
First Responders Guide
to Computer Forensics:
Advanced Topics

Richard Nolan
Marie Baker
Jake Branson
Josh Hammerstein
Kris Rush
Cal Waits
Elizabeth Schweinsberg

September 2005

HANDBOOK
CMU/SEI-2005-HB-003

Pittsburgh, PA 15213-3890

First Responders Guide
to Computer Forensics:
Advanced Topics

CMU/SEI-2005-HB-003

Richard Nolan
Marie Baker
Jake Branson
Josh Hammerstein
Kris Rush
Cal Waits
Elizabeth Schweinsberg

September 2005

CERT Training and Education

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the SEI FFRDC primary sponsor and the Department of Homeland Security. The Software Engi-
neering Institute is a federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Executive Summary ... xi

Abstract... xiii

1 Module 1: Log File Analysis... 1
1.1 Swatch ... 3

1.1.1 Swatch Log Monitor.. 4
1.1.2 Swatch Installation ... 5

1.1.2.1 Installing Perl Modules.. 5
1.1.2.2 Installing Swatch ... 6

1.1.3 Swatch Configuration... 8
1.1.3.1 The Configuration File Location.. 9
1.1.3.2 Adding Rules to the Configuration File 9

1.1.4 Swatch Execution ... 15
1.1.5 Summary.. 17

1.2 Microsoft Log Parser 2.2 .. 18
1.2.1 Microsoft Log Parser Features .. 20
1.2.2 Log Parser Installation ... 21
1.2.3 Log Parser Input and Output ... 22

1.2.3.1 Input Formats.. 22
1.2.3.2 Output Formats... 24

1.2.4 Log Parser Queries... 26
1.2.4.1 Query Examples ... 27

1.2.5 Log Parser COM Objects.. 29
1.2.5.1 Creating Custom Input Formats...................................... 29
1.2.5.2 Using the Log Parser COM API 30

1.2.6 Log Parser Execution ... 31
1.2.7 Summary.. 33

2 Module 2: Process Characterization ... 35
2.1 Understanding a Running Process... 36

2.1.1 Objectives.. 37
2.1.2 Programs, Processes, and Threads.. 38
2.1.3 Threads.. 39

2.1.3.1 Displaying Threads for a Running Process..................... 39

CMU/SEI-2005-HB-003 i

2.1.3.2 Sysinternals Process Explorer.. 40
2.1.4 Process Tree Structure .. 43

2.1.4.1 pstree (Linux).. 44
2.1.4.2 Linux ps –A... 44

2.1.5 Process Descriptions... 46
2.1.6 Process Hashes (National Software Reference Library)......... 47
2.1.7 Process Analysis Checklist ... 49
2.1.8 Common Process Characteristics .. 51

2.1.8.1 Process Filenames ... 51
2.1.8.2 Open Ports ... 53
2.1.8.3 Open Files .. 55
2.1.8.4 Base Priority ... 56
2.1.8.5 Process Times and Terminated Processes..................... 58
2.1.8.6 Location of Process Image ... 60
2.1.8.7 Survivable Processes ... 61
2.1.8.8 Process Forensic Tasks.. 66

2.2 Automated Process Collection ... 76
2.2.1 Objectives.. 77
2.2.2 First Responder Utility (FRU) .. 78

2.2.2.1 First Responder Utility (FRUC) Setup 79
2.2.3 Forensic Server Project (FSP) ... 82

2.2.3.1 FSP Setup .. 82
2.2.3.2 Testing FRUC ... 83
2.2.3.3 Output of FRUC .. 84

3 Module 3: Image Management... 87
3.1 Slice and Dice with dd.. 88

4 Module 4: Capturing a Running Process ... 101
4.1.1 Hedons and Dolors... 103
4.1.2 Capturing a Process on a Windows System.......................... 104

5 Module 5: Understanding Spoofed Email..113
5.1 Objectives ..114
5.2 Identifying Spoofed Email ..115

5.2.1 Definition of the Problem..116
5.2.2 Understanding the Process of Sending and Receiving

Email ...117
5.2.2.1 The Life Cycle of an Email...117
5.2.2.2 Overview of the Simple Mail Transfer Protocol..............119

5.2.3 Understanding Email Headers... 123
5.2.3.1 Interpreting Email Headers... 123

5.2.4 How Spoofed Email Is Sent ... 127

ii CMU/SEI-2005-HB-003

5.2.4.1 Open Mail Relay ... 127
5.2.4.2 Compromised Machines ... 129
5.2.4.3 Self-Owned Mail Servers .. 129
5.2.4.4 Temporary Accounts ... 129
5.2.4.5 Hijacked Accounts .. 129

5.2.5 How to Identify Spoofed Email .. 130
5.2.5.1 Carefully Examine the “Received” Headers.................. 130
5.2.5.2 Look Out for Spoofed Headers 132
5.2.5.3 Comparing Timestamps .. 133

5.3 Tracing the Origins of a Spoofed Email.. 135
5.3.1 nslookup .. 136
5.3.2 whois.. 139

5.3.2.1 IP Block Identification.. 139
5.3.2.2 WHOIS Information for a Domain Name 142

5.3.3 Traceroute ... 144
5.3.4 Sam Spade... 145

5.4 Summary ... 146

References... 147

CMU/SEI-2005-HB-003 iii

iv CMU/SEI-2005-HB-003

List of Figures

Figure 1: Example Run of the Swatch Configuration File...................................... 14

Figure 2: Example Run of PsList ... 39

Figure 3: Sysinternals Process Explorer Utility.. 40

Figure 4: Verifying a Process Image in Process Explorer 41

Figure 5: The Strings Tab in Process Explorer .. 41

Figure 6: Displaying a Process Tree Using PsList... 43

Figure 7: Displaying a Process Tree Using pstree .. 44

Figure 8: Displaying PID Assignments Using ps ... 45

Figure 9: WinTasks Process Description ... 47

Figure 10: Listing Process Filenames Using pulist.. 52

Figure 11: Displaying Open Ports Using fport ... 53

Figure 12: Displaying Open Ports Using netstat.. 54

Figure 13: Viewing Handles Using handle... 55

Figure 14: Displaying Which Process Has Port 6002 Open 56

Figure 15: Displaying Who Has the Bash Shell Open ... 56

Figure 16: Displaying All the Currently Open Files by the User Root 56

Figure 17: Listing Priority Levels Using pslist .. 57

Figure 18: Listing Priority Levels Using top ... 57

Figure 19: Displaying the Priority Level for a Specific Process 57

CMU/SEI-2005-HB-003 v

Figure 20: Checking Uptime Using psuptime .. 58

Figure 21: Checking Elapsed Time for a Process Using pslist 58

Figure 22: Windows Event Log ... 59

Figure 23: psloglist Command... 59

Figure 24: Locating a Process Image Using ListDLLs .. 60

Figure 25: Locating a Process Image Using ps... 60

Figure 26: Locating a Process Image by PID.. 61

Figure 27: autorunsc.exe Command... 62

Figure 28: The chkconfig -list Command... 63

Figure 29: A Cron Log ... 64

Figure 30: The Crontab Command.. 65

Figure 31: The svchost.exe 780 Process .. 67

Figure 32: listdlls.exe Output for svchost.exe.. 68

Figure 33: MD5deep Utility.. 69

Figure 34: Performing a String Search Using grep.. 69

Figure 35: The mshearts.exe 2840 Process ... 70

Figure 36: listdlls.exe Output for the mshearts Process.. 71

Figure 37: MD5deep.exe Command Line Arguments ... 71

Figure 38: strings Command... 73

Figure 39: strings Command Output ... 73

Figure 40: Hash of John the Ripper .. 74

Figure 41: First Part of the fruc.ini File .. 80

Figure 42: Second Part of the fruc.ini File ... 80

vi CMU/SEI-2005-HB-003

Figure 43: Final Part of fruc.ini File.. 81

Figure 44: FSP Setup .. 83

Figure 45: FRUC Utility Command .. 83

Figure 46: FSP Command Output ... 84

Figure 47: FRUC Output File... 85

Figure 48: FRUC Audit File.. 85

Figure 49: Result of Using md5 to Calculate a Hash Value..................................... 92

Figure 50: Confirming the Result of Splitting Images .. 92

Figure 51: Result of Using cat and md5sum to Check the Integrity of Split
Images.. 93

Figure 52: Result of Using md5sum to Check the Integrity of a New Image 94

Figure 53: Finding a .jpg Tag in a Captured Image ... 96

Figure 54: Decimal Form of the Beginning of the .jpg File 96

Figure 55: Searching for the End of the .jpg File ... 97

Figure 56: Tag Delineating the End of a .jpg File... 97

Figure 57: Decimal Address for the End of the .jpg File .. 97

Figure 58: Calculating the Size of the .jpg File .. 97

Figure 59: File Carved Out Using dd ... 98

Figure 60: Viewing Carved .jpg File... 98

Figure 61: Running a Trusted Command .. 106

Figure 62: Command Shell Spawned from a Trusted CD...................................... 106

Figure 63: netcat Command to Listen on Port 3333.. 106

Figure 64: Using Trusted pslist and netcat to Specify IP Address and Listening
Port... 107

CMU/SEI-2005-HB-003 vii

Figure 65: Looking for Suspicious Processes Using cat 107

Figure 66: Suspicious Process Found... 107

Figure 67: netcat Command to Listen on Port 4444.. 108

Figure 68: Specifying netcat Listener Machine and Port 108

Figure 69: Viewing Path to a Suspicious Process... 108

Figure 70: Setting Up a Listening Session on a Suspicious Process.................... 109

Figure 71: Collecting the Executable of a Suspicious Process 109

Figure 72: Calculating a Hash of a Captured Process .. 109

Figure 73: The Life Cycle of an Email ..118

Figure 74: Mail Delivery for Valid Users .. 128

Figure 75: Spoofed Email via an Open Relay ... 128

Figure 76: nslookup of Valid Fully Qualified Domain Name 137

Figure 77: nslookup of Falsified Host Information .. 138

Figure 78: WHOIS Query of ARIN... 140

Figure 79: WHOIS Query of APNIC .. 141

Figure 80: WHOIS Query of IANA... 142

Figure 81: Query of .com WHOIS Database ... 143

Figure 82: Query of the Registrar's WHOIS Database.. 143

Figure 83: Traceroute Example... 145

viii CMU/SEI-2005-HB-003

List of Tables

Table 1: Actions in Swatch ... 11

Table 2: time_regex for Popular Services .. 13

Table 3: Common Input Formats.. 22

Table 4: Output Formats .. 24

Table 5: Misc Log Parser Commands .. 31

Table 6: A Subset of ps Options... 52

Table 7: Output Headings for ps and top ... 52

Table 8: dd Syntax ... 88

Table 9: Tools for Capturing Running Processes ... 104

Table 10: The Life Cycle of an Email ... 118

Table 11: Email Headers.. 124

CMU/SEI-2005-HB-003 ix

x CMU/SEI-2005-HB-003

Executive Summary

First Responders Guide to Computer Forensics: Advanced Topics expands on the technical
material presented in SEI handbook CMU/SEI-2005-HB-001, First Responders Guide to
Computer Forensics [Nolan 05]. While the latter presented techniques for forensically sound
collection of data and reviewed the fundamentals of admissibility pertaining to electronic
files, this handbook focuses exclusively on more advanced technical operations like process
characterization and spoofed email. It is designed for experienced security and network pro-
fessionals who already have a fundamental understanding of forensic methodology. There-
fore, emphasis is placed on technical procedures and not forensic methodology.

The first module focuses on log file analysis as well as exploring techniques for using com-
mon analysis tools such as Swatch and Log Parser. The second module focuses on advanced
techniques for process characterization, analysis, and volatile data recovery. The third module
demonstrates advanced usage of the dd command-line utility. Topics include how to slice an
image and reassemble it with dd, carving out a section of data with dd, and imaging a running
process with dd. The fourth and final module examines spoofed email messages. This module
looks at the RFCs for email, describes how email messages are spoofed, and presents some
techniques for identifying and tracing spoofed email.

Our focus is to provide system and network administrators with advanced methodologies,
tools, and procedures for applying sound computer forensics best practices when performing
routine log file reviews, network alert verifications, and other routine interactions with sys-
tems and networks. The final goal is to create trained system and network professionals who
are able to understand the fundamentals of computer forensics so that in the normal course of
their duties they can safely preserve technical information related to network alerts and other
security issues. This handbook is not intended to be a training guide for computer forensics
practitioners, but rather an advanced resource for system and network security professionals
who are charged with performing first responder functions. The target audience includes sys-
tem and network administrators, law enforcement, and any information security practitioners
who find themselves in the role of first responders. The handbook should help the target au-
dience to

• install, configure, and use Swatch to analyze log files

• install, configure, and use Log Parser to analyze log files

• understand advanced elements of a running process

• perform an automated collection of volatile data

• carve out data using the dd command-line utility

• use the dd command-line utility to slice and reassemble images and files

CMU/SEI-2005-HB-003 xi

• understand spoofed email

• identify reliable information in an email header

xii CMU/SEI-2005-HB-003

Abstract

This handbook expands on the technical material presented in SEI handbook CMU/SEI-
2005-HB-001, First Responders Guide to Computer Forensics. While the latter presented
techniques for forensically sound collection of data and explained the fundamentals of admis-
sibility pertaining to electronic files, this handbook covers more advanced technical opera-
tions such as process characterization and spoofed email. It describes advanced methodolo-
gies, tools, and procedures for applying computer forensics when performing routine log file
reviews, network alert verifications, and other routine interactions with systems and net-
works. The material will help system and network professionals to safely preserve technical
information related to network alerts and other security issues.

CMU/SEI-2005-HB-003 xiii

xiv CMU/SEI-2005-HB-003

1 Module 1: Log File Analysis

© 2005 Carnegie Mellon University

First Responders Guide to
Computer Forensics:

Advanced Topics

Module 1:
Log File Analysis

This module focuses on log file analysis, specifically post-event analysis using Swatch and
Log Parser. We explain how to install, configure, and execute Swatch and Log Parser and
provide several sample configurations for each.

CMU/SEI-2005-HB-003 1

© 2005 Carnegie Mellon University

First Responders Guide to
Computer Forensics

Swatch

2 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 3

Overview
Why Swatch?

Installation

Configuration

Execution

Forensics, in this case, is the act of looking for events
after they have happened, not performing an
investigation for law enforcement.

1.1 Swatch
The focus is on using Swatch and Log Parser as forensic analysis tools, meaning that they
will be used on logs after an incident has occurred. If you are planning to use these tech-
niques on files involved in a law enforcement investigation, please make sure you prepare the
files according to established best practices before use.

CMU/SEI-2005-HB-003 3

© 2005 Carnegie Mellon University 4

Swatch Log Monitor
Swatch, the Simple Watcher, is an open
source log monitoring tool written in Perl for
use primarily on UNIX/Linux systems.

Swatch can be used to monitor current logs on
running servers, or to examine older logs.

The configuration file contains a list of regular
expressions to look for and actions to take, if
any are found, called rules.

While originally designed for use with syslog
files, Swatch can be used on any file.

1.1.1 Swatch Log Monitor
Log files are useful only if they are read. After an incident, log files often have clues as to
what happened. However, many servers produce large volumes of log information, often
spread out over more than one file, so sifting through this data can be tedious and time con-
suming. As an added problem, different servers have different log formats. If it is necessary
to compare files, it can be challenging to match up fields.

Swatch, the Simple Watcher log monitoring tool, is capable of searching a file for a list of
strings and then performing specific actions when one is found. It was designed to do real-
time monitoring of server log files but can also be set to process a stand-alone file. Swatch
was designed to work with syslog files, but it can be used on any file.

Swatch was written in Perl, and because of the way it is installed it is best used on a Linux
system. It is an open source tool, and the project is maintained on SourceForge.

Throughout this module we will consider more heavily the case where Swatch is used to ex-
amine older log files as opposed to active log files.

4 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 5

Swatch Installation
Requirements: Perl 5, make utility, tar utility

Download Swatch from the SourceForge project:
http://sourceforge.net/projects/swatch/

Download the throttle patch from http://www.cert.org

Obtain and install the additional Perl modules:
Time::HiRes
Date::Calc
Date::Format
File::Tail

Make Swatch – On the command line, type in progression:
tar zxvf swatch-3.1.1.tar.gz
patch –p0 < throttle.patch
cd swatch-3.1.1
perl Makefile.PL
make
make test
make install

1.1.2 Swatch Installation
Swatch has the same installation process as a Perl module. You download a tarball, uncom-
press it, expand it, and build it. The tool installs itself in /usr/bin, and you can use it from any
directory. It also installs a manual page.

To begin, make sure that Perl 5 is installed on the machine. Later versions of Perl may come
with some of the necessary modules installed already. You also need the ability to use the
GNU utility make to fully install Swatch.

1.1.2.1 Installing Perl Modules

If your Linux distribution offers versions of the Perl modules needed to support Swatch, it is
best to get the operating-system-specific ones. Otherwise, you will need to obtain them from
either the module’s developer’s web site or from a centralized repository such as the Com-
prehensive Perl Archive Network (CPAN).1 CPAN indexes most of the Perl packages avail-
able, makes the list searchable, and has them available for download. They also have links to
the developer’s web site if you would prefer to get the modules straight from the source.

To install Swatch you need these modules:2

• File::Tail – in File-Tail-0.99.1.tar.gz

• Date::Calc – in Date-Calc-5.4.tar.gz

1 http://www.cpan.org
2 All module version numbers are current at time of printing.

CMU/SEI-2005-HB-003 5

http://sourceforge.net/projects/swatch/Download
http://www.cert.orgObtain
http://www.cpan.org

• Date::Parse – in TimeDate-1.16.tar.gz

• Time::HiRes – in Time-HiRes-1.66.tar.gz

To support these you might also need

• Bit::Vector – in Bit-Vector-6.4.tar.gz

• Carp::Clan – in Carp-Clan-5.3.tar.gz

Once the tar file is on the machine, you must decompress and expand it before it can be in-
stalled. Once expanded, read the INSTALL file to make sure that the module has the standard
installation commands. For these modules, there is a Perl script called Makefile.PL that cre-
ates a makefile specific to the machine. Next, run the make file three times: once to initialize,
once to test, and then once to install. After that, the package is ready to use. In order for other
users to be able to use these modules, they must be installed by root. The commands follow
in shaded boxes (the normal text is what is sent to the console):

tar zxvf perlmod.tar.gz

Lists all the files in perlmod.tar

cd perlmod
perl Makefile.PL

Writing Makefile for Perl::Mod

make

Check for errors

make test

Look for “All tests successful”

make install

Check for errors

Repeat for the other packages and you are ready to install Swatch itself.

1.1.2.2 Installing Swatch

Installing Swatch involves the same procedure as the Perl modules. First, download the tar-
ball to the local machine from http://sourceforge.net/projects/swatch. There is a patch needed
to enable the throttle action to fully work. Download that from http://www.cert.org. These
instructions are for Swatch 3.1.1 (the normal text is what is sent to the console):

tar zxvf swatch-X.X.X.tar.gz

Lists all the files in swatch-X.X.X.tar

patch –p0 < throttle.patch

6 CMU/SEI-2005-HB-003

http://sourceforge.net/projects/swatch
http://www.cert.org

The character after the –p is a zero

cd swatch-X.X.X
perl Makefile.PL

Writing Makefile for swatch

If Time::HiRes, Date::Calc, or Date::Parse are missing it will say

make

Check for errors

make test

Look for “All tests successful”

make install

Check for errors

Swatch is now ready to be executed.

CMU/SEI-2005-HB-003 7

© 2005 Carnegie Mellon University 6

Swatch Configuration–Rules 1
The configuration file contains a list of rules

Default file location is $HOME/.swatchrc, but it
can be any name and any location

The three parts of a rule:
Event – “watchfor” or “ignore”
Pattern – regular expression pattern to look for
Action – what the script does when the pattern
is found

1.1.3 Swatch Configuration
The configuration file is the source of Swatch’s power. It is a text file of rules that are used to
create the script that will be run against the log file. This topic is about how to develop your
own configuration file.

Before you begin adding rules, determine what you are trying to find. Perhaps you want to
look for Nessus attacks in your Apache log files, or find when people try to use an SMTP
server as an open relay. Make a list of strings or regular expression patterns that you might
need. Keep in mind that creating a good configuration file is an iterative process, and it may
take a few rounds to extract the desired information from the file.

8 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 7

Swatch Configuration–Rules 2
Rules are looked for in the order they appear in the configuration
file.

Example rules:
ignore /127\.0\.0\.5/

watchfor /Nessus/
throttle 0:10:00,key=nessus
echo

The first rule looks for the string “127.0.0.5” and ignores any log
entries that contain it. The second rule looks for log entries that
contain “Nessus” and echoes them to the console, but only at the
rate of one entry every 10 minutes.

Pattern
Event

Event

Pattern

Action

Action

1.1.3.1 The Configuration File Location

By default, Swatch looks for the configuration file .swatchrc in the home directory. If this file
is not found, it uses a default configuration of
 watchfor /.*/

 echo

This merely echoes every message in the log file to the console. This is not any more useful
than inspecting the log file by hand. To harness the power, a customized configuration file
should be created (this is addressed in the next section, 1.1.3.2).

The default name is .swatchrc, but it can be whatever you want. Configuration files for dif-
ferent types of log files may be identified by a distinct name. One might call their Apache
configuration file apache.swatchrc and their sendmail sendmail.swatchrc. The file can be
stored anywhere that is accessible from the command line, not just in the home directory. If a
different name or location is used for the configuration file, it is added as an argument to the
command line when Swatch is executed (this is discussed in Section 1.1.4).

1.1.3.2 Adding Rules to the Configuration File

Rules are a list of keywords and values that are used to make conditional statements to check
against, and actions to take if one is true. They have three parts: the event, the pattern, and the
action(s).

CMU/SEI-2005-HB-003 9

1.1.3.2.1 Types of Events

There are two types of events in Swatch: “watchfor” and “ignore.” The keyword “watchfor”
looks for the specified pattern in messages in the log file. The “ignore” keyword will skip the
rest of the rules when a message matches the pattern.

By default, the first rule that matches a message will be the only rule that acts on that mes-
sage. This property can be harnessed by using the “ignore” event to filter out messages. For
example, since you know that the system administrator always uses the same machine to do
penetration testing, you create an “ignore” rule for messages that come from a specific inter-
nal IP address, 127.0.0.5, and list the rule for Nessus scans after it so that internal scans will
not cause alerts. In this case, you will want to put these two events in this order:
 ignore /127\.0\.0\.5/

watchfor /Nessus/

 throttle 0:10:00,key=nessus

echo

1.1.3.2.2 Types of Patterns

The value for the event keyword is the regular expression pattern that follows on the same
line. The simplest regular expression is a string to match character by character enclosed in
“/”; for example, “/Nessus/” matches only the substring “Nessus” if it appears anywhere in
the line. If there are characters in the search string, the capitalization must be the same for the
string to match. If you want “nEsSuS” to also match, then you need to put an “i” after the
second “/” to indicate a case insensitive search.

Regular Expressions

A regular expression is a pattern that describes or matches a set of strings [Wikipedia 05d]. It
is a syntax for describing more general criteria for matching strings than simply matching a
word in a string. For example, with a regular search you could find the substring “cat” in
“catapult.” But a regular expression would let you look for a string that starts with “ca” and
ends with “t,” and you would find both “cat” and “catapult.”

For more examples of regular expressions in general, see the Wikipedia entry:
 http://en.wikipedia.org/wiki/Regular_expression

For more examples of regular expressions in Perl, see the Perl manual page:
 http://www.perl.com/doc/manual/html/pod/perlre.html

1.1.3.2.3 Types of Actions

Actions are what the script does when it matches a pattern. They range from printing the log
message to the console to executing a separate script to call a pager. There can be multiple

10 CMU/SEI-2005-HB-003

http://en.wikipedia.org/wiki/Regular_expression
http://www.perl.com/doc/manual/html/pod/perlre.html

actions associated with each rule. The “ignore” event has its action built in, namely, to stop
looking at the log entry. The complete list of actions is found in Table 1 [SourceForge 04]:

Table 1: Actions in Swatch

Action Description

echo [modes] Prints the log message to the console.

Takes an optional value of a text color, a background color, or a
font weight.

Possible values are bold, underscore, inverse, blink, black,
red, green, yellow, blue, magenta, cyan, white, black_h,
red_h, green_h, yellow_h, blue_h, magenta_h, cyan_h, and
white_h.

bell [n] Prints the log message to the console and then rings the bell (\007)
n times.

throttle H:M:S

[,key=log|<identifier>]

[,time_from=timestamp]

[,time_regex=<regex>]

[,threshold=N]

throttle reduces the number of times an action is performed on
messages matching the same pattern in the specified duration.

Hours, minutes, and seconds must all be specified. However, the
time does not need to be specified if threshold is being used.

The key is the identifier that is stored to compare to new mes-
sages. log means use the exact log file, excluding a syslog time-
stamp, if present, and is the default. Any other string will be used
exactly as requested/indicated.

Setting the time_from option to timestamp indicates that the
time in the log message should be used instead of the system time
for comparisons. This is best for examining a log file.

The time_regex lets you specify a regular expression to match the
timestamp of the message. The default is a regular expression for
the syslog timestamp.

The threshold=N acts on the first instance and on every Nth in-
stance after that. It repeats counting once N messages have been
found. Each instance is appended with “(threshold N ex-
ceeded).”

exec command
Executes the command listed.

If arguments are needed, they may be substituted with fields in the
log message. $N is replaced with the Nth field in the line. A $0 or a
$* uses the entire message. The --awk-field-separator switch
must be used during execution (see Section 1.1.4).

CMU/SEI-2005-HB-003 11

Action Description

mail [ad-

dresses:bob:joe:…]

[,subject=Subject]

Sends an email to the address(es) listed with the subject listed con-
taining the matched log messages. Must have a sendmail compati-
ble server installed. Default recipient is the user who is running the
program.

pipe com-

mand[,keep_open]

Pipes the log messages into the command. keep_open keeps the
pipe open until a different pipe is activated or Swatch exits.

write [user:user:…] Uses write(1) to send the message to the users listed. The user
running Swatch is the default.

continue Tells Swatch to evaluate this message against the rule set.

quit Causes Swatch to exit.

when=day:hour This action is a modifier to all the other actions indicating that the
action should occur only during the times specified. For example,
when=1-5-8-17 indicates that the action should occur only Mon-
day-Friday between 8 a.m. and 5 p.m.

The exec command can be used to write log entries to a file. Redirection from the console
does not work because there are unprintable characters on the command line that are printed
in the resulting file and are meaningless and in the way. Use this action:

exec “echo $* >> output.txt”

When examining a file, the most useful actions will be echo, exec, and throttle. The others are
more oriented for when you need to be alerted to a new development in real time.

It is also possible to include Perl in the configuration file if you want to do something such as
define a regular expression for repeated use. Start each line with “perlcode” and end it with a
semicolon.

The throttle command can be very powerful. It will take some practice to get the right bal-
ance of regular expressions to search for timing and to determine whether throttle or thresh-
old is better.

For the regular expressions in the time_regex, all backslashes must be escaped, (e.g., put in
two instead of one). Regular expressions on the action line with commas get cut off, so you
need to put the expression in a perlcode. This includes both IIS formats. For example:
perlcode my $iis_time = “(\d{4}-\d{2}-\d{2}\s+\d{1,2}:\d{2}:\d{2}\s)”;

watchfor /WEBROOT DIRECTORY TRANSVERSAL/

 throttle 0:04:00,key=web,time_from=timestamp,time_regex=$iis_time

 echo blue

12 CMU/SEI-2005-HB-003

Some log formats may not have time_regex. Table 2 lists time_regexes for the log files on
popular services:

Table 2: time_regex for Popular Services

Log File Timestamp Regular Expression

Apache
access_log

04/Mar/2005:11:38:45 (\\d{2}\\/\\w{3}\\/\\d{4}:\\d{2}:\\d{2}:\\d{2})

Apache
error_log;
ssh logs

Fri Mar 04 11:38:51 2005 (\\w{3}\\s+\\w{3}\\s+\\d{2}\\s+\\d{2}:\\d{2}:\\d{2}\\s+\\d{4})

IIS 6.0 and
later

03/04/05, 11:38:51 (\d{2}\/\d{2}\/\d{2},\s+\d{1,2}:\d{2}:\d{2}\s)

IIS 5.*,
W3C Ex-
tended

2005-03-14 11:38:51 (\d{4}-\d{2}-\d{2}\s+\d{1,2}:\d{2}:\d{2}\s)

The when command can be useful for identifying events that occur at abnormal times. Use it
to look for login attempts in the middle of the night.

The following is an example configuration file for a syslog setup that has two machines,
named “server” and “client,” logging to one file. The central syslog server resides on the
server. All facilities on the client log to this file. The client is running the default applications.
The server logs most facilities to the file and is running Apache (httpd) and Snort, in addition
to the basics.

Copies all of the entries from the client to a separate file

watchfor / client /

 exec “echo $* >> client.log” #echoes the log entry to a file

Prints one entry every 4 minutes (based on the time in the logfile #for

any entries containing a Nessus attack keyword.

watchfor /WEBROOT DIRECTORY TRANSVERSAL/

 throttle 0:04:00,key=webroot,time_from=timestamp

 echo blue

Searches for snort followed by portscan somewhere in the log entry

Prints the first entry and then every 6th one both to the console and

a separate file

watchfor /snort.*portscan/

throttle threshold=6,key=ps

 echo red

 exec “echo $* >> portscan.log”

CMU/SEI-2005-HB-003 13

Figure 1 is an example run of the configuration file on a syslog file (“(portscan)” and
“(http_inspect)” distinguish the different types of messages).

Figure 1: Example Run of the Swatch Configuration File

14 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 8

Swatch Execution

Swatch is run from the command line.
swatch -c .swatchrc -f file.log

This runs Swatch using the file .swatchrc as the configuration file
on file.log.
Swatch can be run on only one file at a time, but multiple
instances of Swatch can be running at once.

Accepts its input from this command-p command

Tail the specific file (/var/log/messages is the default)-t file.log

Examine the specific file-f file.log

Name a specific configuration file-c config.file
UseSwitch

Examine this fileConfiguration file

1.1.4 Swatch Execution
Swatch is run on the command line and has many options to specialize the execution. You can
identify the configuration file, the log file, how to monitor the log file, and even what charac-
ter(s) indicate a new log message. While most options will be listed, the focus is on the op-
tions that relate to running Swatch on a log file in a single pass. More information about all
the options can be found in the manual page.

-c filename or --config-file=filename
Indicates where the configuration file is. The default location is $HOME/.swatchrc.

-f filename or --examine=filename
Indicates that Swatch should perform a single pass on the log file.

-t filename or --tail-file=filename
This option enables Swatch to monitor a file as a service continues to log to it. This action is
the default, so if none of -f, -p, or -t is given, Swatch will tail either “/var/log/messages” or
“/var/log/syslog.”

-p command or --read-pipe=command
Monitors the data that is being piped in from the given command.

--awk-field-syntax

Tells Swatch to use the syntax for awk expressions. It is needed when the exec action is used.

CMU/SEI-2005-HB-003 15

--input-record-separator=regular_expression

This option indicates that the default record separator of carriage return should be replaced
with the regular expression listed.

Other options include --help and --version, which respectively give usage information and
the current version; --script-dir=path, which indicates where the temporary script should
be stored if not in the user’s home directory; and --restart-time=hh:mm[am|pm], which
tells Swatch to restart at a particular time.

The most common usage will be
swatch -c .swatchrc -f log_file

Remember to specify the complete path of the configuration file or the log file if either one is
not located in the local directory.

16 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 9

Summary
Swatch is a simple log monitor designed to run
regular expressions against a text log file.

an effective tool for finding interesting or
anomalous events
configured easily to watch for any type of entry
in any type of file

Many actions can be taken on matching
message logs, but for analysis “echo” will be
used most often.

1.1.5 Summary
Swatch can be an effective tool for sifting through log files to find interesting or anomalous
events. The results serve as a jumping off point for further inspection of the files by leading
you directly to areas of interest. Or it can be used to filter out entries that you know can be
excluded so as to reduce the amount of material to examine by hand. Swatch can also be used
on other files, such as VMWare virtual disk files and disk images, to efficiently find strings in
data.

CMU/SEI-2005-HB-003 17

© 2005 Carnegie Mellon University

First Responders Guide to
Computer Forensics

Microsoft Log Parser

1.2 Microsoft Log Parser 2.2
This topic is an overview of the installation, configuration, and usage of Microsoft’s Log
Parser 2.2. The focus is on using Log Parser as a forensic analysis tool, meaning that it will
be used on logs after an incident has occurred. If you are planning to use these techniques on
files involved in a law enforcement investigation, please make sure you prepare the files ac-
cording to established best practices.

18 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 2

Overview
Why Log Parser?

Installation

Writing Queries

Execution

Forensics in this case is the act of looking for
events after they have happened, not
performing an investigation for law
enforcement

CMU/SEI-2005-HB-003 19

© 2005 Carnegie Mellon University 3

Microsoft Log Parser 2.2
Command line tool from Microsoft to process log files
using SQL-like queries

Can read in many formats and many types of log files

Output available in many formats—from text to XML
files to database storage

Easy generation of HTML reports and MS Office
objects

Log Parser functions usable in other scripts

1.2.1 Microsoft Log Parser Features
Microsoft Log Parser 2.2 is the most recent incarnation of Microsoft’s log analysis tool. Re-
leased in January 2005, it contains many improvements and additions to make it useful to
anyone with a log file to process. Log Parser is free to download and use. It is a command
line tool; there is no GUI to make creating commands easier.

Log Parser uses SQL-like queries to sort through log files. It is very flexible and can be used
to read any text based file, file system objects, registries, and database formats.

Log Parser can format the text output into a variety of formats. It can also send output di-
rectly to a syslog server, a database, and MS Office charts, and can be used to create HTML
reports from a template.

Log Parser can also be used in other programs and scripts to bring its processing power to
other applications.

20 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 4

Log Parser Installation
Requirements: Windows 2000, 2003, or XP
Professional

Download Log Parser from Microsoft’s website

Double-click on the setup file and follow the
instructions

The Unofficial Log Parser Support Site is an
excellent resource: http://www.logparser.com/

1.2.2 Log Parser Installation
Log Parser is a Microsoft Windows application that runs on Windows 2000, 2003, and Win-
dows XP Professional. Installation is quick and easy.

Download the file from the Microsoft website. In addition to the Microsoft website, The Un-
official Log Parser Support Site maintains a current link to the setup file on its home page:
http://www.logparser.com. That site is also an excellent resource for Log Parser information.

Once you’ve downloaded the file, double-click on the setup file, LogParser.msi. Follow the
instructions in the Setup Wizard and Log Parser is installed.

CMU/SEI-2005-HB-003 21

http://www.logparser.com/
http://www.logparser.com

© 2005 Carnegie Mellon University 5

Log Parser Input and Output
Log Parser can read many text-based log formats

Use the switch -i:TYPE to indicate file type
Default is determined from the input file type
Type LogParser -h -i:TYPE for more information
on a specific type

Output can be formatted into text files or MS Office
objects or sent to other programs

Use the switch -o:TYPE to indicate type of report
Default is determined from the name of the output file
Type LogParser -h -o:TYPE for more information
on a specific type

1.2.3 Log Parser Input and Output
Log Parser has a variety of built-in text-based formats that it can use to easily parse files and
several output formats it can create. Many of them correspond to the log formats of popular
applications, though it is Windows-centric.

1.2.3.1 Input Formats

To specify an import format, use the switch -i:TYPE, where TYPE is one of the built-in types.
The default input type is determined by Log Parser based on the file extension in the FROM
clause. Table 3 lists many of the types and application logs for which each can be used. More
information and usage examples for each one can be found by using the command line help:
LogParser -h -i:TYPE. Other types can be found under LogParser -h.

Table 3: Common Input Formats

Type Uses Selected Parameters

IISW3C IIS W3C Extended Log Format, primar-
ily IIS 5.X logs and older

n/a

IIS Microsoft IIS log format, mostly used
with version 6.0 and newer

n/a

NCSA NCSA Common, Combined, and Ex-
tended Log formats, for Apache logs

n/a

22 CMU/SEI-2005-HB-003

Type Uses Selected Parameters

CSV Text files with comma-separated values -headerRow [ON|OFF] – for speci-
fying if there is a header row

-iTsFormat <timestamp format>
– for specifying timestamps other than
“yyyy-MM-dd hh:mm:ss”

TSV Tab or space separated values -headerRow [ON|OFF] – for speci-
fying if there is a header row

-iSeparator <character> –
Character that indicates a new field;
can be any character, “spaces,”
“space,” or “tab”

W3C Generic W3C log format -iSeparator <character> –
Character that indicates a new field;
can be any character, “spaces,”
“space,” or “tab”

XML XML formatted logs -rootXPath <XPath> – XPath query
of nodes to be considered roots

EVT Windows Event Log -fullText [ON|OFF] – Use the full
text message

NETMON NetMon captures files -fMode [TCPIP|TCPConn] – Field
mode, each record is a single packet or
a single connection

REG Registry keys and values n/a

ADS Active Directory objects -objClass <class name> – Spe-
cific class for object mode

-username <uname> – user name for
AD access

-password <pword> – password for
the specified user

TEXTLINE Parses entire lines of text files n/a

TEXTWORD Parses single words out of generic text
files

n/a

FS File system properties n/a

COM Custom COM input format -iProgID <progid> – version inde-
pendent Prog ID of the COM plug-in

CMU/SEI-2005-HB-003 23

1.2.3.2 Output Formats

To specify an output format to create, use the switch -o:TYPE. Output can be in several text
formats as well as some non-text ones. The default, for when no INTO clause is stated, is to
print the list using NAT to STDOUT. When the INTO clause is stated, if there is no -o:TYPE,
then Log Parser will attempt to guess from the file extension. Table 4 lists many of the types.
More information and usage examples can be found by using the command line help: Log-
Parser -h -o:TYPE. Other types can be found under LogParser -h.

Table 4: Output Formats

Type Format Special Parameters

CSV Comma-separated values -headers [ON|OFF|AUTO] – Write
field names as the first line; AUTO
won’t write headers when appending to
an existing file

TSV Tab-separated values -headers [ON|OFF|AUTO] – Write
field names as the first line; AUTO
won’t write headers when appending to
an existing file

-oSeparator <any string> –
Separator between fields: <string>,
“space,” or “tab”

XML XML output format -rootName <element name> –
Name of the Root element

DATAGRID ASP.NET data type for displaying
tabular data

-rpt <number of rows> – Rows to
print before pausing

CHART Microsoft Office Chart web compo-
nent; MS Office must be installed for
use

-chartType <chart type> – One
of the designated chart types

SYSLOG Sends output to a syslog server -hostName <hostname> – syslog
server name

NAT Native format – tabular view of the
records

-rtp <number of rows> – Rows to
print before pausing

W3C W3C Extended Log format -rtp <number of rows> – Rows to
print before pausing

IIS IIS Log format -rtp <number of rows> – Rows to
print before pausing

24 CMU/SEI-2005-HB-003

Type Format Special Parameters

SQL Sends the output to a SQL table -server <server name> – Server
the database is on

-database <database name> –
Name of the database

TPL Output a report in a user-specified tem-
plate

-tpl <template file path> –
Path of the template file

-tplHeader <header path> – Lo-
cation of a header file to use

CMU/SEI-2005-HB-003 25

© 2005 Carnegie Mellon University 6

Log Parser Queries
Log Parser can be run with standard SQL queries on the log files

Format:

SELECT <log fields>

[INTO <output file name>]

FROM <input file name>

[WHERE <clauses>]

The main differences are
inclusion of the INTO clause with the output filename
FROM clause specifies a filename, not a table

Help with SQL can be gotten from Log Parser: LogParser -h GRAMMAR

SELECT Clause

INTO Clause

FROM Clause

WHERE Clause

1.2.4 Log Parser Queries
Log Parser queries are based on standard SQL queries. This enables users to be able to select
the fields that they need displayed, the log entries to ignore, and which to act on. This also
allows for aggregation of log information, such as counting the number of “Error 500” re-
sponses from a web server.

The basic parts of a SQL query are the SELECT clause, the FROM clause, and the optional
WHERE clause. SELECT indicates the fields to return. FROM indicates the data source to use.
And WHERE indicates any conditions for rows to be included in the results.

There are a few differences between standard SQL and the Log Parser SQL. First, the output
location needs to be specified with the INTO clause in Log Parser SQL. This is generally a
filename, though it might also be STDOUT if displaying the information on the console is
desired. Next, the input is from a file, rather than from a table, so a filename follows the
FROM clause. Lastly, the input is limited to one file. Joins are not allowed, though subqueries
are allowed.

There is query documentation in the help command using LogParser -h Grammar.
There are also a number of examples, both under the help sections for specific input and out-
put formats as well as under a special examples topic: LogParser -h Examples. For
more references on how to write SQL queries, see http://en.wikipedia.org/wiki/SQL.

26 CMU/SEI-2005-HB-003

http://en.wikipedia.org/wiki/SQL

© 2005 Carnegie Mellon University 7

Log Parser Query Examples
Filtering out irrelevant entries

SELECT *
INTO output.log
FROM input.log
WHERE sc-status >= 400

Adjusting timestamps
SELECT LogFilename, LogRow, RemoteHostName,
RemoteLogName, UserName,
To_Localtime(Add(DateTime, Timestamp(’00:00:10’,

‘hh:mm:ss’))) AS DateTime,
Request, StatusCode, BytesSent, Referer, UserAgent, Cookie
FROM access_log

1.2.4.1 Query Examples

1.2.4.1.1 Filtering out Irrelevant Entries

When focusing on a web server’s logs, you will probably want to separate out entries where
page requests failed to reduce the logs to the important information. The query

SELECT * INTO output.log FROM input.log

WHERE sc-status >= 400

would return all of the log entries where the status code was 400 or above, indicating any
server errors, “Page Not Found” errors, and access denials. By filtering out what is known to
not be a problem, (e.g., successful page requests), it reduces the log files to a more manage-
able size. Please note that this example is for IISW3C input; different input formats will have
different field names.

1.2.4.1.2 Adjusting Timestamps

Another common problem is that sometimes the time on one machine may drift and not be
the same as on another machine. When you try to compare logs generated on these two ma-
chines, events may be out of order. Log Parser can be used to adjust a timestamp in a file.
Since we care about the entire log entry and not just the adjusted timestamp, we will need to
specify the timestamp and all the other fields. This example uses the NCSA input, is format-
ted for W3C output, and adds 10 seconds to all the entries.

SELECT LogFilename, LogRow, RemoteHostName, RemoteLogName, UserName,

To_Localtime(Add(DateTime, Timestamp(’00:00:10’, ‘hh:mm:ss’)))

CMU/SEI-2005-HB-003 27

AS DateTime, Request, StatusCode, BytesSent, Referer,

UserAgent, Cookie

FROM access_log

This can also be done on IISW3C formatted logs, though the timestamp is different so a dif-
ferent command is needed:

To_LocalTime(Add(To_Timestamp(date, time), Timestamp(’00:00:10’,

‘hh:mm:ss’)))

This query will not change the timestamps in the original files but will create a new file with
the adjusted timestamps, making log comparison easier.

28 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 8

Log Parser COM Objects
COM allows for cross-platform development. It

can be used in C++, C#, Visual Basic,
Jscript, and VBScript.

COM Objects can be used in two ways:
1. Create custom input formats (the syslog

format is not currently supported).
2. Use Log Parser functions in other

programs—add queries and input formats to
your own scripts.

1.2.5 Log Parser COM Objects
Component Object Model (COM) objects allow for cross-platform development of programs
and scripts. Log Parser comes with a COM Application Programming Interface (API), allow-
ing programmers to use the underlying constructions of Log Parser either to extend its capa-
bilities or for use in their own programs.

Log Parser COM API is available for use in C++, C#, Visual Basic, JScript, and VBScript.
The only adjustment needed to use the API is that the LogParser.dll binary needs to be regis-
tered with the computer’s COM infrastructure so the API will be found. Use this command:

C:\LogParser>regsvr32 LogParser.dll

1.2.5.1 Creating Custom Input Formats

If the built-in input formats are too restricting, you can create your own. There is one inter-
face to extend in C++ or Visual Basic and another for JScript and VBScript. The resulting
script must also be registered with the computer, as in the example above. After that, it can be
used when running Log Parser, as in this example:

C:\LogParser>LogParser “SELECT * INTO out.file FROM in.file” -i:COM -
iProgID:MySample.MyInputFormat

For more examples of this, please refer to the documentation that comes with Log Parser 2.2.

CMU/SEI-2005-HB-003 29

1.2.5.2 Using the Log Parser COM API

The Log Parser COM API allows for all the same actions as the command line binary, plus
more. In addition to query execution and the various input and output formats, it is also pos-
sible to have direct access to the log entries in record format.

The MSUtil.LogQuery object is the base object for Log Parser. All others are subclasses.
There are subclasses for each of the input and output types, as well as the LogRecordSet and
LogRecord types.

There are two modes of query execution: batch and interactive. Batch execution is used when
the output will be formatted with one of the output formats, as is done in the command line
program. Interactive execution is when no output format is specified and a LogRecordSet is
returned. The programmer can then move through the set and process individual records as
desired.

The Log Parser documentation provides further illustration of these concepts and specific
commands that are available.

30 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 9

Log Parser Execution
The Log Parser program opens a command

window in the Log Parser directory.

Log Parser is run in two ways:
1. entering the query at the command line

LogParser “SELECT * INTO out.file FROM in.file” -
i:TYPE -o:TYPE <other switches>

2. using a saved query
LogParser file:query.sql -i:TYPE -o:TYPE

1.2.6 Log Parser Execution
Log Parser will normally be run on the command line in the special Log Parser window. To
start Log Parser go to Start Programs Log Parser 2.2 Log Parser 2.2. This opens a
command window, displays the help information, and then gives a command prompt with
which to work.

On the command line, you list the query, input format, and output format. Certain formats
also have other parameters that need to be entered using some extra commands. These com-
mands are listed in Table 5. Switches are separated from their parameters by a colon. The
format of the line is

>LogParser “SELECT * INTO out.file FROM in.file” -i:TYPE -o:TYPE
<switches>

Table 5: Misc Log Parser Commands

Command Function Parameters

-q Quiet mode ON or OFF (default)

-e Maximum number of errors allowed be-
fore aborting

integer, -1 is default (ignore all)

-iw Ignore warnings ON or OFF (default)

-stats Display statistics after executing query ON (default) or OFF

CMU/SEI-2005-HB-003 31

Command Function Parameters

-c Use built-in conversion query -i:TYPE <filename>

-o:TYPE <filename>

-multiSite Send any BIN conversion output to multi-
ple files depending on the SiteID value

ON or OFF (default)

-saveDefaults Save options as default values none

-

restoreDefaults

Restore factory defaults none

-queryInfo Display query processing information, but
do not execute query

none

Queries can get long and it can be cumbersome to type the same one over and over. You can
specify a file that contains a query on the command line instead of the query itself. Type
file:query.sql instead of the full query. This will be particularly useful for queries that
convert from one file type to another (aside from the predefined conversions) and for queries
that you run repeatedly.

32 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 10

Summary
Log Parser 2.2 is an extremely flexible tool for parsing
and searching through logs, Event Viewer files, XML,
and other text-based files.

Use it to
convert logs from one format to another
filter out specific types of log entries into a new file
create a new log with an adjusted timestamp
write custom programs and scripts to process log files

It assumes prior knowledge of SQL.

1.2.7 Summary
Log Parser 2.2 is such an improvement on previous versions that it is like a new program.
Log Parser is as extensible and flexible as you can make it. It can be used for

• converting log files from one format to another for ease of analysis

• filtering out specific types of log entries into a new log

• creating a new log with an adjusted timestamp after skew has been determined

• writing custom programs and scripts to process log files

There is a steep learning curve with Log Parser. It is necessary to know the fundamentals of
SQL queries to be able to process logs effectively. Once this limitation is overcome, many
standard logs can be processed and reduced to create meaningful output.

CMU/SEI-2005-HB-003 33

34 CMU/SEI-2005-HB-003

2 Module 2: Process Characterization

© 2005 Carnegie Mellon University

First Responders Guide to
Computer Forensics

Module 2:
Process Characterization

The identification, characterization, and forensic collection of currently running processes on
a PC should be a frequently practiced information security procedure. Baselining a running
system’s processes frequently and enumerating the list of currently running processes will
allow you to monitor system activity and see whether serious changes have been made to the
system. Running processes on a PC are at the crux of either normal or abnormal system be-
havior. However, even after process collection, it can be a difficult task to make the determi-
nation whether a particular process or set of processes may be the result of an intrusion or
malicious user activity.

For most system users and security practitioners, the first alert to abnormal system behavior
may be the trivial questions one has about the system during routine day to day interactions
with the PC. Why is my PC responding so sluggishly? Why does my PC show extremely
high processor activity? What is that process and why is it running? These are commonly
asked questions. In most cases, the default reaction to abnormal system behavior is the
widely practiced reboot. This second-nature reaction may temporarily solve a problem, but if
the machine was truly infected or compromised you may never find the source of the problem
because of the volatility of running processes.

CMU/SEI-2005-HB-003 35

© 2005 Carnegie Mellon University

First Responders Guide to
Computer Forensics

Understanding a Running Process

2.1 Understanding a Running Process
This module is intended to enable system users and first responders (system and network ad-
ministrators, law enforcement, etc.) to

• better understand running processes

• forensically collect and enumerate the set of current running processes on a system

• potentially differentiate between normal running processes and abnormal running proc-
esses (i.e., malware) by looking at key process characteristics

36 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 3

Objectives
Background info on processes

– Programs, processes, threads
– Process tree structure
– Process identifiers (PIDs)
– Process descriptions
– Process analysis checklist

8 key process characteristics
– Tools and native commands for collecting process

characteristics

3 process forensic tasks

2.1.1 Objectives
The focus of this module is to demonstrate how to determine the existence of running mal-
ware by performing basic process characterization and the forensic examination of running
processes on a system. The module is limited to running processes because the majority of
malware (viruses, worms, Trojans, backdoors, etc.) have an associated process that may be
aliased, newly created, or masked that allows the malware to perform its malicious actions on
a machine and sometimes even remain or replicate after a reboot.

Therefore, in an attempt to identify potential rogue processes, we will first cover some back-
ground information on processes, identify eight key process characteristics, demonstrate fo-
rensic collection procedures, and, finally, introduce native commands and tools that will al-
low a first responder to forensically collect the key process characteristics for running
processes.

CMU/SEI-2005-HB-003 37

© 2005 Carnegie Mellon University 4

Programs, Processes, Threads
A computer process can be
best defined as a program in
execution. Generally, a process
consists of the following:1

executable code
data
the execution context (e.g., the contents of
certain relevant CPU registers)

Threads are execution contexts for a process.
1 Gollman, Dieter. Computer Security. England: John Wiley & Sons Ltd, 1999.

2.1.2 Programs, Processes, and Threads
A computer process can best be defined as a program in execution. Generally, a process con-
sists of the following:3

• executable code

• data

• the execution context (e.g., the contents of certain relevant CPU registers)

While the word “program” refers to the executable code (the exe file, for exam-
ple), a process is a program that is being executed. When you start a program in
Windows, the executable will be loaded into RAM. Windows will then add the
new process to its internal process list and make sure the process receives some
CPU time as well as memory and other resources. A process can then request
any amount of resources from Windows as long as there are resources left. Win-
dows keeps track of which processes are using which resources. As soon as a
process is closed or terminated, all resources used by that process will be re-
turned to Windows and will then be handed out to other processes. Unlike mem-
ory and similar resources, CPU time cannot simply be requested but is instead
shared equally between processes. A process can also return the CPU to Win-

3 Gollman, Dieter. Computer Security. England: John Wiley & Sons Ltd, 1999.

38 CMU/SEI-2005-HB-003

dows before the assigned time slice ends. This is actually what happens most of
the time and is the reason why your CPU usage is not always at 100 %.4

The Linux Tutorial5 is a great tutorial for understanding in depth how processes work and
also provides interactive demonstrations describing the parent-child process relationship.

2.1.3 Threads
Threads are execution contexts. Initially each process has a single execution context. This
execution context is called a thread. If a process requires another execution context, it can
simply create another process. Threads were invented to provide a lightweight mechanism for
creating multiple execution contexts. Windows and Linux schedule threads from the operat-
ing system with the goal of providing a fair execution environment.

The most obvious distinction between processes and threads is that all threads of a process
share the same memory space and system-defined “facilities.” Facilities include open file
handles (file descriptors), shared memory, process synchronization primitives, and current
directory. Because global memory is shared and almost no new memory must be allocated,
creating a thread is simpler and faster than creating a process.6

2.1.3.1 Displaying Threads for a Running Process

Using the Sysinternals7
PsList command line util-
ity with the –d command
line argument will display
currently running proc-
esses, threads for each
process, each process’s
thread state, and memory
statistics for each process.
This utility comes in very
handy when you need a
quick way of enumerating
all currently running proc-
esses, each process’s asso-
ciated threads, and their
thread state.

Figure 2: Example Run of PsList

4 http://www.liutilities.com/products/wintaskspro/whitepapers/paper8/
5 http://www.linux-tutorial.info/modules.php?name=Tutorial&pageid=3
6 Bradford, Edward “High-Performance Programming Techniques on Linux and Windows 2000,”

http://www.developertutorials.com/tutorials/linux/run-time-linux-windows-050428/page1.html.
7 http://www.sysinternals.com/index.html

CMU/SEI-2005-HB-003 39

http://www.liutilities.com/products/wintaskspro/whitepapers/paper8/
http://www.linux-tutorial.info/modules.php?name=Tutorial&pageid=3
http://www.developertutorials.com/tutorials/linux/run-time-linux-windows-050428/page1.html
http://www.sysinternals.com/index.html

2.1.3.2 Sysinternals Process Explorer

Another Sysinternals utility called Process Explorer is an excellent administrative tool for
showing a dynamic display of real-time system process activity. Process Explorer’s graphical
user interface (GUI) is a more robust Windows Task Manager. It displays in an easy to read
format what handles each process has open and what DLLs and memory-mapped files each
process has loaded, and has a quick search capability to locate a particular DLL or handle for
the currently running processes.8

Figure 3 is an action screenshot of the Process Explorer GUI. The GUI displays a process list
(e.g., tree format) of currently running processes in the top half of the pane, while the bottom
half of the pane displays all currently loaded DLLs for the highlighted mozilla.exe process.

Figure 3: Sysinternals Process Explorer Utility

8 http://www.sysinternals.com/ntw2k/freeware/procexp.shtml

40 CMU/SEI-2005-HB-003

http://www.sysinternals.com/ntw2k/freeware/procexp.shtml

More importantly, the
Process Explorer utility
has a unique security fea-
ture that verifies a proc-
ess’s image (i.e., the pro-
gram/binary responsible
for the executing process).

Figure 4: Verifying a Process Image in Process Explorer

If you are curious about
whether a particular run-
ning process is a legitimate
Microsoft process, you
could verify the process
image by using the added
functionality in Process
Explorer.

To do this, you would

1. Right-click on any of the displayed processes in the Process Explorer GUI.

2. Click Properties.

3. Click Verify. An example result is shown in Figure 4.

In addition to the Verify
option, another great feature
is the Strings tab.

Clicking on the Strings tab
will display all alpha and
numeric strings found in the
process image, as shown in
the example in Figure 5.
This may come in handy for
looking further into an un-
known process image.

It is important to point out
that this utility uses a GUI
and, therefore, is not an ideal tool that a first responder would use in responding to a com-
puter security incident to forensically analyze running processes on a machine. This utility
should have already been incorporated into the daily operations for everyday system and
network troubleshooting. If you were to use the Process Explorer utility in an incident re-
sponse situation you might actually contaminate potential uncollected evidence from a possi-
bly compromised machine (e.g., changing Mac Times on critical files or folders on the sys-
tem). Sysinternals’ command line utility pslist.exe is a better choice for responding to

Figure 5: The Strings Tab in Process Explorer

CMU/SEI-2005-HB-003 41

computer security incidents and forensically collecting running processes, simply because it
is much lighter and leaves a significantly smaller footprint.

42 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 5

Process Tree Structure and PIDs

2.1.4 Process Tree Structure
Windows and Linux OS envi-
ronments currently running
processes exhibit a hierarchical
tree structure. By looking at
this hierarchical tree structure
of currently running processes
we can gain insight about what
processes have started other
processes and so forth.

Figure 6: Displaying a Process Tree Using PsList

This kind of relationship is
known as the parent and child
process relationship. The crea-
tor is called the parent process,
the created is called the child
process, and the parent-child
relationship is expressed by a
process tree.

Using Sysinternals’ PsList util-
ity with the –t command line argument, we can visually display the parent-child relationship
(i.e., the process tree) for currently running processes.

CMU/SEI-2005-HB-003 43

In the example shown in Figure 6, we can easily see that the System.exe process is the parent
process for smss.exe and so forth as you work your way down the process tree.

2.1.4.1 pstree (Linux)

Using the native Linux pstree command, we can easily display the parent-child process rela-
tionship for currently running processes. Using pstree with the –hp command line argument
will display the process tree, highlight the current process, and display the PIDs for each
process (Figure 7).

Figure 7: Displaying a Process Tree Using pstree

2.1.4.1.1 PIDS

Process identifiers, commonly known as PIDs, are unique integer values assigned to each
currently running process. Generally, PID assignments will be multiples of 4 for Windows
operating systems, thus guaranteeing an even integer PID assignment ranging from 0–
XXXX.

From a forensic or first responder perspective, PIDs offer a quick and easy way of uniquely
identifying running processes. However, there is nothing of forensic value in distinguishing
legitimate processes from non-legitimate processes by just looking at the PID assignments.
What is useful is the mapping or correlation from the PID assignments to generated system
event log tickets. We can search the system event logs for a PID that was responsible for gen-
erating a certain ticket’s event log and map them back to the PID or current running process.

2.1.4.2 Linux ps –A

Using Linux’s native ps command, we can quickly display each currently running process’s
PID assignment and the command that was to used start the process. When displaying proc-
esses in Linux, PIDs will always be displayed in sequential order ranging from the infamous
init process, or PID 1, to XXXX (Figure 8).

44 CMU/SEI-2005-HB-003

Figure 8: Displaying PID Assignments Using ps

CMU/SEI-2005-HB-003 45

© 2005 Carnegie Mellon University 6

Process Descriptions
WinTasks Process Library

Great resource for knowing the exact purpose
and description of every single Windows
process

Categories of Windows processes
Top system processes
Top application processes
Top security threat processes
Other unfamiliar processes

Example: svchost.exe

2.1.5 Process Descriptions
There is no easy way of quickly knowing whether the current set of running processes are
normal, especially if you do not have in-depth knowledge of the system you are analyzing or
if proper process baselining was not implemented. Understanding what each process is and
why it is currently running can be a difficult task. There are a few online resources outlined
below that will attempt to alleviate some of the ambiguity of unfamiliar Windows processes,
particularly in determining whether a process is legitimate.

Uniblue has an online hyperlinked table for each type of Windows process. The online re-
source is a great tool for quickly checking and gathering information about a known rogue
process or gaining information such as a description about any legitimate Windows process.
A Uniblue hyperlinked table for each of the following process categories is available online.9

Categories of Windows Processes
• top system processes

• top application processes

• top security threat processes

• other, unfamiliar processes

Figure 9 is a snapshot of the type of information you can obtain from the Uniblue website for
each of the categories of Windows processes. We chose a process description pertaining to
the svchost.exe process that is often found running on Windows systems.

9 http://www.liutilities.com/products/wintaskspro/processlibrary/allprocesses/

46 CMU/SEI-2005-HB-003

http://www.liutilities.com/products/wintaskspro/processlibrary/allprocesses/

Figure 9: WinTasks Process Description

2.1.6 Process Hashes (National Software Reference Library)
Another valuable online resource is NIST’s National Software Reference Library’s repository
of SHA1 and MD5 hashes for critical system and application files. The NSRL repository in-
cludes hashes of non-English software files, operating system files, application software files,
images, and graphics found on a typical Windows installation. NSRL’s stored repositories of
hashes are cryptographic hashes of safe or uncorrupted files. This is very important when
wanting to compare your own system’s critical file hashes against a known safe set. This
online resource provides the cryptographic hashes free of charge; they are downloadable as
ISO images.

Once you’ve burned the images to a CD-ROM, you can unzip the zipped files and get started.
You’ll find a list and description of the five text files that come with the NIST Operating Sys-
tem ISO. The Operating System ISO is important because it contains safe hashes of executa-
bles and DLL files. These are common types of critical files on Windows machines that be-
come corrupted or replaced with compromised ones. NSRL maintains and updates the ISO
images periodically (non-English software, operating systems, application software, and im-
ages and graphics) as new updates and patches are released.

Operating System ISO:

• Hashes.txt – contains hashes for the files so you can check the integrity of the
downloaded files

• Version.txt – displays the version and date of the downloaded ISO. Keep in mind these
ISOs will be updated periodically, so it is import to check the version file for each ISO
file because hashes may change with different versions.

CMU/SEI-2005-HB-003 47

• NSRLMfg.txt – displays the Manufacture Code (MfgCode) and Name (MfgName) of the
supported manufacturers

• NSRLProd.txt – displays the supported “ProductCode,” “ProductName,” “Product Ver-
sion,” “OpSystemCode,” “MfgCode,” “Language,” and “ApplicationType”

• NSRLFile.txt – This is the file that actually has the list of the SHA1 and MD5 hashes that
can be used for checking critical associated OS files. The format of each entry in the text
file goes as follows:

SHA-1, MD5, CRC32, FileName, FileSize, ProductCode, OpSystemCode, SpecialCode

Here is an example of one entry in the NSRLFile.txt text file that contains a list of SHA-1 and
MD5 hashes. As you can see, the entry corresponds to the mshearts.exe program for a Win-
dows XP machine and has a SHA-1 and MD5 hash for the mshearts executable.

"001A6C9B8D9471B0A3B4F46302DB951F4D877227","BE1B85306352E0AC901EC0850
6792B6B","CB76D275","mshearts.exe",126976,1567,"WINXP",""

48 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 7

Process Analysis Checklist

2.1.7 Process Analysis Checklist
The procedure of inspecting processes for unexpected behavior or characteristics involves
many detailed actions. The abbreviated checklist below contains questions about processes
that you may wish to ask yourself and characteristics you may wish to enumerate. In the fol-
lowing paragraphs we are going to demonstrate how to forensically collect some identified
items and some extra process characteristics using native commands and third-party tools.

• How was this process initiated?
− By what user?
− From what program or other process?

• What is the current execution status of each process?
− Is it running, stopped, suspended, swapped out, exiting, or in some other unexpected

state?
− Does the process continue to appear among active processes after it should have ex-

ited?
− Is it missing from among the processes you expected to be active?

• In what environment is this process executing?
− What system settings are in effect for this process?
− Did the process inherit any environment settings from other processes?
− How might the current environment settings affect how the process operates and

what it can access?

• With what options or input arguments is the process executing? Are these appropriate
settings?

CMU/SEI-2005-HB-003 49

• Are the system resources (CPU time, memory usage, etc.) being utilized by each process
within expected consumption amounts?
− Are there any processes that seem to be tying up an unusually large amount of system

resources?
− Are any processes not performing as expected because they don’t seem to be getting

enough resources?

• What is the relationship between this process and other processes executing on the sys-
tem? What are the characteristics of the related processes?

• What files have been opened by the processes executing on the system?
− Are they authorized to have these files open?
− Have the files been opened with excessive privileges (e.g., opened with read-write

capability when there is no reason for the process to write to the file)?

• Have there been any unexpected accesses to sensitive system files or other private data,
such as password files?
− From what process were the accesses made?
− With which user is that process associated?

• Have there been any unauthorized attempts to access a file? Has the system reported any
file access errors?

50 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 8

8 Process Characteristics
1. Process filename

2. Open ports

3. Open files

4. Base priority

5. Start, stop, elapsed
times

6. Location (i.e., full path)
of process image

7. Survivable processes

8. Loaded DLLs or libraries

top –n 14. pslist.exe

lsof3. handle.exe

netstat -tap2. fport.exe

ps -aux1. ps.exe

lsof –p PID6. listdlls.exe

ps -auxw5. pslist.exe
psloglist.exe

checkconfig
crontab

7. autorunsc.exe

ldd8. listdlls.exe

2.1.8 Common Process Characteristics
We have outlined the eight key process characteristics that follow along with the Process
Analysis Checklist, as well as a set of tools and native commands a first responder can use to
collect those characteristics. Note that this is not an exhaustive list of running process charac-
teristics. But collecting these eight process characteristics for a potential rogue can signifi-
cantly aid in determining whether that running process is legitimate or not.

2.1.8.1 Process Filenames

The process filename is the filename of the process image that was executed to initiate the
currently running process. In most cases you can look at the process filename to determine
whether the current running process is a legitimate Windows or Linux process.

CMU/SEI-2005-HB-003 51

2.1.8.1.1 pulist (Windows)

Using the pulist.exe command
line utility, a Windows Resource
kit utility, we can generate a list
of currently running processes
and the associated filenames to
be examined for unexpected
process filenames and unusual
user identifications.

In the screenshot in Figure 10,
the four processes that we identi-
fied to be rogue processes judg-
ing by the process filenames are
tini.exe, klogger.exe, svchost1.exe, and qfskrtwj.exe.

Figure 10: Listing Process Filenames Using pulist

2.1.8.1.2 ps (Linux)

The Linux ps command can be used to display the filename of the process image as well as
other things outlined in Table 6 and Table 7.

Table 6: A Subset of ps Options

Option Description

$ ps –ux View current processes

$ ps –U user View other system users running processes

$ ps –C program_name View all occurrences of a program

$ ps –p4, 8, 2203 View selected processes 4, 8, 2203

$ ps –efww View all processes with full command lines

Table 7 describes some output headings for ps and top output.

Table 7: Output Headings for ps and top

Field Description

USER Username of the process owner

PID Process ID

%CPU Percentage of the CPU this process is using

%MEM Percentage of real memory this process is using

VSZ Virtual size of the process, in kilobytes

52 CMU/SEI-2005-HB-003

Field Description

RSS

TT

STAT Current Process Status

R= Runnable D = In disk wait

I = Sleeping (< 20 sec) S = Sleeping (> 20 sec)

T = Stopped Z = Zombie

Additional Flags

L = Some pages are locked in core (for rawio)

S = Process is a session leader (head of control terminal)

W = Process is swapped out

+ = Process is in the foreground of its control terminal

START Time the process was started

TIME CPU time the process has consumed

COMMAND Command name and arguments

2.1.8.2 Open Ports

Another critical process characteristic is the number of ports a particular process has open.
Processes that have unfamiliar or unnecessary TCP or UDP ports open could indicate that the
process is a backdoor or Trojan allowing remote access to the machine.

Figure 11: Displaying Open Ports Using fport

2.1.8.2.1 fport (Windows)

The fport.exe command line
utility, like the native win-
dows netstat –anb com-
mand, displays all open
TCP/IP and UDP ports and
maps them to the owning
application as shown in
Figure 11.

Fport also maps those ports
to running processes with
the PID, process name, and
path to the process image.

CMU/SEI-2005-HB-003 53

2.1.8.2.2 netstat (Linux)

Figure 12: Displaying Open Ports Using netstat

The Linux netstat command
can be used to display all
TCP/IP and UDP ports that
are open in relation to a
running process.

Using netstat with the –tap
command line arguments
will display all running
processes that have a
TCP/IP port open, the PID
of the process, the port
number assignment, the
foreign address if con-
nected, and the state of the
port (Figure 12).

54 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 9

Potential Rogue Processes

C:\..\System32\1024284NAspoolsv.exe

C:\..\System329887777notepad.exe:alds.exe

C:\..\System3231280svchost1.exe

C:\WINDOWS228827374cuoikqkxvs.exe

LocationPIDPortFilename

2.1.8.3 Open Files

Open files associated with an executing process should not be overlooked. Often, rogue proc-
esses such as a key logger or network sniffer will have an associated open file to capture their
collected information. One quick way to determine whether a potential rogue process has any
current files open is to use the handle.exe utility for Windows and the native lsof command
for Linux.

Figure 13: Viewing Handles Using handle

2.1.8.3.1 handle (Windows)

The handle.exe utility displays in-
formation about open handles for
processes running on the system.
You can use it to view the pro-
grams that have a file open or to
view the object types and names of
all the handles of a program.

The screenshot in Figure 13 dem-
onstrates how we can use the han-
dle.exe utility to look at all open
handles for the potential rogue
process svchost1.

CMU/SEI-2005-HB-003 55

2.1.8.3.2 lsof (Linux)

The native lsof command without any command line arguments will display all open files
belonging to all currently running processes. The three screenshots (Figure 14, Figure 15, and
Figure 16) demonstrate lsof’s command versatility.

Figure 14: Displaying Which Process Has Port 6002 Open

Figure 15: Displaying Who Has the Bash Shell Open

Figure 16: Displaying All the Currently Open Files by the User Root

2.1.8.4 Base Priority

When a process is initially executed for both Windows and Linux it is assigned a base prior-
ity value. That value determines what priority it has over other processes in regard to the
computer resources it is assigned and consumes, such as memory and CPU time. When look-
ing at a potential rogue or runaway process you may want to check the assigned priority
value.

56 CMU/SEI-2005-HB-003

2.1.8.4.1 pslist (Windows)

Figure 17: Listing Priority Levels Using pslist

Using Sysinternal’s pslist.exe
utility we can enumerate the
priority levels for each current
running process by looking at
the “Pri” column. The screen-
shot in Figure 17 demonstrates
how to display priority values
for running processes.

2.1.8.4.2 top (Linux)

Using the native Linux top
command we can enumerate
the priority levels for each cur-
rent running process. Linux
processes will generally have a
priority value between -20 and
19, where the value of -20 is
the highest and 19 is the lowest
priority value (Figure 18).

Since the top command only
displays the top current proc-
esses, if we need to enumerate
the process priority value for a
particular process we can use
the top command with the
command line arguments –p
PID –n 1, as shown in Figure 19.

Figure 18: Listing Priority Levels Using top

Figure 19: Displaying the Priority Level for a Specific Process

CMU/SEI-2005-HB-003 57

2.1.8.5 Process Times and Terminated Processes

2.1.8.5.1 Process Start Time

The process start time is the point in time when the process started executing. An interesting
characteristic of rogue processes is that they generally will have a start time that is a few sec-
onds or few minutes later than all other legitimate running processes. To discover processes
that may have started later in time after the boot cycle you can use the psuptime.exe and
pslist.exe command line tools. These tools will tell you when a process first started.

psuptime (Windows)

Figure 20: Checking Uptime Using psuptime

To calculate the initial start time of a
process, we first have to collect the up-
time or how long the system has been
running. We can do this using the psup-
time.exe utility.

Once we have the uptime of the system,
the next step is to enumerate all of the
elapsed times for the current set of run-
ning processes using pslist.exe.

2.1.8.5.2 Process Elapsed Time

pslist (Windows)

Once we have the uptime of the system and the elapsed time for a particular process we can
simply subtract the (Uptime – Elapsed time) to calculate Start Time for any given process.

For example, the Uptime of the system was = 27h:41m:24s and the Elapsed Time of the
Svchost.exe process was = 3h:34s:41s; therefore, the Start Time for the Svchost.exe process
was 24h:6m:43s (12:06:43 a.m.).

Figure 21: Checking Elapsed Time for a Process Using pslist

58 CMU/SEI-2005-HB-003

Note that, by just looking at the pslist.exe output, more specifically the elapsed times, you
can determine which processes started after the boot process.

2.1.8.5.3 Terminated Processes

Suspended or prematurely terminated processes can be indicators of abnormal system behav-
ior. Often in computer security situations, a critical system process will be suspended or ter-
minated. For example, an antivirus or other critical process may be terminated in an attempt
to prevent the host system’s security mechanisms from checking for running malware on the
system. Therefore, terminated processes should be collected and identified.

One method to check for terminated processes in Windows, assuming proper auditing is en-
abled, is reviewing the event logs.

The screenshot in Figure 22 dis-
plays a system event log using the
Windows Event Viewer. A termi-
nated process in Windows exhibits
an Event ID of 7034.

Figure 22: Windows Event Log

Knowing what Event ID to search
for, we can use a command line
utility called psloglist.exe devel-
oped by Sysinternals to collect and
parse through the entire system
event logs looking for only event
logs that exhibit the Event ID of
7034.

Figure 23 demonstrates how to use the psloglist.exe utility with the –i command line argu-
ment to search for all event logs that have the Event ID of 7034.

Figure 23: psloglist Command

CMU/SEI-2005-HB-003 59

2.1.8.5.4 Process Terminated Time

As stated, we can determine which processes have been terminated by using Sysinternals’
psloglist.exe. Using the same approach, we can see that the output of the collected event log
clearly states at what time the process was terminated.

2.1.8.6 Location of Process Image

The location of the process image can give you further insight into whether the process is a
legitimate or rogue process. For example, if a running process’s image is located in the
Startup folder or another anomalous file location, there is a good chance that the currently
running process is not legitimate. We can quickly identify the location of a process image by
using the following utilities for Windows and Linux.

2.1.8.6.1 ListDLLs (Windows)

Using Sysinternals’ ListDLLs utility we can determine the command line used to execute the
process and the location of the process image.

Figure 24: Locating a Process Image Using ListDLLs

2.1.8.6.2 ps and lsof (Linux)

Using the native Linux ps command with the –aux command line arguments, we can deter-
mine the command line used to execute the process and the location of the process image.

Figure 25: Locating a Process Image Using ps

Using the lsof command with the –p PID command line argument, we can enumerate the lo-
cation of the process image defined by process ID or PID and also any other files open by the
defined process.

60 CMU/SEI-2005-HB-003

Figure 26: Locating a Process Image by PID

2.1.8.7 Survivable Processes

Survivable processes can be defined as processes that will re-execute after the machine has
been shut down and then restarted. Often when malware infects a machine or if an attacker
compromises the system, the stored malicious code will be located in startup locations on the
system. Also, registry keys and values may have been modified so that the malware processes
will be started up again upon system reboot. Question certain file locations in the system.

• startup folders, added registry key values and scripts

Check to see if unauthorized applications are starting upon reboot. There are a number of
different methods an intruder can use to start a backdoor program, so be sure to check the
startup folders, startup scripts, and even registry key values.

• invalid services
Check for invalid services. Some backdoor programs will install themselves as services
so they are started when the system boots up.

• scheduled tasks

Check for scheduled tasks and Crontab files.

2.1.8.7.1 Startup Folders, Registry Keys and Values (Windows)

Here are some common Windows startup locations/folders and registry keys to consider.

• Check all items in the C:\Documents and Settings\All Users\Start Menu\Programs
\Startup folder. Note that there are two startup folders, one for the local user and one for
all other users on the system. When a user logs on, all of the applications in both the local
user’s and in the All Users startup folders are started. Because of this, it is important to
check both of the startup folders.

• Check the registry for added keys and key values. The most common locations for appli-
cations to start through the registry are the following:

− HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Man-
ager\KnownDLLs

− HKEY_LOCAL_MACHINE\System\ControlSet001\Control\Session Man-
ager\KnownDLLs

− HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Current Version\Run
− HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Current Version\RunOnce

CMU/SEI-2005-HB-003 61

− HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Current Ver-
sion\RunOnceEx

− HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices
− HKEY_LOCAL_MACHINE\Software\Microsoft\Windows

NT\CurrentVersion\Windows ("run=" line)
− HKEY_CURRENT_USER\Software\Microsoft\Windows\Current Version\Run
− HKEY_CURRENT_USER\Software\Microsoft\Windows\Current Version\RunOnce
− HKEY_CURRENT_USER\Software\Microsoft\Windows\Current Version\RunOnceEx
− HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunServices
− HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows

("run=" value)

autorunsc (Windows)

The autorunsc.exe utility developed by Sysinternals allows you to collect all of the following
information regarding survivable processes and services:

• startup applications and their location

• registry key values

• startup services and their location

Figure 27 is a demonstration of using the autorunsc.exe utility to collect information about
processes that will be started upon reboot. For example, look at the executables located in the
Startup folder.

Figure 27: autorunsc.exe Command

62 CMU/SEI-2005-HB-003

Startup Locations and Scripts (Linux)

For a Linux system, certain files should be examined to determine whether there are mali-
cious scripts within these files. Often an attacker will place a shell script in one of the follow-
ing files so that it gets executed every time the machine is rebooted. This is not an exhaustive
list by any means, but includes common file locations to consider and check.

• $ etc/rc.local

• $ etc/initab

• $ etc/rc.sysinit

2.1.8.7.2 Invalid Services

Checkconfig (Linux)

The chkconfig –list command displays a list of services that will be run at the five different
runlevels. This information may help you identify a rogue or malware application that is set
to run as a service and at one of the five runlevels.

Figure 28: The chkconfig -list Command

Corresponding to the five levels,

chkconfig has five distinct functions: adding new services for management, re-
moving services from management, listing the current startup information for
services, changing the startup information for services, and checking the startup
state of a particular service.

When chkconfig is run without any options, it displays usage information. If only
a service name is given, it checks to see if the service is configured to be started
in the current runlevel. If it is, chkconfig returns true; otherwise it returns false.

CMU/SEI-2005-HB-003 63

The --level option may be used to have chkconfig query an alternative runlevel
rather than the current one [Haas 04].

2.1.8.7.3 Scheduled Tasks

at (Windows)

For collecting information about scheduled tasks on a Windows machine, use the native
at.exe command. The at.exe command will display currently scheduled tasks. Scheduled
tasks should not be overlooked because an attacker could essentially schedule a certain file,
executable, or script to be run on a certain day or time of day that could cause malicious sys-
tem behavior.

Cron Logs (Linux)

In addition to startup services, you should collect the currently scheduled tasks. Attackers
often schedule a malicious file to execute periodically so that the malware remains existent.
The cron feature allows system administrators to schedule programs for future execution. All
executed cron jobs are logged, usually in the /var/cron/log or in the default logging directory
in a file called cron.

Figure 29: A Cron Log

Crontab (Linux)

Using the crontab command, we can collect the currently created cron jobs for each user of
the system.

64 CMU/SEI-2005-HB-003

Figure 30: The Crontab Command

CMU/SEI-2005-HB-003 65

© 2005 Carnegie Mellon University 10

3 Process Forensic Tasks
1. Check and verify a process’s loaded DLLs

(Dynamically Linked Libraries)

2. Check and verify a process image
Hash and compare the spoolsv.exe binary

3. Process string search and analysis on
svchost1.exe
spoolsv.exe
notepad.exe:alds.exe

Utilities used:
strings.exe
grep.exe
md5sum.exe or md5deep.exe
sfind.exe

2.1.8.8 Process Forensic Tasks

In the following paragraphs we are going to step through a few process forensics tasks that
involve diving deeper into investigating a running process’s binary. In the previous sections
we demonstrated how to forensically collect eight process characteristics using either native
commands or third-party utilities. Now we are going to step through three forensic tasks that
will be of importance to a first responder. By performing these three forensic tasks, a first
responder can gain further insight into a process’s binary function and use.

2.1.8.8.1 Check and Verify a Process’s Loaded DLLs

Often running processes will be utilizing one or more dynamically linked libraries (DLLs) for
Windows or shared libraries in Linux. Dynamically linked and shared libraries are created so
they can be used by many different applications and processes. Having these shared libraries
drastically reduces the size of the actual executable or process binary and improves system
efficiency.

The main reason why DLLs used by a process should not be overlooked is that malware has
been known to replace critical system DLLs with malicious ones or add new malicious DLLs
to the system in an attempt to cause undesired system behavior once executed. The majority
of root kits use DLL injection to infect systems. For these reasons, we will demonstrate how
to check and verify the loaded DLLs for a particular process against a known safe set.

66 CMU/SEI-2005-HB-003

To verify a process’s required DLLs involves three steps: (1) identify a process to check, (2)
identify the DLLs used by the process, and (3) check to see if the DLLs have been corrupted
by hashing them and comparing them against a known safe set.

Step 1: Identify the Process

Identify the potential rogue process by using a process enumeration utility such as pslist.exe.
The screenshot in Figure 31 displays the highlighted process used for this forensic task of
checking and verifying its loaded DLLs.

Figure 31: The svchost.exe 780 Process

Step 2: Identify the DLLs Used by the Process

The second step is to identify all required DLLs for the identified process. To identify all
DLLs required by the svchost.exe process, use the listdlls.exe utility with the command line
argument –p 780. By using the –p command line argument, we are instructing the utility to
display loaded DLLs only for the designated process (i.e., PID 780).

Figure 32 displays all of the DLLs required for the svchost.exe or PID 780 process.

CMU/SEI-2005-HB-003 67

Figure 32: listdlls.exe Output for svchost.exe

Step 3: Hash and Verify Each of the DLLs

The third step in our quest to check and verify the loaded DLLs for the svchost.exe process is
to hash and compare each loaded DLL against a safe set. To hash each one of the DLLs, you
can use any cryptographic hash utility. For this demonstration we used the MD5deep.exe util-
ity to perform a recursive hash on all DLL files stored in the C:\WINDOWS\System32 folder
and its subfolders. Later, we will search for the identified DLLs to make sure they hashed
correctly.

The primary reason to perform a recursive hash on all files in the System32 folder is that it is
a much quicker method of hashing all of the necessary svchost.exe process loaded DLLs,
since most of them reside in the System32 folder. Otherwise, we would have to hash each one
of the DLLs separately, which there is no easy way to do and which would take a serious
amount of time.

The MD5deep.exe hash utility works by first computing cryptographic hashes for all files you
designate from the command line and then comparing the computed hashes against a defined
file that contains a safe set of hashes. The safe set of hashes that we will be using to compare
against is the National Software Research Libraries library of cryptographic hashes.

Figure 33 displays the MD5deep.exe utility’s command line options, as well as an example of
the command line syntax used to perform a recursive MD5 hash on all files in a designated
directory. The recursive hash is performed on the System32 folder and its subdirectories. The
utility then compares those computed hashes against a stored set of safe hashes, which are

68 CMU/SEI-2005-HB-003

stored in the NSRLFile.txt file. The matched hashes are then output to a DLLs.txt text file,
which we will search later. Note that when the –M command line argument is used, the utility
will flag and output to the DLLs.txt text file only hashes of files that the MD5deep.exe utility
matched correctly against the NSRLFile.txt.

Figure 33: MD5deep Utility

2.1.8.8.2 The Search

To find out which svchost.exe DLLs hashed correctly, we can perform a string search on the
DLLs.txt file to look for the DLLs used by the svchost.exe process. The search criteria will be
the filenames of the listdlls.exe utility output for the svchost.exe process.

Figure 34 is a screen shot of using the grep.exe utility for performing a string search on the
DLLs.txt text file to see if hashes for the required DLLs exist. Note that this is not all of the
DLLs that the svchost.exe process required, but for demonstration purposes three DLLs are
provided.

Figure 34: Performing a String Search Using grep

CMU/SEI-2005-HB-003 69

If everything goes well, the output of your search should be hashes of the files you expected.
However, if your search of the DLLs.txt file does not produce all of the searched DLLs that
you provided, there are two possible reasons. The first reason is that some of the DLLs you
hashed in the System32 folder did not match the supplied hashes for those files stored in the
NSRL file. The second reason is that you may have some corrupted DLLs on your system.
Generally, the first is the case, because the list of hashes the National Software Research Li-
brary provides may not be up to date or might not even have the particular DLL.

2.1.8.8.3 Check and Verify a Process Image

The process of checking and verifying a running process’s binary image follows the same
approach as verifying a process’s DLLs. The method of checking and verifying a process bi-
nary involves three steps: (1) identify the process, (2) identify the location of the process bi-
nary, and (3) hash the process binary and compare the hash against a known safe hash for that
binary. Safe hashes could be either from NSRL library or (if you hashed all .exe files on your
system during a baseline collection) from a baseline system.

When you build a machine, it is a best practice to perform a baseline hash of all critical files
on the system such as .exe files and DLLs so that you have a known good safe state. If an
incident were to occur, you could rehash all of your critical files and compare them against
your stored safe baseline set.

Step 1: Identify the Process

Identify the potential rogue process by using the process enumeration utility pslist.exe. Figure
35 displays the process that we used for this task (i.e., mshearts.exe 2840).

Figure 35: The mshearts.exe 2840 Process

Step 2: Identify the Location of the Process Binary

To identify the location of the process binary for the executing mshearts.exe PID 2840 proc-
ess, we can use the listdlls.exe utility. Figure 36 is a screenshot of the listdlls.exe utility with
the file location of the mshearts.exe binary.

70 CMU/SEI-2005-HB-003

Figure 36: listdlls.exe Output for the mshearts Process

Step 3: Hash the Process Binary and Compare

Now that we have identified the process and the location of the process binary, the third and
final step is to hash the mshearts.exe process binary and compare that hash against a known
safe hash for the mshearts application. We use the MD5deep.exe hash utility to first hash the
potential rogue mshearts.exe binary and compare the hash against the NSRL list of safe
hashes for critical system files for a Windows XP system. Figure 37 is the command line syn-
tax for using the MD5deep.exe utility to accomplish this task.

Figure 37: MD5deep.exe Command Line Arguments

As you can see, the MD5deep.exe utility computed the hash of the mshearts.exe file and,
since the utility was in matching mode as defined by the –M flag, the mshearts.exe hash
matched against a stored hash in the NSRL text file. So now we can assume some reliability
in the mshearts.exe program, since the hashes matched.

To verify this, we can perform a string search for the displayed hash
(be1b85306352e0ac901ec08506792b6b) in the NSRLFile.txt file to make sure that the appro-
priate hash exists.

CMU/SEI-2005-HB-003 71

2.1.8.8.4 Process String Search and Analysis

Another method of further investigating a potential rogue process is performing a string
search on the binary file to see whether you can gather additional information about the proc-
ess binary and its functionality.

Performing a string search on a potential rogue binary involves a few steps. The first step is
to identify the potential rogue running process and the location of its binary and then use a
few command line utilities to perform a string search on the process executable. To demon-
strate this, we will look at the potential rogue process called svchost1.exe.

The svchost1.exe process’s binary was found to be located in the C:\WINDOWS\System32
folder. Now that we have the location of the potential rogue process’s binary, the next step is
to perform a string search on the binary. To do this, we used Sysinternals’ strings.exe com-
mand utility.

Working on NT and Win2K means that executables and object files will many
times have embedded UNICODE strings that you cannot easily see with a stan-
dard ASCII strings or grep programs. So we decided to roll our own. Strings just
scans the file you pass it for UNICODE (or ASCII) strings of a default length of
3 or more UNICODE (or ASCII) characters. Note that it works under Windows
95 as well.10

Figure 38 is a screenshot of the strings.exe utility with command line syntax used for search-
ing for Unicode strings within the svchost1.exe binary. Note that the strings.exe command
line utility will not change the access time on the file on which you choose to perform a
string search. Changing the access times on files is a huge concern in computer forensics, as
it relates to the admissibility of collected information.

10 http://www.sysinternals.com/utilities/strings.html

72 CMU/SEI-2005-HB-003

http://www.sysinternals.com/utilities/strings.html

Figure 38: strings Command

Some of the identified strings that were found in the svchost1.exe binary are

• Thisisaverylongpassword

• Password355

• Longpassword

• /john.ini

Figure 39 is a screenshot of some of the more important Unicode strings that were found in
the svchost1.exe process binary that led to the discovery of its actual use. As you can see, the
masked svchost1.exe process is actually John the Ripper (i.e., a password cracker).

Figure 39: strings Command Output

To further verify that the svchost1.exe process is actually John the Ripper, we can hash the
svchost1.exe process and see whether the hash matches the hash of a John the Ripper binary.
Luckily, we can obtain the hash of John the Ripper by either downloading the hash file for
the binary or downloading the binary itself from OpenWall. Figure 40 shows the hash signa-
ture for John the Ripper obtained by downloading the John the Ripper binary and hashing it
with MD5deep.exe hash utility.

CMU/SEI-2005-HB-003 73

Figure 40: Hash of John the Ripper

So as you can see the hashes matched perfectly, meaning that the svchost1.exe process run-
ning on the system was actually John the Ripper. This method of performing string searches
and hashing the binary can be applied to look further into any potential rogue processes that
may be running. This was an easy example, however; some rogue process binaries may be
stripped of Unicode text, making it harder to draw conclusions about what the process really
is and its functionality.

74 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 11

Summary
Numerous process characteristics
Difficult to distinguish between a legitimate and
a non-legitimate process
Native commands and utilities to collect the
key process characteristics
Online resources to help identify purpose or
description of many Windows processes
Baseline documentation of the system is
crucial

CMU/SEI-2005-HB-003 75

© 2005 Carnegie Mellon University

First Responders Guide to
Computer Forensics

Automated Process Collection

2.2 Automated Process Collection
In a computer security incident situation, the last thing you want to be doing is trying to piece
together a set of incident response tools to use on a possibly compromised system. Auto-
mated process collection tools like developed scripts, batch files, etc., can help automate the
process of collecting forensic data from a compromised machine, as well as minimize the
first responder’s footprint on the system.

76 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 2

Objectives
First Responder Utility and Forensic Server
Project

Introduction
Configuration

Collection of process characteristics

2.2.1 Objectives
In this topic, we will be looking at an automated first responder utility called FRUC and how
it can be used in computer security incident situations to collect volatile data and, more spe-
cifically, some of the identified process characteristics that we pointed out in the Process
Characterization topic. We will also present how to properly configure and set up both the
FRUC utility and the back-end server component FSP.

CMU/SEI-2005-HB-003 77

© 2005 Carnegie Mellon University 3

What are FRUC and FSP?
FRUC (First Responder Utility)

Named after Harlan Carvey
Command line interface tool
Tool for collecting data (volatile and some non-
volatile)

FSP (Forensic Server Project)
Tool for retrieving data (volatile and some non-
volatile)

OS Support
Windows (2000, XP, 2003 Server)

2.2.2 First Responder Utility (FRU)
The automated process collection tool that we are going to present is Harlan Carvey’s First
Responder Utility (FRU). FRU is used by first responders to retrieve volatile data from pos-
sibly compromised systems. The current version of this utility is called FRUC, which is a
command line interface tool that uses a combination of an INI file, different command line
tools and utilities, and output filenames for the collected data. The FRUC utility works to-
gether with the Forensic Server Project (FSP), which is the server component of the First
Responder Utility. You can use FRUC to collect and send captured data to the FSP compo-
nent.

78 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 4

Configuration and Setup of FRUC
3 Components to Configure

Server configuration section
Server IP address & port

Command section
List of commands/utilities, args, & output filenames

Registry section
List of registry keys and values to check

2.2.2.1 First Responder Utility (FRUC) Setup

The FRUC utility has five components that are required for the automated tool to run.

1. fruc.exe – the executable that interfaces with the fruc.ini configuration file, p2x584.dll
file, and the designated command line utilities

2. fruc.ini – the configuration file for tailoring the script to fit your collection needs. In the
fruc.ini file, you will configure what commands and executables you want executed to
collect volatile information.

3. P2x584.dll – the required DLL file necessary for the executable to run properly

4. list of executables – A list of executables or utilities will need to be defined so the
fruc.exe utility can use them to collect volatile information. Tools like the discussed
pslist.exe, psloglist.exe, and etc will need to be in the same folder as the fruc.exe utility.

5. FSP – the server component for receiving and viewing the collected volatile data

The setup for this utility to work properly requires only a few steps. The first step is to locate
the fruc.ini file and tailor it to your needs. The fruc.ini file has three parts to configure.

2.2.2.1.1 Step 1: Configure the Server IP Address and Port Number

Figure 41 is a screenshot of the first part of the fruc.ini file that needs to be configured.

CMU/SEI-2005-HB-003 79

Figure 41: First Part of the fruc.ini File

The server and port settings need to be configured so that the FRUC utility knows where to
send the collected volatile data (i.e., IP address of the FSP server) and on what port. Once
you have this part configured, the next step is to configure the command section of the
fruc.ini file.

2.2.2.1.2 Step 2: Configure the Command Section

The command section of the fruc.ini file will be the list of commands or third-party forensic
utilities that will be executed in sequential order with their respected command line argu-
ments to collect pieces of volatile data. In addition to listing the commands or utilities to be
executed, you must designate a filename for the output file. Figure 42 is a screenshot of the
middle part of the fruc.ini file that is to be configured.

Figure 42: Second Part of the fruc.ini File

In the screenshot, the parts in green (lighter highlighting for black and white printing) are the
commands or utilities to be executed in sequential order and the parts in blue (darker high-
lighting for black and white printing) are the names of the output files to be created to store
the respective command output.

2.2.2.1.3 Step 3: Configure the Registry Keys Section

The registry keys section of the fruc.ini file will be the list of registry keys and values to col-
lect from the compromised machine. As described, we want to check certain registry keys for
auto-starting programs and services. The third part of the fruc.ini file allows us to enter a list
of registry keys to check, as well as their key values. The final part of the fruc.ini file that
includes a list of registry values (highlighted in green—lighter shading for black and white
printing) and a list of registry keys to check (highlighted in blue—darker shading for back
and white printing) is shown in Figure 43.

80 CMU/SEI-2005-HB-003

Figure 43: Final Part of fruc.ini File

CMU/SEI-2005-HB-003 81

© 2005 Carnegie Mellon University 5

Configuration and Setup of FSP
Case directory

Name of the directory/folder where the collected data will
be sent

Case name
Name of the current incident response case

Investigator name
Name of the investigator or first responder

Port
Designated port to listen on

Logfile
Designated name for the case logfile

2.2.3 Forensic Server Project (FSP)
FSP server component works like a glorified netcat listener. It listens on a certain port and
awaits a connection made by the First Responder Utility. Once a connection is established by
FRUC, FRUC then sends the collected volatile data to the listening FSP server. Then FSP
collects that data and puts it into separate files that are designated by each one of the executed
commands FRUC uses.

2.2.3.1 FSP Setup

To set up FSP on the remote collection system, you will need to run the fspc.exe utility from
the command line and pass it some of the configuration arguments highlighted in blue in
Figure 44 (darker shading for black and white printing).

82 CMU/SEI-2005-HB-003

Figure 44: FSP Setup

2.2.3.2 Testing FRUC

Now that we have made all the appropriate configuration changes to the fruc.ini file, it is time
to test how well this utility works. We configured the server by executing the fspc.exe utility
from the command line on the remote collection system and passing it the appropriate argu-
ments (Figure 44). We should now be able to execute the fruc.exe utility to collect volatile
data and send the collected data over to the listening server. Figure 45 is a display of the
fruc.exe utility being executed from the command line with the appropriate command line
arguments such as the IP address to send the collected data to, on what port, which configura-
tion file to use, and in verbose mode.

Figure 45: FRUC Utility Command

CMU/SEI-2005-HB-003 83

© 2005 Carnegie Mellon University 6

Execution of FRUC and FSP
Server component

Client component

2.2.3.3 Output of FRUC

Once the server component (FSP) starts to receive the collected data sent from FRUC, it will
display from the command shell that a connection has been made, what collected data has
been sent over, and finally a closelog message to indicate that FRUC has stopped collecting
and transmitting volatile data.

Figure 46: FSP Command Output

When the FSP server receives the collected volatile data from FRUC, it creates text files for
each one of the executed commands and appends each file with the name of the system from
which it is collecting the volatile data (Figure 47). So as you can see, we have a list of eight

84 CMU/SEI-2005-HB-003

text files directly correlating to the eight commands that were configured to execute in the
fruc.ini file. Also you can see, we have two .dat files containing a list of the registry keys and
values that were defined to be collected.

Figure 47: FRUC Output File

Another great feature with this automated collection utility is what is stored in the case text
file. Within the case file is an audit trail containing the time and date the server was started
(as highlighted in green—lighter shading for black and white printing), the time and date
each collection utility was executed (as highlighted in blue—the line containing “open-
ports.exe”) and finally a hash of each output file (as highlighted in orange—the line contain-
ing “openports.txt”) (Figure 48).

Figure 48: FRUC Audit File

CMU/SEI-2005-HB-003 85

© 2005 Carnegie Mellon University 7

Summary
FRUC

Versatile volatile collection tool
Tailored to first responders’ needs

FSP
Case log acts as a forensic audit trail
Allows for remote collection and transmission
of forensic data

86 CMU/SEI-2005-HB-003

3 Module 3: Image Management

© 2005 Carnegie Mellon University

First Responders Guide to
Computer Forensics

Module 3:
Image Management

In this module, we take a detailed look at capturing and restoring images and image man-
agement. Included is a discussion of the dd tool, its syntax, and its variants. Reasons for split-
ting up blocks of data are enumerated, and techniques for breaking up an image and retriev-
ing a specific file from within a captured image are described.

Additionally, we will walk through step-by-step instructions for two exercises. The first dem-
onstrates how the split command can be used to break up an image. The second uses dd to
carve a specific file out of a captured image.

CMU/SEI-2005-HB-003 87

© 2005 Carnegie Mellon University 3

dd stands for “copy and convert”
“Well, ‘cc’ was already
taken for the C compiler,
so the author chose the
next letter in the alphabet.
The syntax has sort of an
evil, JCL-like quality to it.
According to The Jargon
File, the interface was a
prank.”1

1 http://www.softpanorama.org/Tools/dd.shtml

3.1 Slice and Dice with dd
The dd tool creates bit-by-bit copies, or images, of a specified file. File, in this case, is used
in the “*nix” sense of the word. A file could be anything from a floppy disk to an entire hard
drive. “The name dd stands for ‘copy and convert.’ Don’t see it? Well, ‘cc’ was already taken
for the C compiler, so the author chose the next letter in the alphabet. The syntax has sort of
an evil, JCL-like quality to it. According to The Jargon File, the interface was a prank.”11

Initially, the syntax may look confusing, but it is pretty simple. Below is a basic example:

Table 8: dd Syntax

if = file [infile] (i.e., read from file vs. standard input)
of = file [outfile] (i.e., write to file vs. standard output)

ibs = bytes [input block size] (i.e., specify the number of bytes per read opera-
tion)

obs = bytes [output block size] (i.e., specify the number of bytes per write op-
eration)

skip= blocks (i.e., number of blocks to skip before copying
starts)

seek = blocks (i.e., number of blocks to skip before writing
starts)

count = blocks (i.e., number of blocks to copy)

11 http://www.softpanorama.org/Tools/dd.shtml

88 CMU/SEI-2005-HB-003

http://www.softpanorama.org/Tools/dd.shtml
http://www.softpanorama.org/Tools/dd.shtml

Developed for UNIX, dd has since been ported to many other operating systems. There are
also a few variations of the original tool. John Newbigin has written a version of dd for win-
dows. It is available at http://uranus.it.swin.edu.au/~jn/linux/rawwrite/dd.htm. Forensic Ac-
quisition Utilities, a suite of forensic oriented applications for Windows platforms, also con-
tains dd; that can be found at http://users.erols.com/gmgarner/forensics/. DCFLDD is the
Department of Defense Computer Forensics Laboratory’s version of dd, which incorporates
MD5 hashing and a progress status indicator. More information on that can be found at
http://www.virtualwar.com/unix/cat_computerforensics.html.

CMU/SEI-2005-HB-003 89

http://uranus.it.swin.edu.au/~jn/linux/rawwrite/dd.htm
http://users.erols.com/gmgarner/forensics/
http://www.virtualwar.com/unix/cat_computerforensics.html

© 2005 Carnegie Mellon University 4

Breaking up is hard to do…NOT
Why break up a perfectly good image?

It is too big
Inexpensive backup storage
File size restrictions

Tools to use:
split
md5sum
cat

There are several reasons to break up an image. The first is the issue of having a target ma-
chine too big (think RAID server or backup tapes) to feasibly have a receptacle on hand large
enough to accept the entire image. In this case, on-the-fly image splitting may be needed.
Additionally, it may be convenient to store a backup copy of the image on some non-volatile
media to free up space for other activities. Splitting a 40GB image across several 5GB DVDs
is one eminently practical and economically feasible option.

There are also cases when specific investigative tools have file size restrictions. In these cases
a larger image must be broken up into manageable pieces for analysis. Imagine trying to toast
an entire loaf of bread at one time. The results are much better if you take a slice at a time.

90 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 5

Variations on a Theme
dd, dcfldd, and dd for Windows share a
similar syntax

dd if=/*source* of=/*destination*

(i.e., number of blocks to copy)

(i.e., number of blocks to skip before writing starts)

(i.e., number of blocks to skip before copying starts)

blockscount =

blocksseek =

blocksskip =

(i.e., specify the number of bytes per write operation)[output block size]bytesobs =

(i.e., specify the number of bytes per read operation)[input block size]bytesibs =

(i.e., write to FILE vs. standard output)[outfile]fileof =

(i.e., read from FILE vs. standard input)[infile]fileif =

The dd tool comes with most Linux distributions. Other variations that may be downloaded,
such as dcfldd, have enhanced features for forensics and security, including built-in MD5.

The following exercises are loosely based on the “Fun with DD” section of The Law En-
forcement and Forensic Examiner Introduction to Linux: A Beginner’s Guide, written by
Barry Grundy. Mr. Grundy’s guide is available free in PDF form online and can be found
with a simple Web search.

For each dd exercise, detailed directions, as well as example images, have been included so
that you may see the results of each step or use them as a reference for your own hands-on
experience. The first exercise will cover the basics of splitting up an image and putting it
back together again. The second exercise involves carving out a specific file type from a lar-
ger image.

Splitting a dd image and putting it back together again will be done in four steps:

1. Take a baseline hash of the original image.

2. Create an image in several parts (split).

3. Hash across the multiple image parts.

4. Put the image parts back together as a single image and hash.

For this example, a small Windows XP partition is used. We are going to split this partition
into 2MB partition segments. Normally, you would have a much larger image that could be
split into 2GB partitions, but for simplicity, a much smaller one is being used. Commands

CMU/SEI-2005-HB-003 91

that should be entered are in shaded boxes and, in most cases, are followed by the resulting
output.

First, we will use MD5 to calculate the hash value of this partition. This is used to help con-
firm the integrity after we have split the partition and also for when it is put it back together
from the split image components to confirm that it has remained unchanged.

The filename of the Windows XP partition image being used is xpHD.dd. The following
command will return the baseline hash value of the image:

md5sum xpHD.dd

Figure 49: Result of Using md5 to Calculate a Hash Value

We will use the split command to break the 8MB image into 2MB segments. Split is normally
used on lines in a text file. In this case, since it is a binary file, we are using –b to force the
tool to deal with it as a binary file and ignore line breaks. The 2m is used to specify the size of
the resulting split files. Next, you specify the name of the file to be split. In this case, it’s
xpHD.dd. And finally, xpHd.split is the prefix of the resulting 2MB files.

split –b 2m xpHD.dd xpHD.split.

Now list the files in the directory to confirm the split. You will find the original image,
xpHD.dd, and then the four new component split images. A suffix of aa, ab, ac… is appended
to the end of the file prefix for each 2MB segment.

ls -lh

Figure 50: Confirming the Result of Splitting Images

Check the integrity of the split images using a combination of the cat and md5sum com-
mands. The cat command will put the images back together, and then we pipe that to the
md5sum tool to find the value of the split images.

cat xpHD.split.a* | md5sum

92 CMU/SEI-2005-HB-003

Figure 51: Result of Using cat and md5sum to Check the Integrity of Split Images

As you see, when we compare our original MD5 hash value to the new MD5 hash value, it
has remained the same.

Now we will use the cat command to put the split images back together into a new file. We
need to specify which files we want to put back together into a new image file.

cat xpHD.split.a* > xpHD.new

Do a directory listing to confirm the new image.

ls –lh

Finally, check the integrity of the image that was put back together to confirm that it remains
unchanged.

md5sum xpHD.new

CMU/SEI-2005-HB-003 93

Figure 52: Result of Using md5sum to Check the Integrity of a New Image

As you can see, the value of the new hash is the same as the original file.

94 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 6

Data Carving
Generally done with other tools

Provides a solid understanding of what those
tools are doing

Tools to use:
xxd
grep
dd

The next example will show how to carve a specific file out of a block of data.

For the purposes of this exercise, we will be using a captured image of a floppy disk to do
data carving using dd. While this will increase your skills using dd, it is not the best way to
go about finding a file type. There are several automated tools that work much more effi-
ciently. Going through the process in this manner, however, gives you a good idea of how to
use dd in this capacity and an understanding of how the automated file searching tools actu-
ally work.

We are going to be looking in this captured image of a floppy drive for a .jpg file. In order to
do that, we will start out using a hex editor to examine the floppyimage.dd image. Using grep,
we are looking for the tag that delineates the beginning of a .jpg (ffd8) and finding all the
places it shows up.

xxd floppyimage.dd | grep ffd8

CMU/SEI-2005-HB-003 95

Figure 53: Finding a .jpg Tag in a Captured Image

We are going to focus on the last line containing the .jpg tag, which reads

0157400: ffd8 ffe0 0010 4a46 4946 0001 0101 0048 ……JFIF……H

What we have is a hexadecimal delineation of the location within the image. Translating it
gives us the decimal byte offset needed to calculate the size and location of the file.

echo “ibase=16; 0157400” | bc

Figure 54: Decimal Form of the Beginning of the .jpg File

The result is 1405952, which is the decimal form of the beginning of the .jpg file. We will
follow the same procedure with the hex editor to find the end of the .jpg. Now that we know
where the .jpg file starts, we have the starting point of our search. This time we are searching
for the tag that delineates the end of a .jpg file, ffd9.

xxd –s 1405952 floppyimage.dd | grep ffd9

96 CMU/SEI-2005-HB-003

Figure 55: Searching for the End of the .jpg File

Unfortunately, with this search, we did not find anything after the value specified. This proc-
ess at times can be trial and error, with several search criteria attempted before finding the
desired file. We will try the search again, this time spacing the ffd9 tag.

xxd –s 1406952 floppyImage.dd | grep “ff d9”

Figure 56: Tag Delineating the End of a .jpg File

What is returned this time is what looks like the split ffd9 tag before a bunch of blank space.
We’ll give that a try. Using the following command, we will find the decimal address for the
ending point of what we believe to be the .jpg file.

echo “ibase=16; 0159F18” | bc

Figure 57: Decimal Address for the End of the .jpg File

Now, to find out how large this file is, subtract the returned ending value from the starting
point.

echo “1416984 – 1405952” | bc

Figure 58: Calculating the Size of the .jpg File

The difference, 11032, is the size of the file. We now have the starting point and the size of
the file. Here is where we can use dd. We are going to point dd at our floppy image and carve
out the .jpg file (carve.jpg), skip to our starting point (1405952), take it in blocks of one
(bs=1), and specify the size of the chunk to carve (11032).

dd if=floppyImage.dd of=carve.jpg skip=1405952 bs=1 count=11032

CMU/SEI-2005-HB-003 97

Then list the files.

ls –lh

Figure 59: File Carved Out Using dd

You will find the newly carved carve.jpg file. Use a tool such as xview to view the image.

xview carve.jpg

Figure 60: Viewing Carved .jpg File

98 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 7

Summary
Images are split for a variety of reasons

Available resources
Backup storage
Tool limitations

dd can be more than just a collection tool…
but that doesn’t mean it should be.

There are many reasons to split an image into smaller pieces. Adopting the strategy that is
right for any specific situation depends on understanding the rationale behind these actions.
As always, efficient and effective response to an actual security incident is largely a function
of the quality of preparation carried out beforehand.

In review, this exercise showed us how to identify the beginning and the end of a file and
how to use dd to carve out that file from within a captured image. Again, this process would
not normally be done. It was used as an explanation of how dd and other tools work. Auto-
mated tools such as Autopsy and The Sleuth Kit will automatically identify file types and
where files are located and will allow you to access the files separately from within the cap-
tured image.

CMU/SEI-2005-HB-003 99

100 CMU/SEI-2005-HB-003

4 Module 4: Capturing a Running Process

© 2005 Carnegie Mellon University

First Responders Guide to
Computer Forensics

Module 4:
Capturing a Running Process

This module sets forth one technique for capturing a suspicious process from a live machine
(there are other ways to perform such a capture). The important conceptual take-away from
this module is to approach problems of this nature with a forensic mindset. Specifically, take
pains to leave as small a footprint on the suspect machine as possible. This requires both
technical and procedural preparation.

CMU/SEI-2005-HB-003 101

© 2005 Carnegie Mellon University 2

Objectives
Discuss the benefits and drawbacks of
capturing a process from a live machine

Learn to capture a suspicious process on a live
Windows machine

Learn to capture a suspicious process on a live
Linux machine

The primary purpose of this module is to demonstrate how to capture a suspicious process
from a live machine.12 Both Windows and Linux platforms are addressed.

As you collect data (i.e., potential evidence) from a live computer, consider the data’s order
of volatility: that is, collect data that has the highest chance of being changed, modified, or
lost first. The order of volatility for Windows and Linux computers is the same.13

12 The ability to perform such a capture depends on a foundation of knowledge not contained in this

section. For example, no instruction regarding the creation of a response disk consisting of safe
collection tools is offered in this section.

13 Brezinski, D. Guidelines for Evidence Collection and Archiving (Network Working Group RFC
3227). http://www.ietf.org/rfc/rfc3227.txt (2002).

102 CMU/SEI-2005-HB-003

http://www.ietf.org/rfc/rfc3227.txt

© 2005 Carnegie Mellon University 3

Capture a Running Process
Hedons (Pros)

Keeps system live
Facilitates
troubleshooting
Can collect individually
targeted processes

Dolors (Cons)
Leaves a footprint
May corrupt volatile data
Can be difficult to identify
malicious processes

4.1.1 Hedons and Dolors
Hedon is a term that utilitarians use to designate a unit of pleasure. Its opposite is a dolor,
which is a unit of pain or displeasure. There are some significant hedons associated with cap-
turing a process from a running system. An important factor is that the system remains run-
ning. There are times when it is just not feasible to shut down a system. The ability to pull off
a suspicious process for further analysis facilitates troubleshooting without sacrificing time.
Additionally, it is possible to target specific processes.

It is important to remember that every silver lining has its cloud. Unlike an examination of a
dead host, any action taken on a live machine leaves a footprint. The actions taken to extract
the suspicious process may end up corrupting evidence. While the techniques discussed be-
low allow for targeted extraction, it may be difficult to know exactly what to capture. There
are many processes running on a machine and their names do not always provide a clear idea
of what they do. Knowing what processes the machine normally runs greatly increases the
chances of identifying the ones that should not be there.

CMU/SEI-2005-HB-003 103

© 2005 Carnegie Mellon University 4

Windows System
Tools

Netcat, PsList, ListDLLs, dd,
md5sum

Prep work
Create response CD
Verify someone else’s
response disk

Steps
Identify suspicous processes
Use ListDLLs to determine
path of executable
Copy out process using dd
and nc

4.1.2 Capturing a Process on a Windows System
Table 9 shows a list of tools that can be used to capture a suspicious process on a live Win-
dows system, as well as step by step instructions for performing the capture.

Forensic collection best practices dictate that programs on the suspect machine are not to be
trusted. The tools for the collection should be put on a response disk (most likely a CD).

Table 9: Tools for Capturing Running Processes

Tool Description

PsList PsList is utility that shows you a combination of the information obtainable individually
with pmon and pstat. You can view process CPU and memory information or thread sta-
tistics. What makes PsList so powerful is that you can view process and thread statistics
on a remote computer.14 Go to http://www.sysinternals.com/ntw2k/freeware/pslist.shtml
to download the tool and obtain installation instructions.

14 Russinovich, Mark. PsList. http://www.sysinternals.com/ntw2k/freeware/pslist.shtml (2004).

104 CMU/SEI-2005-HB-003

http://www.sysinternals.com/ntw2k/freeware/pslist.shtml
http://www.sysinternals.com/ntw2k/freeware/pslist.shtml

Tool Description

ListDLLs ListDLLs shows you the full path names of loaded DLL modules. In addition, ListDLLs
will flag loaded DLLs that have different version numbers than their corresponding on-
disk files (which occurs when the file is updated after a program loads the DLL) and can
tell you which DLLs were relocated because they are not loaded at their base address.15
Go to http://www.sysinternals.com/ntw2k/freeware/listdlls.shtml to download the tool
and obtain installation instructions.

dd dd (discussed in Section 3.1) is an imaging tool. It makes a bit-by-bit copy (forensic im-
age) of the target data. The target could be an entire hard drive, a specified partition, or
even the physical memory. For the purposes of this module, dd will be used to make an
image of an executable. Go to http://uranus.it.swin.edu.au/~jn/linux/rawwrite/dd.htm to
download the tool and obtain installation instructions.

NetCat Netcat is a featured networking utility that reads and writes data across network connec-
tions using the TCP/IP protocol. It is designed to be a reliable back-end tool that can be
used directly or easily driven by other programs and scripts. At the same time, it is a fea-
ture-rich network debugging and exploration tool, since it can create almost any kind of
connection you would need and has several interesting built-in capabilities.16

Before capturing the suspicious process, prepare your response CD of safe tools for the plat-
form from which the capture will be performed. An alternative to creating your own response
CD is to use one already created. HELIX is an example of such a disk.17 In addition to being
a bootable Linux environment for incident response, the disk also contains many useful tools
for examining a live Windows host. FIRE is a similar resource; for more information visit
http://biatchux.dmzs.com/?section=main or refer to the First Responders Guide to Computer
Forensics [Nolan 05].

For the following example, two separate machines are needed. The first machine, a Windows
XP box, will act as the compromised system and will be referred to as the “target machine.”
This target machine has an IP address of 192.168.30.20. The second machine, a host running
the WhiteBox flavor of Linux, will function and be referred to as the “collection machine.” It
has an IP address of 192.168.30.50. Information will be captured from the target machine and
sent to the collection machine for analysis. This example can be reproduced on any two ma-
chines connected over a network if the user has created a response CD compatible with the
host operating systems and substitutes the IP addresses used in this example with the IP ad-
dresses of the machines being used.

The response CD used in this example contains trusted tools used in the capturing process.
The tools have been renamed with a “t_” for clarity. For example, the executable file to call

15 Russinovich, Mark. ListDDLs. http://www.sysinternals.com/

ntw2k/freeware/listdlls.shtml (2000).
16 Giacobbi, Giovanni. NetCat. http://netcat.sourceforge.net/ (2004)
17 http://www.e-fense.com/helix/

CMU/SEI-2005-HB-003 105

http://www.sysinternals.com/ntw2k/freeware/listdlls.shtml
http://uranus.it.swin.edu.au/~jn/linux/rawwrite/dd.htm
http://biatchux.dmzs.com/?section=main
http://www.sysinternals.com/
http://netcat.sourceforge.net/
http://www.e-fense.com/helix/

up a command window has been renamed from cmd.exe to t_cmd.exe. This ensures that the
tool or application being used is from the response CD and not the local machine.

Now we begin the process.

1. Insert your response disk into the target machine.

2. Click the “Start” button.

3. Click “Run.”

4. Enter the path to the tool to
be used. In this example,
the CD drive is the D:\
drive and we are using
t_cmd.exe as a trusted
command shell in the
WTools folder.

A command shell will open.
Please note the
“D:\WTools\t_cmd.exe” at
the top of the command
shell. This indicates that the
command shell is, in fact, spawned from the trusted CD.

Figure 62: Command Shell Spawned from a Trusted CD

Figure 61: Running a Trusted Command

5. On the collection system, set up a netcat listener to receive the results from the pslist
you will run on the target machine by typing the command below.

nc –l –p 3333 > pslistText.txt

The netcat application is called with nc, -l tells netcat to listen, -p denotes what port to
listen on. Any port above the reserved ports 1-1024 can be selected for netcat to listen
on. We chose 3333, as it’s easier to keep and audit separate from other common ports.
Finally, anything received on port 3333 will be written to the file pslistText.txt.

Figure 63: netcat Command to Listen on Port 3333

6. On the target machine, run the trusted pslist command and pipe the results to the collec-
tion machine via netcat using the command below.

106 CMU/SEI-2005-HB-003

t_pslist.exe | t_nc.exe 192.168.30.50 3333

We are using the trusted pslist and netcat tools from the resource CD, as denoted by the
”t_.” To send the results to the collection machine, where the listener was set up, you
must specify the IP address and the listening port.

Figure 64: Using Trusted pslist and netcat to Specify IP Address and Listening
Port

7. Look for suspicious processes by examining the results on the collection machine. To do
this, type the following command and then use the up and down arrows to scroll through
the results.

cat pslistText.txt | less

Figure 65: Looking for Suspicious Processes Using cat

8. On this example machine, take notice of a process near the bottom of the list called tini.
Tini is a simple and very small (3kb) backdoor for Windows that listens on TCP port
7777 and provides a remote command prompt to anyone that connects. This process is
suspicious enough for our purposes.

Figure 66: Suspicious Process Found

9. Next, we need to locate where the executable for the process is located. On the collec-
tion machine, set up a netcat listener and send the results to a text file (tiniInfo.txt) by
typing the command below.

nc –l –p 4444 > tiniInfo.txt

Again, any port above the reserved ports can be selected to set up a listener. This session
will listen on port 4444 and send the results to the file tiniInfo.txt.

CMU/SEI-2005-HB-003 107

Figure 67: netcat Command to Listen on Port 4444

10. From the target machine, send the data to the collection machine using the following
command.

t_listdlls.exe –d tini | t_nc 192.168.30.50 4444

These tools are run from the resource CD of trusted tools and not the local machine.
Specify the machine that has the netcat listener set up and what port it is listening on.

Figure 68: Specifying netcat Listener Machine and Port

11. To view the tiniInfo.txt file with the results from the trusted ListDLL command run on
the target machine, use the command below from the collection machine. As you can
see, tini.exe is located at c:\windows\system32\tini.exe.

cat tiniInfo.txt

Figure 69: Viewing Path to a Suspicious Process

12. Now that we know the path to the suspicious process, we are ready to collect it. On the
collection machine, enter the following to set up a netcat listening session, selecting a
new port and file to write the capture as previously discussed.

nc –l –p 5555 > capturedTINI

108 CMU/SEI-2005-HB-003

Figure 70: Setting Up a Listening Session on a Suspicious Process

13. On the target machine, using the trusted tools, enter the command below to copy the
executable and send it to the collection machine.

t_dd.exe if= c:\windows\system32\tini.exe bs=512 | t_nc
192.168.30.50 5555

Figure 71: Collecting the Executable of a Suspicious Process

14. Once this is done, return to the collection machine and calculate a hash of the captured
process. This will allow you to verify the integrity of any copies made for the purpose of
analysis.

md5sum collectedTINI > tini.md5

Figure 72: Calculating a Hash of a Captured Process

CMU/SEI-2005-HB-003 109

© 2005 Carnegie Mellon University 5

Linux System
The same … but different

List the processes
Identify suspicious processes
Copy process to remote
location for further analysis

Running processes ps –aux

Image file using dd

It is possible to leave a much smaller footprint on a Linux box than on a Windows machine.
This is because the trusted tools on a Linux response disk can be completely self-contained.
Without access to Windows source code, it is much more difficult to create completely self-
contained trusted tools.

When responding to a Linux system, the procedure is pretty much the same, unless the file
that spawned the process has been deleted from the running system. The ps –aux command
will list the running processes with associated binaries or the command-line arguments used
to execute them. Once the location is enumerated, the dd or cp tools can be used to copy the
file(s).

However, unlike Windows, a Linux user can delete the file used to launch a running process
(and other files opened by the process) once the process has been executed and is running in
memory. The file space will remain protected as long as the process continues to run and
won’t be overwritten. Retrieving the file data becomes significantly more complicated be-
cause the file associated with the process is no longer visible to ordinary file system tools,
such as ls. If the process is selectively terminated or a reboot or shutdown occurs, then the
file space will be marked as free and the process information may be lost from physical
memory, as would be expected.

It is quite feasible to recover the data from a deleted file bound to a process, partly because
the operating system has to protect the disk space while the process is running. While the file
name is no longer visible in the directory structure, the inode that allocates the data space for
the file is preserved until the process terminates. It’s easy to search for files that have been
deleted (or “unlinked”) but are still protected by running processes. The command lsof +aL1

110 CMU/SEI-2005-HB-003

will list all open files with an inode value of less than one, which is the case when they have
been deleted. This command will display the inode and other metadata for the unlinked
file(s). There are both commercial and open source tools that will take this value and recover
the associated files. One such open source tool is icat, part of The Sleuth Kit, which is avail-
able at http://www.sleuthkit.org.

Collecting such information is not an overly complex process; however, it does exceed the
scope of this handbook. This topic, “Recovering a Deleted Running Process in Linux,” will
be dealt with in a separate security improvement module (SIM).

CMU/SEI-2005-HB-003 111

http://www.sleuthkit.org

© 2005 Carnegie Mellon University 6

Summary
Have response tools ready before they are
needed

Be familiar with processes normal to the hosts
on your network

Leave as small a footprint as possible during
collection

There are a few things that can be done to significantly increase the chances of successfully
identifying and extracting suspicious processes from a live system. First, have the tools built
and tested before they are needed. Second, have a list of processes that normally run on a sys-
tem. It is much more effective to compare running processes against a list of expected proc-
esses than to rely on a gut feeling regarding what is “normal.” Finally, leave the smallest pos-
sible footprint while performing a capture.

112 CMU/SEI-2005-HB-003

5 Module 5: Understanding Spoofed Email

© 2005 Carnegie Mellon University

First Responders Guide to
Computer Forensics

Module 5:
Understanding Spoofed Email

CMU/SEI-2005-HB-003 113

© 2005 Carnegie Mellon University 2

Objectives
1. Understand how email is sent and received

2. Be able to interpret email
headers

3. Review how spoofed email
is sent

4. Learn to identify spoofed email

5. Tools and techniques for tracing spoofed
email

5.1 Objectives
This module has five main objectives. First, it is important for individuals to understand how
email is sent and received. Understanding the life cycle of an email and its back-end proc-
esses is the crux for being able to trace back spoofed messages. Second, individuals need to
be able to interpret email headers. Doing so allows one to reconstruct the path an email mes-
sage takes. Third, there are a variety of ways spoofed email can be sent, and it is important to
keep them in mind when attempting to trace them back. The investigative approach being
used may need to be adjusted depending on the spoofing technique. Fourth, email can be
spoofed with great sophistication, and it is imperative that individuals are able to distinguish
well-spoofed messages from legitimate ones. Fifth, there are numerous tools and techniques
that can be used to trace the origins of a spoofed email message. Understanding the purposes
of each will enable a person to potentially harvest a great deal of information from a spoofed
email regarding the true sender.

114 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University

Identifying Spoofed Email

5.2 Identifying Spoofed Email

CMU/SEI-2005-HB-003 115

© 2005 Carnegie Mellon University 4

The Threats

Criminals

Phishing schemes and
deception to extort money
and personal information

Attackers

Viruses, Trojans, and
worms propagated via
email

5.2.1 Definition of the Problem
Spoofed email has become a part of the daily messages that are delivered to a person’s inbox.
Spam has become a profitable enterprise for overzealous marketers and is a point of conten-
tion for those who receive it. However, spoofed email has become more than just a nuisance;
it is a viable security threat to individual home users, organizations, and businesses. Attackers
use spoofed email messages to propagate viruses, Trojans, and worms. Criminals use them
for phishing schemes that attempt to extort money and information from unsuspecting users.
Due to the lack of authentication in SMTP (Simple Mail Transfer Protocol), attackers and
spammers can easily obfuscate their tracks and make it difficult to trace the origin of their
email.

116 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 5

The Life Cycle of an Email 1
Alice wants to send an email to Bob

Four computers involved

1. alice.alphanet.com (Alice’s computer)

2. smtp.alphanet.com (Alice’s mail server)

3. mailhost.betanet.com (Bob’s mail server)

4. bob.betanet.com (Bob’s computer)

5.2.2 Understanding the Process of Sending and Receiving
Email

5.2.2.1 The Life Cycle of an Email

Before attempting to identify the path of an email, one must first understand its life cycle.
This topic will outline the order of events from the composition of an email all the way to its
delivery to the receiver. For this example we are assuming that the email is legitimate and
that it is being sent outside of the sender’s network.

Typically, an email is handled by a minimum of four separate computers: the computer it is
sent from, the mail server of the sender, the mail server of the receiver, and the computer that
receives the email. Assume that Alice wants to send an email to her friend Bob. Alice and
Bob use different Internet service providers for sending and receiving email. Alice uses al-
phanet.com and Bob uses betanet.com. The first thing that Alice does is compose an email on
her computer, which we will call alice.alphanet.com. When Alice completes the message, she
instructs her email client to send the message. At this point, her computer, alice.alphanet.com,
sends the email to her mail server, smtp.alphanet.com. When smtp.alphanet.com sees that the
message is to be delivered to someone in the betanet.com domain, it sends the message to
betanet’s mail server, mailhost.betanet.com. Mailhost.betanet.com knows that the message is
for Bob and places it in his inbox. The next time Bob checks his email, Alice’s message is
delivered to him.

CMU/SEI-2005-HB-003 117

Table 10: The Life Cycle of an Email

Step 1: Message is composed by Alice on her computer, alice.alphanet.com

Step 2: alice.alphanet.com sends the email to smtp.alphanet.com

Step 3: smtp.alphanet.com sends the email to Bob’s email server, mailhost.betanet.com*

Step 4: Bob uses his computer, bob.betanet.com, to check his email

Step 5: bob.betanet.com retrieves Alice’s email from mailhost.betanet.com

* At this point smtp.alphanet.com may not know the mail server it needs to contact; rather it may only
know that it needs to send an email to someone within the betanet.com domain. In this case,
smtp.alphanet.com will perform a DNS query in order to find the mail server for betanet.com.

Figure 73 depicts the life cycle of Alice’s email to Bob.

Alice
alice.price@alphanet.com

Bob
bob.doe@betanet.com

`

Alice’s computer
alice.alphanet.com

192.168.0.5

`

Bob’s computer
bob.betanet.com

169.0.0.12

Step 1

Step 2
Step 3

Step 4

Step 5

smtp.alphanet.com
192.168.0.100

mailhost.betanet.com
169.0.0.87

Figure 73: The Life Cycle of an Email

118 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 7

Overview of SMTP
Simple Mail Transfer Protocol

Developed in the early 1980s

RFC 821, 2821

Acts as a push protocol

Other protocols needed to retrieve email (POP, IMAP)

Requires a TCP connection on port 25

No Authentication!

5.2.2.2 Overview of the Simple Mail Transfer Protocol

During the life cycle of an email, the process of it being sent to a mail server is handled by
the Simple Mail Transfer Protocol (SMTP). SMTP was developed in the early 1980s and is
outlined in RFC 821, which subsequently was obsoleted by RFC 2821 [NWG 01]. SMTP
acts as a push protocol and only performs email delivery. As a result, separate protocols such
as POP (Post Office Protocol) and IMAP (Internet Message Access Protocol) are needed to
retrieve email messages from mail servers [Wikipedia 05e]. For the scope of this module,
knowledge of POP and IMAP are not needed.

At first glance it may seem more efficient for Alice’s mail client to send the email directly to
mailhost.betanet.com rather than through her mail server, smtp.alphanet.com. However, Al-
ice’s mail server is much better equipped at guaranteeing delivery. During instances of con-
nectivity interruptions or temporary computer downtime, the mail server is able to queue the
message for delivery. Also, in general one can assume that a services machine will have more
reliable uptime than a user machine. Lastly, mail servers have better name resolution and er-
ror handling capabilities.18

Before an email can be delivered via SMTP the client (sending computer) must initiate a TCP
connection on port 25 with the receiving mail server. Once this connection is established, the
client will send a sequence of commands to the server to identify itself, specify the sender,
specify the receiver, pass off the email, and end the SMTP session. Other SMTP commands

18 Carnegie Mellon Computing Services. Cyrus Technology Overview.

http://asg.web.cmu.edu/cyrus/1994-techoverview.html (1994).

CMU/SEI-2005-HB-003 119

http://asg.web.cmu.edu/cyrus/1994-techoverview.html

exist, but it is not necessary to focus on them for this topic. For a complete listing and expla-
nation of SMTP commands, refer to RFC 2821.

120 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 8

SMTP Commands
Most common SMTP commands

HELO: used by sending machine to identify
itself
MAIL: initiates a mail transaction and provides
the sender’s email address
RCPT: specifies the email address of the
recipient
DATA: signifies the message portion of the
email
QUIT: signals the termination of an SMTP
session

5.2.2.2.1 The HELO Command

Once the SMTP session is established, the mail server sends a 220 code (<domain> Service
ready) to signal that it is ready. At this point the client will send a HELO command. The cli-
ent essentially uses the HELO command to identify itself to the mail server. For example, if
alice.alphanet.com was sending an email to smtp.alphanet.com, its HELO command would
be “HELO alice.alphanet.com.” It is important to note that the identifying information is pro-
vided by the client and there is no process of authentication to ensure that the client is who it
says it is. Today, most mail servers have tools that are capable of determining the client’s
identity and recording it in the email headers. If the mail server accepts the client’s HELO
command, it replies back with a 250 code (Requested mail action okay, completed).

5.2.2.2.2 The MAIL Command

The MAIL command is used to identify the sender’s email address and initiate a mail transac-
tion. In Step 2 of Figure 73, the command would appear as “MAIL FROM: al-
ice.price@alphanet.com.” The mail server may or may not verify that the given address is
valid. If the command is accepted, the server will reply with a 250 code.

5.2.2.2.3 The RCPT Command

The RCPT command is similar to the MAIL command in that it specifies the email address of
the recipient. In Step 2 of Figure 73, the RCPT command would appear as “RCPT TO:
bob.doe@betanet.com.” This command does not verify that the email address provided is
valid. If the command is accepted, the server will reply with a 250 code.

CMU/SEI-2005-HB-003 121

5.2.2.2.4 The DATA Command

The DATA command indicates that the client would like to transmit the message portion of
the email to the mail server. If the mail server accepts this command, it responds with a code
354 (Start mail input; end with <CRLF>.<CRLF>). The client signals the end of the email by
placing a “.” on a line of its own. If the command is accepted, the server will reply with a 250
code.

5.2.2.2.5 The QUIT Command

When the client wishes to terminate its SMTP session with a mail server, it issues a QUIT
command.

5.2.2.2.6 SMTP Sequence of Figure 73, The Life Cycle of an Email

In Step 2 of Figure 73 the client, alice.alphanet.com, needs to use SMTP to deliver the email
to the mail server smtp.alphanet.com. An SMTP transaction for this step is illustrated with
client commands in bold [Lucke 04]:

220 smtp.alphanet.com ESMTP Sendmail 8.12.10/8.12.10
HELO alice.alphanet.com
250 smtp.alphanet.com Hello alice.alphanet.com [192.168.0.5], pleased to
meet you
MAIL FROM: alice.price@alphanet.com
250 alice.price@alphanet.com... Sender ok
RCPT TO: bob.doe@betanet.com
250 bob.doe@betanet.com... Sender ok
DATA
354 Please start mail input
From: alice.price@alphanet.com
To: bob.doe@betanet.com
Subject: Lunch

Bob,
It was good to see you again at the reunion. We should get together for
lunch the next time you are in town. Say ‘hi’ to your wife for me.

Regards,
Alice
.
250 Mail queued for delivery.
QUIT
221 Closing connection. Good bye.

122 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 9

Sample Email Headers

Date: Mon, 25 Jul 2005 11:39:55 -0400
From: Alice Price <alice.price@alphanet.com>
User-Agent: Mozilla Thunderbird 1.0.6 (Windows/20050716)
X-Accept-Language: en-us, en
MIME-Version: 1.0
To: Bob Doe <bob.doe@betanet.com>
Subject: Lunch
Content-Type: text/plain; charset=ISO-8859-1Content-Transfer-Encoding: 7bit

Received: from alice.alphanet.com (alice.alphanet.com [192.168.0.5])
by smtp.alphanet.com (8.12.10/8.12.10) with ESMTP id j6PFdtHm024126
for <bob.doe@betanet.com>; Mon, 25 Jul 2005 11:39:55 -0400

Message-ID: <42E507CC.2080100@alphanet.com>

Return-Path: <alice.price@alphanet.com>
Received: from smtp.alphanet.com (smtp.alphanet.com [192.168.0.100])

by mailhost.betanet.com with smtp (Exim 4.44)id 1DtsVC-0001I2-O2
Mon, 25 Jul 2005 11:40:06 -0400

5.2.3 Understanding Email Headers
During the life cycle of an email, headers are added when the email is handled by different
parties. In Figure 73 headers would be added in at the time of composition, at the al-
phanet.com mail server and betanet.com mail server. These headers contain information re-
garding the computers that handle a particular email. Being able to interpret these headers is
an essential component to identifying and tracing spoofed email. In an email all header names
are appended by a “:”.

5.2.3.1 Interpreting Email Headers

Mail clients by default usually do not display the full headers of a message. Usually there is
an option to enable the display of all the headers or to view the message source. For example,
in Mozilla Thunderbird one can display the full headers through the menu option View
Headers All. One can also view the headers by displaying the message source: View
Message Source. It is important to note that not all mail headers are identical. The exact for-
matting and amount of information provided depends on the configurations used by the mail
clients and mail servers involved.

Assume that Bob received the email sent by Alice in Section 5.2.2.2.6. Displaying all the
headers of that message would produce the following:

CMU/SEI-2005-HB-003 123

Table 11: Email Headers

3

Return-Path: <alice.price@alphanet.com>

Received: from smtp.alphanet.com (smtp.alphanet.com [192.168.0.100])

 by mailhost.betanet.com with smtp (Exim 4.44)id 1DtsVC-0001I2-O2

 Mon, 25 Jul 2005 11:40:06 -0400

2

Received: from alice.alphanet.com (alice.alphanet.com [192.168.0.5])

 by smtp.alphanet.com (8.12.10/8.12.10) with ESMTP id j6PFdtHm024126

 for <bob.doe@betanet.com>; Mon, 25 Jul 2005 11:39:55 -0400

Message-ID: <42E507CC.2080100@alphanet.com>

1

Date: Mon, 25 Jul 2005 11:39:55 -0400

From: Alice Price <alice.price@alphanet.com>

User-Agent: Mozilla Thunderbird 1.0.6 (Windows/20050716)

X-Accept-Language: en-us, en

MIME-Version: 1.0

To: Bob Doe <bob.doe@betanet.com>

Subject: Lunch
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: 7bit

The first thing to understand about mail headers is that they are written from the bottom up.
New headers are always written on top of the existing headers. In this example Alice’s mail
client wrote the first set of messages, Alice’s SMTP server wrote the second set, and Bob’s
mail server wrote the third set.

5.2.3.1.1 Headers from the Client

Most of the headers added by the client such as “From:”, “To:”, and “Subject:” are self-
explanatory. The “Date:” header in this section signifies the time the email was composed.
The rest of the headers can be interpreted as follows:

MIME-Version: 1.0

Content-Type: text/plain; charset=ISO-8859-1

Content-Transfer-Encoding: 7bit

The email is in plain text using the ISO-8859-1 character set with 7-bit message encoding.

X-Accept-Language: en-us, en

124 CMU/SEI-2005-HB-003

This is an X-header, which is a non-standard header that provides additional information. The
“X-Accept-Language” header informs the receiving server that email should be sent back in
English.19

User-Agent: Mozilla Thunderbird 1.0.6 (Windows/20050716)

Alice used the Windows version of Mozilla Thunderbird v1.0.6 as her mail client.

5.2.3.1.2 Headers from smtp.alphanet.com

Once Alice finishes composing the email, her mail client sends it to her SMTP server, which
in turn adds additional headers to the email. These headers can be found in section 2 of Table
11. Since the “Received” header consists of many components, it will be broken down line by
line for better understanding.

Received: from alice.alphanet.com (alice.alphanet.com [192.168.0.5])

This message was received from a computer claiming to be alice.alphanet.com. The receiving
machine determined that the sending machine’s fully qualified domain name (FQDN) is al-
ice.alphanet.com and its IP address is 192.168.0.5.

by smtp.alphanet.com (8.12.10/8.12.10) with ESMTP id j6PFdtHm024126

This message was received by smtp.alphanet.com, which is running Sendmail version
8.12.10/8.12.10. The message was assigned an ID of j6PFdtHm024126 by
smtp.alphanet.com.

for <bob.doe@betanet.com>; Mon, 25 Jul 2005 11:39:55 -0400

The message is for bob.doe@betanet.com and was received on Monday, July 25, 2005, at
11:39:55 EST (Eastern Standard Time is -0400 GMT during daylight saving time).

Message-ID: <42E507CC.2080100@alphanet.com>

The Message-ID is a unique identifier that is assigned to each message. This is usually per-
formed by the first mail server that handles the message. The first part of the ID is usually a
unique string and the second part identifies the machine that assigned the ID. This is a uni-
versal ID, as opposed to the ESMTP or SMTP ID, which is specific to the receiving machine
[Lucke 04].

5.2.3.1.3 Headers from mailhost.betanet.com

Once smtp.alphanet.com processes the email, it is sent to mailhost.betanet.com, where Bob
will eventually retrieve the message.

19 The A3C Connection. Headers of a Legit Email Message.

http://www.uic.edu/depts/accc/newsletter/adn29/legitmail.html#Language (2000).

CMU/SEI-2005-HB-003 125

http://www.uic.edu/depts/accc/newsletter/adn29/legitmail.html#Language

Received: from smtp.alphanet.com (smtp.alphanet.com [192.168.0.100])

This message was received from a computer claiming to be smtp.alphanet.com. The receiving
machine determined that the sending machine’s FQDN is smtp.alphanet.com and its IP ad-
dress is 192.168.0.100.

by mailhost.betanet.com with smtp (Exim 4.44)id 1DtsVC-0001I2-O2

This message was received by the computer mailhost.betanet.com, which is running Exim
version 4.44. The receiving mail server, mailhost.betanet.com, assigned this message an ID of
1DtsVC-0001I2-O2 for its own records.

Mon, 25 Jul 2005 11:40:06 -0400

The mail server mailhost.betanet.com received this message on July 25, 2005 at 11:40:06
EST. Notice that the timestamps in the headers are in chronological order. This will help later
in trying to distinguish between real headers and fake headers.

Return-Path: <alice.price@alphanet.com>

Any replies to this email should be sent to the address alice.price@alphanet.com. The “Re-
turn-Path” header is written by the SMTP server that makes the final delivery. The address in
this header is the address that was provided in the MAIL command.

126 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 10

How Spoofed Email Is Sent
Open relays

Compromised machines

Self-owned mail servers

Temporary accounts

Hijacked accounts

5.2.4 How Spoofed Email Is Sent

5.2.4.1 Open Mail Relay

An open mail relay refers to a mail transfer agent that will deliver mail for any sender, re-
gardless of who it is. Up until the late 1980s, email was not delivered directly from the sender
to the receiver. Instead, routes were set up where the messages would be relayed from point
to point [Lucke 04]. This paradigm allowed individuals to send messages through a mail
server even if they were not valid users of the system. However, this model has become open
to abuse by individuals attempting to mask their origin, such as criminals and unethical ad-
vertisers. The norm now is to allow only valid users of a system to send email from it.

As an example, in the email life-cycle diagram, pretend there is a third email server called
smtp.gammanet.com. Alice is a valid user of the alphanet.com domain but not of the gam-
manet.com domain. As a result, Alice can send email only via smtp.alphanet.com but not
smtp.gammanet.com (Figure 74).

CMU/SEI-2005-HB-003 127

Alice
alice.price@alphanet.com

`

Alice’s computer
alice.alphanet.com

192.168.0.5

Email Composition

Mail Relay Allowed

Mail Relay Denied

smtp.alphanet.com
192.168.0.100

smtp.gammanet.com
215.75.90.150

Figure 74: Mail Delivery for Valid Users

However, if smtp.gammanet.com was configured to be an open relay, Alice would not be
prohibited from sending email via it. Since Alice is not a user in the gammanet.com domain
and since she does not have to provide valid credentials (host identity and source email ad-
dress), she can easily cover her tracks by sending email via smtp.gammanet.com. Figure 75
shows how Alice can easily spoof an email using an open relay.

Alice
alice.price@alphanet.com

`

Alice’s computer
alice.alphanet.com

192.168.0.5

smtp.gammanet.com
215.75.90.150
(open relay)

Alice Composes Fake Email

Bob
bob.doe@betanet.com

`

Bob’s computer
bob.betanet.com

169.0.0.12

Email From “Carol”

Bob Checks His Email

Fake Email Sent via SMTP
HELO carol.fake.com
MAIL FROM: carol.burns@fake.com
RCPT TO: bob.doe@betanet.com

mailhost.betanet.com
169.0.0.87

Figure 75: Spoofed Email via an Open Relay

Since most mail servers stamp the host’s true identity (usually the IP address) in the email
headers, Alice is not able to completely cover her trail, but it is more than enough to fool an
unsuspecting recipient.

128 CMU/SEI-2005-HB-003

5.2.4.2 Compromised Machines

One method that spammers have used in order to gain access to open relays is to compromise
machines on the Internet. Often this is through the installation of a Trojan. These applications
gained their name through the similarities with the Trojan horse from the Greek story of the
Trojan War. Like the horse in the myth, a Trojan application may appear to be legitimate, but
in reality it is a tool used by attackers to compromise a host. Often, Trojans will be posted to
file-sharing networks named as legitimate files, enticing users to download them.

The Sobig worm and its variants were received via an email with an attachment. Once the
attachment was opened, it would infect any computer running Microsoft Windows. The
worm would then use the host computer to spread itself by sending email to other users or
copying itself to any open network shares, and would also download a proxy application
from the Internet. Once downloaded, the proxy would function as a mail relay listening on a
non-standard port for incoming connections or would attempt to send out mail.

5.2.4.3 Self-Owned Mail Servers

Perhaps one of the easiest ways to send spoofed email is to set up one’s own mail server.
There are many programs that make it easy to do this. Some readily available programs in-
clude Sendmail, Postcast and QK. Through the use of these and similar applications, a person
with a broadband Internet connection could send over 1,000,000 10–50KB email messages in
one hour [Sendmail 05]. When spammers use this method they can add extra received head-
ers to obfuscate the true path of the email. Adding extra headers to an email will make it ap-
pear as though the mail was actually sent from a machine other than the spammer’s mail
server.

5.2.4.4 Temporary Accounts

Another method that spammers use to send spoofed email is to create temporary mail ac-
counts with ISPs. This can be done by using false credentials or stolen credit cards. The tem-
porary account is used until the ISP cancels it for being used to send spam. Other forms of
temporary email accounts include services such as Hotmail and Yahoo. Spammers have also
been known to write scripts that sign up for multiple accounts and send spam automatically.

5.2.4.5 Hijacked Accounts

An alternative to using temporary accounts or compromised machines is hijacking valid user
accounts. While this is not the most popular method for spammers, there have been recorded
incidents of such activity. The benefit of using temporary or hijacked accounts is that they
will often be able to bypass spam filters, since they have not been used for spam and appear
to be legitimate. For example, in 2002 a spammer by the name of Charles Frye used a pass-
word cracking tool called WWWHack to hijack dozens of accounts and send millions of
spam messages [McWilliams 05]. In 2005 Frye was sentenced to one year in jail and six
years of probation. During that time he is not permitted to use a computer.

CMU/SEI-2005-HB-003 129

© 2005 Carnegie Mellon University 14

The “Received” headers are crucial!

Received: from fusionse.com
(AMarigot-102-1-4-205.w81-248.abo.wanadoo.fr [81.248.108.205])
by mailhost@legitserver.com (8.12.10/8.12.10)
with SMTP id j6PFVvp5027789

for <realuser@legitserver.com>; Mon, 25 Jul 2005 11:31:58 -0400

Identifying Spoofed Email

5.2.5 How to Identify Spoofed Email

5.2.5.1 Carefully Examine the “Received” Headers

There are a number of telltale signs that may indicate an email is not legitimate. All of them
involve interpreting a message’s headers. One of the more resourceful and useful headers is
the “Received” header. Sections 5.2.3.1.2 and 5.2.3.1.3 show that this header includes the
sender’s fully qualified domain name and/or its IP address. Additionally, the receiving com-
puter determines the sender’s IP address on its own and adds that information into the header.

Received: from smtp.alphanet.com (smtp.alphanet.com [192.168.0.100])

From sender via SMTP Stamped from the receiving machine,
mailhost.betanet.com HELO

In a legitimate email the two addresses will match. However, if a sender provides invalid host
information in the HELO command, it will be reflected in the “Received” header. The fol-
lowing “Received” header is from an actual spoofed email:

130 CMU/SEI-2005-HB-003

N
t
w

C

Received: from fusionse.com
 (AMarigot-102-1-4-205.w81-248.abo.wanadoo.fr [81.248.108.205])
 by mailhost@legitserver.com (8.12.10/8.12.10)
 with SMTP id j6PFVvp5027789
 for <realuser@legitserver.com>; Mon, 25 Jul 2005 11:31:58 -0400
otice that the sender claims to be fusionse.com but the receiving mail server determined that
he sender really came from an ISP in France. In this instance, it is most likely that this email
as sent from a compromised host.

MU/SEI-2005-HB-003 131

© 2005 Carnegie Mellon University 15

Fake “Received” Headers
Always read headers from the top down

Received: from garbage.domain.com [192.1.4.88]
by mail.fredbird.com with ESMPT id 12dkf38fj2c0
Fri, 22 Jul 2005 18:56:50 -0400 (EDT)

Received: from fakehost.happy.com (dr.evil.org [192.16.6.65])
by smtp.alphanet.com (8.12.10/8.12.10)
with SMTP id j6MFcRDQ015361;
Fri, 22 Jul 2005 11:38:31 -0400

Received: from smtp.alphanet.com
(smtp.alphanet.com [192.168.0.100])
by mailhost.betanet.com
with smtp (Exim 4.44) id 4FgC2Q-5931F9-T5
Fri, 22 Jul 2005 11:41:07 -0400

5.2.5.2 Look Out for Spoofed Headers

One technique that spammers and attackers use to cover up their tracks is to add bogus head-
ers to a message. These headers are intended to confuse individuals attempting to trace an
email’s true origin. The best way not to be fooled by fake headers is to read email headers
starting at the top. Since fake headers are added by the sender, they will always be beneath
the real headers. Illustrated next is a set of headers from an email that contains a fake “Re-
ceived” header:

I
i
t
m
a
t
h
r

1

Return-Path: <mallory@evil.org>
Received: from fakehost.happy.com (dr.evil.org [192.16.6.65])
 by mailhost.betanet.com (8.12.10/8.12.10) with
 SMTP id j6MFcRDQ015361;
 Fri, 22 Jul 2005 11:38:31 -0400
Received: from GEW@localhost by Wlr.int (8.11.6/8.11.6);
 Fri, 22 Jul 2005 12:37:22 -0400

n this particular set of headers, it is fairly easy to spot the fake received line. First, by read-
ng the headers from the top down one can see there is a discontinuous set of events from the
op “Received” header and the bottom one. The bottom header does not explain how this
essage got to dr.evil.org. Second, the information in the bottom “Received” header does not

ppear to contain valid host addresses (GEW@localhost and Wlr.int). Third, the timestamp in
he bottom and supposedly first header is almost an hour ahead of the timestamp in the top
eader. This could be attributed to an erroneous clock configuration, but because of the other
ed flags, it is more likely to be a fake header.

32 CMU/SEI-2005-HB-003

5.2.5.3 Comparing Timestamps

A quick way to check the legitimacy of an email is to compare the timestamps in the “Re-
ceived” headers and ensure that the chronology is reasonably accurate. Since the timestamps
are written by the local, receiving machines, it is likely that they will not be perfectly in sync.
A grossly misaligned timestamp may be an indication that an email is not legitimate. Fake
“Received” headers will most likely contain timestamps that are out of line with the real
timestamps. However, it is conceivable that a skewed timestamp is the result of bad clock
configuration rather than an indicator of a spoofed email.

CMU/SEI-2005-HB-003 133

© 2005 Carnegie Mellon University

Tracing Spoofed Email

134 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 17

Tracing Spoofed Email

• nslookup

• whois

• traceroute

• Sam Spade

5.3 Tracing the Origins of a Spoofed Email
Once a spoofed email has been identified, the next step is to attempt to determine its origin.
Tools such as nslookup, whois, traceroute, and Sam Spade can yield very useful information.
These tools can help find information about the sending host, such as physical location, or-
ganizational affiliation, and contact information. It is possible that using these tools will not
reveal the identity of the culprit; however, they will help one gather more information about
the first known hop. One can then contact system/network administrators at that hop and at-
tempt to gather further information using data from that hop’s “Received” header, such as the
message ID. It is important to note that even if one is able to identify the machine that sent a
spoofed email, it may not be the end of the line. As has been explained in Section 5.2.4.2,
many spoofed messages are sent from compromised computers. In this case, finding the true
sender may involve performing forensics on the compromised machine. In this type of situa-
tion one may need to consult with legal counsel.

CMU/SEI-2005-HB-003 135

© 2005 Carnegie Mellon University 18

Legitimate email

Received: from cpimssmtps03.msn.com [207.46.181.117]
by mx.receiver.com (mxl_mta-1.3.8-10p6)
with ESMTP id rvw67324.40386.215.y2l5;
Thu, 17 Mar 2005 06:41:14 -0500 (EST)

Spoofed email

Received: from cign.de ([221.153.24.156])
by mx.domain.com (8.12.10/8.12.10)
with SMTP id q6S3NUK2958123
for <receiver@domain.com>;
Wed, 27 Jul 2005 23:23:33 -0400

Do these match?

Do these match?

nslookup

5.3.1 nslookup
The nslookup name stands for name server lookup. For the purposes of spoofed email,
nslookup is used to perform reverse DNS lookups on IP addresses and vice versa. It is a use-
ful utility for quickly verifying the host information contained in the “Received” headers
from unreliable hops. As a rule of thumb, one cannot consider hops outside of one’s own do-
main and control to be trustworthy. The nslookup tool works by querying a name server with
either the IP address or FQDN provided by the user. From a Windows command prompt, the
syntax for nslookup is as follows:

C:\> nslookup [computer to find] [name server]

Providing the name server is optional. If a name server is not provided, nslookup will use the
default name server, which is usually the name server for the domain that the querying ma-
chine is on. The default name server may not provide an authoritative answer. To get an au-
thoritative answer, one may need to query the name server for the computer in question.

The following “Received” header is from a legitimate email. Notice that when an nslookup is
performed, it matches the IP address recorded by the receiving mail server:

Received: from cpimssmtps03.msn.com [207.46.181.117]
 by mx.receiver.com (mxl_mta-1.3.8-10p6)
 with ESMTP id rvw67324.40386.215.y2l5;
 Thu, 17 Mar 2005 06:41:14 -0500 (EST)

136 CMU/SEI-2005-HB-003

Figure 76: nslookup of Valid Fully Qualified Domain Name

The following “Received” header is from a spoofed email:

Received: from cign.de ([221.153.24.156])
 by mx.domain.com (8.12.10/8.12.10) with SMTP id q6S3NUK2958123
 for <receiver@domain.com>; Wed, 27 Jul 2005 23:23:33 -0400

The sender claims to be from cign.de, but this information cannot be relied on. An nslookup
can be used in this instance to see if the IP address for cign.de matches the IP address re-
corded by the receiving machine. The results from nslookup (Figure 77) show that the sender
falsified the host information. The address for cign.de, 81.169.145.69, does not match the real
address of the sender, which is 221.153.24.156. Now that the true identity of the sender has
been discovered, nslookup can be used to attempt to find the host’s fully qualified domain
name.

CMU/SEI-2005-HB-003 137

Figure 77: nslookup of Falsified Host Information

Figure 77 also shows that when nslookup is run on the IP address 221.153.24.156, the name
server cannot find information about that particular IP. The name server used by nslookup
will not always be able to provide information on a given IP address. In these instances it will
be necessary to find out the owner of the IP block that contains the address in question.

138 CMU/SEI-2005-HB-003

© 2005 Carnegie Mellon University 19

Whois – Dual Purpose
IP Block Lookup

Who owns 221.153.24.156?

Domain Name Ownership

Who does b2bpost.com
belong to?

5.3.2 whois
The whois utility can be used to determine the owner of a particular IP block, as well as yield
greater information on a domain such as location, contact information, and name servers. All
of this information can be useful in tracking down the sender of a spoofed email. Whois is a
command line utility that is available in the Linux environment but is not native to Windows.
In order to use whois in a Windows environment, one will need to download a third-party
utility. Section 5.3.4 briefly describes the Sam Spade tool for Windows, which incorporates
whois. Whois queries can also be performed via websites such as samspade.org. However, it
is important to consider that the information contained in the WHOIS databases may not be
completely accurate; in fact, it is not uncommon for WHOIS contact information to be falsi-
fied.

5.3.2.1 IP Block Identification

In Section 5.3.1, nslookup failed to provide information regarding the IP address
221.153.24.156. Whois can be used to query the ARIN database (American Registry for
Internet Numbers) to find out information about the IP address in question. ARIN is respon-
sible for the registration and administration of IP addresses in Canada, the United States, and
parts of the Caribbean [Wikipedia 05a]. They maintain a publicly accessible database that
contains ownership information about IP blocks within their geographic domain. To query the
ARIN database in a Linux environment, the following command is used: whois
221.153.24.156@whois.arin.net.

CMU/SEI-2005-HB-003 139

Figure 78: WHOIS Query of ARIN

Figure 78 shows that the results of the query found the IP address registered to a net block
within the Asia Pacific Network Information Centre (APNIC), which is the Asian equivalent
of ARIN. The results also show that APNIC has its own database (whois.apnic.net) that can
be queried in order to find more specific information. As a result, the following command is
used to query APNIC’s database: whois 221.153.24.156@whois.apnic.net. This time the
results of the query yield information about the net block owner:

140 CMU/SEI-2005-HB-003

Figure 79: WHOIS Query of APNIC

Figure 79, the second whois query, shows that the IP address in question is from Korea Tele-
com, an ISP in Korea. From this information one can speculate that either the spoofed email
came from a home user’s computer that was compromised or the culprit set up a temporary
account to send spoofed email; however, one cannot be certain without more information.
The WHOIS information provided by APNIC also indicates a third WHOIS database,
whois.nida.or.kr, which should be queried to see whether it provides even more information.
At this point, if one wishes to seek out the identity of the sender, the ISP will need to be con-
tacted. Since most home users do not have a static IP address, one address can shuffle
through multiple users. Therefore, it is important to be able to determine the time the email
was sent so that the IP address can be matched with the correct user account. Note that de-
termining the user’s identity may hinge on the ISP’s policies, their willingness to cooperate,
how long they maintain archived logs, the level of detail contained in their logs, and the accu-
racy of their logs. Depending on the situation and location, legal issues and implications may
also need to be considered.

CMU/SEI-2005-HB-003 141

5.3.2.2 WHOIS Information for a Domain Name

The most efficient method to find accurate WHOIS information for a domain name is to start
from the top-level domain and work down. The following “Received” header will be used as
an example:

This header shows that the receiving mail server recorded the sender’s IP address to be
209.51.220.12 and its domain name to be b2bpost.com, which matches the HELO informa-
tion provided by the sender. A quick nslookup of the recorded IP address verifies that the
email did, in fact, come from the b2bpost.com domain.

The first step to take is to find out the WHOIS server for the .com domain. This is done by
querying the WHOIS database for the Internet Assigned Number Authority (IANA), which is
whois.iana.org. The command for this query is whois com@whois.iana.org. Figure 80 dis-
plays the results.

Figure 80: WHOIS Query of IANA

Among the information that is returned from the query is the WHOIS server, whois.verisign-
grs.com, for the .com domain. One can be assured that querying this server will yield infor-
mation regarding b2bpost.com. Sure enough, the following query yields the information
shown in Figure 81:

whois b2bpost.com@whois.verisign-grs.com

Received: from b2bpost.com (b2bpost.com [209.51.220.12])
 by mx.domain.com (8.12.10/8.12.10) with ESMTP id j6R9fhDQ014750
 for <receiver@domain.com>; Wed, 27 Jul 2005 05:41:43 -0400

142 CMU/SEI-2005-HB-003

Figure 81: Query of .com WHOIS Database

This query returned some basic information regarding the domain b2bpost.com and also pro-
vided the WHOIS server, whois.register.com, of the company where b2bpost.com registered
their domain. This WHOIS server should provide definitive information regarding the do-
main in question. The third query, whois b2bpost.com@whois.register.com, produced
detailed information about the domain, as shown in Figure 82.

Figure 82: Query of the Registrar's WHOIS Database

CMU/SEI-2005-HB-003 143

Further investigation will need to be done to determine the validity of the WHOIS informa-
tion. The same issues mentioned at the end of Section 5.3.2.1 may apply.

5.3.3 Traceroute
While WHOIS information may yield contact information, it may not necessarily correspond
to the location of the computer being investigated. It may be the case that the computer in the
WHOIS database is registered to someone in a different geographical location than the actual
machine. Traceroute determines the path a packet takes to a specific computer. This is done
by sending Internet Control Message Protocol (ICMP) packets bound for the target computer
and incrementing the time-to-live (TTL) for each packet. The first packet is sent with a TTL
of 1 so that the packet dies after the first hop. The router at that hop responds and the
traceroute utility now knows the first hop along the path. Traceroute continues to do this so
that the second hop, third hop, etc. respond. By the time an ICMP packet reaches its destina-
tion, traceroute has mapped the entire path to it. Since the ICMP packets are sent directly
from the computer that is running the traceroute, one may desire a different approach if a
low-profile needs to be kept. There are many websites that allow users to perform traceroutes
online. The benefit to performing a traceroute online is that the ICMP packets will originate
from the web server instead of one’s own machine. A good website for performing
traceroutes is http://www.dnsstuff.com.

The traceroute utility can help one pinpoint the true geographic location of a system. In Win-
dows the command to use is tracert. The following example illustrates how an organization
can reside in one location and one of their servers can be in another. The SANS Institute is a
computer security organization located in Bethesda, Maryland. Performing a reverse DNS
lookup on their website, http://www.sans.org, reveals that the IP address of one of their web
servers is 64.112.229.132. From a Windows command prompt, the following command is
used to determine the location of this machine: tracert 64.112.229.132 (Figure 83).

144 CMU/SEI-2005-HB-003

http://www.dnsstuff.com
http://www.sans.org

Figure 83: Traceroute Example

The final destination, 64.112.229.132, did not reply to the ICMP packet, which is typical of
systems that have been hardened for security purposes. The point of interest is the hop before
the final destination. Hop 17 is in the tcpipservices.net domain. A quick WHOIS query on
this domain shows that the tcpipservices.net appears to be some type of service provider in
Eugene, Oregon. Therefore, while the SANS Institute is located in Maryland, their web serv-
ers are in Oregon [Mandia 01].

5.3.4 Sam Spade
Much of the information gathered using nslookup and whois can also be collected using Sam
Spade, a Windows tool that contains various network utilities such as whois, traceroute, IP
block lookup, DNS check, and ping. Sam Spade is a freeware tool; it can be downloaded from
the Sam Spade website at http://www.samspade.org/ssw/. Some of the utilities in Sam Spade
are also available directly from the Sam Spade home page: http://www.samspade.org. An-
other website containing some very useful online tools is http://www.dnsstuff.com. All of the
data collection techniques outlined in the previous sections can be performed using Sam
Spade.

CMU/SEI-2005-HB-003 145

http://www.samspade.org/ssw/
http://www.samspade.org
http://www.dnsstuff.com

© 2005 Carnegie Mellon University 20

Summary

No legitimate use for spoofed email

Lack of authentication in SMTP

TCP connection leaves traceable fingerprint

Spoofed email sent many different ways

Header interpretation is the key

Tracing email requires investigative work

5.4 Summary
There is no legitimate reason for spoofed email to be sent. At best, email spoofing is used by
unethical advertisers who churn out billions of messages and hide their tracks to avoid the
repercussions of their actions. At worst, email spoofing is used to propagate all types of mali-
cious software and to aid in various criminal activities, the consequences of which extend
beyond the digital realm. The lack of authentication in SMTP is the major contributor to the
spoofed email problem currently facing society. It was designed at a time when the number of
users was so few that everybody knew everyone else. However, the vast frontier of the Inter-
net has changed the paradigm to one requiring security. While a change may not be on the
horizon in the immediate future, dealing with spoofed email is not a lost cause. Because TCP
is used for mail delivery, senders are not able to completely cover their tracks. The TCP
handshake allows the receiving mail hosts to stamp the sender’s true identity in the “Re-
ceived” header. As a result, spammers have responded with a variety of techniques to muddle
their tracks as much as they can. However, through email header interpretation and various
tools and techniques, security professionals have the ability to trace the true origins of
spoofed messages.

146 CMU/SEI-2005-HB-003

References

URLs are valid as of the publication date of this document.

[Ash 95] Ashton, P. Algorithms for Off-Line Clock Synchronization (Techni-
cal Report TR COSC 12/952). Christchurch, New Zealand: De-
partment of Computer Sciences, University of Canterbury, 1995.

[Barnett 02] Barnett, Ryan. Monitoring VMware Honeypots.
http://honeypots.sourceforge.net
/monitoring_vmware_honeypots.html (2002).

[Bauer 05] Bauer, Michael D. Linux Server Security, 2nd Edition. Sebastopol,
CA: O’Reilly, 2005.

[Duda 87] Duda, A.; Harrus, G.; Haddad, Y.; Bernard, G. “Estimating Global
Time in Distributed Systems.” Proceedings of the 7th International
Conference on Distributed Computing Systems (ICDCS '87). Berlin,
Germany, Sept. 1987. Los Alamitos, CA: IEEE Computer Society
Press, 1987. http://www.informatik.uni-trier.de/~ley/db/conf/icdcs
/icdcs87.html.

[Galleon 04] Galleon. GPS Time Server. http://www.ntp-time-server.com/gps-
time-server/gps-time-server.htm (2004).

[Haas 04] Haas, Juergen. Linux / Unix Command: checkconfig.
http://linux.about.com/library/cmd/blcmdl8_chkconfig.htm (2004).

[Lamp 78] Lamport, L. “Time, Clocks, and the Ordering of Events in a Dis-
tributed System.” Communications of the ACM 21 (1978): 558-565.

[LP 05] Log Parser 2.2 Documentation. Distributed with Log Parser 2.2.

[Lucke 04] Lucke, Ken. Reading Email Headers.
http://www.stopspam.org/email/headers.html (2004).

[Mandia 01] Mandia, Kevin & Prosise, Chris. Incident Response. Berkley, Cali-
fornia: McGraw-Hill, 2001.

CMU/SEI-2005-HB-003 147

http://honeypots.sourceforge.net
http://www.informatik.uni-trier.de/~ley/db/conf/icdcs
http://www.ntp-time-server.com/gps-time-server/gps-time-server.htm
http://linux.about.com/library/cmd/blcmdl8_chkconfig.htm
http://www.stopspam.org/email/headers.html

148 CMU/SEI-2005-HB-003

[McWilliams 05] McWilliams, Brian. “Hijacked by Spammers.” O’Reilly Network.
http://www.oreillynet.com/pub/a/network/2005/03/14
/spammerhijack.html (2005).

[Mills 91] Mills, D. L. “Internet Time Synchronization: The Network Time
Protocol.” IEEE Trans. Communications 39, 10 (October 1991):
1482-1493.

[Nolan 05] Nolan, Richard; O’Sullivan, Colin; Branson, Jake; & Waits, Cal.
First Responders Guide to Computer Forensics (CMU/SEI-2005-
HB-001). Pittsburgh, PA: Carnegie Mellon University, Software
Engineering Institute, 2005. http://www.sei.cmu.edu/publications
/documents/05.reports/05hb001.html.

[NWG 01] Network Working Group. RFC 2821.
http://www.faqs.org/rfcs/rfc2821.html (2001).

[Ristenpart 04] Ristenpart, Thomas; Templeton, Steven; & Bishop, Matt. “Time
Synchronization of Aggregated Heterogeneous Logs.”
http://ultimate.cs.ucdavis.edu/SecSemApril04.ppt (2004).

[Sendmail 05] Sendmail, Inc. Datasheet: Sendmail Outbound Mail Management
Solution. http://www.sendmail.com/pdfs/datasheets/ds_hvms.pdf
(2005).

[SourceForge 04] SourceForge. Project Info – Swatch.
http://sourceforge.net/projects/swatch (2004).

[Tan 02] Tanenbaum, Andrew S. & van Steen, Maarten. Distributed Systems:
Principles and Paradigms. Singapore: Pearson Education, 2002.

[ULP 05] The Unofficial Log Parser Support Site. http://www.logparser.com/
(2005).

[Wikipedia 05a] Wikipedia. American Registry for Internet Numbers.
http://en.wikipedia.org/wiki/ARIN (2005).

[Wikipedia 05b] Wikipedia. Coordinated Universal Time.
http://en.wikipedia.org/wiki/UTC (2005).

[Wikipedia 05c] Wikipedia. Global Positioning System.
http://en.wikipedia.org/wiki/Global_positioning_system (2005).

[Wikipedia 05d] Wikipedia. Regular Expressions.
http://en.wikipedia.org/wiki/Regular_expression (2005).

http://www.oreillynet.com/pub/a/network/2005/03/14
http://www.sei.cmu.edu/publications
http://www.faqs.org/rfcs/rfc2821.html
http://ultimate.cs.ucdavis.edu/SecSemApril04.ppt
http://www.sendmail.com/pdfs/datasheets/ds_hvms.pdf
http://sourceforge.net/projects/swatch
http://www.logparser.com/
http://en.wikipedia.org/wiki/ARIN
http://en.wikipedia.org/wiki/UTC
http://en.wikipedia.org/wiki/Global_positioning_system
http://en.wikipedia.org/wiki/Regular_expression

[Wikipedia 05e] Wikipedia. Simple Mail Transfer Protocol.
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
(2005).

[Wikipedia 05f] Wikipedia. SQL. http://en.wikipedia.org/wiki/SQL (2005).

CMU/SEI-2005-HB-003 149

http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://en.wikipedia.org/wiki/SQL

150 CMU/SEI-2005-HB-003

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

September 2005
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

First Responders Guide to Computer Forensics: Advanced Topics
5. FUNDING NUMBERS

FA8721-05-C-0003
6. AUTHOR(S)

Richard Nolan, Marie Baker, Jake Branson, Josh Hammerstein, Kris Rush, Cal Waits, Elizabeth Schweins-
berg

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-HB-003

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

169
13. ABSTRACT (MAXIMUM 200 WORDS)

This handbook expands on the technical material presented in SEI handbook CMU/SEI-2005-HB-001, First
Responders Guide to Computer Forensics. While the latter presented techniques for forensically sound col-
lection of data and explained the fundamentals of admissibility pertaining to electronic files, this handbook
covers more advanced technical operations such as process characterization and spoofed email. It describes
advanced methodologies, tools, and procedures for applying computer forensics when performing routine log
file reviews, network alert verifications, and other routine interactions with systems and networks. The mate-
rial will help system and network professionals to safely preserve technical information related to network
alerts and other security issues.

14. SUBJECT TERMS

computer forensics, information security, spoofed email, log file
analysis, data recovery, computer security incident

15. NUMBER OF PAGES

168

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	First Responders Guide to Computer Forensics: Advanced Topics
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Abstract
	1 Module 1: Log File Analysis
	2 Module 2: Process Characterization
	3 Module 3: Image Management
	4 Module 4: Capturing a Running Process
	5 Module 5: Understanding Spoofed Email
	References

