symbols such as #, $, and {$}.

Page 5

166 CMU/SEI-96-HB-002

CMU/SEI-96-HB-002 167

Rules for Counting Physical Source Lines
For each source language to which the definition applies, provide the following information:

Language name:

Note: This information is required only for statement types that are excluded from counts or for
which individual counts are recorded.

Executable lines: List the rules used to identify
executable lines. If special rules are used for
constructs such as block statements, embed-
ded statements, empty statements, or embed-
ded comments, describe them.

Comments: List the rules used to identify
beginnings and endings of comments.

Declarations: List the rules used to identify
declaration lines. Explain how declarations are
distinguished from executable statements.

Modified comments: If separate counts are
made for modified lines, list the rules used to
keep modifications to comments on lines with
other code from being classified as modified
statements of higher precedence.

Compiler directives: List the rules used to
identify compiler directives.

Special rules: List any special rules that are
used to classify the first or last statements of
any sections of code.

The use of this form is discussed in CMU/SEI-92-TR-20 [Park 92].
This work has been sponsored by the U.S. Department of Defense.

168 CMU/SEI-96-HB-002

Rules for Counting Logical Source Statements
For each source language to which this definition applies, provide the following information:

Language name:

Executable statements: List all rules and
delimiters used to identify beginnings and
endings of executable statements. If special
rules are used for constructs such as block
statements, embedded statements, empty
statements, expression statements, or
subprogram arguments, describe them.

Comments: If comments are counted, list the
rules used to identify beginnings and endings
of comment statements. Explain how, if at all,
comment statements differ from physical
source lines.

Declarations: List the rules and delimiters used
to identify beginnings and endings of declara-
tions. Explain how declarations are distin-
guished from executable statements.

Special rules: List any special rules or delim-
iters that are used to identify the first or last
statements of any sections of code.

Compiler directives: List the rules and delim-
iters used to identify beginnings and endings of
compiler directives.

Exclusions: List all keywords and symbols that,
although set off by statement delimiters, are
not counted as logical source statements.

The use of this form is discussed in CMU/SEI-92-TR-20 [Park 92].
This work has been sponsored by the U.S. Department of Defense.

CMU/SEI-96-HB-002 169

Practices Used to Identify Inoperative Elements
List or explain the methods or rules used to identify:
Intentionally bypassed statements and declarations

Unintentionally included dead code
A. Unreachable, bypassed, or unreferenced elements (declarations, statements, or data stores)

within modules:

B. Unused, unreferenced, or unaccessed modules or include files in code libraries:

C. Unused modules, procedures, or functions, linked into delivered products:

The use of this form is discussed in CMU/SEI-92-TR-20 [Park 92].
This work has been sponsored by the U.S. Department of Defense.

170 CMU/SEI-96-HB-002

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

C — F19628-95-C-0003

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Goal-Driven Software Measurement —A Guidebook

Robert E. Park, Wolfhart B. Goethert, William A. Florac

The materials in this guidebook are designed to help you identify, select, define, and
implement software measures to support your business goals. The measures that result are
traceable back to your business goals, so that data collection efforts are better able to stay
focused on their intended objectives.

212

CMU/SEI-96-HB-002

August 1996

	Table of Contents
	List of Figures
	Preface
	Acknowledgments
	1 Introduction
	1.1 Purpose
	1.2 Outline

	2 Foundations
	2.1 Why Measure?
	2.2 Measurement Elements
	2.3 Objective and Subjective Measures

	3 A Process Model for Identifying and Defining Software Measures
	3.1 Overview: The Precepts and the Process Steps
	3.2 The Role of Mental Models
	3.3 The Elements of Mental Models
	3.4 The Importance of Environmental Factors

	4 Applying the Goal-Driven Process
	4.1 Step 1: Identify Your Business Goals
	4.2 Step 2: Identify What You Want to Know or Learn
	4.3 Step 3: Identify Your Subgoals
	4.4 Step 4: Identify the Entities and Attributes
	4.5 Step 5: Formalize Your Measurement Goals
	4.6 Step 6: Identify Quantifiable Questions and Indicators
	4.7 Step 7: Identify the Data Elements
	4.8 Step 8: Define Your Measures
	4.9 Step 9: Identify the Actions Needed to Implement Your Measures
	4.10 Step 10: Prepare a Plan

	5 Following Through
	5.1 Measurement Principles for Functional Managers
	5.2 Measurement Principles for Project Managers
	5.3 Measurement Principles for Project Teams
	5.4 General Principles

	6 Putting It All in Context
	References
	Appendix A: Exercises and Worksheets
	Exercise 1: Identifying Business Goals
	Exercise 2: Identifying What You Want to Know or Learn
	Worksheet—A Template for Recording Entities and Questions

	Exercise 3: Identifying Subgoals
	Worksheet 1: Template for Grouping Related Questions
	Worksheet 2: Template for Derived Subgoals

	Exercise 4: Identifying Entities and Attributes
	Worksheet for Entities and Attributes

	Exercise 5: Formalizing Measurement Goals
	Templates
	Worksheet for Measurement Goals

	Exercise 6: Identifying Quantifiable Questions and Indicators
	Worksheet 1— Measurement Questions
	Indicators—To Prompt Your Thinking

	Exercise 7: Identifying Data Elements
	Worksheet: List of Required Data Elements

	Exercise 8: Defining Measures
	Exercise 9: Analysis, Diagnosis, Action
	Outline
	Worksheet#1:SummaryofDataNeedsandAvailability
	Worksheet #2: Status

	Exercise 10: Preparing Your Measurement Plan

	Appendix B: Checklists and Forms for Defining Measures
	Problem Count Definition Checklist-1
	Problem Count Definition Checklist–2
	Problem Count Request Form
	Problem Status Definition Rules
	Problem Status Definition Form-2
	Staff-Hour Definition Checklist
	Supplemental Information Form
	Schedule Checklist
	Schedule Checklist, cont.
	Definition Checklist for Source Statement Counts
	Rules for Counting Physical Source Lines
	Rules for Counting Logical Source Statements
	Practices Used to Identify Inoperative Elements

