HANDBOOK
CMU/SEI-2005-HB-003

First Responders Guide
to Computer Forensics:
Advanced Topics

Richard Nolan

Marie Baker

Jake Branson

Josh Hammerstein

Kris Rush

Cal Waits

Elizabeth Schweinsberg

September 2005

——=—— (CarnegieMellon
——— Software Engineering Institute

Pittsburgh, PA 15213-3890

First Responders Guide
to Computer Forensics:
Advanced Topics

CMU/SEI-2005-HB-003

Richard Nolan

Marie Baker

Jake Branson

Josh Hammerstein

Kris Rush

Cal Waits

Elizabeth Schweinsberg

September 2005

CERT Training and Education

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

(L

Christos Scondras
Chief of Programs, XPK

This work is sponsored by the SEI FFRDC primary sponsor and the Department of Homeland Security. The Software Engi-
neering Institute is a federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2005 Carnegie Mellon University.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-1S" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

EXECULIVE SUMIMANY ...t e e et s s e e e e e et s s e e e e e e e aenaa s e eeeeeeennees Xi
N 1] = T xiii
1 Module 1: Log File ANalYSIS ...t e e 1
1.1 SWALCh oo 3
1.1.1 SwatCh LOg MONITOI.....uueiiii et eeeeens 4

1.1.2 Swatch INStallationeevviiiiiiiiiiiiiiiiiiiieeiieeeeeeeeenn. 5

1.1.2.1 Installing Perl Modules............cooovviiiiiiiiiiiiicceeece e, 5

1.1.2.2 Installing SWatChccooiiiiiiiiiiiee e 6

1.1.3 Swatch Configurationccovviiiiiiiii e 8

1.1.3.1 The Configuration File Location.............cccccceeeeviiiiiiinnnnnn. 9

1.1.3.2 Adding Rules to the Configuration Filec.cccccceeoe. 9

O S Y= o T = o3 U1 e o 15

I I S T U 0] 0 =V 17

1.2 Microsoft Log Parser 2.2........ccccciiiiiiiieeeeeeeee e 18
1.2.1 Microsoft Log Parser Featuresccccvvvvveevieeeieeeiieeiiieiieeeeeeee 20

1.2.2 Log Parser Installationcccccevevvieviieiiiiiiiieiieeieeeeeeeeeeeeeeeeeeee 21

1.2.3 Log Parser Input and OULPULcoeevviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 22

1.2.3.1 INPUL FOMMALS....ciiiiiiiieiie et 22

1.2.3.2 OUtPUL FOMMALS ... 24

1.2.4 Log Parser QUEIIEScocevviiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeee e 26

1.2.4.1 Query EXamples ... 27

1.25 Log Parser COM ODjJeCtS....ccouvviiiiiieiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeae 29

1.2.5.1 Creating Custom Input Formats............ccccccvvvvvvienneennnnn. 29

1.2.5.2 Using the Log Parser COMAPIccccccvviiiiiiiniinnnnnn, 30

1.2.6 Log Parser EXeCULIONoovviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 31

I A W 0 01 = Y 33

2 Module 2: Process Characterization ... 35
2.1 Understanding a RUNNING PrOCESScooiiiiiiiiiiiiieeeeeiieieee e 36
201 ODJECHIVES ..ttt e 37

2.1.2 Programs, Processes, and Threads..........cccccccvvvvnvinnninennnnnnnnnn. 38

203 TRIEAUS ..euuiiiiiiiiiiietieet s 39

2.1.3.1 Displaying Threads for a Running Process..................... 39

CMU/SEI-2005-HB-003 i

2.1.3.2 Sysinternals Process EXPIOrer........ccccccoviiiiiiiiieeeeeennnnnns 40

2.1.4 Process Tree StrUCTUIE ...couuviiii e 43
2.1.4.1 PSErEe (LINUX).ceiieeiiiiiiiiiieieeee st e e 44
2.1.4.2 LINUX PS —A oottt e e e 44
2.1.5 Process DeSCriptiONSuuuiiiiiiiiiiiiiiiiie e 46
2.1.6 Process Hashes (National Software Reference Library)......... 47
2.1.7 Process Analysis CheCKIiSt.........ccccuviiiiiiiiiiiiiecee e 49
2.1.8 Common Process CharacteristiCScccoeevveiiiiii, 51
2.1.8.1 Process Filenames...........uuuuuuurimmmimmnriniiiiniinnnnnnnnnnnnnnnnnnns 51
2.1.8.2 OPEN POIS ..cceei e 53
2.1.8.3 OPEN FIlES ..ot 55
2.1.8.4 Base PriOritycccoveeiiiiiii et 56
2.1.8.5 Process Times and Terminated Processes..................... 58
2.1.8.6 Location of Process Image.......cccoeveevvvveeiiiiiiieeeeeeeeennnnnnn, 60
2.1.8.7 SUurvivable ProCeSSESuuuuurirrrimmriiniiiiniinninnninnnnnnnnnnnns 61
2.1.8.8 Process FOrensiC TasKS.........uuuuuuuivurimmeiiiiiiiiiiiiienniinnennnns 66
2.2 Automated Process ColleCtioncceeeeeiiiiiiiiiiiiiiiice e 76
2.2.1 ODJECHIVES ... 77
2.2.2 First Responder Utility (FRU)coooiiiiiiiiice e, 78
2.2.2.1 First Responder Utility (FRUC) Setupccvvvveeeeennnnnnns 79
2.2.3 Forensic Server Project (FSP).....ccccccvvieeiii e, 82
2.2.3.1 FSP SEIUP .eevvvttinniiiiiiiiiiiiiiiiiiiii e 82
2.2.3.2 Testing FRUCoooiiiiiiiee et 83
2.2.3.3 OUutput Of FRUCoiiiiiiiiiiiiiiiie e 84
3 Module 3: Image Management..........ccovvvvviiiiieeiieeiieeeieeeeeeeeeeee e 87
3.1 Slice and Dice With dd............uuuuuiimmiiiiiii e 88
4 Module 4: Capturing a RUNNING PrOoCESScuviiiiiiieiiiiiiiiiieeeee e 101
4.1.1 Hedons and DOIOIS.......cooiiiiiiiiiiiiieeee et 103
4.1.2 Capturing a Process on a Windows System..........cccccceeeeenns 104
5 Module 5: Understanding Spoofed Email.........ccccccooiiiiiiiiiniiiiiiiiiiiieeenn 113
5.1 ODJECHIVES .ot 114
5.2 Identifying Spoofed Emailc.cccccuvueiiiiiiiiiiii 115
5.2.1 Definition of the Problemccccoiii 116
5.2.2 Understanding the Process of Sending and Receiving
EMail ..o 117
5.2.2.1 The Life Cycle of an Emall...........ccccoeeeeiiiiiiiiiiiiiees 117
5.2.2.2 Overview of the Simple Mail Transfer Protocoal.............. 119
5.2.3 Understanding Email Headers...........cccccceeiiiiiiiiiiiiiiieeeees 123
5.2.3.1 Interpreting Email Headers...............ccevvvvviiiiniieeeeeennnns 123
5.2.4 How Spoofed Email IS Sentccccviiiiiiiiiiiiiiiiiiieceee e 127
i CMU/SEI-2005-HB-003

5.2.4.1 Open Mail Relaycueeiiiiiiiiiiiiiiiie e 127

5.2.4.2 Compromised Machines..........cccccceeeiiiiieiiiiiiiiiiiiie e, 129

5.2.4.3 Self-Owned Mail SErverscccuueveevveeveveveneeineennnnnnnns 129

5.2.4.4 Temporary ACCOUNTScccuuiiieieiiiieeeeiineeeeineeeeeineeeeeenn 129

5.2.4.5 Hijacked ACCOUNIScooiiiiiuiiiiiiiiiee e 129

5.2.5 How to Identify Spoofed Emailccccceeiiiiiiiiiiiiiiiii e, 130
5.2.5.1 Carefully Examine the “Received” Headers.................. 130

5.2.5.2 Look Out for Spoofed Headerscccooeevvvvevviiennneenne. 132

5.2.5.3 Comparing TiMeStampPsSc.uuuerreeeeerriiiiiiiireeeeeee e 133

5.3 Tracing the Origins of a Spoofed Email..........cccccccoiniiiiiiiiis 135
LR 701 A £ 1] Lo T q U 1 I 136
B5.3.2 WHROIS e ———— 139
5.3.2.1 [P Block Identification.................cuuueeieeeieeeieeeiieeiiienieennens 139

5.3.2.2 WHOIS Information for a Domain Name 142

5.3.3 TFACEIOULE ..eueiie e e 144
5314 SAM SPAUE.....coiiiiiiiiit e 145

5.4 SUMIMENY oeoeiiiiiiiieeiieeeeee et ees e e r e e nre e e e rennnrnnnrnnnrnnnes 146
R LY (=] €= (o= T TR 147

CMU/SEI-2005-HB-003 iii

CMU/SEI-2005-HB-003

List of Figures

Figure 1: Example Run of the Swatch Configuration File.............ccccccooniiiiiiinnneenn. 14
Figure 2: Example RUN Of PSLIST..........uuuiuiiiiiiiiiiiiiiiiiiiiiiiiiii e 39
Figure 3. Sysinternals Process Explorer Utility............cccceviiiiiii i 40
Figure 4. Verifying a Process Image in Process EXplorerccccvvviiiiieiennnnnns 41
Figure 5: The Strings Tab in Process EXPIOrerccccvvviviiiviiiiriiiniiiiiiiniinnninnninnns 41
Figure 6: Displaying a Process Tree USiNg PSLISt..........ccouiiiiiiiiiiiiiiiiiiiiiieeeenn 43
Figure 7: Displaying a Process Tree USINg PSIEEccovviiiviiirieieeeiiiiiiiiieeeeeenn 44
Figure 8: Displaying PID AsSignMents USING PSvevvrrrrrrmmmmmreiiieienneennenneennnennnennnes 45
Figure 9: WinTasks Process DesCripliONocuuuiiiiiiieieieciies e e e e eeaenns 47
Figure 10: Listing Process Filenames Using puliSt...........coooviiiiiiiiiiiiiiiiiiiine e, 52
Figure 11: Displaying Open Ports Using fPOrtuuvviiiiiiiiiiiiiiiiiiiiiiiiieiinennn, 53
Figure 12: Displaying Open Ports UsinNg NetStat...........ceeeeeiviiiiiiiiiiiieeeeiiiiiiieeeeeen 54
Figure 13: Viewing Handles Using handle..............cccouveiiiiiiiiiiiieeceeee 55
Figure 14: Displaying Which Process Has Port 6002 Openeeeveeeeeeeeeennennns 56
Figure 15: Displaying Who Has the Bash Shell Open........ccccccoooiiiiiiiiiiii e, 56
Figure 16: Displaying All the Currently Open Files by the User Root...................... 56
Figure 17: Listing Priority Levels USiNg PSHiSt...........uvuiiiiiiiiiiiiiiiiiiiiiiiiieininanns 57
Figure 18: Listing Priority LeVels USING 0P . ..ccovviiiiiiiiiiieeeeeeeiiiieieeee e 57
Figure 19: Displaying the Priority Level for a Specific Processccccoccvvvvvvenenn. 57

CMU/SEI-2005-HB-003 v

Figure 20: Checking Uptime Using PSUPLIME ..o, 58
Figure 21: Checking Elapsed Time for a Process Using pslist.........cccccceevvnniiinnnen. 58
Figure 22: WINdowWs EVENELOQ ...coooiieieiiieee e 59
Figure 23: psloglist Command..........ccoooiiiiiiiii 59
Figure 24: Locating a Process Image Using LiSIDLLScccooeviieiiiieiiciie e, 60
Figure 25: Locating a Process Image USINg PS......ccooovviiiiiiiii e, 60
Figure 26: Locating a Process Image by PID..............cccceiiiii 61
Figure 27: autorunsc.exe COMMANDc.uuuiiiiiiieeeiiiiiiie e 62
Figure 28: The chkconfig -list Command...............coooeeeii 63
FIGUrE 29: A CION LOQ oo oo 64
Figure 30: The Crontab Command.............ccoiriiiiiiiii e 65
Figure 31: The svchost.exe 780 ProCess.........cccccciiiiii e, 67
Figure 32: listdlls.exe Output for svchost.exe..........cccccceeiiii 68
Figure 33: MD5deep ULIIILY.........euiieiiieieeeeii e 69
Figure 34: Performing a String Search Using grep......oooovveeeeeee 69
Figure 35: The mshearts.exe 2840 ProCeSSccoovveiiiiiiiieeeeeeeeeeeeeee e 70
Figure 36: listdlls.exe Output for the mshearts Process.........cccccccevvvevviiciiiiieeeeeenns 71
Figure 37: MD5deep.exe Command Line Arguments ..., 71
Figure 38: strings Command ...t 73
Figure 39: strings Command OUIPULeuuiiiiiiiieeiiiiiiiie e 73
Figure 40: Hash of John the RIPPer ... 74
Figure 41: First Part of the fruc.ini Filecoo 80
Figure 42: Second Part of the fruc.ini File.........cccooooiiii e, 80
vi CMU/SEI-2005-HB-003

Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:

Figure 51:

Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:

Figure 64:

Final Part of fruc.ini File..........cooooiiiiiii e 81
FSP SeUP .o 83
FRUC Utility Commandcoooiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee 83
FSP Command OUIPULeviiieiiiiiiiiiiiiie e 84
FRUC OUPUL File ... 85
FRUGC AUIt Fle..ceiiiiiiiiiieeeeee et 85
Result of Using md>5 to Calculate a Hash Value.................cccccvvvien, 92
Confirming the Result of Splitting IMagescccccooviiiiiiiiiiieee 92

Result of Using cat and md5sum to Check the Integrity of Split

IMAGES ...t 93
Result of Using md5sum to Check the Integrity of a New Image............ 94
Finding a .jpg Tag in a Captured Imageccccevvvvviiiiieiiiieieeeeeeeeeeee 96
Decimal Form of the Beginning of the .jpg Fileccoovviiiiiiiirreeiinnn, 96
Searching for the End of the .jpg File ..., 97
Tag Delineating the End of a .jpg File.........oooooeiiii 97
Decimal Address for the End of the .jpg Filecccccooiiiiiiiiiie 97
Calculating the Size of the .jpg File ... 97
File Carved Out USiNg ddoooiiiiiiiiiiieeeeeeeeeeeeeeeee 98
Viewing Carved Jpg File......cooo e 98
Running a Trusted Commandccccoeiiiiiiii 106
Command Shell Spawned from a Trusted CD...........ccccceiiiiiiiiinnnns 106
netcat Command to Listen on Port 3333 ... 106

Using Trusted pslist and netcat to Specify IP Address and Listening

CMU/SEI-2005-HB-003 vii

Figure 65: Looking for Suspicious Processes Using cat.............ccceeeeeeeeneeene. 107
Figure 66: SuspiCioUS ProCess FOUNG............uuuiiiiiieiiiiiiiiiieceee e 107
Figure 67: netcat Command to Listen on POrt 4444ccoooiiiiiiiiiiiiieeeeeeeee, 108
Figure 68: Specifying netcat Listener Machine and Port.............ccccovvvveieiiiniinne. 108
Figure 69: Viewing Path t0 a SUSPICIOUS PrOCESS........cccvvvviviiiiiiieeeeeeeviiieie e e e e 108
Figure 70: Setting Up a Listening Session on a Suspicious Process.................... 109
Figure 71: Collecting the Executable of a Suspicious Processcccceeeeee. 109
Figure 72: Calculating a Hash of a Captured ProCessccccoovuvviiiiiieeiininnnnne. 109
Figure 73: The Life Cycle of an Email ... 118
Figure 74: Mail Delivery for Valid USErSccoooiiiiioioi e, 128
Figure 75: Spoofed Email via an Open Relaycccccooevvviiiiiiii e 128
Figure 76: nslookup of Valid Fully Qualified Domain Nameooeeeee. 137
Figure 77: nslookup of Falsified Host Information...............cooooeeiieiiii e, 138
Figure 78: WHOIS Query Of ARINcooiiiiiiiiiiiiiece e 140
Figure 79: WHOIS Query of APNIC ... 141
Figure 80: WHOIS Query Of JANA ..o 142
Figure 81: Query of .com WHOIS Database..........c...cccevvviiiiiii e 143
Figure 82: Query of the Registrar's WHOIS Database..................ccccceel. 143
Figure 83: Traceroute EXample ..o, 145
viii CMU/SEI-2005-HB-003

List of Tables

Table 11 ACHONS IN SWALCNcooiiiiiiiiiiiee e 11
Table 2: tinme_regex for Popular ServiCescccccvvvviiiiiiiiiiieiieieeeeeeeeeeeeeee 13
Table 3: Common INPUL FOIMALS.........couviiiiiieeeiceecr e 22
Table 4. L@ 11 o1 U) o] 1 4= £ 24
Table 5: Misc Log Parser Commands............ccccccvvvviiiiiiiiieeeeeeee e 31
Table 6: A Subset Of PS OPLIONSuuviiiiiieiiiiiiie e 52
Table 7: Output Headings for pS and tOPuvvviiiieiiiiiiiiiiieee e 52
Table 8: dd SYNEAX ...coiiiiiiiiiiiei et 88
Table 9: Tools for Capturing RUNNING ProCESSESiiviiiiiieiiiiiiii e 104
Table 10: The Life Cycle of an Emalilouiiiiiiiiiiiiiii e 118
Table 11: Email HEAUEIS........oiiiiiiiiiiiiie e 124

CMU/SEI-2005-HB-003 iX

CMU/SEI-2005-HB-003

Executive Summary

First Responders Guide to Computer Forensics: Advanced Topics expands on the technical
material presented in SEI handbook CMU/SEI-2005-HB-001, First Responders Guide to
Computer Forensics [Nolan 05]. While the latter presented techniques for forensically sound
collection of data and reviewed the fundamentals of admissibility pertaining to electronic
files, this handbook focuses exclusively on more advanced technical operations like process
characterization and spoofed email. It is designed for experienced security and network pro-
fessionals who already have a fundamental understanding of forensic methodology. There-
fore, emphasis is placed on technical procedures and not forensic methodology.

The first module focuses on log file analysis as well as exploring techniques for using com-
mon analysis tools such as Swatch and Log Parser. The second module focuses on advanced
techniques for process characterization, analysis, and volatile data recovery. The third module
demonstrates advanced usage of the dd command-line utility. Topics include how to slice an
image and reassemble it with dd, carving out a section of data with dd, and imaging a running
process with dd. The fourth and final module examines spoofed email messages. This module
looks at the RFCs for email, describes how email messages are spoofed, and presents some
techniques for identifying and tracing spoofed email.

Our focus is to provide system and network administrators with advanced methodologies,
tools, and procedures for applying sound computer forensics best practices when performing
routine log file reviews, network alert verifications, and other routine interactions with sys-
tems and networks. The final goal is to create trained system and network professionals who
are able to understand the fundamentals of computer forensics so that in the normal course of
their duties they can safely preserve technical information related to network alerts and other
security issues. This handbook is not intended to be a training guide for computer forensics
practitioners, but rather an advanced resource for system and network security professionals
who are charged with performing first responder functions. The target audience includes sys-
tem and network administrators, law enforcement, and any information security practitioners
who find themselves in the role of first responders. The handbook should help the target au-
dience to

o install, configure, and use Swatch to analyze log files

o install, configure, and use Log Parser to analyze log files
e understand advanced elements of a running process

o perform an automated collection of volatile data

e carve out data using the dd command-line utility

e use the dd command-line utility to slice and reassemble images and files

CMU/SEI-2005-HB-003 Xi

o understand spoofed email

o identify reliable information in an email header

Xii CMU/SEI-2005-HB-003

Abstract

This handbook expands on the technical material presented in SEI handbook CMU/SEI-
2005-HB-001, First Responders Guide to Computer Forensics. While the latter presented
techniques for forensically sound collection of data and explained the fundamentals of admis-
sibility pertaining to electronic files, this handbook covers more advanced technical opera-
tions such as process characterization and spoofed email. It describes advanced methodolo-
gies, tools, and procedures for applying computer forensics when performing routine log file
reviews, network alert verifications, and other routine interactions with systems and net-
works. The material will help system and network professionals to safely preserve technical
information related to network alerts and other security issues.

CMU/SEI-2005-HB-003 Xiii

Xiv CMU/SEI-2005-HB-003

1 Module 1: Log File Analysis

CERT

First Responders Guide to
Computer Forensics:
Advanced Topics

Module 1:
Log File Analysis

© 2005 Carnegie Mellon University % Software Engineering Institute

This module focuses on log file analysis, specifically post-event analysis using Swatch and
Log Parser. We explain how to install, configure, and execute Swatch and Log Parser and
provide several sample configurations for each.

CMU/SEI-2005-HB-003

CERT

First Responders Guide to
Computer Forensics

Swatch

© 2005 Carnegie Mellon University % Software Engineering Institute

2 CMU/SEI-2005-HB-003

Overview

Why Swatch?
Installation
Configuration

Execution

Forensics, in this case, is the act of looking for events
after they have happened, not performing an
investigation for law enforcement.

S==CFAT

1.1 Swatch

The focus is on using Swatch and Log Parser as forensic analysis tools, meaning that they
will be used on logs after an incident has occurred. If you are planning to use these tech-
niques on files involved in a law enforcement investigation, please make sure you prepare the
files according to established best practices before use.

CMU/SEI-2005-HB-003 3

Swatch Log Monitor

Swatch, the Simple Watcher, is an open
source log monitoring tool written in Perl for
use primarily on UNIX/Linux systems.

Swatch can be used to monitor current logs on
running servers, or to examine older logs.

The configuration file contains a list of regular
expressions to look for and actions to take, if
any are found, called rules.

While originally designed for use with syslog
files, Swatch can be used on any file.

— CERT

1.1.1 Swatch Log Monitor

Log files are useful only if they are read. After an incident, log files often have clues as to
what happened. However, many servers produce large volumes of log information, often
spread out over more than one file, so sifting through this data can be tedious and time con-
suming. As an added problem, different servers have different log formats. If it is necessary
to compare files, it can be challenging to match up fields.

Swatch, the Simple Watcher log monitoring tool, is capable of searching a file for a list of
strings and then performing specific actions when one is found. It was designed to do real-
time monitoring of server log files but can also be set to process a stand-alone file. Swatch
was designed to work with syslog files, but it can be used on any file.

Swatch was written in Perl, and because of the way it is installed it is best used on a Linux
system. It is an open source tool, and the project is maintained on SourceForge.

Throughout this module we will consider more heavily the case where Swatch is used to ex-
amine older log files as opposed to active log files.

4 CMU/SEI-2005-HB-003

Swatch Installation

Requirements: Perl 5, make utility, tar utility

Download Swatch from the SourceForge project:
http://sourceforge.net/projects/swatch/

Download the throttle patch from http://www.cert.org

Obtain and install the additional Perl modules:
= Time::HiRes
= Date::Calc
= Date::Format
= File:Tail
Make Swatch — On the command line, type in progression:

tar zxvf swatch-3.1.1.tar.gz
patch —pO0 < throttle.patch
cd swatch-3.1.1

perl Makefile.PL

make

make test

make install

CERT

1.1.2 Swatch Installation

Swatch has the same installation process as a Perl module. You download a tarball, uncom-
press it, expand it, and build it. The tool installs itself in /usr/bin, and you can use it from any
directory. It also installs a manual page.

To begin, make sure that Perl 5 is installed on the machine. Later versions of Perl may come
with some of the necessary modules installed already. You also need the ability to use the
GNU utility make to fully install Swatch.

1.1.2.1 Installing Perl Modules

If your Linux distribution offers versions of the Perl modules needed to support Swatch, it is
best to get the operating-system-specific ones. Otherwise, you will need to obtain them from
either the module’s developer’s web site or from a centralized repository such as the Com-
prehensive Perl Archive Network (CPAN).! CPAN indexes most of the Perl packages avail-
able, makes the list searchable, and has them available for download. They also have links to
the developer’s web site if you would prefer to get the modules straight from the source.

To install Swatch you need these modules:?
e File:Tail —in File-Tail-0.99.1.tar.gz
e Date::Calc — in Date-Calc-5.4.tar.gz

1
2

http://www.cpan.org
All module version numbers are current at time of printing.

CMU/SEI-2005-HB-003 5

http://sourceforge.net/projects/swatch/Download
http://www.cert.orgObtain
http://www.cpan.org

o Date::Parse — in TimeDate-1.16.tar.gz

o Time::HiRes — in Time-HiRes-1.66.tar.gz

To support these you might also need
e Bit::Vector — in Bit-Vector-6.4.tar.gz
e Carp::Clan - in Carp-Clan-5.3.tar.gz

Once the tar file is on the machine, you must decompress and expand it before it can be in-
stalled. Once expanded, read the INSTALL file to make sure that the module has the standard
installation commands. For these modules, there is a Perl script called Makefile.PL that cre-
ates a makefile specific to the machine. Next, run the make file three times: once to initialize,
once to test, and then once to install. After that, the package is ready to use. In order for other
users to be able to use these modules, they must be installed by root. The commands follow
in shaded boxes (the normal text is what is sent to the console):

| tar zxvf perlnod.tar.gz |

Lists all the files in perlnod.tar

cd perl nod
perl Makefile. PL

Witing Makefile for Perl::Md

| make |

Check for errors

| make test |

Look for “All tests successful”

| make i nstal l |

Check for errors

Repeat for the other packages and you are ready to install Swatch itself.

1.1.2.2 Installing Swatch

Installing Swatch involves the same procedure as the Perl modules. First, download the tar-
ball to the local machine from http://sourceforge.net/projects/swatch. There is a patch needed
to enable the throttle action to fully work. Download that from http://www.cert.org. These
instructions are for Swatch 3.1.1 (the normal text is what is sent to the console):

| tar zxvf swatch-X X X tar.gz |

Lists all the files in swatch-X X X. tar

| patch —p0 < throttle. patch |

6 CMU/SEI-2005-HB-003

http://sourceforge.net/projects/swatch
http://www.cert.org

The character after the —p is a zero

cd swat ch- X. X. X
perl Makefile. PL

Witing Makefile for swatch

If Time::H Res, Date::Calc, or Date::Parse are missing it will say

| make

Check for errors

| make test

Look for “All tests successful”

| make install

Check for errors

Swatch is now ready to be executed.

CMU/SEI-2005-HB-003

Swatch Configuration—Rules 1

The configuration file contains a list of rules

Default file location is SHOME/.swatchrc, but it
can be any name and any location

The three parts of a rule:

= Event — “watchfor” or “ignore”
= Pattern — regular expression pattern to look for

= Action — what the script does when the pattern
is found

— CERT

1.1.3 Swatch Configuration

The configuration file is the source of Swatch’s power. It is a text file of rules that are used to
create the script that will be run against the log file. This topic is about how to develop your
own configuration file.

Before you begin adding rules, determine what you are trying to find. Perhaps you want to
look for Nessus attacks in your Apache log files, or find when people try to use an SMTP
server as an open relay. Make a list of strings or regular expression patterns that you might
need. Keep in mind that creating a good configuration file is an iterative process, and it may
take a few rounds to extract the desired information from the file.

8 CMU/SEI-2005-HB-003

Swatch Configuration—Rules 2

Rules are looked for in the order they appear in the configuration
file.

Event
Example rules: Pattern
xnore /127\.0\.0\.5/ —
-
watchfor/Nessus/
- throttie 0:10:00,key=nessus S—

T[]

= The first rule looks for the string “127.0.0.5” and ignores any log
entries that contain it. The second rule looks for log entries that
contain “Nessus” and echoes them to the console, but only at the
rate of one entry every 10 minutes.

= CERT

1.1.3.1 The Configuration File Location

By default, Swatch looks for the configuration file .swatchrc in the home directory. If this file
is not found, it uses a default configuration of

wat chfor /.*/
echo

This merely echoes every message in the log file to the console. This is not any more useful
than inspecting the log file by hand. To harness the power, a customized configuration file
should be created (this is addressed in the next section, 1.1.3.2).

The default name is .swatchrc, but it can be whatever you want. Configuration files for dif-
ferent types of log files may be identified by a distinct name. One might call their Apache
configuration file apache.swatchrc and their sendmail sendmail.swatchrc. The file can be
stored anywhere that is accessible from the command line, not just in the home directory. If a
different name or location is used for the configuration file, it is added as an argument to the
command line when Swatch is executed (this is discussed in Section 1.1.4).

1.1.3.2 Adding Rules to the Configuration File

Rules are a list of keywords and values that are used to make conditional statements to check
against, and actions to take if one is true. They have three parts: the event, the pattern, and the
action(s).

CMU/SEI-2005-HB-003 9

1.1.3.2.1 Types of Events

There are two types of events in Swatch: “watchfor” and “ignore.” The keyword “watchfor”
looks for the specified pattern in messages in the log file. The “ignore” keyword will skip the
rest of the rules when a message matches the pattern.

By default, the first rule that matches a message will be the only rule that acts on that mes-
sage. This property can be harnessed by using the “ignore” event to filter out messages. For
example, since you know that the system administrator always uses the same machine to do
penetration testing, you create an “ignore” rule for messages that come from a specific inter-
nal IP address, 127.0.0.5, and list the rule for Nessus scans after it so that internal scans will
not cause alerts. In this case, you will want to put these two events in this order:

ignore /127\.0\.0\.5/

wat chf or / Nessus/

throttle 0:10: 00, key=nessus
echo

1.1.3.2.2 Types of Patterns

The value for the event keyword is the regular expression pattern that follows on the same
line. The simplest regular expression is a string to match character by character enclosed in
“I”; for example, “/Nessus/” matches only the substring “Nessus” if it appears anywhere in
the line. If there are characters in the search string, the capitalization must be the same for the
string to match. If you want “nEsSuS” to also match, then you need to put an “i” after the
second “/” to indicate a case insensitive search.

Regular Expressions

A regular expression is a pattern that describes or matches a set of strings [Wikipedia 05d]. It
is a syntax for describing more general criteria for matching strings than simply matching a
word in a string. For example, with a regular search you could find the substring “cat” in
“catapult.” But a regular expression would let you look for a string that starts with “ca” and
ends with “t,” and you would find both “cat” and “catapult.”

For more examples of regular expressions in general, see the Wikipedia entry:
http://en.wikipedia.org/wiki/Regular_expression

For more examples of regular expressions in Perl, see the Perl manual page:
http://www.perl.com/doc/manual/html/pod/perlre.html

1.1.3.2.3 Types of Actions

Actions are what the script does when it matches a pattern. They range from printing the log
message to the console to executing a separate script to call a pager. There can be multiple

10 CMU/SEI-2005-HB-003

http://en.wikipedia.org/wiki/Regular_expression
http://www.perl.com/doc/manual/html/pod/perlre.html

actions associated with each rule. The “ignore” event has its action built in, namely, to stop
looking at the log entry. The complete list of actions is found in Table 1 [SourceForge 04]:

Table 1: Actions in Swatch

Action

Description

echo [nbdes]

Prints the log message to the console.

Takes an optional value of a text color, a background color, or a
font weight.

Possible values are bol d, under scor e, i nver se, bl i nk, bl ack,
red, green, yel | ow, bl ue, magent a, cyan, whi t e, bl ack_h,
red_h, green_h,yel | ow_h, bl ue_h, magenta_h, cyan_h, and
white_h.

bel | [n]

Prints the log message to the console and then rings the bell \007)
n times.

throttle HMS

[, key=l og| <i dentifier>]
[,time_frometi mest anp]
[,time_regex=<regex>]
[, threshol d=N]

t hr ot t | e reduces the number of times an action is performed on
messages matching the same pattern in the specified duration.

Hours, minutes, and seconds must all be specified. However, the
time does not need to be specified if t hr eshol d is being used.

The key is the identifier that is stored to compare to new mes-
sages. | og means use the exact log file, excluding a syslog time-
stamp, if present, and is the default. Any other string will be used
exactly as requested/indicated.

Setting the time_from option to timestamp indicates that the
time in the log message should be used instead of the system time
for comparisons. This is best for examining a log file.

The ti me_r egex lets you specify a regular expression to match the
timestamp of the message. The default is a regular expression for
the syslog timestamp.

The t hr eshol d=Nacts on the first instance and on every Nth in-
stance after that. It repeats counting once N messages have been
found. Each instance is appended with “(t hreshol d N ex-

ceeded).”

exec comand

Executes the command listed.

If arguments are needed, they may be substituted with fields in the
log message. $Nis replaced with the Nth field in the line. A $0 or a
$* uses the entire message. The - - awk- f i el d- separ at or switch
must be used during execution (see Section 1.1.4).

CMU/SEI-2005-HB-003

11

Action Description

mai | [ad- Sends an email to the address(es) listed with the subject listed con-

dresses: bob: j oe: .\] taining the matched log messages. Must have a sendmail compati-

[, subj ect =Subj ect] ble server installed. Default recipient is the user who is running the
program.

pi pe com Pipes the log messages into the command. keep_open keeps the

mand[, keep_open] pipe open until a different pipe is activated or Swatch exits.

write [user:user:.] Useswri t e(1) to send the message to the users listed. The user

running Swatch is the default.

conti nue Tells Swatch to evaluate this message against the rule set.
qui t Causes Swatch to exit.
when=day: hour This action is a modifier to all the other actions indicating that the

action should occur only during the times specified. For example,
when=1- 5- 8- 17 indicates that the action should occur only Mon-
day-Friday between 8 a.m. and 5 p.m.

The exec command can be used to write log entries to a file. Redirection from the console
does not work because there are unprintable characters on the command line that are printed
in the resulting file and are meaningless and in the way. Use this action:

| exec “echo $* >> output.txt” |

When examining a file, the most useful actions will be echo, exec, and throttle. The others are
more oriented for when you need to be alerted to a new development in real time.

It is also possible to include Perl in the configuration file if you want to do something such as
define a regular expression for repeated use. Start each line with “perlcode” and end it with a
semicolon.

The throttle command can be very powerful. It will take some practice to get the right bal-
ance of regular expressions to search for timing and to determine whether throttle or thresh-
old is better.

For the regular expressions in the t i me_r egex, all backslashes must be escaped, (e.g., put in
two instead of one). Regular expressions on the action line with commas get cut off, so you
need to put the expression in a perlcode. This includes both 11S formats. For example:
perlcode ny $iis_tinme = “(\d{4}-\d{2}-\d{2}\s+\d{1,2}:\d{2}:\d{2}\s)";
wat chf or / WEBROOT DI RECTORY TRANSVERSAL/
throttle 0:04: 00, key=web, ti me_fronrti mestanp, ti ne_regex=$iis_tine
echo bl ue

12 CMU/SEI-2005-HB-003

Some log formats may not have ti ne_r egex. Table 2 lists t i ne_r egexes for the log files on
popular services:

Table 2: time_regex for Popular Services

Log File Timestamp Regular Expression

Apache 04/Mar/2005:11:38:45 \d{2PWVWw{3pW\d{4}:\d{2}:\d{2}:\d{2})
access_log

Apache Fri Mar 04 11:38:51 2005 | (\W{3F\s+\W{3P\s+\d{2\\s+\\d{2}:\\d{2}:\\d{2}\\s+\\d{4})
error_log;

ssh logs

11S6.0 and | 03/04/05, 11:38:51 (\d{2PN\d{2P\\d{2} \s+\d{1,2}:\d{2}:\d{2}\s)
later

1S 5.*, 2005-03-14 11:38:51 (\d{4}-\d{2}-\d{2H\s+\d{1,2}:\d{2}:\d{2}\s)
W3C Ex-

tended

The when command can be useful for identifying events that occur at abnormal times. Use it
to look for login attempts in the middle of the night.

The following is an example configuration file for a syslog setup that has two machines,
named “server” and “client,” logging to one file. The central syslog server resides on the
server. All facilities on the client log to this file. The client is running the default applications.
The server logs most facilities to the file and is running Apache (httpd) and Snort, in addition
to the basics.

Copies all of the entries fromthe client to a separate file
wat chfor / client /
exec “echo $* >> client.|og” #echoes the log entry to a file

Prints one entry every 4 mnutes (based on the tine in the logfile #for
any entries containing a Nessus attack keyword.
wat chf or /WEBROOT DI RECTORY TRANSVERSAL/

throttle 0:04: 00, key=webroot, ti me_frometi nest anp

echo bl ue

Searches for snort followed by portscan sonewhere in the log entry
Prints the first entry and then every 6th one both to the consol e and
a separate file
wat chf or /snort. *portscan/
throttle threshol d=6, key=ps
echo red
exec “echo $* >> portscan.| og”

CMU/SEI-2005-HB-003 13

Figure 1 is an example run of the configuration file on a syslog file (“(portscan)” and
“(http_inspect)” distinguish the different types of messages).

| Ele Edit View Terminal Go Help

[root@LinuxWorkstation swatchdemo]# swatch -c .swatchrc -f demo-syslog --awk-field-syntax
##% gwatch version 3.1.1 (pid:3738) started at Wed Mar 30 16:06:28 EST 2005

Mar 29 15:10:28 server snort: [122:1:0] (portscan) TCP Portscan {PROT0255} 192.168.30.50 -> 1
92.168.30.51

Mar 29 15:14:08 server snort: [119:18:1] (http_inspect) WEBROOT DIRECTORY TRAVERSAL {TCP} 192
.168.30.50:35786 -> 192.168.30.51:80

Mar 29 15:14:51 server snort: [122:1:0] (portscan) TCP Portscan {PROT0255} 192.168.30.50 -> 1
92.168.30.51 (threshold 6 exceeded)

Mar 29 15:17:58 server snort: [122:1:0] (portscan) TCP Portscan {PROT0255} 192.168.30.50 -> 1
92.168.30.51 (threshold 6 exceeded)

Mar 29 15:18:11 server snort: [119:18:1] (http_inspect) WEBROOT DIRECTORY TRAVERSAL {TCP} 192
.168.30.50:40827 -> 192.168.30.51:80 (seen 37 times)

[root@LinuxWorkstation swatchdemo]# I

Figure 1: Example Run of the Swatch Configuration File

14 CMU/SEI-2005-HB-003

Swatch Execution

Configuration file Examine this file
Swatch is run from the command line.

= swatch -c .swatchrc -f file.ldg

= This runs Swatch using the file .swatchrc as the configuration file
on file.log.

= Swatch can be run on only one file at a time, but multiple
instances of Swatch can be running at once.

Switch Use

-c config.file Name a specific configuration file

-f file.log Examine the specific file

-t file.log Tail the specific file (/var/log/messages is the default)

-p command Accepts its input from this command

= CERT

1.1.4 Swatch Execution

Swatch is run on the command line and has many options to specialize the execution. You can
identify the configuration file, the log file, how to monitor the log file, and even what charac-
ter(s) indicate a new log message. While most options will be listed, the focus is on the op-
tions that relate to running Swatch on a log file in a single pass. More information about all
the options can be found in the manual page.

-c filenane Or--config-file=fil enane

Indicates where the configuration file is. The default location is SHOME/.swatchrc.

-f filenanme Or --exam ne=fil enane

Indicates that Swatch should perform a single pass on the log file.

-t filename Or--tail-file=fil enane

This option enables Swatch to monitor a file as a service continues to log to it. This action is
the default, so if none of -f, -p, or -t is given, Swatch will tail either “/var/log/messages” or
“/var/log/syslog.”

-p comand Of - - r ead- pi pe=conmand

Monitors the data that is being piped in from the given command.

--awk-fi el d- synt ax
Tells Swatch to use the syntax for awk expressions. It is needed when the exec action is used.

CMU/SEI-2005-HB-003 15

--input-record-separat or=regul ar _expressi on

This option indicates that the default record separator of carriage return should be replaced
with the regular expression listed.

Other options include - - hel p and - - ver si on, which respectively give usage information and
the current version; - - scri pt - di r =pat h, which indicates where the temporary script should
be stored if not in the user’s home directory; and - - rest art -t i me=hh: nn{ amj pni , which
tells Swatch to restart at a particular time.

The most common usage will be

|swatch-c .swatchrc -f log_ file |

Remember to specify the complete path of the configuration file or the log file if either one is
not located in the local directory.

16 CMU/SEI-2005-HB-003

Summary

Swatch is a simple log monitor designed to run
regular expressions against a text log file.

= an effective tool for finding interesting or
anomalous events

» configured easily to watch for any type of entry
in any type of file

Many actions can be taken on matching
message logs, but for analysis “echo” will be
used most often.

— CERT

1.1.5 Summary

Swatch can be an effective tool for sifting through log files to find interesting or anomalous
events. The results serve as a jumping off point for further inspection of the files by leading
you directly to areas of interest. Or it can be used to filter out entries that you know can be
excluded so as to reduce the amount of material to examine by hand. Swatch can also be used
on other files, such as VMWare virtual disk files and disk images, to efficiently find strings in
data.

CMU/SEI-2005-HB-003 17

CERT

First Responders Guide to
Computer Forensics

Microsoft Log Parser

© 2005 Carnegie Mellon University % Software Engineering Institute

1.2 Microsoft Log Parser 2.2

This topic is an overview of the installation, configuration, and usage of Microsoft’s Log
Parser 2.2. The focus is on using Log Parser as a forensic analysis tool, meaning that it will
be used on logs after an incident has occurred. If you are planning to use these techniques on
files involved in a law enforcement investigation, please make sure you prepare the files ac-
cording to established best practices.

18 CMU/SEI-2005-HB-003

Overview

Why Log Parser?
Installation
Writing Queries
Execution

Forensics in this case is the act of looking for
events after they have happened, not
performing an investigation for law
enforcement

CMU/SEI-2005-HB-003

19

Microsoft Log Parser 2.2

Command line tool from Microsoft to process log files
using SQL-like queries

Can read in many formats and many types of log files

Output available in many formats—from text to XML
files to database storage

Easy generation of HTML reports and MS Office
objects

Log Parser functions usable in other scripts

— CERT

1.2.1 Microsoft Log Parser Features

Microsoft Log Parser 2.2 is the most recent incarnation of Microsoft’s log analysis tool. Re-
leased in January 2005, it contains many improvements and additions to make it useful to
anyone with a log file to process. Log Parser is free to download and use. It is a command
line tool; there is no GUI to make creating commands easier.

Log Parser uses SQL-like queries to sort through log files. It is very flexible and can be used
to read any text based file, file system objects, registries, and database formats.

Log Parser can format the text output into a variety of formats. It can also send output di-
rectly to a syslog server, a database, and MS Office charts, and can be used to create HTML
reports from a template.

Log Parser can also be used in other programs and scripts to bring its processing power to
other applications.

20 CMU/SEI-2005-HB-003

Log Parser Installation

Requirements: Windows 2000, 2003, or XP
Professional

Download Log Parser from Microsoft’'s website

Double-click on the setup file and follow the
instructions

The Unofficial Log Parser Support Site is an
excellent resource: http://www.logparser.com/

— CERT

1.2.2 Log Parser Installation

Log Parser is a Microsoft Windows application that runs on Windows 2000, 2003, and Win-
dows XP Professional. Installation is quick and easy.

Download the file from the Microsoft website. In addition to the Microsoft website, The Un-
official Log Parser Support Site maintains a current link to the setup file on its home page:
http://www.logparser.com. That site is also an excellent resource for Log Parser information.

Once you’ve downloaded the file, double-click on the setup file, LogParser.msi. Follow the
instructions in the Setup Wizard and Log Parser is installed.

CMU/SEI-2005-HB-003 21

http://www.logparser.com/
http://www.logparser.com

Log Parser Input and Output

Log Parser can read many text-based log formats

= Use the switch -1 : TYPE to indicate file type
= Default is determined from the input file type

» Type LogParser -h -1i:TYPE for more information
on a specific type

Output can be formatted into text files or MS Office
objects or sent to other programs

» Use the switch -o: TYPE to indicate type of report

= Default is determined from the name of the output file

» Type LogParser -h -o:TYPE for more information
on a specific type

— CERT

1.2.3 Log Parser Input and Output

Log Parser has a variety of built-in text-based formats that it can use to easily parse files and
several output formats it can create. Many of them correspond to the log formats of popular
applications, though it is Windows-centric.

1.2.3.1 Input Formats

To specify an import format, use the switch -i : TYPE, where TYPE is one of the built-in types.
The default input type is determined by Log Parser based on the file extension in the FROV
clause. Table 3 lists many of the types and application logs for which each can be used. More
information and usage examples for each one can be found by using the command line help:
LogParser -h -i: TYPE. Other types can be found under LogPar ser -h.

Table 3: Common Input Formats

Type Uses Selected Parameters

1ISW3C 11S W3C Extended Log Format, primar- | n/a
ily 11S 5.X logs and older

1S Microsoft I1S log format, mostly used n/a
with version 6.0 and newer

NCSA NCSA Common, Combined, and Ex- n/a
tended Log formats, for Apache logs

22 CMU/SEI-2005-HB-003

Type Uses Selected Parameters

Ccsv Text files with comma-separated values - header Row [ON| OFF] — for speci-
fying if there is a header row
-i TsFormat <timestanp format>
— for specifying timestamps other than
“yyyy-MM-dd hh:mm:ss”

TSV Tab or space separated values - header Row [ON| OFF] — for speci-
fying if there is a header row
-i Separator <character>—
Character that indicates a new field;
can be any character, “spaces,”
“space,” or “tab”

W3C Generic W3C log format -i Separ at or <character> -
Character that indicates a new field;
can be any character, “spaces,”
“space,” or “tab”

XML XML formatted logs - r oot XPat h <XPat h>— XPath query
of nodes to be considered roots

EVT Windows Event Log -full Text [ON| OFF] — Use the full
text message

NETMON NetMon captures files -f Mbde [TCPI P| TCPConn] - Field
mode, each record is a single packet or
a single connection

REG Registry keys and values n/a

ADS Active Directory objects -obj O ass <cl ass nane> — Spe-
cific class for object mode
-user nane <uname> — user name for
AD access
- password <pwor d> — password for
the specified user

TEXTLINE Parses entire lines of text files n/a

TEXTWORD | Parses single words out of generic text n/a

files
FS File system properties n/a
COM Custom COM input format -i Progl D <progi d> - version inde-

pendent Prog ID of the COM plug-in

CMU/SEI-2005-HB-003

23

1.2.3.2 Output Formats

To specify an output format to create, use the switch - o: TYPE. Output can be in several text
formats as well as some non-text ones. The default, for when no | NTOclause is stated, is to
print the list using NAT to STDOUT. When the | NTOclause is stated, if there is no -o: TYPE,
then Log Parser will attempt to guess from the file extension. Table 4 lists many of the types.
More information and usage examples can be found by using the command line help: Log-
Parser -h -o: TYPE. Other types can be found under LogPar ser - h.

Table 4: Output Formats
Type Format Special Parameters
Csv Comma-separated values - headers [ON| OFF| AUTQ — Write
field names as the first line; AUTO
won’t write headers when appending to
an existing file
TSV Tab-separated values -headers [ON| OFF| AUTQ - Write
field names as the first line; AUTO
won’t write headers when appending to
an existing file
-0Separ ator <any string>-—
Separator between fields: <string>,
“space,” or “tab”
XML XML output format -root Nane <el ement name> —
Name of the Root element
DATAGRID ASP.NET data type for displaying -rpt <nunber of rows>-Rows to
tabular data print before pausing
CHART Microsoft Office Chart web compo- -chart Type <chart type>-0ne
nent; MS Office must be installed for of the designated chart types
use
SYSLOG Sends output to a syslog server - host Nane <host name> — syslog
server name
NAT Native format — tabular view of the -rtp <nunber of rows>-Rowsto
records print before pausing
W3C W3C Extended Log format -rtp <nunber of rows>—Rows to
print before pausing
1S 1S Log format -rtp <nunber of rows>—Rows to
print before pausing
24 CMU/SEI-2005-HB-003

Type

Format

Special Parameters

plate

SQL Sends the output to a SQL table -server <server name> — Server
the database is on
- dat abase <dat abase nane> —
Name of the database

TPL Output a report in a user-specified tem- | -tpl <tenplate file path>-

Path of the template file

-t pl Header <header path>-Lo-
cation of a header file to use

CMU/SEI-2005-HB-003

25

Log Parser Queries

Log Parser can be run with standard SQL queries on the log files
Format:

SELECT <iog flis> [SEEECT Clatse |

_——| INTOClause |

[INTO <output file name>]

FROM <input file name> 2 — | FROM Clause |

e wheRE clause.

The main differences are

= inclusion of the INTO clause with the output filename
= FROM clause specifies a filename, not a table

Help with SQL can be gotten from Log Parser: LogParser -h GRAMMAR

= CERT

1.2.4 Log Parser Queries

Log Parser queries are based on standard SQL queries. This enables users to be able to select
the fields that they need displayed, the log entries to ignore, and which to act on. This also
allows for aggregation of log information, such as counting the number of “Error 500 re-
sponses from a web server.

The basic parts of a SQL query are the SELECT clause, the FROMclause, and the optional
VHERE clause. SELECT indicates the fields to return. FROMindicates the data source to use.
And WHERE indicates any conditions for rows to be included in the results.

There are a few differences between standard SQL and the Log Parser SQL. First, the output
location needs to be specified with the I NTOclause in Log Parser SQL. This is generally a
filename, though it might also be STDOUT if displaying the information on the console is
desired. Next, the input is from a file, rather than from a table, so a filename follows the
FROMclause. Lastly, the input is limited to one file. Joins are not allowed, though subqueries
are allowed.

There is query documentation in the help command using LogPar ser -h G ammar.
There are also a number of examples, both under the help sections for specific input and out-
put formats as well as under a special examples topic: LogPar ser -h Exanpl es. For
more references on how to write SQL queries, see http://en.wikipedia.org/wiki/SQL.

26 CMU/SEI-2005-HB-003

http://en.wikipedia.org/wiki/SQL

Log Parser Query Examples

Filtering out irrelevant entries

SELECT *

INTO output.log

FROM input.log

WHERE sc-status >= 400

Adjusting timestamps
SELECT LogFilename, LogRow, RemoteHostName,

RemoteLogName, UserName,

To_Localtime(Add(DateTime, Timestamp(’00:00:10’,
‘hh:mm:ss’))) AS DateTime,

Request, StatusCode, BytesSent, Referer, UserAgent, Cookie
FROM access_log

— CERT

1.2.4.1 Query Examples

1.2.4.1.1 Filtering out Irrelevant Entries

When focusing on a web server’s logs, you will probably want to separate out entries where
page requests failed to reduce the logs to the important information. The query

SELECT * I NTO output.log FROM i nput.| og
WHERE sc-status >= 400

would return all of the log entries where the status code was 400 or above, indicating any
server errors, “Page Not Found” errors, and access denials. By filtering out what is known to
not be a problem, (e.g., successful page requests), it reduces the log files to a more manage-
able size. Please note that this example is for ISW3C input; different input formats will have
different field names.

1.2.4.1.2 Adjusting Timestamps

Another common problem is that sometimes the time on one machine may drift and not be
the same as on another machine. When you try to compare logs generated on these two ma-
chines, events may be out of order. Log Parser can be used to adjust a timestamp in a file.
Since we care about the entire log entry and not just the adjusted timestamp, we will need to
specify the timestamp and all the other fields. This example uses the NCSA input, is format-
ted for W3C output, and adds 10 seconds to all the entries.

SELECT LogFil enane, LogRow, RenoteHost Name, RenotelLogNane, User Nane,
To_Local ti ne(Add(Dat eTi ne, Tinmestanp(’00:00: 10", ‘hh:mmss’)))

CMU/SEI-2005-HB-003 27

AS Dat eTi me, Request, StatusCode, BytesSent, Referer,
User Agent, Cooki e
FROM access_| og

This can also be done on 11SW3C formatted logs, though the timestamp is different so a dif-
ferent command is needed:
To_Local Ti me(Add(To_Ti mestanp(date, time), Tinestanp(’' 00:00: 10",
‘hh:mmss’)))

This query will not change the timestamps in the original files but will create a new file with
the adjusted timestamps, making log comparison easier.

28 CMU/SEI-2005-HB-003

Log Parser COM Objects

COM allows for cross-platform development. It
can be used in C++, C#, Visual Basic,
Jscript, and VBScript.

COM Objects can be used in two ways:

1. Create custom input formats (the syslog
format is not currently supported).

2. Use Log Parser functions in other
programs—add queries and input formats to
your own scripts.

— CERT

1.2.5 Log Parser COM Objects

Component Object Model (COM) objects allow for cross-platform development of programs
and scripts. Log Parser comes with a COM Application Programming Interface (API), allow-
ing programmers to use the underlying constructions of Log Parser either to extend its capa-

bilities or for use in their own programs.

Log Parser COM API is available for use in C++, C#, Visual Basic, JScript, and VBScript.
The only adjustment needed to use the API is that the LogParser.dll binary needs to be regis-
tered with the computer’s COM infrastructure so the API will be found. Use this command:

| C:\ LogPar ser >regsvr 32 LogPar ser. dl | |

1.2.5.1 Creating Custom Input Formats

If the built-in input formats are too restricting, you can create your own. There is one inter-
face to extend in C++ or Visual Basic and another for JScript and VBScript. The resulting
script must also be registered with the computer, as in the example above. After that, it can be
used when running Log Parser, as in this example:

C:\ LogPar ser >LogParser “SELECT * INTO out.file FROMin.file” -i:COM -
i Progl D: MySanpl e. Myl nput For nmat

For more examples of this, please refer to the documentation that comes with Log Parser 2.2.

CMU/SEI-2005-HB-003 29

1.2.5.2 Using the Log Parser COM API

The Log Parser COM API allows for all the same actions as the command line binary, plus
more. In addition to query execution and the various input and output formats, it is also pos-
sible to have direct access to the log entries in record format.

The MSULtil.LogQuery object is the base object for Log Parser. All others are subclasses.
There are subclasses for each of the input and output types, as well as the LogRecordSet and
LogRecord types.

There are two modes of query execution: batch and interactive. Batch execution is used when
the output will be formatted with one of the output formats, as is done in the command line
program. Interactive execution is when no output format is specified and a LogRecordSet is
returned. The programmer can then move through the set and process individual records as
desired.

The Log Parser documentation provides further illustration of these concepts and specific
commands that are available.

30 CMU/SEI-2005-HB-003

Log Parser Execution

The Log Parser program opens a command
window in the Log Parser directory.

Log Parser is run in two ways:

1. entering the query at the command line
LogParser “SELECT * INTO out.file FROM in.file” -
i:-TYPE -0:TYPE <other switches>
2. using a saved query
LogParser file:query.sql -i: TYPE -0:TYPE

— CERT

1.2.6 Log Parser Execution

Log Parser will normally be run on the command line in the special Log Parser window. To
start Log Parser go to Start - Programs - Log Parser 2.2 - Log Parser 2.2. This opens a
command window, displays the help information, and then gives a command prompt with
which to work.

On the command line, you list the query, input format, and output format. Certain formats
also have other parameters that need to be entered using some extra commands. These com-
mands are listed in Table 5. Switches are separated from their parameters by a colon. The
format of the line is

>LogParser “SELECT * INTO out.file FROMin.file” -i:TYPE -o: TYPE
<swi t ches>

Table 5: Misc Log Parser Commands

Command Function Parameters
-q Quiet mode ON or OFF (default)
-e Maximum number of errors allowed be- integer, -1 is default (ignore all)

fore aborting

-iw Ignore warnings ON or OFF (default)

-stats Display statistics after executing query ON (default) or OFF

CMU/SEI-2005-HB-003 31

Command

Function

Parameters

-C

Use built-in conversion query

-i: TYPE <fil enane>

-0: TYPE <fil enane>

-multiSite

Send any BIN conversion output to multi-
ple files depending on the SitelD value

ON or OFF (default)

-saveDefaul ts Save options as default values none
- Restore factory defaults none
restoreDefaul ts

-querylnfo Display query processing information, but | none

do not execute query

Queries can get long and it can be cumbersome to type the same one over and over. You can
specify a file that contains a query on the command line instead of the query itself. Type
file:query.sql instead of the full query. This will be particularly useful for queries that
convert from one file type to another (aside from the predefined conversions) and for queries

that you run repeatedly.

32

CMU/SEI-2005-HB-003

Summary

Log Parser 2.2 is an extremely flexible tool for parsing
and searching through logs, Event Viewer files, XML,
and other text-based files.

Use it to

= convert logs from one format to another

= filter out specific types of log entries into a new file

= create a new log with an adjusted timestamp

= write custom programs and scripts to process log files

It assumes prior knowledge of SQL.

— CERT

1.2.7 Summary

Log Parser 2.2 is such an improvement on previous versions that it is like a new program.
Log Parser is as extensible and flexible as you can make it. It can be used for

o converting log files from one format to another for ease of analysis

o filtering out specific types of log entries into a new log

e creating a new log with an adjusted timestamp after skew has been determined

e writing custom programs and scripts to process log files

There is a steep learning curve with Log Parser. It is necessary to know the fundamentals of

SQL queries to be able to process logs effectively. Once this limitation is overcome, many
standard logs can be processed and reduced to create meaningful output.

CMU/SEI-2005-HB-003 33

34

CMU/SEI-2005-HB-003

2 Module 2: Process Characterization

CERT

First Responders Guide to
Computer Forensics

Module 2:
Process Characterization

© 2005 Carnegie Mellon University "‘@E Software Engineering Institute

The identification, characterization, and forensic collection of currently running processes on
a PC should be a frequently practiced information security procedure. Baselining a running
system’s processes frequently and enumerating the list of currently running processes will
allow you to monitor system activity and see whether serious changes have been made to the
system. Running processes on a PC are at the crux of either normal or abnormal system be-
havior. However, even after process collection, it can be a difficult task to make the determi-
nation whether a particular process or set of processes may be the result of an intrusion or
malicious user activity.

For most system users and security practitioners, the first alert to abnormal system behavior
may be the trivial questions one has about the system during routine day to day interactions
with the PC. Why is my PC responding so sluggishly? Why does my PC show extremely
high processor activity? What is that process and why is it running? These are commonly
asked questions. In most cases, the default reaction to abnormal system behavior is the
widely practiced reboot. This second-nature reaction may temporarily solve a problem, but if
the machine was truly infected or compromised you may never find the source of the problem
because of the volatility of running processes.

CMU/SEI-2005-HB-003 35

CERT

First Responders Guide to
Computer Forensics

Understanding a Running Process

2.1 Understanding a Running Process

This module is intended to enable system users and first responders (system and network ad-
ministrators, law enforcement, etc.) to

e Dbetter understand running processes
o forensically collect and enumerate the set of current running processes on a system

o potentially differentiate between normal running processes and abnormal running proc-
esses (i.e., malware) by looking at key process characteristics

36 CMU/SEI-2005-HB-003

Objectives

Background info on processes

— Programs, processes, threads
— Process tree structure

— Process identifiers (PIDs)

— Process descriptions

— Process analysis checklist

8 key process characteristics

— Tools and native commands for collecting process
characteristics

3 process forensic tasks

— CERT

2.1.1 Objectives

The focus of this module is to demonstrate how to determine the existence of running mal-
ware by performing basic process characterization and the forensic examination of running
processes on a system. The module is limited to running processes because the majority of
malware (viruses, worms, Trojans, backdoors, etc.) have an associated process that may be
aliased, newly created, or masked that allows the malware to perform its malicious actions on
a machine and sometimes even remain or replicate after a reboot.

Therefore, in an attempt to identify potential rogue processes, we will first cover some back-
ground information on processes, identify eight key process characteristics, demonstrate fo-
rensic collection procedures, and, finally, introduce native commands and tools that will al-
low a first responder to forensically collect the key process characteristics for running
processes.

CMU/SEI-2005-HB-003 37

Programs, Processes, Threads

A computer process can be
best defined as a program in
execution. Generally, a process

i ; A Program
consists of the following:! A Thread

= executable code
= data

» the execution context (e.g., the contents of
certain relevant CPU registers)

Dalhalhalis

Threads are execution contexts for a process.

1 Gollman, Dieter. Computer Security. England: John Wiley & Sons Ltd, 1999.

— CERT

2.1.2 Programs, Processes, and Threads

A computer process can best be defined as a program in execution. Generally, a process con-
sists of the following:®

e executable code
e data

e the execution context (e.g., the contents of certain relevant CPU registers)

While the word “program” refers to the executable code (the exe file, for exam-
ple), a process is a program that is being executed. When you start a program in
Windows, the executable will be loaded into RAM. Windows will then add the
new process to its internal process list and make sure the process receives some
CPU time as well as memory and other resources. A process can then request
any amount of resources from Windows as long as there are resources left. Win-
dows keeps track of which processes are using which resources. As soon as a
process is closed or terminated, all resources used by that process will be re-
turned to Windows and will then be handed out to other processes. Unlike mem-
ory and similar resources, CPU time cannot simply be requested but is instead
shared equally between processes. A process can also return the CPU to Win-

® Gollman, Dieter. Computer Security. England: John Wiley & Sons Ltd, 1999.

38 CMU/SEI-2005-HB-003

dows before the assigned time slice ends. This is actually what happens most of
the time and is the reason why your CPU usage is not always at 100 %.*

The Linux Tutorial® is a great tutorial for understanding in depth how processes work and
also provides interactive demonstrations describing the parent-child process relationship.

2.1.3 Threads

Threads are execution contexts. Initially each process has a single execution context. This
execution context is called a thread. If a process requires another execution context, it can
simply create another process. Threads were invented to provide a lightweight mechanism for
creating multiple execution contexts. Windows and Linux schedule threads from the operat-
ing system with the goal of providing a fair execution environment.

The most obvious distinction between processes and threads is that all threads of a process
share the same memory space and system-defined “facilities.” Facilities include open file
handles (file descriptors), shared memory, process synchronization primitives, and current
directory. Because global memory is shared and almost no new memory must be allocated,
creating a thread is simpler and faster than creating a process.®

2.1.3.1 Displaying Threads for a Running Process

Using the Sysinternals’

)) . e C:AWINDOWS\system32\cmd.exe
PsList command line wtil- ~—1 —— — —

C:“\Process Utilities>pslist.exe —d | more f—"

PsList 1.26 — Process Information Lister

ity with the -d command

. . . Copyright <C> 1999-2884 Mark Bussinovich e
I|ne argument W|” dlsplay Sysinternals — www.sysinternals.com

Currently I’unnlng pI’OC- Thread detail for SHOOTER:

esses; threads for eaCh Iﬁﬁ la:'l:“l Csutch State User Time Kernel Time Elapsed Time
, a A 13925748 Running :AA:A0.800 12:44:40.862 A:00:80.A80
process, each process’s

System 4: ; ; ;
thread state, and memory Tid Pl SSeen ot B:00:00.000° 0 ob1i0.008° brobiod.oen”
o T8 W -1 F F
statistics for each process. 24 15 19026 Uait:Queue ©:00:00.NA B:B0:00.368 43:22:13.277
o utl - i85 = 1 3 ¥
Thisutllycomes NVery | g5 4 wiggy it spimgm smipd ti
altiueune H H a H
handy whenyouneeda | % 1 fam wfuolii SRS HEEAL S
. . 52 12 19299 Uait:Queue ©:80:80.888 B:08:02.453 43:22:13.277
qUICk way of enumerating 56 12 54114 Vait:Queue 0:00:00.008 B:00:04.816 43:22:13.277
. i, & ¥ &
all currently running proc- 68 15 51677 Wait:Exccutive 0:00:00.000 0:00:09.000 43:22:13.277
) 72 18 11427 Wait:UirtualMlem 0:00:00.900 ©:00:00.650 43:22:13 zsvf
esses, each process’s asso- ol | »
ciated threads, and their
thread state. Figure 2: Example Run of PsList

http://www.liutilities.com/products/wintaskspro/whitepapers/paper8/
http://www.linux-tutorial.info/modules.php?name=Tutorial &pageid=3

Bradford, Edward “High-Performance Programming Techniques on Linux and Windows 2000,”
http://www.developertutorials.com/tutorials/linux/run-time-linux-windows-050428/pagel.html.
http://www.sysinternals.com/index.html

CMU/SEI-2005-HB-003 39

http://www.liutilities.com/products/wintaskspro/whitepapers/paper8/
http://www.linux-tutorial.info/modules.php?name=Tutorial&pageid=3
http://www.developertutorials.com/tutorials/linux/run-time-linux-windows-050428/page1.html
http://www.sysinternals.com/index.html

2.1.3.2 Sysinternals Process Explorer

Another Sysinternals utility called Process Explorer is an excellent administrative tool for
showing a dynamic display of real-time system process activity. Process Explorer’s graphical
user interface (GUI) is a more robust Windows Task Manager. It displays in an easy to read
format what handles each process has open and what DLLs and memory-mapped files each
process has loaded, and has a quick search capability to locate a particular DLL or handle for
the currently running processes.®

Figure 3 is an action screenshot of the Process Explorer GUI. The GUI displays a process list
(e.g., tree format) of currently running processes in the top half of the pane, while the bottom
half of the pane displays all currently loaded DLLs for the highlighted mozilla.exe process.

85 Process Explorer - Sysinternals: www.sysinternals.com

File ©Options Miew Process Find DLL Users Help
EEEEEEw Y. ..
Process FID | CPU | Description o

: hozilla

{E} wrnplayer. exe 3244 Wwindows Media Player

@WINWDHD.EXE 3224 hicrozoft Office wiord

* B cmd.exe 2604 windows Command Frocessor

& procesp.exe 1272 B.3E Sysintemnals Process Explorer =
[# @ ShagltiZ exe 1128 1.82 Snaglt? bt
£ >

Mame Dezcription Company MName b

wpep2res. dil Semvice Pack 2 Messages Microgoft Corporation
wppref 32 dil Mozilla Foundation
wpcorm_compat_c.dll Mozilla Foundation
wpoorm_compat. dil hazilla Foundation
wpcom.dil Mozilla Foundation
wpc3250.dI Mozilla Foundation
weock 32 dl Windows Socket 32-Bit DLL Microgoft Corporation
wihtcpip.dil Windows Sockets Helper DLL Microzoft Corporation
wa2help.dll Windows Socket 2.0 Helper for Windows NT Microgsoft Corporation
w2 32.dll Windows Socket 2.0 32-Bit DLL Microgoft Corporation
widap32.dil Windz LDAF &P DLL Mizrozoft Corporation
wiiebr b Al birraznft ook Wearifieabon &Ple kirraeaft T armarabiog V
< | b
CPU Usage: 15,45% | Commit Charge: 30,25%: | Processes; 64

Figure 3: Sysinternals Process Explorer Utility

& http://lwww.sysinternals.com/ntw2k/freeware/procexp.shtml

40 CMU/SEI-2005-HB-003

http://www.sysinternals.com/ntw2k/freeware/procexp.shtml

More importantly, the ES WINWORD. EXE: 3224 Properties

Process Explorer utlllty | TCRAP S ecurity | E nwironment Strings
mage Performance Il FPerformance Graph Il Threads
has a unique security fea- Image File
ture that verifies a proc- B e oo corporaton
ess’s image (i.e., the pro- L e .
gram/binary responsible Path:
. —:\Program FilesiMicrosoft OFFice,\ OFFICEL 1% INWORD . EXE
for the executing process). Earan It
';C;U-:';'Dgrar-n Files\Microsoft OFFiceyOFFICEL 1\WWIRNWORD.EXE" fn ,I'ddi-;
If you are curious about e '
—HDocuments and Settingst Jake\My Documentst,
whether a particular run- Parent: explarer exe(340) :
ning process is a legitimate e :

g p g Starked: 12:36:36 PM 3/4/2005
Microsoft process, you Comment: | |
COUld Verify the process Data Execution Proteckion (DEP) Status: OFF
image by using the added [ok | [concel |
functionality in Process
Explorer. Figure 4: Verifying a Process Image in Process Explorer

To do this, you would
1. Right-click on any of the displayed processes in the Process Explorer GUI.
2. Click Properties.

3. Click Verify. An example result is shown in Figure 4.

In addition to the Verify | E5. MMV ORD. EX E: 1820 Bropaxtics SE=TES)
A Image Performance Ferformance Graph || Threads
option, another great feature | . TCEaE I Secuis Eestopmenaay] TPhnGe
. . Frintable strings found in the file:
is the Strings tab. e =1
| CormmonFilesDrir _
o) | Sricrroft Sharedsaffiant Temso.dl oo
Clicking on the Strings tab i
will display all alpha and et o
| Eartika . N .
numeric Stl’lngS found in the _}’g$':[.$\$]$ F_F $atbFcidiedfEathTitiFt
| PaTH
process image, as shown in TR B sanmot be un n 005 mode
the example in Figure 5. Ko Ls
This may come in handy for o A
looking further into an un- | - _
known process image. [eeeore o illlis-capesin |

It is important to point out
that this utility uses a GUI
and, therefore, is not an ideal tool that a first responder would use in responding to a com-
puter security incident to forensically analyze running processes on a machine. This utility
should have already been incorporated into the daily operations for everyday system and
network troubleshooting. If you were to use the Process Explorer utility in an incident re-
sponse situation you might actually contaminate potential uncollected evidence from a possi-
bly compromised machine (e.g., changing Mac Times on critical files or folders on the sys-
tem). Sysinternals’ command line utility pslist.exe is a better choice for responding to

Figure 5: The Strings Tab in Process Explorer

CMU/SEI-2005-HB-003 41

computer security incidents and forensically collecting running processes, simply because it
is much lighter and leaves a significantly smaller footprint.

42 CMU/SEI-2005-HB-003

Process Tree Structure and PIDs

5 CWNDOWSlsystem32icmd.exe -}
= Fle Edt Vew Teminal Go Hep
“\Documents and Settings'Jake\Desktop\Demo 2 Procﬂ [root@Linuxiorkstation root]# pstree -ip El
Pslist 1.22 - Process Infornation Lister Tnit{1)-rYime(215)
opyright (C) 1999-2882 Mark Russinovich rapnd(1925)
ysinternals - wuw.sysinternals.con Fatd(2127)
, : . biflush (1)
Process information for SHOOTER: | onobo-activati(224)
Nane Pid Pri Thd Hnd rerond(2074)
i 18 ot o [
ystem |
snss W 1 3 2 SHs(22])
espss 968 13 11 714 reggeups(2374)
winlogon 996 13 24 531 reonfd-2(2238)
atidevxx 663 8 5 68 Fadn-hinary (2166)—gdn-hinary(2234)¥(2235)
. fn-bInary g i
i 123 g 12 33; —[gncme-session(2287)—ssh-agent(2353)‘
wifngr MM 8 4 68 r-gnote-panel (2266)
suchost 428 8 15 220 -gnone-panel (2368)
spoolsv %8 8 15 183 (LS T
e A _gncma seii}on(ﬂé;)}a ssh-agent(2231)
atidewx 24 8 5 66 fuone-Settings-(2043)
svchost 1268 8§ 19 219 -gnune-termal(ﬂﬁ)-[bash(2395)—pstreeu434)
hyoeundd 68 8 8 143 JJ soe-pty-elpe24)
! A L i) M
—CERT

2.1.4 Process Tree Structure

Windows and Linux OS envi-
ronments currently running
processes exhibit a hierarchical
tree structure. By looking at
this hierarchical tree structure
of currently running processes
we can gain insight about what
processes have started other
processes and so forth.

This kind of relationship is
known as the parent and child
process relationship. The crea-
tor is called the parent process,
the created is called the child
process, and the parent-child
relationship is expressed by a
process tree.

Using Sysinternals’ PsList util-

s C:AWINDOWS)system32icmd.exe

G:nProcess Utilities>pslist.exe -t
PsList 1.26 - Process Information Lister
Copyright (G) 1999-2884 Mark Russinouich
Sysinternals - www.sysinternals.com
Process information for SHOOTER:

Name

«

Idle 1
Systen 4 8 62
smss 2016 11 3
csrss 208 13 17
winlogon 228 13 23
services 272 9 16
spoolsy 156 8 15
ibmpnsvc 484 tg 5
atiZewxx 5ag 5
svchost 524 8 18
suchost 58 8 1@
ccEutMgr 656 8 14
ccSetMgr 788 8 o6
DefWatch 828 8 3

892 8 4

suchost 928 8 73
sglservr 988 8 21
§24EvMon A8 B8 5
svchost 117% 8 &5
SHagent 1372 8 2
QCONSUG 1392 8 4
svchost 1688 8 &5

UM

1876
3800
52552
56888
48964
57568
17888
18384
64100
37448
41816
32816
19112
34112
153748
557952
18780
294088
22896
29328
373688

Figure 6: Displaying a Process Tree Using PsList

ity with the —t command line argument, we can visually display the parent-child relationship
(i.e., the process tree) for currently running processes.

CMU/SEI-2005-HB-003

43

In the example shown in Figure 6, we can easily see that the System.exe process is the parent
process for smss.exe and so forth as you work your way down the process tree.

2.1.4.1 pstree (Linux)

Using the native Linux pstree command, we can easily display the parent-child process rela-
tionship for currently running processes. Using pstree with the —hp command line argument
will display the process tree, highlight the current process, and display the PIDs for each
process (Figure 7).

V _root® LinuxWorkstation:~
File Edit View Terminal Go Help

[root@LinuxWorkstation root]# pstree -hp

Anit(1)—TXvnc(2115)

Fapmd(1925)

Fatd(2127)

Fbdflush(7)

—bonobo-activati(2240)

crond(2074)

cupsd(1964)

eggcups(2272) [%

Feggcups(2374)

Fegconfd-2(2238)

—gd.m—b:i.nary(2166)—gd.m—b:i.rlar‘f(2234)—[2((2235)
gnome-session(2287)——ssh-agent(2353)

egnome-panel(2266)
gnome-panel(2368)
Fegnome-session(2117)——ssh-agent(2231) =
gnome-settings-(2243)
—gnune—ter:llinal(2393)—[bash(2395)—pstr:ee(2434)

gnome-pty-helpe(2294)

]= gpm(2065) ﬂ

Figure 7: Displaying a Process Tree Using pstree

2.1.4.1.1 PIDS

Process identifiers, commonly known as PIDs, are unique integer values assigned to each
currently running process. Generally, PID assignments will be multiples of 4 for Windows
operating systems, thus guaranteeing an even integer PID assignment ranging from 0-
XXXX.

From a forensic or first responder perspective, PIDs offer a quick and easy way of uniquely
identifying running processes. However, there is nothing of forensic value in distinguishing
legitimate processes from non-legitimate processes by just looking at the PID assignments.
What is useful is the mapping or correlation from the PID assignments to generated system
event log tickets. We can search the system event logs for a PID that was responsible for gen-
erating a certain ticket’s event log and map them back to the PID or current running process.

2.1.4.2 Linux ps -A

Using Linux’s native ps command, we can quickly display each currently running process’s
PID assignment and the command that was to used start the process. When displaying proc-
esses in Linux, PIDs will always be displayed in sequential order ranging from the infamous
init process, or PID 1, to XXXX (Figure 8).

44 CMU/SEI-2005-HB-003

v rootd@ LinuxWorkstation:~
Eile Edit Miew Temminal Go Help
[root@LinuxWorkstation root]# ps -A

PID TTY

I B B BCS RS RES B RES B R B

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

TIME

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

05
00
00
00
00
00
00
00
00
00
00
00
00

CMD

init
keventd
kapmd
ksoftirqd/0
bdflush
kswapd
kscand
kupdated
mdrecoveryd
kjournald
khubd
kjournald
syslogd

[+]

=]

L]

Figure 8: Displaying PID Assignments Using ps

CMU/SEI-2005-HB-003

45

Process Descriptions

WinTasks Process Library

= Great resource for knowing the exact purpose
and description of every single Windows
process

Categories of Windows processes

» Top system processes

= Top application processes

» Top security threat processes
» Other unfamiliar processes

Example: svchost.exe

— CERT

2.1.5 Process Descriptions

There is no easy way of quickly knowing whether the current set of running processes are
normal, especially if you do not have in-depth knowledge of the system you are analyzing or
if proper process baselining was not implemented. Understanding what each process is and
why it is currently running can be a difficult task. There are a few online resources outlined
below that will attempt to alleviate some of the ambiguity of unfamiliar Windows processes,
particularly in determining whether a process is legitimate.

Uniblue has an online hyperlinked table for each type of Windows process. The online re-
source is a great tool for quickly checking and gathering information about a known rogue
process or gaining information such as a description about any legitimate Windows process.
A Uniblue hyperlinked table for each of the following process categories is available online.’

Categories of Windows Processes

e top system processes

o top application processes

e top security threat processes

e other, unfamiliar processes

Figure 9 is a snapshot of the type of information you can obtain from the Uniblue website for

each of the categories of Windows processes. We chose a process description pertaining to
the svchost.exe process that is often found running on Windows systems.

° http://www.liutilities.com/products/wintaskspro/processlibrary/allprocesses/

46 CMU/SEI-2005-HB-003

http://www.liutilities.com/products/wintaskspro/processlibrary/allprocesses/

WinTasks Process Library reaued: @techtv

svchost - svchost.exe - Process Information

Process File: svchost or swechost exe
Process Mame: MMicrosoft Service Host Process

Description:

gvchost.exe iz a system process belonging to the Microsoft Windows Operating Syvstem which handles
processes executed from DLLs. This grograim is umportant for the stable and secure tunning of wour
compiter and should not be terminated. Mote: svchost.exe is a process which is registered as the

W2 Welchia Worm. [t takes advantage of the Windows LIAZSE wulnerability, which creates a buffer
overflowr and instigates your computer to shat down. To see more information about this vulnerability
please look at the following Microsoft bulletin:

httpffeare micro soft. comitechnet/security/bulletinms04-011 mspx This is a registered security risk and
should be removed inunediately. Please see additional details regarding this process

Figure 9: WinTasks Process Description

2.1.6 Process Hashes (National Software Reference Library)

Another valuable online resource is NIST’s National Software Reference Library’s repository
of SHA1 and MD5 hashes for critical system and application files. The NSRL repository in-
cludes hashes of non-English software files, operating system files, application software files,
images, and graphics found on a typical Windows installation. NSRL’s stored repositories of
hashes are cryptographic hashes of safe or uncorrupted files. This is very important when
wanting to compare your own system’s critical file hashes against a known safe set. This
online resource provides the cryptographic hashes free of charge; they are downloadable as
ISO images.

Once you’ve burned the images to a CD-ROM, you can unzip the zipped files and get started.
You’ll find a list and description of the five text files that come with the NIST Operating Sys-
tem 1SO. The Operating System ISO is important because it contains safe hashes of executa-
bles and DLL files. These are common types of critical files on Windows machines that be-
come corrupted or replaced with compromised ones. NSRL maintains and updates the 1ISO
images periodically (non-English software, operating systems, application software, and im-
ages and graphics) as new updates and patches are released.

Operating System ISO:

e Hashes.txt — contains hashes for the files so you can check the integrity of the
downloaded files

e \ersion.txt — displays the version and date of the downloaded 1SO. Keep in mind these
I1SOs will be updated periodically, so it is import to check the version file for each 1ISO
file because hashes may change with different versions.

CMU/SEI-2005-HB-003 47

o NSRLMfg.txt — displays the Manufacture Code (MfgCode) and Name (MfgName) of the
supported manufacturers

e NSRLProd.txt — displays the supported “ProductCode,” “ProductName,” “Product \er-
sion,” “OpSystemCode,” “MfgCode,” “Language,” and “ApplicationType”

o NSRLFile.txt — This is the file that actually has the list of the SHA1 and MD5 hashes that
can be used for checking critical associated OS files. The format of each entry in the text
file goes as follows:

SHA-1, MD5, CRC32, FileName, FileSize, ProductCode, OpSystemCode, SpecialCode
Here is an example of one entry in the NSRLFile.txt text file that contains a list of SHA-1 and

MD?5 hashes. As you can see, the entry corresponds to the mshearts.exe program for a Win-
dows XP machine and has a SHA-1 and MD?5 hash for the mshearts executable.

"001A6C9B8D9471B0A3B4F46302DB951F4D877227","BE1B85306352E0AC901EC0850
6792B6B","CB76D275","mshearts.exe",126976,1567,"WINXP",""

48 CMU/SEI-2005-HB-003

Process Analysis Checklist

Current Execution
Status

=3 == Open Ports OR
Established
Connections

How was Process Initiated
What user OR What process

Open Files OR
File access Errors

Utilized System
Resources

Loaded DLLs OR
Shared Libraries

Process
Environment

CERT

2.1.7 Process Analysis Checklist

The procedure of inspecting processes for unexpected behavior or characteristics involves
many detailed actions. The abbreviated checklist below contains questions about processes
that you may wish to ask yourself and characteristics you may wish to enumerate. In the fol-
lowing paragraphs we are going to demonstrate how to forensically collect some identified
items and some extra process characteristics using native commands and third-party tools.

How was this process initiated?

By what user?
From what program or other process?

What is the current execution status of each process?

Is it running, stopped, suspended, swapped out, exiting, or in some other unexpected
state?

Does the process continue to appear among active processes after it should have ex-
ited?

Is it missing from among the processes you expected to be active?

In what environment is this process executing?

What system settings are in effect for this process?

Did the process inherit any environment settings from other processes?

How might the current environment settings affect how the process operates and
what it can access?

With what options or input arguments is the process executing? Are these appropriate
settings?

CMU/SEI-2005-HB-003 49

Avre the system resources (CPU time, memory usage, etc.) being utilized by each process

within expected consumption amounts?

— Are there any processes that seem to be tying up an unusually large amount of system
resources?

— Are any processes not performing as expected because they don’t seem to be getting
enough resources?

What is the relationship between this process and other processes executing on the sys-
tem? What are the characteristics of the related processes?

What files have been opened by the processes executing on the system?

— Are they authorized to have these files open?

— Have the files been opened with excessive privileges (e.g., opened with read-write
capability when there is no reason for the process to write to the file)?

Have there been any unexpected accesses to sensitive system files or other private data,
such as password files?

— From what process were the accesses made?

— With which user is that process associated?

Have there been any unauthorized attempts to access a file? Has the system reported any
file access errors?

50

CMU/SEI-2005-HB-003

8 Process Characteristics

Ny A
1. Process filename . L’(U
2. Open ports Windows
3. Open files
. 2. fport.exe netstat -tap
4. Base priority
5. S_tart, stop, elapsed pslist.exe top —n 1
times
6. Location (i.e., full path) HEheRE
of process image 6. listdlls.exe Isof —p PID
7. Survivable processes
8. Loaded DLLs or libraries 8. listdlls.exe ldd
= CERT

2.1.8 Common Process Characteristics

We have outlined the eight key process characteristics that follow along with the Process
Analysis Checklist, as well as a set of tools and native commands a first responder can use to
collect those characteristics. Note that this is not an exhaustive list of running process charac-
teristics. But collecting these eight process characteristics for a potential rogue can signifi-
cantly aid in determining whether that running process is legitimate or not.

2.1.8.1 Process Filenames

The process filename is the filename of the process image that was executed to initiate the
currently running process. In most cases you can look at the process filename to determine
whether the current running process is a legitimate Windows or Linux process.

CMU/SEI-2005-HB-003 51

2.1.8.1.1 pulist (Windows)

D:\Instructor DemosiMod3Demos\DemoTools\t_cmd.exe

icrosoft Windows HP [Uersion 5.1.26881
{C» Copyright 1985-2881 Microsoft Corp. -

Using the pulist.exe command
line utility, a Windows Resource
kit utility, we can generate a list
of currently running processes

SInstructor Demos“Mod3Demos“DemoTools>t_pulist
rocess PID User
a

e
xplorer.exe 592 HPCOMPROMISEDUM:~Student System
Intsvr.exe 1816 HT AUTHORITY-SYSTEM
MuvareService .exe 1348 NT AUTHORITY-SYSTEM

lg.exe

bippoene” 356 KDGOMPROMISEDUNNS fudent Soeten
1 1 clpp.exe “Student System
and the aSSOCIated fllenames to PTray.exe 628 HPCOMPROMISEDUM~Student System
- MEMSgs - eXe 1828 HPCOMPROMISEDUM:~Student System
be examined for unexpected cclippd. exe 1912 ¥PCOMPROMISEDUMNStudent System
- et gmineg om0
tini.exe “Student System
process filenames and unusual cuchast . exe 2168 NT AUTHORITYN\SYSTEM
- - g - suchostl.exe 2148 HPCOMPROMISEDUM~Student System
user identifications. ccapp? . exe 2172 XPCOMPROMISEDUMNStudent System
cmd . exe 2932 HPCOMPROMISEDUM~Student System
ogfgih.exe 2972 HPCOMPROMISEDUM~Student System _J:J
4 >

In the screenshot in Figure 10,

the four processes that we identi-
fied to be rogue processes judg-
ing by the process filenames are
tini.exe, klogger.exe, svchostl.exe, and gfskrtwj.exe.

Figure 10: Listing Process Filenames Using pulist

2.1.8.1.2 ps (Linux)

The Linux ps command can be used to display the filename of the process image as well as
other things outlined in Table 6 and Table 7.

Table 6: A Subset of ps Options

Option Description

$ ps —ux View current processes

$ ps -U user View other system users running processes
$ ps —C program_name View all occurrences of a program

$ ps —p4, 8, 2203 View selected processes 4, 8, 2203

$ ps —ef ww View all processes with full command lines

Table 7 describes some output headings for ps and top output.

Table 7: Output Headings for ps and top

Field Description

USER Username of the process owner

PID Process ID

%CPU Percentage of the CPU this process is using
%MEM Percentage of real memory this process is using
VSZ Virtual size of the process, in kilobytes

52 CMU/SEI-2005-HB-003

Field Description
RSS
TT
STAT Current Process Status
R= Runnable D = In disk wait
| = Sleeping (<20 sec) S = Sleeping (> 20 sec)
T = Stopped Z = Zombie
Additional Flags
L = Some pages are locked in core (for rawio)
S = Process is a session leader (head of control terminal)
W = Process is swapped out
+ = Process is in the foreground of its control terminal
START Time the process was started
TIME CPU time the process has consumed
COMMAND Command name and arguments

2.1.8.2 Open Ports

Another critical process characteristic is the number of ports a particular process has open.
Processes that have unfamiliar or unnecessary TCP or UDP ports open could indicate that the
process is a backdoor or Trojan allowing remote access to the machine.

21821 prl’t (WindOWS) o D:\Instructor Demos\Mod3Demos\DemoTools\t_cmd.exe
D:~Instructor Demos“Mod3iDemos“DemoTools>t_fport =
H FPort v2.8 — TCP/IF Process to Port Mappewr
The fport.exe command line |copyright 2080 by Foundstone. Inc.
.))) http: s uww_foundstone _com —
Ut|||ty, Ilke the native win- Pid Process Port Proto Path
688 tlntsvr -» 23 TGP C:SWINDOWSSBystem32-tlntsvr.exe
dOWS netstat _anb com- 3333 suchostl —g 225 ¥8112 c:swindowsssystem32ssvchostl .exe
. 4 System -» 139 TCP
mand, displays all open 4,0, System 3 M I
2284 tini => ??r? ICP c:swindowssystem32\tini.exe
TCP/IP and UDP ports and 24W8 frdpipscep -5 27374 TCP C:\WINDOWS\frdpjipscep.exe
- A System -» 123 unp
maps them to the OWnlng %424 éuc:;mstl —; i%g Hg; c:wwindowsssystem32isuchostl exe
ystem =
H H H a System -» 138 UnDp
appllcatlon as shown in 688 tlntsur -> 445 UDP C:“\NWINDOWS\Systen32\tlntsuvr.exe
h T EE
H ystem -
Figure 11. 2984 tini 5 1826 UDP c:“windousSsystem32:tini.exe
4 System =>» 1827 UuDp
a Sysztem —=>» 1984 UDP
2284 tini —=> 1%88 UDP c:wwindows'system32:tini.exe
Fport also maps those ports %322 frdpjpscep :; ‘Zlggg Hg; C:sNINDOUWS~frdpjpscep.exe
:sInstructor Demos“Mo emos~DemoTools bt
to running processes with s D e T
the PID, process name, and ‘ ' -

path to the process image. _ _) _
Figure 11: Displaying Open Ports Using fport

CMU/SEI-2005-HB-003 53

2.1.8.2.2 netstat (Linux)

The Linux netstat command
can be used to display all
TCP/IP and UDP ports that
are open in relation to a
running process.

Using netstat with the -t ap
command line arguments
will display all running
processes that have a
TCP/IP port open, the PID
of the process, the port
number assignment, the
foreign address if con-
nected, and the state of the
port (Figure 12).

Eile Edit View Terminal Go Help
[root@LinuxWorkstation root]# netstat -tap

Active Internet connections (servers and established)
Foreign Address State

Proto Recv-Q Send- Local Address
PID/Program name

tep 0 0 *:32768
1864/rpc.statd

tep 0 0 LinuxWorkstation:32769
2010/xinetd

‘tep 0 0 *:5802

2105/Xvnc

tep 0 0 *:vnc-1024x768x16
2010/xinetd

tep 0 0 *:vnc-800x600x16
2010/xinetd

‘tep 0 0 *#:5902

2105/Xvnc

tep 0 0 *:sunrpc
1845/portmap

tep 0 0 *:x11

2225/X

‘tep 0 0 *#:6002

2105/Xvnc

tep 0 0 *:ssh

Egﬁ/.sshd

we

&

L

&

&

#

&

LISTEN

LISTEN

LISTEN

LISTEN

LISTEN

LISTEN

LISTEN

LISTEN

LISTEN

LISTEN

Figure 12: Displaying Open Ports Using netstat

54

CMU/SEI-2005-HB-003

Potential Rogue Processes

Filename Port |PID |Location
cuoikgkxvs.exe 27374 | 2288 | C:\WINDOWS
svchostl.exe 80 312 |[C:\..\System32

notepad.exe:alds.exe |7777 988 |[C:\..\System32

spoolsv.exe NA 284 | C:\..\System32\1024

2.1.8.3 Open Files

Open files associated with an executing process should not be overlooked. Often, rogue proc-
esses such as a key logger or network sniffer will have an associated open file to capture their
collected information. One quick way to determine whether a potential rogue process has any
current files open is to use the handle.exe utility for Windows and the native Isof command
for Linux.

2.1.8.3.1 handle (Windows)

The handle exe Utlllty diSplayS in_ D:\Instructor Demos\Mod3Demos\DemoTools>t_handle —a -p svchostl =

Handle v2.2 e

formation about open handles for Copyright (C) 1997-2084 Hark Russinovich
; Sysinternals — wwu.sysinternals.com
processes running on the system.

e D:\nstructor Demos'Wod3Demos\DemoToolskt_cmd.exe

H H hostl. id: 2148 XPCOMPROMISEDUMNStudent Syst
YOU can use It to view the pro_ et M: 1’1113.:3(e 1 C:\Documents and Setglﬁ;s\sgﬁdggt System
- 784: Port
grams that have a file open or to c: [oConpletion

798: loConmpletion

i 1 794: E
view the object types and names of || 74]I:;gl;g;mm

He: DevicenT
all the handles of a program. 76+ File \DevicesiEQ\Endpoint
Tad: Desktop \Default
. . '?aﬂi WindowStation “Windows\WindowStations\HinStal
The screenshot in Figure 13 dem- Jac: dection
7hd: Event
onstrates how we can use the han- 7h8: File \DevicesksecDD
. The: Thread suchostl.exe(2148>: 2152
dle.exe utility to look at all open <|'ch= Event | j_l

handles for the potential rogue

process svehostl. Figure 13: Viewing Handles Using handle

CMU/SEI-2005-HB-003 55

2.1.8.3.2 Isof (Linux)

The native Isof command without any command line arguments will display all open files
belonging to all currently running processes. The three screenshots (Figure 14, Figure 15, and
Figure 16) demonstrate Isof’s command versatility.

Ed root® LinuxWorkstation:~ : e - I:II =
I File Edit MView Terminal Go Help _
[root@lLinuxWorkstation root]# lsof /bin/bash |

[CoMMAaND PID USEE FD TYPE DEVICE SIZE NODE MAME

|bash 2793 root txt BEG 8,2 598548 239406 /bin/bash
[root@LinuxWorkstation root]# I H

i =

Figure 14: Displaying Which Process Has Port 6002 Open

ld rootZ LinuxWorkstation:~
| Eile Edit Mew Terminal Go Help

i[ruut@Linu}ﬂUﬂrkstatiun root]# lsof -i :6002
(COMMAND PID USER FD TYPE DEVICE SIZE MNODE MNAME
(Xwvnc 2105 root Ou IPv4 2600 TCP *:6002 (LISTEN)

|[runt@1.inu}ﬂl.rﬂrkstatinn root]#

Figure 15: Displaying Who Has the Bash Shell Open

b d root® LinuxWorkstation:~
| Eile Edit Wew Terminal Go Help

|[ruut@Linuanrkstatiun root]# lsof -u root | more

|COMMAND PID USER FD TYPE DEVICE SIZE NODE MAME
[init 1 root cwd DIR 8,2 4096 b

[init 1 root rtd DIR 8,2 4096 2/

init 1 root txt REG 8,2 27036 319298 /sbhin/in

Figure 16: Displaying All the Currently Open Files by the User Root

2.1.8.4 Base Priority

When a process is initially executed for both Windows and Linux it is assigned a base prior-
ity value. That value determines what priority it has over other processes in regard to the
computer resources it is assigned and consumes, such as memory and CPU time. When look-
ing at a potential rogue or runaway process you may want to check the assigned priority
value.

56 CMU/SEI-2005-HB-003

2.1.8.4.1 pslist (Windows)

Using Sysinternal’s pslist.exe
utility we can enumerate the
priority levels for each current
running process by looking at
the “Pri” column. The screen-
shot in Figure 17 demonstrates
how to display priority values
for running processes.

2.1.8.4.2 top (Linux)

Using the native Linux top
command we can enumerate
the priority levels for each cur-
rent running process. Linux
processes will generally have a
priority value between -20 and
19, where the value of -20 is
the highest and 19 is the lowest
priority value (Figure 18).

Since the top command only
displays the top current proc-
esses, if we need to enumerate
the process priority value for a
particular process we can use
the top command with the
command line arguments —p

o D:Mnstructor Demos\Mod3Demos\DemoToolsit_cmd.exe

D:xInstructor Demos Mod3Demos“DemoTools>t_pslist

PsList 1.26 — Process Information Lister

Copyright (C> 1999-2084 Mark Bussinovich

Sysinternals — wuww_sysinternals._com

Process information for RPCOMPROMISEDUM:

Name Pid Pri Thd Hnd Priv CPU Time Elapsed Time
Idle a 8 1 a a A:17:15.568 A:P0:00. P66
System 4 8§ 52 518 a B:P0:88.758 B:P0:60. 060
lsmss 568 11 3 21 164 B:P0:80.171 B:17:56.878
CSPSs 648 13 12 461 1864 8:80:86 .486 B:17:508.343
inlogon 672 13 1% 585 6628 B:P0:82.468 B:17:58.125
services 6 9 16 285 1936 A:P0:82 453 A:17:49 515
lsass 728 9 418 344 3572 B:P0:80.953 B:17:49.437
svchost 88@ 8 416 193 2868 A:P0:80.187 B:17:48.656
svchost %8 8 8 278 1568 8:80:808.296 B:17:48.265
svchost 1856 8 53 1297 14928 B:P0:83.625 B:17:48.125
suchost 1128 8 6 84 1128 A:P0:80.046 A:17:48 068
svchost 1264 8 14 217 3668 B:P0:80.156 B:17:46.953
ccEvtHgr 1428 8 14 219 2408 8:P0:80.258 B:17:46.218
ccSetMgr 1444 8 6 184 2372 8:80:80.3978 B:17:46.156
sprolsu 1648 8 11 117 2988 8:P0:88.296 E:17:4r

4

Figure 17: Listing Priority Levels Using pslist

Rl root@ LinuxWorkstation:~ A
File Edit View Terminal Go Help
[root@LlinuxWorkstation root]# top -n 1

18:28:45 up 5:08, 2 users, load average: 0.06, 0.05, 0.00
67 processes: G4 sleeping, 2 running, 1 zombie, 0 stopped

CPU states: cpu user nice systen irq softirq iowait idle
total 3.8% 0.0% 0.0% 0.0% 0.0% 0.0% 96.1%
Mem: 254924k av, 251264k used, 3660k free, 0k shrd, 56456k buff
165840k actwv, 30792k in_d, 4952k in_c
Swap: 522104k av, 3712k used, 518392k free 56784k cached

PID USER

NI SIZE SHARE STAT %CPU %M

2225 root 0 31360 12M 4352 5 2.8 5.0 341 0X
2930 root 22 0 1112 1112 B96 R 0.9 0.4 0:00 O top
1 root 15 0 512 480 452§ 0.0 0.1 0:06 0 init
2 root 15 0 0 0 0 sW 0.0 0.0 0:00 O keventd
3 root 15 0 0 0 0 sW 0.0 0.0 0:00 0 kapmd
4 root 34 19 0 0 0 SWN 0.0 0.0 0:00 O ksoftirgd/0
L 7 root 25 0 0 0 0 5w 0.0 0.0 0:00 O bdflush

Figure 18: Listing Priority Levels Using top

PID —n 1, as shown in Figure 19.

Edit Wiew Terminal

So

I

Help

'[rcct@LinuHWGrkstaticn rootl]l# top —p 2105 —-p 2898 -n 1

IR-3IB:-12 up SzA7, 4 users, load average: 0.54, 0.21, 0.06
12 processes: 2 sleeping. 0 running. 0 zombie, 0 stopped
CPU states: cpu user nice system irg softirg dowait idle
total O _ 9% O _ 0% O _ 0% O _ 0% O _ 0% O _ 0% 99 _ 0%
Mem = 254924k aw, 250908k used, 4016k free, ok shrd, s6688k buff
165668k actwv, 20988k in_d, 43176k in_c
Swap - S22104k awv, 4392k used. S1771Z2k free ss788k cached

2105 Toot
Z2B98 Toot

15
15

8]
O

9824 98249
1352 1352

COMMAND
Nvnc
bash

Figure 19: Displaying the Priority Level for a Specific Process

CMU/SEI-2005-HB-003

57

[*]

[t

2.1.8.5 Process Times and Terminated Processes

2.1.8.5.1 Process Start Time

The process start time is the point in time when the process started executing. An interesting
characteristic of rogue processes is that they generally will have a start time that is a few sec-
onds or few minutes later than all other legitimate running processes. To discover processes
that may have started later in time after the boot cycle you can use the psuptime.exe and
pslist.exe command line tools. These tools will tell you when a process first started.

psuptime (Windows)

s C:YWINDOWS\system32\cmd.exe

To calculate the mltlal start time Of a C:\Documents and Settings\Jake\Desktop\Incident Response\rkdt_psuptime.exe i‘
process, we first have to collect the up- PsUptine vi.l - systen uptine utility for Hindows NT/ZK
R by Mark Russinovich
time or how long the system has been Sysinternals - ww.sysinternals.con
running. We can do this using the psup- This computer has heen up for 1 day, 3 hours, 41 minutes, 24 seconds.
time.exe Utlllty' C:\Documents and Settings\Jake\Desktop\Incident Responsesrkd_

d | JJ

Once we have the uptime of the system,
the next step is to enumerate all of the
elapsed times for the current set of run-
ning processes using pslist.exe.

Figure 20: Checking Uptime Using psuptime

2.1.8.5.2 Process Elapsed Time
pslist (Windows)

Once we have the uptime of the system and the elapsed time for a particular process we can
simply subtract the (Uptime — Elapsed time) to calculate Start Time for any given process.

For example, the Uptime of the system was = 27h:41m:24s and the Elapsed Time of the
Svchost.exe process was = 3h:34s:41s; therefore, the Start Time for the Svchost.exe process
was 24h:6m:43s (12:06:43 a.m.).

e C:AWINDOWS\system32\cmd. exe

C:\Documents and Settings:Jake“Desktop:Incident Response>rk>t-PSLIST.EXE 1768 j
PsList 1.22 - Process Information Lister

Copyright <G> 1999-2882 Mark Russinovich iy
Sysinternals — www.sysinternals.com

Procesz information for SHOOTER:

Name Pid Pri Thd Hnd Mem User Time Kernel Time Elapsed Time

zuchost 178 & 8 73 3136 A:P0:0P.018 P:00:90.048 3:34:41.763
C:|\Ducuments and Settings\Jake\DesktopsIncident Responzesrk> JL]
4 b

Figure 21: Checking Elapsed Time for a Process Using pslist

58 CMU/SEI-2005-HB-003

Note that, by just looking at the pslist.exe output, more specifically the elapsed times, you
can determine which processes started after the boot process.

2.1.8.5.3 Terminated Processes

Suspended or prematurely terminated processes can be indicators of abnormal system behav-
ior. Often in computer security situations, a critical system process will be suspended or ter-

minated. For example, an antivirus or other critical process may be terminated in an attempt

to prevent the host system’s security mechanisms from checking for running malware on the

system. Therefore, terminated processes should be collected and identified.

One method to check for terminated processes in Windows, assuming proper auditing is en-
abled, is reviewing the event logs.

The screenshot in Figure 22 dis-
plays a system event log using the

Ewent Properties

. . . [Event |

Windows Event Viewer. A termi- e :

nated process in Windows exhibits D.ate: EFEFERNE ~ Source: Service Control Manager +
Time: 8:03:29 P Category: Maone

an Event ID of 7034. Type: Error EventID: 7034 ¥
User: M A

Knowing what Event ID to search Lomeltsh e BRI

for, we can use a command line Description:

Utlllty Ca"ed pSlOinSt.exe devel_ EI'STB iPod Semrvice service terminated unexspectedly. It has done thiz 1 time

Oped by SySintema|5 to collect and For mare information, see Help and Support Center at

parse th rOUgh the entire SyStem http: 4 Ago.microsoft. comdbwlink Aevents. asn.

event logs looking for only event

logs that exhibit the Event ID of

7034. Figure 22: Windows Event Log

Figure 23 demonstrates how to use the psloglist.exe utility with the —i command line argu-
ment to search for all event logs that have the Event ID of 7034.

< CAWINDOWSisystem 32k cmd .- exe >
C:~Process Utilities>psloglist.exe —i 7833 =

PsLoglist uv2 2l and remote cuvent log uviewer
Copuright 225 Puan 2683 nonk RucsinovIioh
Susinternals — www.sysinternals.com

Suystem log on ~~SHOOTER:=
(38621 Service Control Manager
T v ERROR
GComputex»:z SHOOTER
T ime = I 4-2005 F-O@A:-45 PM ID= vaza
The Swmantec Antilirus Definition Watcher service terminated unexpectedly. It h
as done this 1 time<s >

22671 Service Control Manager
e = ERROR

Computerx»= SHOOTER

T ime = 33 2005 S8:-0?:=2% FPM ID= vaza
The iFPod Service service terminated unexpectedl. It has done this 1 time<s>.

CowProcess Utilities > —

Figure 23: psloglist Command

CMU/SEI-2005-HB-003 59

2.1.8.5.4 Process Terminated Time

As stated, we can determine which processes have been terminated by using Sysinternals’
psloglist.exe. Using the same approach, we can see that the output of the collected event log
clearly states at what time the process was terminated.

2.1.8.6 Location of Process Image

The location of the process image can give you further insight into whether the process is a
legitimate or rogue process. For example, if a running process’s image is located in the
Startup folder or another anomalous file location, there is a good chance that the currently
running process is not legitimate. We can quickly identify the location of a process image by
using the following utilities for Windows and Linux.

2.1.8.6.1 ListDLLs (Windows)

Using Sysinternals’ ListDLLs utility we can determine the command line used to execute the
process and the location of the process image.

e DIAWINDOWS\system32'cmd.exe

D:~WTools>listdlls.exe firefox

ListDLLs U2.23 — DLL lister for Win?x~-NT
Copyright (C> 17297-2800 Mark Russinovich
http: - uwu.sysinternals..com

Ffirefox_exe pid: 2928
Command line:z "D:“Program Filez“Mozilla Firefox“firefox_.exe'

Figure 24: Locating a Process Image Using ListDLLs

2.1.8.6.2 ps and Isof (Linux)

Using the native Linux ps command with the —aux command line arguments, we can deter-
mine the command line used to execute the process and the location of the process image.

d rooic LinuxWorkstation:—

Eile Edit Wiew Terminal SGo Help

root 2362 0.0 2.2 16044 5664 7 s 13:40 0:05 magicdev —-sm—client-id default
root 2368 0.0 1.5 11320 3944 7 s 13:40 0:00 pam-panel-icon —--sm-client-id 4
root 2371 0.3 6.3 27876 16140 7 SN 13:40 1:05 Jusr/bin/python Jusr/bin/rhn-ap
root 2373 0.0 2.5 16592 6548 7 s 13:40 0:00 Jusr,/libexec/notification-area—
root 2375 0.0 0.2 1564 516 7 s 13:40 0:00 ssbin/pam_timestamp_check -d ro
root 2419 0.0 2.9 13432 7436 7 s 13:42 0:07 metacity --sm-save-file 1111776
root 2806 o.32 4.6 22664 11928 7 R 18:28 0:10 gnome—terminal

root 2897 o.0 0.2 1996 612 ¥ s 18:28 0:00 gnome-pty-helper

root 2898 0.0 0.5 4280 1352 pts/0 s 18:28 0:00 bash

root 2935 0.0 0.5 4276 1352 pts/1 s 18:36 0:00 bash =
root 3078 0.0 0.3 2744 768 pts/1 R 19:18 0:00 ps —aux
Eoot@Linu}morkstation root]# [l [~

Figure 25: Locating a Process Image Using ps

Using the Isof command with the —-p PI Dcommand line argument, we can enumerate the lo-
cation of the process image defined by process ID or PID and also any other files open by the
defined process.

60 CMU/SEI-2005-HB-003

File Edit Wiew Terminal Go Help

[root@LinuxWorkstation root]# lsof -p 2896 El
COMMAND PID USER EFD TYPE DEVICE SIZE NODE NAME

gnome—ter 2896 root cwd DIR 8,2 4096 286849 Sroot

gnome—ter 2896 root rtd DIR 8.2 4096 2/

gnome—-ter 2896 root txt REG 8,2 307400 417706 Jusr/bin/gnome-terminal |:|
gnome—ter 2896 root mem REG 8,2 6818112 304947 Jusr/share/fonts/bitmap-fonts/9x1
g8.pcft
ignome—ter 2896 root mem REG 8,2 96263 272412 Susr/share/fonts/default/Typel/no ﬂ

Figure 26: Locating a Process Image by PID

2.1.8.7 Survivable Processes

Survivable processes can be defined as processes that will re-execute after the machine has
been shut down and then restarted. Often when malware infects a machine or if an attacker
compromises the system, the stored malicious code will be located in startup locations on the
system. Also, registry keys and values may have been modified so that the malware processes
will be started up again upon system reboot. Question certain file locations in the system.

o startup folders, added registry key values and scripts
Check to see if unauthorized applications are starting upon reboot. There are a number of

different methods an intruder can use to start a backdoor program, so be sure to check the
startup folders, startup scripts, and even registry key values.

e invalid services

Check for invalid services. Some backdoor programs will install themselves as services
so they are started when the system boots up.

e scheduled tasks
Check for scheduled tasks and Crontab files.

2.1.8.7.1 Startup Folders, Registry Keys and Values (Windows)

Here are some common Windows startup locations/folders and registry keys to consider.

e Check all items in the C:\Documents and Settings\All Users\Start Menu\Programs
\Startup folder. Note that there are two startup folders, one for the local user and one for
all other users on the system. When a user logs on, all of the applications in both the local
user’s and in the All Users startup folders are started. Because of this, it is important to
check both of the startup folders.

o Check the registry for added keys and key values. The most common locations for appli-
cations to start through the registry are the following:

— HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Man-
ager\KnownDLLs

— HKEY_LOCAL_MACHINE\System\ControlSet001\Control\Session Man-
ager\KnownDLLs

— HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Current Version\Run

— HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Current Version\RunOnce

CMU/SEI-2005-HB-003 61

— HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Current Ver-
sion\RunOnceEx

— HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices

— HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\Windows ("'run=""line)

— HKEY_CURRENT_USER\Software\Microsoft\Windows\Current Version\Run

— HKEY_CURRENT_USER\Software\Microsoft\Windows\Current Version\RunOnce

— HKEY_CURRENT_USER\Software\Microsoft\Windows\Current Version\RunOnceEx

— HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunServices

— HKEY_CURRENT_USER\Software\Microsoft\Windows NT\CurrentVersion\Windows
("run="value)

autorunsc (Windows)

The autorunsc.exe utility developed by Sysinternals allows you to collect all of the following
information regarding survivable processes and services:

o startup applications and their location

e registry key values

e startup services and their location

Figure 27 is a demonstration of using the autorunsc.exe utility to collect information about

processes that will be started upon reboot. For example, look at the executables located in the
Startup folder.

e+ D:Mnstructor Demos\Mod3Demos\DemoTools\t_cmd.exe

D:~Instructor Demos:\Mod3Demos:DemoTools>t_autorunsc.exe 7

Autoruns v5.01 — Autostart program vieuwer
Copyright (C)> 2802-2884 Mark Russinovich and Bryce Cogswell
Syszinternals — wwu._sysinternals._.com

Eutorunsc shows programs configured to autostart during hoot.

sage: autorunsc [-al | [-c] [-d] [-el [-m] [s]1 [-wl

—a Include empty locations.

- Print output as GSU.

—-d Show Appinit DLLs.

—e Show Explorer addons.

-m Hide signed Microsoft entries.
—s Show autostart services.

—u Winlogon entries.

D:xInstructor DemossMod3Demosz“DemoTools>t_autorunsc.exe —c imore_

C:~Documents and Settings~All Users“Start MenusProgramssStartup
BackdoorTelnet.bhat

c:documents and settings“all usersstart menusprogramshstartupsbackdoortelnet.bat
Bginfo.exe

BGInfo — Wallpaper text configurator

(Mot verified> Sysinternals

c:sdocuments and settingshall usershstart menusprogramshstartupsbginfo.exe
cclAippd.exe

c:sdocuments and settingsall usersstart menusprograms>startupsccappd.exe
logger.bat

c:sdocuments and settingshall usersistart menusprogramshstartupslogger.bat
Microsoft Office.lnk

Microzoft Office EP component

Microsoft Corporation

c:sprogram files'microsoft officesofficelBosa_exe
ncconnect .vhs

c:wdocuments and settings*xall usersstart menusprogramshstartupsncconnect.vhs _:J
rogueprocess.hbat

c:hdocuments and settingshall usersstart menusprogramssstartupsrogueprocess.bat

Figure 27: autorunsc.exe Command

62 CMU/SEI-2005-HB-003

Startup Locations and Scripts (Linux)

For a Linux system, certain files should be examined to determine whether there are mali-
cious scripts within these files. Often an attacker will place a shell script in one of the follow-
ing files so that it gets executed every time the machine is rebooted. This is not an exhaustive
list by any means, but includes common file locations to consider and check.

e $etc/re.local
e $etc/initab

e $etc/rc.sysinit

2.1.8.7.2 Invalid Services
Checkconfig (Linux)

The chkconfig —list command displays a list of services that will be run at the five different
runlevels. This information may help you identify a rogue or malware application that is set
to run as a service and at one of the five runlevels.

?v rootd localhost:—

File Edit Wiew Terminal o Help

[root@localhost root]# chkconfig ——1l1ist
ntpd O:off 1:aoff 2:0ff 3:off 4:o0ff S:off S:off
syvslog C-off 1:aoff 2 ton Z:on 4 :on 5:on S:off
vmware—tools o:off 1:o0ff 2:off 3 :on 4:aff s:off G:off
netfs O:off 1:0ffF 2:o0ff 3 :on 4:on 5:on &6:off
network O:off 1:0ff Z:on 3 :on 4:on 5:on G:off
random O:off 1:o0ff Z2:on ZF:on 4:on 5:on S:off
rawdevices O:off 1:a0ff 2:off Z:on 4:on 5:ton G:off
saslauthd o:off 1:o0ff Z2:off F:off 4:off s:off G:off
xinetd O:off 1l:o0ff 2:o0ff F:on 4:on 5:on G:off
portmap O:off 1:a0ff 2:off 3:on 4:on 5:on S:off
apmd O:off 1:o0ff 2 :ton Z:on 4 :on 5:ton S:off
atd O:off 1:o0ff 2:o0ff Z:on 4:on 5:ton G:off
spm O:off 1:0fFf 2 ton 3 :on 4 :on 5:on s:off
lautofs O:off 1:o0ff Z2:off I :on 4:on 5:on G:off
irda O:off 1:0ffF 2:o0ff F:off d:off S:off S:off
|isdn O:off 1:o0ff 2:ion Z:on 4:on 5:on S:off
kevtable O:off 1:on 2 ton 3:on 4 :on 5:on s:off
kud=u O:off 1:o0ff 2:off 3 :on 4 :on 5:o0on &:off
sshd O:off 1:0ff Z2:on Z:on 4:on 5:on S:off
snmpd O:off 1:-aff 2:o0ff 3:off d4:off S:off G:off
Isnmptrapd O:off 1 :a0ff 2:o0ff 3:o0ff d4:off s:off s:off
1isndmail O:off 1:o0ff Z:on Z:on 41 on 5ton G:off L;I

Figure 28: The chkconfig -list Command
Corresponding to the five levels,

chkconfig has five distinct functions: adding new services for management, re-
moving services from management, listing the current startup information for
services, changing the startup information for services, and checking the startup
state of a particular service.

When chkconfig is run without any options, it displays usage information. If only
a service name is given, it checks to see if the service is configured to be started
in the current runlevel. If it is, chkconfig returns true; otherwise it returns false.

CMU/SEI-2005-HB-003 63

The --level option may be used to have chkconfig query an alternative runlevel
rather than the current one [Haas 04].

2.1.8.7.3 Scheduled Tasks
at (Windows)

For collecting information about scheduled tasks on a Windows machine, use the native
at.exe command. The at.exe command will display currently scheduled tasks. Scheduled
tasks should not be overlooked because an attacker could essentially schedule a certain file,
executable, or script to be run on a certain day or time of day that could cause malicious sys-
tem behavior.

Cron Logs (Linux)

In addition to startup services, you should collect the currently scheduled tasks. Attackers
often schedule a malicious file to execute periodically so that the malware remains existent.
The cron feature allows system administrators to schedule programs for future execution. All
executed cron jobs are logged, usually in the /var/cron/log or in the default logging directory
in a file called cron.

i root® localhost:/var/log

File Edit View Termina Go Help

[root@localhost logl# cat cron El
[Nov 15 18:01:00 cmu-130429 CROND[1770]: (root) CMD (run-parts /etc/cron.hourly) '
Nov 15 18:02:29 cnu-130429 anacron[822]: Job ‘cron.daily' terminated

Nov 15 18:05:00 cmu-130429 anacron[822]: Job "cron.weekly' started

[Nov 15 18:05:01 cmu-130429 anacron[1833]: Updated timestamp for job "cron.weekly' to 2004-11-15

Nov 15 18:07:23 cmu-130429 anacron[822]: Job 'cron.weekly' terminated

Nov 15 18:07:23 cmu-130429 anacron[822]: Normal exit (2 jobs run)

Nov 15 19:01:00 cmu-130429 CROND[9177]: (root) CMD (run-parts /etc/cron.hourly)

Nov 15 20:01:00 cmu-130429 CROND[9591]: (root) CMD (run-parts /etc/cron.hourly)

[Nov 17 21:45:53 localhost crond[796]: (CRON) STARTUP (fork ok)

Nov 17 21:45:54 localhost anacron[834]: Anacron 2.3 started on 2004-11-17

Nov 17 21:45:55 localhost anmacron[834]: Will run job "cron.daily' in 65 min.

Nov 17 21:45:55 localhost anacron[834]: Jobs will be executed sequentially

Figure 29: A Cron Log

Crontab (Linux)

Using the crontab command, we can collect the currently created cron jobs for each user of
the system.

64 CMU/SEI-2005-HB-003

B*3 oot LinuxWorkstation:~

File Edit Miew Terminal Go Help

[root@LinuxWorkstation root]# crontab --help
|crontab: invalid option -- -

|crontab: usage error: unrecognized option
usage: crontab [-u user] file

crontab [-u user] { -e | -1 | -r }
{default operation is replace, per 1003.2)
- {edit user's crontab)
-1 (list user's crontab)
-r {delete user's crontab)

[root@LinuxWorkstation rootl]# crontab -u root -1
no crontab for root
[root@LinuxWorkstation root]#

=1

[2]

1]

4

L

Figure 30: The Crontab Command

CMU/SEI-2005-HB-003

65

3 Process Forensic Tasks

1. Check and verify a process’s loaded DLLs
(Dynamically Linked Libraries)
2. Check and verify a process image
= Hash and compare the spoolsv.exe binary
3. Process string search and analysis on

= svchostl.exe
= spoolsv.exe
* notepad.exe:alds.exe

Utilities used:

strings.exe

grep.exe

md5sum.exe or md5deep.exe
sfind.exe

— CERT

2.1.8.8 Process Forensic Tasks

In the following paragraphs we are going to step through a few process forensics tasks that
involve diving deeper into investigating a running process’s binary. In the previous sections
we demonstrated how to forensically collect eight process characteristics using either native
commands or third-party utilities. Now we are going to step through three forensic tasks that
will be of importance to a first responder. By performing these three forensic tasks, a first
responder can gain further insight into a process’s binary function and use.

2.1.8.8.1 Check and Verify a Process’s Loaded DLLs

Often running processes will be utilizing one or more dynamically linked libraries (DLLs) for
Windows or shared libraries in Linux. Dynamically linked and shared libraries are created so
they can be used by many different applications and processes. Having these shared libraries
drastically reduces the size of the actual executable or process binary and improves system
efficiency.

The main reason why DLLs used by a process should not be overlooked is that malware has
been known to replace critical system DLLs with malicious ones or add new malicious DLLs
to the system in an attempt to cause undesired system behavior once executed. The majority
of root kits use DLL injection to infect systems. For these reasons, we will demonstrate how
to check and verify the loaded DLLs for a particular process against a known safe set.

66 CMU/SEI-2005-HB-003

To verify a process’s required DLLs involves three steps: (1) identify a process to check, (2)
identify the DLLs used by the process, and (3) check to see if the DLLs have been corrupted
by hashing them and comparing them against a known safe set.

Step 1: Identify the Process

Identify the potential rogue process by using a process enumeration utility such as pslist.exe.
The screenshot in Figure 31 displays the highlighted process used for this forensic task of
checking and verifying its loaded DLLSs.

v CAWINDOWS\system32\cmd. exe

:36:48.302 =

Euzilla 2248 8 1@ 24@ 25936 A:A1:A1.438 A:AA:=23_273 14

vchost 788 8 8 23 3136 A:80:08.610 B:08:00.6830 5:49:18.722 i
POUERPNT 928 8 4 266 1684 A:08:09.383 A:00:05 888 1:48:49 698
WINWORD 2376 8 18 574 51412 A:01:25.953 B:08:37.193 1:40:47_.6%6 i
unplayer 3Ag4 8 37 7?7 28532 A:AA:18.927 A:AR:A8_822 1:35:47.474

cnd 2596 8 i 31 1268 A:80:08.8108 A:08:00.188 A:57:33.385
Snaglt32 1376 8 4 226 18124 A:08:17.895 A:08:10.785 B:48:08.753
TSCHelp 2372 8 1 29 2288 A:08:08.6820 A:08:00.848 B:48:07.572
t—PSLIST 528 13 2 87 1664 A:80:08.820 A:08:00.6820 A:80:08.3008
C:xDocuments and SettingssJake“Desktop“Incident Responsesrkr_

« ;|4|

Figure 31: The svchost.exe 780 Process

Step 2: Identify the DLLs Used by the Process

The second step is to identify all required DLLs for the identified process. To identify all
DLLs required by the svchost.exe process, use the listdlls.exe utility with the command line
argument —p 780. By using the —p command line argument, we are instructing the utility to
display loaded DLLs only for the designated process (i.e., PID 780).

Figure 32 displays all of the DLLs required for the svchost.exe or PID 780 process.

CMU/SEI-2005-HB-003 67

o C:YWINDOWS\system 3 2\cmnd.exe

suchost.exe pid

Command line: C:~WINHDOWS-System3d2~wsvchost.exe —k HTTPFilter
Base Size Uersion Path
AxA10000AA Ox6008 5.81.2680.218@ C:-sUINDOWS System3Zssvuchost _exe
Ax7c9006000 OxhoBnA 5.81.2680.218@ C:“UINDOWS*=system32~ntdll.411
Bx7cEA00HE Hxf 40080 5.81.2680.2188 C“\UWINDOWS system3IZ-kernel3d2._ dll
Bx77ddAanl Bx?hAAA 5.81.2680.2188 C:~UWINDOWS“system32Z~ADUAPI3Z.d11
Ax77e70808 Ox710688 5.81.2680._.2188 CGC:~UINDOWS~system32-~RPCRT4.411
Ax5ch70888 Ox26000 5.81.2680.218@ C:-SUWINDOWSSSystem3Z2~ShimEng._dll
Ix6FESAAAE Oxlca@@@ §5.601.2680.218@ C::sUINDOWS“AppFatch~AcGenral.DLL
Ax 774406000 Ox?0000 5.81.2680.218@ C:“UINDOWS*system32~USER32._411
Bx77f1060800 Hx4680680 5.81.2680.2188 C-“\UINDOWS system32~GDI32 . 411
Bx76h408HAA Bx2d0680 5.81.2680.2188 C:~UWINDOWS~System32Z~WINMM.4d11
Ax7741e@BfAld O>x13dAAA §5.81.2680.2595 GC:wUWINHDOWS“system3Z2wole32 . 41l
Ix77cl@@nd @x58000 7.880_.26800.2180 C:AUINDOWS =system3Z-msvcrt.dll
Ax77120000 OxBcBAfA 5.81.2680.218@ C:sUINDOWS system32~0OLEAUT32 411
Bx77hed@dd Hx150688 5.81.2680.2188 C=-~UWINDOWS~System32~MSACHM32 _dll
Bx77cAdfiAl #8008 5.81.2680.2188 C:NUWINDOWSssystem32Z~UERSION.d11
Ax7cP?clidlld OxB1i4A08 6.88.2980.2578 GC:sUWINDOWS“system32~SHELL32 _d11
Ax77f6B0A8 Ox7V600A 6.88.2980._.2573 C:-sUINDOWS system32~SHLWAPI _d11
Ix769cA@nd @xbh3iAna 5.81.2680.218@ C:-SUINDOWSssystem32ZS~USERENU _d11
Ax5ad?70000 Ox38000 6.800.2980_.218@ C:-sUWINDOWS System3Z2~UxTheme _.d11
Bx773d0000 Ox1692008 6.88.2980.2188 CUWINDOWSWinSxE x86_Microsoft.Windo

~comct132.d11
Ax5d8?206880 Ox7?788A 5.82.29880.2188 CGC:~\UWINDOWS“system32-comctl1l32_d11
Ax77620008 Ox210688 5.81.2680_.2188 C:-sUINDOWSSSystem32Z~NTMARTH _DLL
Ax76fe0@AE Ox2cOfA 5.891.2680.218@ C:-sUWINDOWS system3Z2~WLDAF32 _dl1
Ax71hfEAE Ox1 3064 5.81.2680._.218@ C:“UINDOWS*System32~SAMLIB. 411
Bx2800000800 Ox2c5808 5.681.2680.21880 C“UINDOWSSystemIZ-xpsp2res.dll
BAx5Saa?86088 78080 6.880.2600.2180 c:~windowsssystem32-~wiss1l.dll
Ax6f290808 Oxd 68688 6.880_2680.21880 GC:~UWINDOWS~System3IZ2-strmfilt._d1ll
Ax77fe@BBdd O>x110688 5.81.2680.2188 C:-SUINDOWSSSystem32ZsSecur32_dll
Ax77a80000 Ox?4000 5.131_.2600.2180 C:-~\WINDOWS system32~CRYFT32._.d4d11
Ax77h206000 Ox120084 5.81.2680.218@ C:“UINDOWS*=system32~MSASHL.4d11
Bx675700800 O.7008 5.891.2680.2188 C=-“UWINDOWS“System32~HTTPAPI .d11
Bx71ablddld Bl YAAA 5.81.2680.2188 C:~UWINDOWSSSystem32~\WS2_32. a1l
Ax71iaa@ffd G8B008 5.81.2680.2188 GC:~WINDOWS~System32~WS2HELP_d11

| |

Figure 32: listdlls.exe Output for svchost.exe

Step 3: Hash and Verify Each of the DLLs

The third step in our quest to check and verify the loaded DLLs for the svchost.exe process is
to hash and compare each loaded DLL against a safe set. To hash each one of the DLLs, you
can use any cryptographic hash utility. For this demonstration we used the MD5deep.exe util-
ity to perform a recursive hash on all DLL files stored in the C:\WINDOWS\System32 folder
and its subfolders. Later, we will search for the identified DLLs to make sure they hashed
correctly.

The primary reason to perform a recursive hash on all files in the System32 folder is that it is
a much quicker method of hashing all of the necessary svchost.exe process loaded DLLs,
since most of them reside in the System32 folder. Otherwise, we would have to hash each one
of the DLLs separately, which there is no easy way to do and which would take a serious
amount of time.

The MD5deep.exe hash utility works by first computing cryptographic hashes for all files you
designate from the command line and then comparing the computed hashes against a defined
file that contains a safe set of hashes. The safe set of hashes that we will be using to compare
against is the National Software Research Libraries library of cryptographic hashes.

Figure 33 displays the MD5deep.exe utility’s command line options, as well as an example of
the command line syntax used to perform a recursive MDS5 hash on all files in a designated
directory. The recursive hash is performed on the System32 folder and its subdirectories. The
utility then compares those computed hashes against a stored set of safe hashes, which are

68 CMU/SEI-2005-HB-003

id: 7g@ = |

I

i

stored in the NSRLFile.txt file. The matched hashes are then output to a DLLs.txt text file,
which we will search later. Note that when the -Mcommand line argument is used, the utility
will flag and output to the DLLs.txt text file only hashes of files that the MD5deep.exe utility
matched correctly against the NSRLFile.txt.

e C:AWINDOWS\system32icmd. exe

C:\Documents and Settings\Jake\Desktop’mdbdeep.exe -h _:J
ndbdeep.exe version 1.5 by Jesse Kornhlum.
c:\> ndSdeep.exe [-vwi-Ui-hl [-mi-Mi-xi-# <file}] [-resez@lht] [-o fhcplsd] FILES _J

~u - display version number and exit
- - display copyright information and exit
-m - enahles matching mode. See README/man page
~x - enahles negative matching mode. See README/man page
~M and -8 are the same as -m and —x but also print hashes of each file
¢ - enahles recursive mode. All subdirectories are traversed
~e - compute estimated time pemaining for each file
-~z - enahles silent mode. Suppress all error messages
~z - display file size hefore hash
~h and -t are ignored; present only for compatihility with mdSsum
~@ - use /B as line terminator
-1 - use relative paths
-0 - Only process certain types of files:
f - Regular File 1 - Symbolic Link
b - Block Device s — Socket
¢ — Character Device d - Solaris Door
p - Named Pipe (FIFQ)

C:\Documents and SettingsJake\Desktop’mdSdeep.exe —M NSRLFile.txt —» -e -2 -o f C:\WINDOWS“Systemd2 >DLLs.txt_
a | P

Figure 33: MD5deep Utility

2.1.8.8.2 The Search

To find out which svchost.exe DLLs hashed correctly, we can perform a string search on the
DLLs.txt file to look for the DLLs used by the svchost.exe process. The search criteria will be
the filenames of the listdlls.exe utility output for the svchost.exe process.

Figure 34 is a screen shot of using the grep.exe utility for performing a string search on the
DLLs.txt text file to see if hashes for the required DLLSs exist. Note that this is not all of the
DLLs that the svchost.exe process required, but for demonstration purposes three DLLs are
provided.

v C:AWINDOWSsystem32\cmd.exe

C:\Documents and SettingssJake\Desktoprgrep —e kernel32.dll ntdll.d11l ADUAPI3Z2.d11 SHELL32Z.d11 DLLs.txt =i

v
<| 4

Figure 34: Performing a String Search Using grep

CMU/SEI-2005-HB-003 69

If everything goes well, the output of your search should be hashes of the files you expected.
However, if your search of the DLLs.txt file does not produce all of the searched DLLs that
you provided, there are two possible reasons. The first reason is that some of the DLLs you
hashed in the System32 folder did not match the supplied hashes for those files stored in the
NSRL file. The second reason is that you may have some corrupted DLLS on your system.
Generally, the first is the case, because the list of hashes the National Software Research Li-
brary provides may not be up to date or might not even have the particular DLL.

2.1.8.8.3 Check and Verify a Process Image

The process of checking and verifying a running process’s binary image follows the same
approach as verifying a process’s DLLs. The method of checking and verifying a process bi-
nary involves three steps: (1) identify the process, (2) identify the location of the process bi-
nary, and (3) hash the process binary and compare the hash against a known safe hash for that
binary. Safe hashes could be either from NSRL library or (if you hashed all .exe files on your
system during a baseline collection) from a baseline system.

When you build a machine, it is a best practice to perform a baseline hash of all critical files
on the system such as .exe files and DLLs so that you have a known good safe state. If an
incident were to occur, you could rehash all of your critical files and compare them against
your stored safe baseline set.

Step 1: Identify the Process

Identify the potential rogue process by using the process enumeration utility pslist.exe. Figure
35 displays the process that we used for this task (i.e., mshearts.exe 2840).

cv CAWINDOWSsystem32\cmd. exe

C:~Documents and Settings>Jake“Desktop:Incident Responsesrk>t—PSLIST.EXE mshearts. =
PsList 1.22 — Process Information Lister

Copyright <C> 1999-2802 Mark Russzinovich =y
Syzinternals — www.sysinternals.com

Process information for SHOOTER:

Mame Pid Pri Thd Hnd Mem User Time Kernel Time Elapsed Time
mshearts 2848 8 2 68 544 A:00:800_06108 A:-00:88_0608 A:-08:35_941
3

< |

Figure 35: The mshearts.exe 2840 Process

Step 2: Identify the Location of the Process Binary

To identify the location of the process binary for the executing mshearts.exe PID 2840 proc-
ess, we can use the listdlls.exe utility. Figure 36 is a screenshot of the listdlls.exe utility with
the file location of the mshearts.exe binary.

70 CMU/SEI-2005-HB-003

v CAWINDOWS\system32\cmd. exe

C:5Documents and Settings“JakesDesktop“~Incident Responsze“rk>LISTDLLS .exe mshearts f—

ListDLLs w2.25 — DLL lister for Win?x-NT
Copyright <C> 1997-2884 Mark Russinovich
Sysinternals — wuwu_sysinternals.com

mzhearts.exe pid: 2848
Command line: ""C:s\WINDOWS“system32-mshearts.exe' _J_J
»

| |

Figure 36: listdlls.exe Output for the mshearts Process

Step 3: Hash the Process Binary and Compare

Now that we have identified the process and the location of the process binary, the third and
final step is to hash the mshearts.exe process binary and compare that hash against a known
safe hash for the mshearts application. We use the MD5deep.exe hash utility to first hash the
potential rogue mshearts.exe binary and compare the hash against the NSRL list of safe
hashes for critical system files for a Windows XP system. Figure 37 is the command line syn-
tax for using the MD5deep.exe utility to accomplish this task.

v C:AWINDOWS\system32\cmd.exe

G:“Documents and Settings“Jake\Desktop>mdSdeep.exe —M NSRLFile.txt -ez C:“\WINDOWS:\System32'mshearts.exe —
126976 helhB85386352ePac?Blec@85B6792h6h C:\WINDOWSSSystem32'\mshearts.exe -

G:“Documents and Settings™Jake\Desktop>_

b
<| Ll [

Figure 37: MD5deep.exe Command Line Arguments

As you can see, the MD5deep.exe utility computed the hash of the mshearts.exe file and,
since the utility was in matching mode as defined by the —Mflag, the mshearts.exe hash
matched against a stored hash in the NSRL text file. So now we can assume some reliability
in the mshearts.exe program, since the hashes matched.

To verify this, we can perform a string search for the displayed hash
(be1b85306352e0ac901ec08506792b6b) in the NSRLFile.txt file to make sure that the appro-
priate hash exists.

CMU/SEI-2005-HB-003 71

et C:\WINDOWS\system32\cmd.exe

C:\Documents and Settings‘Jake\Desktop>yrep -1 helh85306352e@ac?@1ecBB5A6792hoh NSRLFile.txt

G:\Documents and Settings\JakesDesktop>_

d

2.1.8.8.4 Process String Search and Analysis

Another method of further investigating a potential rogue process is performing a string
search on the binary file to see whether you can gather additional information about the proc-
ess binary and its functionality.

Performing a string search on a potential rogue binary involves a few steps. The first step is
to identify the potential rogue running process and the location of its binary and then use a
few command line utilities to perform a string search on the process executable. To demon-
strate this, we will look at the potential rogue process called svchostl.exe.

The svchostl.exe process’s binary was found to be located in the C:\WINDOWS\System32
folder. Now that we have the location of the potential rogue process’s binary, the next step is
to perform a string search on the binary. To do this, we used Sysinternals’ strings.exe com-
mand utility.

Working on NT and Win2K means that executables and object files will many
times have embedded UNICODE strings that you cannot easily see with a stan-
dard ASCII strings or grep programs. So we decided to roll our own. Strings just
scans the file you pass it for UNICODE (or ASCII) strings of a default length of
3 or more UNICODE (or ASCII) characters. Note that it works under Windows
95 as well."

Figure 38 is a screenshot of the strings.exe utility with command line syntax used for search-
ing for Unicode strings within the svchostl.exe binary. Note that the strings.exe command
line utility will not change the access time on the file on which you choose to perform a
string search. Changing the access times on files is a huge concern in computer forensics, as
it relates to the admissibility of collected information.

1 http://www.sysinternals.com/utilities/strings.html

72 CMU/SEI-2005-HB-003

4

"BALAGCIBBD?471B0AB4P46302DBIS1P40877227" , "BEL BB5306352EAACTB1 ECARSA67I2B6R", "CR76D2'75 ", "nshearts . exe ", 126976, 1518, "UNK",
"BA1A6CIBBDI471 BAA IB4F46382DBI51 F4DR77227", V"BE1 BRG 3B6 152 EAACIA1 ECARSA6792B6R ", "CR76D2TS", "nshearts .exe ', 126976, 1567, "UINKP
"BALAGCIBBD?471B0A3B4P46302DBI51P4D877227" , "BE1 BR5306352FAACIAL ECABSA6792B6R", "CB76D275 ", "nshearts .exe ", 126976, 1568, "WINRP
"BALAGCIBBD?471B0A3B4P46302DBI51P4D877227" , VBE1 BR5306352EAACIALI ECABSA6792B6R", "CRB76D2 75", "nshearts .exe ", 1269761571, "WINRP
"B01A6CIRBDI471 BAAIBAP463A2DBY51P4DR77227", "BE1 BRG 306352 FAACIA1 ECARSA6792B6R ", "CRV6D2TS", "nshearts .exe ", 126976, 1572, "UINKP
"BA1AGCIBBD?471B0A3IB4P46302DBY01P40877227" , "BELBB5306352 EAACTB1 ECARSA672B6B", "CB76D2'75 ", "nshearts . exe ", 126976, 3039, "WIN",

i

http://www.sysinternals.com/utilities/strings.html

o+ C:AWINDOWS\system32\cmd.exe

C:Documents and Settings“Jake-Desktop~String Tools»strings.EXE —-a C:sWINDOWS“zystem3d2ssvchostl.exe_ =

b
| |

Figure 38: strings Command

Some of the identified strings that were found in the svchostl.exe binary are

e Thisisaverylongpassword

e Password355

e Longpassword

e J/john.ini

Figure 39 is a screenshot of some of the more important Unicode strings that were found in

the svchostl.exe process binary that led to the discovery of its actual use. As you can see, the
masked svchostl.exe process is actually John the Ripper (i.e., a password cracker).

v C:AWINDOWS\system32\cmd.exe

John the Ripper Uersion 1.6 Copyright <c)> 19796-98 by Solar Designer :ﬂ
Uzage: »=s [OPTIONS1 [PASSWORD-FILES]

—zingle "single crack' mode

in wordlist mode, read words from FILE or stdin

—rules enable rulez for wordlist mode

—incrementall :MODE] incremental mode [using section MODE]

—external MODE external mode or word filter

—stdout [2 LENGTH 1 no cracking, Jjust write words to stdout

—restore [:FILE] restore an interrupted session [from FILE]
—zession:FILE set session file name to FILE

—status[:FILE] print status of a session [from FILE]

—makechars :FILE make a charset, FILE wifl be overuritten

—zhouw zhow cracked passwords

—test perform a benchmark

—users: [-ILOGINIUIDL,..]1 load this <these)} userc<s? only

—groups:[-1GIDL,..1 load users of this <(these) group(z> only
—zhells:[-15HELLL...1 load users with this (these) shell<{s> only

—salts: [—1COUNT load salts with at least COUNI passwords only

—format :NAME force ciphertext format MNAME (DES/BSDI/HDE/BF/HFS/LH)
—=zavemem: LEUEL enable memory saving, at LEUEL 1..3

Invalid plaintext length reguested

Password files regquired,. but none specified

ﬁagsunrd files specified. but no option would use them

PhP

h ;E -
4| v|

Figure 39: strings Command Output

To further verify that the svchostl.exe process is actually John the Ripper, we can hash the
svchostl.exe process and see whether the hash matches the hash of a John the Ripper binary.
Luckily, we can obtain the hash of John the Ripper by either downloading the hash file for
the binary or downloading the binary itself from OpenWall. Figure 40 shows the hash signa-
ture for John the Ripper obtained by downloading the John the Ripper binary and hashing it
with MD5deep.exe hash utility.

CMU/SEI-2005-HB-003 73

. C:AWINDOWS\system32\cmd.exe

C:»Documents and Settings\Jake\Desktop\String Tools>mdSdeep.exe john.exe

f83f892ed?1842cf 235cebBabhebehhd CoA\WINDOWS\system32hsuchostl .exe

C:*Documents and Settings\Jake\Desktop\String Tools>

<|

Figure 40: Hash of John the Ripper

f83f892ed?1A42cf 235cebBabbebehhd C:s\Documents and SettingsJakesDesktop\String Tools\john.exe
C:»Documents and Settings\Jake:Desktop\String Tools>mdSdeep.exe C:\WINDOWS\system32:svchostl.exe

So as you can see the hashes matched perfectly, meaning that the svchostl.exe process run-
ning on the system was actually John the Ripper. This method of performing string searches
and hashing the binary can be applied to look further into any potential rogue processes that
may be running. This was an easy example, however; some rogue process binaries may be
stripped of Unicode text, making it harder to draw conclusions about what the process really

is and its functionality.

74

CMU/SEI-2005-HB-003

Summary

= Numerous process characteristics
= Difficult to distinguish between a legitimate and
a non-legitimate process
» Native commands and utilities to collect the
key process characteristics
= Online resources to help identify purpose or
description of many Windows processes
: cem’}

» Baseline documentation of the system is
crucial

CMU/SEI-2005-HB-003

75

CERT

First Responders Guide to
Computer Forensics

Automated Process Collection

© 2005 Carnegie Mellon University % Software Engineering Institute

2.2 Automated Process Collection

In a computer security incident situation, the last thing you want to be doing is trying to piece
together a set of incident response tools to use on a possibly compromised system. Auto-
mated process collection tools like developed scripts, batch files, etc., can help automate the
process of collecting forensic data from a compromised machine, as well as minimize the
first responder’s footprint on the system.

76 CMU/SEI-2005-HB-003

Objectives

First Responder Utility and Forensic Server
Project

= [ntroduction
= Configuration

Collection of process characteristics

— CERT

2.2.1 Objectives

In this topic, we will be looking at an automated first responder utility called FRUC and how
it can be used in computer security incident situations to collect volatile data and, more spe-
cifically, some of the identified process characteristics that we pointed out in the Process
Characterization topic. We will also present how to properly configure and set up both the
FRUC utility and the back-end server component FSP.

CMU/SEI-2005-HB-003 7

What are FRUC and FSP?

FRUC (First Responder Utility)

= Named after Harlan Carvey
= Command line interface tool

= Tool for collecting data (volatile and some non-
volatile)

FSP (Forensic Server Project)

= Tool for retrieving data (volatile and some non-
volatile)

OS Support
» Windows (2000, XP, 2003 Server)

— CERT

2.2.2 First Responder Utility (FRU)

The automated process collection tool that we are going to present is Harlan Carvey’s First
Responder Utility (FRU). FRU is used by first responders to retrieve volatile data from pos-
sibly compromised systems. The current version of this utility is called FRUC, which is a
command line interface tool that uses a combination of an INI file, different command line
tools and utilities, and output filenames for the collected data. The FRUC utility works to-
gether with the Forensic Server Project (FSP), which is the server component of the First
Responder Utility. You can use FRUC to collect and send captured data to the FSP compo-

nent.

78

CMU/SEI-2005-HB-003

Configuration and Setup of FRUC

3 Components to Configure

= Server configuration section
Server |IP address & port

1 [Configuration]

€ ; This section and information is reguired, but
2 ; can he overridden at the command line

4 server=192,168.2.34

5§ port=7070

= Command section
List of commands/utilities, args, & output filenames

1z 1=fpaort.exe; processopenports.txt
14 Z=handle.exe; processopentiles.txt
15 3=pslist.exe; processpriority.txt

= Registry section
List of registry keys and values to check

23 [Registry Values]
24 : Enter the Registry key, and the wvalue vou're interested in

32 [Registry Keys]
33 1=HKCU\ Software}Nicrosoft) Vindows)Current¥ersion) Run}
34 Z=HKLM\ Softvare}Nicrosoft) Vindows) Current¥ersion’ Run}

CERT

2.2.2.1 First Responder Utility (FRUC) Setup

The FRUC utility has five components that are required for the automated tool to run.

1. fruc.exe — the executable that interfaces with the fruc.ini configuration file, p2x584.dll
file, and the designated command line utilities

2. fruc.ini —the configuration file for tailoring the script to fit your collection needs. In the
fruc.ini file, you will configure what commands and executables you want executed to
collect volatile information.

3. P2x584.dll —the required DLL file necessary for the executable to run properly

4. list of executables — A list of executables or utilities will need to be defined so the
fruc.exe utility can use them to collect volatile information. Tools like the discussed
pslist.exe, psloglist.exe, and etc will need to be in the same folder as the fruc.exe utility.

5. FSP —the server component for receiving and viewing the collected volatile data

The setup for this utility to work properly requires only a few steps. The first step is to locate
the fruc.ini file and tailor it to your needs. The fruc.ini file has three parts to configure.

2.2.2.1.1 Step 1: Configure the Server IP Address and Port Number

Figure 41 is a screenshot of the first part of the fruc.ini file that needs to be configured.

CMU/SEI-2005-HB-003 79

ﬁ,,,,,,,,lﬂ,,,,,,,,2ﬂ,,,,,,,,Eﬂ,,,,,,,,4ﬂ,,,,,,,,5ﬂ,,,,,,,,6
[Configuration]

; This section and information iz required, but

; can be overridden at the commwand line

server=19:2.165.2.34

port=7070

L T o Y S o1 R N

Figure 41: First Part of the fruc.ini File

The server and port settings need to be configured so that the FRUC utility knows where to
send the collected volatile data (i.e., IP address of the FSP server) and on what port. Once
you have this part configured, the next step is to configure the command section of the
fruc.ini file.

2.2.2.1.2 Step 2: Configure the Command Section

The command section of the fruc.ini file will be the list of commands or third-party forensic
utilities that will be executed in sequential order with their respected command line argu-
ments to collect pieces of volatile data. In addition to listing the commands or utilities to be
executed, you must designate a filename for the output file. Figure 42 is a screenshot of the
middle part of the fruc.ini file that is to be configured.

1% 1=fport.exe; processopenports.txt

14 Z=handle.exe; processopentfiles.txt

1t j=p=list.exe; processpriority.Lxt

lg d4=p=sloglist.exe —1 7034; terminatedprocesses.Lxt
17 S=listdll=s.exe; processloadeddlls.toxto

l2 G=autorunsc.exe; sStartupinfo.txt

12 7=at.exe; scheduledtcasks.toxt

Z0 S=openports.exe —netstat: openports. txHo

Z1

Figure 42: Second Part of the fruc.ini File

In the screenshot, the parts in green (lighter highlighting for black and white printing) are the
commands or utilities to be executed in sequential order and the parts in blue (darker high-
lighting for black and white printing) are the names of the output files to be created to store
the respective command output.

2.2.2.1.3 Step 3: Configure the Registry Keys Section

The registry keys section of the fruc.ini file will be the list of registry keys and values to col-
lect from the compromised machine. As described, we want to check certain registry keys for
auto-starting programs and services. The third part of the fruc.ini file allows us to enter a list
of registry keys to check, as well as their key values. The final part of the fruc.ini file that
includes a list of registry values (highlighted in green—lighter shading for black and white
printing) and a list of registry keys to check (highlighted in blue—darker shading for back
and white printing) is shown in Figure 43.

80 CMU/SEI-2005-HB-003

23
Z4
25
26
z7
Z8
Z9
30
31
FZ
fec]
=4
2E
ZE
37
28
35
<40
41
42
43
EE)
45
46
47

[Registry Values]

;s Enter the Registry key, and the walues wou're interested in
;: here, sSeparated by a Semi-colon

;& good place to get waluses is from SilentBPRunnhers.ord

1=HECT Joftwareh Microsofth Commnand Processor: AutoRun
Z=HELMY Z3oftwareh Classesiexefile’\shell’ open’ conmnand:
F=HECUh SoftwarehMicrosoftoh Internet Explorer’ TypedURLs:urll

[Registry Eewvs]
1=HECUY Softwareh Microsofoh Windowsh CurrentVersionh Run'
Z=HELM) SJoftwarehMicrosofch Windowsh CurrentVersionh Run'

F=HELM) Svstem’ CurrentControl3eth Controlh JIession Managerh KnownDLLs=
4=HELMY Svstem’ ControlSet001% Controly Jession Managerh EnownDLLs=
E=HELM) Softwarey Micraosoft WindowsY Current Wer=sion' Run

6=HELM) Software’y Hicrosofth WindowsY Current VWersion' RunCnce

T=HELM) Software’ Microsofth Windowsh Current Wersionh PunOnceEx
S=HELM) Software' Microsofth Windowsh CurrentVersion'y PunServices

9=HECUY Softwareh Microsofrh Windows' Current VWersionh Run

10=HECTH Softwareh Microsofth Tindowsh Current WVersionh Rundnce

11=HECT" Softwareh Microsofth Tindowsh Current Wersionh RunonceEx

1Z=HECT Softwareh Microsofch Tindowshy CurrentvVersionh Runservices
13=HECT Softwareh Microsofch Mindows NT, CurrentVersionh Windows ([("run="™

walue)

Figure 43: Final Part of fruc.ini File

CMU/SEI-2005-HB-003

81

Configuration and Setup of FSP

Case directory

Name of the directory/folder where the collected data will
be sent

Case name

Name of the current incident response case
Investigator name

Name of the investigator or first responder
Port

Designated port to listen on
Logfile

Designated name for the case logfile

— CERT

2.2.3 Forensic Server Project (FSP)

FSP server component works like a glorified netcat listener. It listens on a certain port and
awaits a connection made by the First Responder Utility. Once a connection is established by
FRUC, FRUC then sends the collected volatile data to the listening FSP server. Then FSP
collects that data and puts it into separate files that are designated by each one of the executed
commands FRUC uses.

2.2.3.1 FSP Setup

To set up FSP on the remote collection system, you will need to run the fspc.exe utility from
the command line and pass it some of the configuration arguments highlighted in blue in
Figure 44 (darker shading for black and white printing).

82 CMU/SEI-2005-HB-003

e C:\WINDOWS\system32\cmd.exe

C:xDocuments and Settings:Jake>Desktop FRUC Utility>fspc.exe -7
FSPC [-d case dir]l [-n case namel [-p port] [-i investigatorl _J
[-1 logfilel [-c1 [-v]l [-h]

Forensic Server Project (CLI> v.1_Bc. server component of the

Forensics Server Project

—d case dir....Case directory (default: cases)

-n case name...Name of the current case

-i invest...... Investigator’s name

-p pPOPE..aeena- Port to listen on <default: 7878>

-1 logfile..... GCase logfile (default: case.log>

b L o Uerbhose output (more info,. good for monitoring
activity)

b S Close FSP after CLOSELOG command sent (hest used
when collecting data from only one system?

bl | P Help {print this information

Ex: C:x>fspc —-d cases —n testcase —-i "H. Carvey"
C:s>fspc —n newcase —p 8@

copyright 2884 H. Carvey
C:“\Documents and Settings:Jake“Desktop“\FRUC Utility>fspc.exe —d cases —n testcaze —i "“"Joe"

-
4| >

Figure 44: FSP Setup

2.2.3.2 Testing FRUC

Now that we have made all the appropriate configuration changes to the fruc.ini file, it is time
to test how well this utility works. We configured the server by executing the fspc.exe utility
from the command line on the remote collection system and passing it the appropriate argu-
ments (Figure 44). We should now be able to execute the fruc.exe utility to collect volatile
data and send the collected data over to the listening server. Figure 45 is a display of the
fruc.exe utility being executed from the command line with the appropriate command line
arguments such as the IP address to send the collected data to, on what port, which configura-
tion file to use, and in verbose mode.

D:\t_cmd.exe

D:\FRUC Utility>fruc.exe -s 192.168.30.50 -p 1070 -f fruc.ini -v

Verbose mode set.

Figure 45: FRUC Utility Command

CMU/SEI-2005-HB-003 83

Execution of FRUC and FSP

Server component

et C:\Demos\t_cmd.exe - fspc.exe -d Incident01 -n XPCOMPROMISED -i Jake -p 7070 -v

C:\Demos\FRUC Utility>fspc.exe -d Incident®l —n KPCOMPROMISED -1 Jake —-p 70780 -u

Connection from 192.168.30.40

DATA command received: HPCOMPROMISEDVM- startupinfo.twxt

DATA command received: HPCOMPROMISEDYM- processpriority.txt
DATA command received: HPCOMPROMISEDYM- scheduledtasks.txt
DATA command received: HKPCOMPROMISEDYM- processes. txt

DATA command received: HPCOMPROMISEDVYM- processopenfiles. txt
DATA command received: HPCOMPROMISEDVM- openports. txt

DATA command received: HPCOMPROMISEDVM- processopenports. txt
DATA command received: HKPCOMPROMISEDVM- terminatedprocesses. tut
DATA command received: HPCOMPROMISEDVYM- processloadeddlls.txt
DATA command received: HPCOMPROMISEDVYM-regkeys.dat

DATA command received: HPCOMPROMISEDYM-regwvals.dat

CLOSELOG command received.

Client component

et D:M_cmd.exe

D:\FRUC Utility>fruc.exe -s 192.168.30.50 -p /070 -f fruc.ini -v

VYerbose mode set.

S=FFHT

2.2.3.3 Output of FRUC

Once the server component (FSP) starts to receive the collected data sent from FRUC, it will
display from the command shell that a connection has been made, what collected data has
been sent over, and finally a closelog message to indicate that FRUC has stopped collecting
and transmitting volatile data.

¢+ C:\Demosit_cmd.exe - fspc.exe -d Incident01 -n XPCOMPROMISED -i Jake -p 7070 -v

C:\DemosA\FRUC Utilitu>fspe.exe —d IncidentBl —-n XPCOMPROMISED -1 Jake —p 878 —w
Verbose mode set.

Setup complete

Case Name: HPCUMPRUMISED\

Port ;7870

Server Started

Awaiting connectlo

Connection from 192.168.30.40

DATA command received: HKPCOMPROMISEDVM- startupinfo.txt

DATA command received: XPCOMPROMISEDVM- processpriority.txt
DATA command received: XKPCOMPROMISEDVHM- scheduledtasks.txt

DATA command received: XPCOMPROMISEDVM- processes.txt

DATA command received: XPCOMPROMISEDVM- processopenfiles.txt
DATA command received: XPCOMPROMISEDVM- openports.txt

DATA command received: XPCOMPROMISEDVM- processopenports. txt
DATA command received: KPCOMPROMISEDVM- terminatedprocesses. tut
DATA command received: KPCOMPROMISEDVYH- processloadeddlls. txt
DATA command received: HPCOMPROMISEDYM-regkevs.dat

DATA command received: XKPCOMPROMISEDYM-regvals.dat

CLOSELOG command received.

Figure 46: FSP Command Output

When the FSP server receives the collected volatile data from FRUC, it creates text files for
each one of the executed commands and appends each file with the name of the system from
which it is collecting the volatile data (Figure 47). So as you can see, we have a list of eight

84 CMU/SEI-2005-HB-003

text files directly correlating to the eight commands that were configured to execute in the
fruc.ini file. Also you can see, we have two .dat files containing a list of the registry keys and
values that were defined to be collected.

ske\DeskboplFRUC Ukilitycasesitestcase

SHOOTER- processloadeddlls
Text Document
Z17 KB

SHOOTER- processpriarity
Texk Document
& KB

SHOOTER- terminatedprocesses

Text Docurment

1KE

SHOOTER- openporks
Texk Document
4 KE

caselog.hash
HAS5H File
0O KE

=" SHOOTER- processopenfiles
Text Documeant
104 KB

SHOOTER- processopenporks
Text Document
+ KB

SHOOTER- scheduledtasks
Text Document

SHOOTER- startupinfo
Texk Document

1KE SKE

= SHOOTER-regkeys
@ DAT File
S KE

SHOOTER-regwals
DAT File
1KE

Figure 47: FRUC Output File

Another great feature with this automated collection utility is what is stored in the case text
file. Within the case file is an audit trail containing the time and date the server was started
(as highlighted in green—Ilighter shading for black and white printing), the time and date
each collection utility was executed (as highlighted in blue—the line containing *“open-
ports.exe”) and finally a hash of each output file (as highlighted in orange—the line contain-
ing “openports.txt”) (Figure 48).

ulll

T

30 40 50 &0 70 a0

Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu
Thu

W -1 mon R L M

e =
nod N O

—
o

Mar 31 21:55:16 Z005;3erwver started
Mar 31 21:55:16 Z005:
Mar 31 21:58:16 2Z005;:Case = testcase’
Mar 31 21:58:16 2005;: Investigator = Joe
Mar 31 21:55:16¢ Z0D0O5:
Mar 31 22:12:21 2005;3erver started I
laf=hedBelai e e e
M e p AN E s Cams et pnEa
Mar 31 22:12:21 2005;: Investigator = Joe
Mo e P e T R 5
Mar 31 22:12:31 Z005;L0G [Thu Mar 31 22:12:31 Z005] openports.exe —-netstat
Mar 31 22:12:31 Z005;:LDATL command received: SHOOTER- openports.txt

Mar 31 22:12:31 Z005;HASH SHOOTER- openports.txt:d033144dfd0c14153a712e5245520b467: £40
Mar 31 22:12:33 2005:L0OG [Thu Mar 31 22:12:33 2005] autorunsc.exe
Mar 31 22:12:33 2005:DATA command received: 3HOOTER- startupinfo.txt
Mar 31 22:12:33 2005:;HASH SHOOTER- startupinfo.txt:eh467389bc7a0e055360aff5027E5d3en:q

Figure 48: FRUC Audit File

CMU/SEI-2005-HB-003

85

Summary

FRUC

= VVersatile volatile collection tool
» Tailored to first responders’ needs

FSP

» Case log acts as a forensic audit trail
= Allows for remote collection and transmission
of forensic data
= CERTJ

86

CMU/SEI-2005-HB-003

3 Module 3: Image Management

CERT

First Responders Guide to
Computer Forensics

Module 3:
Image Management

© 2005 Carnegie Mellon University % Software Engineering Institute

In this module, we take a detailed look at capturing and restoring images and image man-
agement. Included is a discussion of the dd tool, its syntax, and its variants. Reasons for split-
ting up blocks of data are enumerated, and techniques for breaking up an image and retriev-
ing a specific file from within a captured image are described.

Additionally, we will walk through step-by-step instructions for two exercises. The first dem-
onstrates how the split command can be used to break up an image. The second uses dd to
carve a specific file out of a captured image.

CMU/SEI-2005-HB-003 87

dd stands for “copy and convert”

CLONE-A-Matic

“Well, ‘cc’ was already
taken for the C compiler,
so the author chose the
next letter in the alphabet.
The syntax has sort of an
evil, JCL-like quality to it.
According to The Jargon
File, the interface was a
prank.”t

1 http://www.softpanorama.org/Tools/dd.shtml

—=FFHT

3.1 Slice and Dice with dd

The dd tool creates bit-by-bit copies, or images, of a specified file. File, in this case, is used

in the “*nix” sense of the word. A file could

be anything from a floppy disk to an entire hard

drive. “The name dd stands for ‘copy and convert.” Don’t see it? Well, ‘cc’ was already taken
for the C compiler, so the author chose the next letter in the alphabet. The syntax has sort of

an evil, JCL-like quality to it. According to The Jargon File, the interface was a prank.

Initially, the syntax may look confusing, but

Table 8: dd Syntax

if = file [infile]
of = file [outfile]
ibs = bytes [input bl ock size]
obs = Dbytes [out put bl ock size]
ski p= bl ocks
seek = bl ocks
count = bl ocks

1 http://www.softpanorama.org/Tools/dd.shtml

»ll

it is pretty simple. Below is a basic example:

(i.e., read from file vs. standard input)
(i.e., write to file vs. standard output)

(i.e., specify the number of bytes per read opera-
tion)

(i.e., specify the number of bytes per write op-
eration)

(i.e., number of blocks to skip before copying
starts)

(i.e., number of blocks to skip before writing
starts)

(i.e., number of blocks to copy)

88

CMU/SEI-2005-HB-003

http://www.softpanorama.org/Tools/dd.shtml
http://www.softpanorama.org/Tools/dd.shtml

Developed for UNIX, dd has since been ported to many other operating systems. There are
also a few variations of the original tool. John Newbigin has written a version of dd for win-
dows. It is available at http://uranus.it.swin.edu.au/~jn/linux/rawwrite/dd.htm. Forensic Ac-
quisition Utilities, a suite of forensic oriented applications for Windows platforms, also con-
tains dd; that can be found at http://users.erols.com/gmgarner/forensics/. DCFLDD is the
Department of Defense Computer Forensics Laboratory’s version of dd, which incorporates
MD5 hashing and a progress status indicator. More information on that can be found at
http://www.virtualwar.com/unix/cat_computerforensics.html.

CMU/SEI-2005-HB-003 89

http://uranus.it.swin.edu.au/~jn/linux/rawwrite/dd.htm
http://users.erols.com/gmgarner/forensics/
http://www.virtualwar.com/unix/cat_computerforensics.html

Breaking up is hard to do...NOT

Why break up a perfectly good image?

= |t is too big \ .(
= Inexpensive backup storage | \

= File size restrictions ?/\@%%
Tools to use: - _?U

= split 7

= md5sum > ///

cat =
J

= CERT[

There are several reasons to break up an image. The first is the issue of having a target ma-
chine too big (think RAID server or backup tapes) to feasibly have a receptacle on hand large
enough to accept the entire image. In this case, on-the-fly image splitting may be needed.
Additionally, it may be convenient to store a backup copy of the image on some non-volatile
media to free up space for other activities. Splitting a 40GB image across several 5GB DVDs
is one eminently practical and economically feasible option.

There are also cases when specific investigative tools have file size restrictions. In these cases
a larger image must be broken up into manageable pieces for analysis. Imagine trying to toast
an entire loaf of bread at one time. The results are much better if you take a slice at a time.

90 CMU/SEI-2005-HB-003

Variations on a Theme

dd, dcfldd, and dd for Windows share a
similar syntax

dd if=/*source* of=/*destination*

if = file [infile] (i.e., read from FILE vs. standard input)
of = file [outfile] (i.e., write to FILE vs. standard output)
ibs = bytes [input block size] (i.e., specify the number of bytes per read operation)

obs = bytes [output block size] (i.e., specify the number of bytes per write operation)

skip = blocks (i.e., number of blocks to skip before copying starts)
seek = blocks (i.e., number of blocks to skip before writing starts)
count = blocks (i.e., number of blocks to copy)

.

The dd tool comes with most Linux distributions. Other variations that may be downloaded,
such as dcfldd, have enhanced features for forensics and security, including built-in MD5.

The following exercises are loosely based on the “Fun with DD” section of The Law En-
forcement and Forensic Examiner Introduction to Linux: A Beginner’s Guide, written by
Barry Grundy. Mr. Grundy’s guide is available free in PDF form online and can be found
with a simple Web search.

For each dd exercise, detailed directions, as well as example images, have been included so
that you may see the results of each step or use them as a reference for your own hands-on
experience. The first exercise will cover the basics of splitting up an image and putting it
back together again. The second exercise involves carving out a specific file type from a lar-
ger image.

Splitting a dd image and putting it back together again will be done in four steps:

1. Take a baseline hash of the original image.

2. Create an image in several parts (split).

3. Hash across the multiple image parts.
4

Put the image parts back together as a single image and hash.

For this example, a small Windows XP partition is used. We are going to split this partition
into 2MB partition segments. Normally, you would have a much larger image that could be
split into 2GB partitions, but for simplicity, a much smaller one is being used. Commands

CMU/SEI-2005-HB-003 91

that should be entered are in shaded boxes and, in most cases, are followed by the resulting
output.

First, we will use MD5 to calculate the hash value of this partition. This is used to help con-
firm the integrity after we have split the partition and also for when it is put it back together
from the split image components to confirm that it has remained unchanged.

The filename of the Windows XP partition image being used is xpHD.dd. The following
command will return the baseline hash value of the image:

| mi5sum xpHD. dd |

[rootBLinuxborkstation Demo_41# 1=
xpHD . dd
[rootlLlinuxborkstation Demo_41# md5sum xpHD.dd

£51c93be?a3sBf 146f8488b66989bchbS xpHD.dd
[rootlLlinuxborkstation Demo_41# _

Figure 49: Result of Using md5 to Calculate a Hash Value

We will use the split command to break the 8MB image into 2MB segments. Split is normally
used on lines in a text file. In this case, since it is a binary file, we are using b to force the
tool to deal with it as a binary file and ignore line breaks. The 2mis used to specify the size of
the resulting split files. Next, you specify the name of the file to be split. In this case, it’s
xpHD.dd. And finally, xpHd.split is the prefix of the resulting 2MB files.

| split —b 2m xpHD. dd xpHD. split. |

Now list the files in the directory to confirm the split. You will find the original image,
xpHD.dd, and then the four new component split images. A suffix of aa, ab, ac... is appended
to the end of the file prefix for each 2MB segment.

[rootPLinuxkorkstation Demo_41# split -b Zm xpHD.dd xpHd.split.
[rootPLinuxborkstation Demo_41# 1s -1h
total 16M

~-rW-r--r-- root root .8M Dec : xpHD . dd

-ru-r--r-- root root .BM May : xpHd .=plit.
-ru-r--r-- root root .BM May : xpHd .=plit.
-ru-r--r-- root root .BM May : xpHd .split.
-ru-r--r-- root root .8M May : xpHd .split.

Figure 50: Confirming the Result of Splitting Images

Check the integrity of the split images using a combination of the cat and md5sum com-
mands. The cat command will put the images back together, and then we pipe that to the
md5sum tool to find the value of the split images.

| cat xpHD.split.a* | nd5sum |

92 CMU/SEI-2005-HB-003

[root@Linuxborkstation Demo_41# mdSsum xpHD.dd

Z£51c93be?a358f 148fA488b66989bchS xpHD.dd
[root@Linuxborkstation Demo_41# =split -b 2m xpHD.dd xpHd.=plit.
[rootPLinuxWorkstation Demo _41# ls -1h

total 16M
-rw-r--r-- root root .8M Dec : xpHD . dd
“rW-r--r-- root root .BM May : xpHd .=plit.
-rw-r--r-- root root .BM May : xpHd .=split.
-ruw-r--r-- 1 root root .8M May : xpHd . =plit.
[root@Linuxborkstation Demo_41# cat xpHd.split. mdSsum

251c93be?a35Af 146Ff A488b66989bchS

[root@Linuxkorkstation Demo_41# _

1

-rw-r--r-- 1 root root .BM May : xpHd .=split.
1
1

Figure 51: Result of Using cat and md5sum to Check the Integrity of Split Images

As you see, when we compare our original MD5 hash value to the new MD5 hash value, it
has remained the same.

Now we will use the cat command to put the split images back together into a new file. We
need to specify which files we want to put back together into a new image file.

| cat xpHD.split.a* > xpHD. new |

Do a directory listing to confirm the new image.

[Is —lh |

Finally, check the integrity of the image that was put back together to confirm that it remains
unchanged.

| md5sum xpHD. new

CMU/SEI-2005-HB-003 93

[rootPLinuxkorkstation Demo_41# mdSsum xpHD.dd

Z51c93be?a35Bf 148f8488b66989bcbd xpHD.dd

[rootPLinuxkorkstation Demo_41# split -b Zm xpHD.dd =pHd.split.
[rootPLinuxWorkstation Demo_41# 1s -1h

total 16M

“-rW-r--r-- 1 root root .8M Dec 13 14:33 xpHD.d4d
“-rW-r--r-- 1 root root .BM May 18 11:37 xpHd.split.
“-rW-r--r-- 1 root root .BM May 18 11:37 xpHd.=split.
-ru-r--r-- 1 root root .BM May 18 11:37 xpHd.split.
-ru-r--r-- 1 root root .8M May 18 11:37 xpHd.split.
[root@Linuxborkstation Demo_41# cat xpHd.split.a=x | mdSsum
£51c93be?a3sBef 148fA488b66989bchS -

[root@Linuxborkstation Demo_41# cat xpHd.split.a=x > xpHD.new
[rootBLinuxborkstation Demo_41# ls -1h

total Z4M

-ru-r--r-- root root .8M Dec 13 14:33 xpHD.
“ruW-r--r-- root root .BM May 18 11:39 xpHD.
“ruW-r--r-- root root .BM May 18 11:37 xpHd.
“ruW-r--r-- root root .BM May 18 11:37 xpHd.
“ru-r--r-- root root .BM May 18 11:37 xpHd.
“ru-r--r-- root root .BM May 18 11:37 xpHd.
[root@LinuxbWorkstation Demo_41# mdSsum xpHD.new

251c93be?a358f 148f A488b66989bchs]y J UM TEIN]

[rootPLinuxkorkstation Demo_41# _

Figure 52: Result of Using md5sum to Check the Integrity of a New Image

As you can see, the value of the new hash is the same as the original file.

94 CMU/SEI-2005-HB-003

Data Carving

Generally done with other tools

Provides a solid understanding of what those
tools are doing

Tools to use: BEisEs [<
10101007 1w
i | [5 A
= xxd 10011016 I‘(
1001101¢ =
= grep P conag” ~Na
b — 2l |

S==CFAT

The next example will show how to carve a specific file out of a block of data.

For the purposes of this exercise, we will be using a captured image of a floppy disk to do
data carving using dd. While this will increase your skills using dd, it is not the best way to
go about finding a file type. There are several automated tools that work much more effi-
ciently. Going through the process in this manner, however, gives you a good idea of how to
use dd in this capacity and an understanding of how the automated file searching tools actu-
ally work.

We are going to be looking in this captured image of a floppy drive for a .jpg file. In order to
do that, we will start out using a hex editor to examine the floppyimage.dd image. Using grep,
we are looking for the tag that delineates the beginning of a .jpg (ffd8) and finding all the
places it shows up.

| xxd floppyimge.dd | grep ffds |

CMU/SEI-2005-HB-003 95

[root@LinuxWorkstation flimage]# xxd floppyImage.dd | grep ffds

0015400: bOc3 ffd8 200d 7b69 e36a ad4db 94ab cc72{i.j..... T
00lae50: c643 eB8c4 c80d a304 ffd8 7a74 2db0 b8% .C........ zt-...
001e550: 2d90 efds ffde fdel 007f eef8 cdeb 0156 -—.............. W
0028930: d4c5 9413 5df4 ffde fove 2364 faae ball]....w#d....
004ad40: bfbd 3df8 eafd f471 ffd8 fb3c flbe c2c3 ..=....Q...<....
0074ce0: cB804 2c00 80c8 042c 0080 c8fa ffde 3300 ..,....,...... 3.
00a5a40: 96af f471 ffds 339f 2e34 2f97 d2a6 1167 ...q..3..4/....g
00a9120: 567c b057 ade0 fds54 blof 80f7 ffde afos V|.w. .T........
ooffdso: 0015 oofo ££3b 0000 CQOOL1 OOOOC QOO0 OOO1 e
012c260: bb7b e08f ddee 77b3 4686 7c36 5b3d ffde .{....w.F.|6[=..
013ff20: 3ea3 7c47 ad9b bc34 b8c3 de5f ffds d4bs . |G...4...

01489a0: bbb7 4cdb 97bc ffdg8 bo7d 977d ddof blle ..L...... }.}....
0157400: ffds ffe0 0010 4a46 4946 0001 0101 oo4sJNEgE..... H

Figure 53: Finding a .jpg Tag in a Captured Image
We are going to focus on the last line containing the .jpg tag, which reads
0157400: ffd8 ffe0 0010 4a46 4946 0001 0101 0048 JFIF...... H

What we have is a hexadecimal delineation of the location within the image. Translating it
gives us the decimal byte offset needed to calculate the size and location of the file.

| echo “ibase=16; 0157400” | bc |

[root@LinuxWorkstation flimage]# xxd floppyImage.dd | grep ffds
0015400: bOc3 ffds 200d 7b69 e36a ad4db 94ab cc72{i.j..... r
00lae50: c643 eBc4 c80d a304 ffds 7av4 2db0 b89%a .C........ Zt-...
001e550: 2490 efds ffds fdel 007f eef8 cdeb 01568 -—-.............. v
0028930: d4c5 9413 5d4df4 ffds fove 2364 faae balo]....v#d....
004ad40: bfbd 3df8 eafd £471 ffdB fb3c flbe c2c3 ..=....Q9...<....
0074cel: ¢804 2c00 B0c8 042c 0080 cafa ffds 3300 ..,....,...... 3.
O0a5a40: 96af f471 ffds 339f 2e34 2f97 d2a6 1167 ...q..3..4/....g
00a9120: 567c b0O57Y ade0 fds4 blof s0f7 f£fds afos V| .w. .T........
ocoffdso: o015 oofo £f3b 0000 OOO1 OOOO0 QOO0 0001 e e
012c260: bbYb e08f ddee 77b3 4686 7c36 5b3d ffds .{....w.F.|B[=..
013ff20: 3ea3 7c47 ad9b be34 b8c3 de5f ffds d4bs =.|G...4..._....
01489%a0: bbb7 4cdb 97bc ffds bOovd 977d 4ddof blle ..L...... F.)..
0157400: ffds ffeD 0010 4a46 4946 0001 0101 0048 JEIF..... H
[root@LinuxWorkstation flimage]# echo "ibase=16; 0157400" | bc
1405952

Figure 54: Decimal Form of the Beginning of the .jpg File

The result is 1405952, which is the decimal form of the beginning of the .jpg file. We will
follow the same procedure with the hex editor to find the end of the .jpg. Now that we know
where the .jpg file starts, we have the starting point of our search. This time we are searching
for the tag that delineates the end of a .jpg file, ffd9.

| xxd —s 1405952 floppyi mage.dd | grep ffd9 |

96 CMU/SEI-2005-HB-003

[root@LinuxWorkstation flimagel]# xxd -s -1406952 floppyImage.dd | grep ffd9o
004e008: e767 5092 64f0 e73f ffd9o dB8dd 7fff fdb9 .gP.d..7........

005c8h8: 254b 76ea frydf 7951 ffdo O lefo 8fb5 %Kv...yQ...n....

00a2098: décd 37be 4344 97ae bfd3 231f ffdo dogs ..7.CD....#_....

poffdes: 0000 0002 QOO0 OO004 0000 D005 0000 0007eeenivcnne.

0132278: 7363 ddb5 90a7 7058 499f 0973 2212 ffd9 sc....pXI..s"...

0144578: ffd9 56e4 a260 5bfZ aZ4e 7911 1453 4d22 ..V.. [..Ny..S5M"

01470a8: 8dad 5a5a ffd9 fb4b cff0 a41l1l 7629 2c5f ..EEZ...K....v),_

014c0f8: elf6 dfdb 7777 fffb ffd9 fc8f adfa efddww..........
[root@LinuxWorkstation flimagel# [

Figure 55: Searching for the End of the .jpg File

Unfortunately, with this search, we did not find anything after the value specified. This proc-
ess at times can be trial and error, with several search criteria attempted before finding the
desired file. We will try the search again, this time spacing the ffd9 tag.

| xxd —s 1406952 floppyl mage.dd | grep “ff d9” |

[root@LinuxWorkstation flimagel# xxd -s 1406952 floppyImage.dd | grep ffdo
[root@linuxWorkstation flimage]# xxd -s 1406952 floppyImage.dd | grep "ff 4o
0159f18: bpagggslEl00 0000 0000 0000_D0O0O0 0000 D000evvienn s

Figure 56: Tag Delineating the End of a .jpg File

What is returned this time is what looks like the split ffd9 tag before a bunch of blank space.
We’ll give that a try. Using the following command, we will find the decimal address for the
ending point of what we believe to be the .jpg file.

| echo “ibase=16; 0159F18” | bc |

[root@LinuxWorkstation flimage]# echo "ibase=16; 0155F18" | bc
14165984

Figure 57: Decimal Address for the End of the .jpg File

Now, to find out how large this file is, subtract the returned ending value from the starting
point.

| echo “1416984 - 1405952” | bc |

[root@LinuxWorkstation flimage]# echo "1416984 - 1405952" | bc
11032

Figure 58: Calculating the Size of the .jpg File

The difference, 11032, is the size of the file. We now have the starting point and the size of
the file. Here is where we can use dd. We are going to point dd at our floppy image and carve
out the .jpg file (carve.jpg), skip to our starting point (1405952), take it in blocks of one
(bs=1), and specify the size of the chunk to carve (11032).

|dd i f=f1| oppyl mage. dd of =carve.j pg ski p=1405952 bs=1 count =11032

CMU/SEI-2005-HB-003 97

Then list the files.

[Is —lh

[root@LinuxWorkstation flimage]# dd if=floppyImage.dd of=carve.jpg skip=1405952
|bs=1 count=11032

1103240 records in

11032+0 records out

[root@LlinuxWorkstation flimage]# 1s -1h

total 1.5M
-TW-T—-T—- 1 root root 11K May 10 12:24 car iPE
-TW-T—-T-— 1 root root 1.4M Dec 14 01:09 floppyImage.dd

Figure 59: File Carved Out Using dd

You will find the newly carved carve.jpg file. Use a tool such as xview to view the image.

| xvi ew carve. j pg |

[root@LinuxWorkstation flimage]# xview carve.jpg
carve.jpg is a 109x110 JPEG image, color space YCbCr, 3 comps., Huffman coding

jpegload: carve.jpg - Premature EOF in JPEG file
N Building XImage...done

Figure 60: Viewing Carved .jpg File

98 CMU/SEI-2005-HB-003

Summary

Images are split for a variety of reasons

= Available resources
» Backup storage
= Tool limitations

dd can be more than just a collection tool...
but that doesn’t mean it should be.

.

There are many reasons to split an image into smaller pieces. Adopting the strategy that is
right for any specific situation depends on understanding the rationale behind these actions.
As always, efficient and effective response to an actual security incident is largely a function
of the quality of preparation carried out beforehand.

In review, this exercise showed us how to identify the beginning and the end of a file and
how to use dd to carve out that file from within a captured image. Again, this process would
not normally be done. It was used as an explanation of how dd and other tools work. Auto-
mated tools such as Autopsy and The Sleuth Kit will automatically identify file types and
where files are located and will allow you to access the files separately from within the cap-
tured image.

CMU/SEI-2005-HB-003 99

100 CMU/SEI-2005-HB-003

4 Module 4. Capturing a Running Process

CERT

First Responders Guide to
Computer Forensics

Module 4:
Capturing a Running Process

© 2005 Carnegie Mellon University % Software Engineering Institute

This module sets forth one technique for capturing a suspicious process from a live machine
(there are other ways to perform such a capture). The important conceptual take-away from
this module is to approach problems of this nature with a forensic mindset. Specifically, take
pains to leave as small a footprint on the suspect machine as possible. This requires both
technical and procedural preparation.

CMU/SEI-2005-HB-003 101

Objectives

Discuss the benefits and drawbacks of
capturing a process from a live machine

Learn to capture a suspicious process on a live
Windows machine

Learn to capture a suspicious process on a live
Linux machine

— CERT

The primary purpose of this module is to demonstrate how to capture a suspicious process
from a live machine.'? Both Windows and Linux platforms are addressed.

As you collect data (i.e., potential evidence) from a live computer, consider the data’s order
of volatility: that is, collect data that has the highest chance of being changed, modified, or
lost first. The order of volatility for Windows and Linux computers is the same.™

2 The ability to perform such a capture depends on a foundation of knowledge not contained in this

section. For example, no instruction regarding the creation of a response disk consisting of safe
collection tools is offered in this section.

Brezinski, D. Guidelines for Evidence Collection and Archiving (Network Working Group RFC
3227). http://www.ietf.org/rfc/rfc3227.txt (2002).

13

102 CMU/SEI-2005-HB-003

http://www.ietf.org/rfc/rfc3227.txt

Capture a Running Process

Hedons (Pros) Dolors (Cons)
= Keeps system live = Leaves a footprint
= Facilitates = May corrupt volatile data
troubleshooting = Can be difficult to identify
= Can collect individually malicious processes

targeted processes

J .(.
R T

S==CFAT

4.1.1 Hedons and Dolors

Hedon is a term that utilitarians use to designate a unit of pleasure. Its opposite is a dolor,
which is a unit of pain or displeasure. There are some significant hedons associated with cap-
turing a process from a running system. An important factor is that the system remains run-
ning. There are times when it is just not feasible to shut down a system. The ability to pull off
a suspicious process for further analysis facilitates troubleshooting without sacrificing time.
Additionally, it is possible to target specific processes.

It is important to remember that every silver lining has its cloud. Unlike an examination of a
dead host, any action taken on a live machine leaves a footprint. The actions taken to extract
the suspicious process may end up corrupting evidence. While the techniques discussed be-
low allow for targeted extraction, it may be difficult to know exactly what to capture. There
are many processes running on a machine and their names do not always provide a clear idea
of what they do. Knowing what processes the machine normally runs greatly increases the
chances of identifying the ones that should not be there.

CMU/SEI-2005-HB-003 103

Windows System

Tools

= Netcat, PsList, ListDLLs, dd,
md5sum

Prep work

= Create response CD
= Verify someone else’s
response disk

Steps

= |dentify suspicous processes
= Use ListDLLs to determine
path of executable

= Copy out process using dd
and nc

S==CFAT

4.1.2 Capturing a Process on a Windows System

Table 9 shows a list of tools that can be used to capture a suspicious process on a live Win-
dows system, as well as step by step instructions for performing the capture.

Forensic collection best practices dictate that programs on the suspect machine are not to be
trusted. The tools for the collection should be put on a response disk (most likely a CD).

Table 9: Tools for Capturing Running Processes

Tool Description

PsList PsList is utility that shows you a combination of the information obtainable individually
with pmon and pstat. You can view process CPU and memory information or thread sta-
tistics. What makes PsList so powerful is that you can view process and thread statistics
on a remote computer.* Go to http://www.sysinternals.com/ntw2k/freeware/pslist.shtml
to download the tool and obtain installation instructions.

" Russinovich, Mark. PsList. http://www.sysinternals.com/ntw2k/freeware/pslist.shtml (2004).

104 CMU/SEI-2005-HB-003

http://www.sysinternals.com/ntw2k/freeware/pslist.shtml
http://www.sysinternals.com/ntw2k/freeware/pslist.shtml

Tool Description

ListDLLs | ListDLLs shows you the full path names of loaded DLL modules. In addition, ListDLLs
will flag loaded DLLs that have different version numbers than their corresponding on-
disk files (which occurs when the file is updated after a program loads the DLL) and can
tell you which DLLs were relocated because they are not loaded at their base address.*
Go to http://www.sysinternals.com/ntw2k/freeware/listdlls.shtml to download the tool
and obtain installation instructions.

dd dd (discussed in Section 3.1) is an imaging tool. It makes a bit-by-bit copy (forensic im-
age) of the target data. The target could be an entire hard drive, a specified partition, or

even the physical memory. For the purposes of this module, dd will be used to make an

image of an executable. Go to http://uranus.it.swin.edu.au/~jn/linux/rawwrite/dd.htm to
download the tool and obtain installation instructions.

NetCat Netcat is a featured networking utility that reads and writes data across network connec-
tions using the TCP/IP protocol. It is designed to be a reliable back-end tool that can be
used directly or easily driven by other programs and scripts. At the same time, it is a fea-
ture-rich network debugging and exploration tool, since it can create almost any kind of
connection you would need and has several interesting built-in capabilities.'®

Before capturing the suspicious process, prepare your response CD of safe tools for the plat-
form from which the capture will be performed. An alternative to creating your own response
CD is to use one already created. HELIX is an example of such a disk.*’ In addition to being
a bootable Linux environment for incident response, the disk also contains many useful tools
for examining a live Windows host. FIRE is a similar resource; for more information visit
http://biatchux.dmzs.com/?section=main or refer to the First Responders Guide to Computer
Forensics [Nolan 05].

For the following example, two separate machines are needed. The first machine, a Windows
XP box, will act as the compromised system and will be referred to as the “target machine.”
This target machine has an IP address of 192.168.30.20. The second machine, a host running
the WhiteBox flavor of Linux, will function and be referred to as the “collection machine.” It
has an IP address of 192.168.30.50. Information will be captured from the target machine and
sent to the collection machine for analysis. This example can be reproduced on any two ma-
chines connected over a network if the user has created a response CD compatible with the
host operating systems and substitutes the IP addresses used in this example with the IP ad-
dresses of the machines being used.

The response CD used in this example contains trusted tools used in the capturing process.
The tools have been renamed with a “t_” for clarity. For example, the executable file to call

> Russinovich, Mark. ListDDLSs. http://www.sysinternals.com/

ntw2k/freeware/listdlls.shtml (2000).
16 Giacobbi, Giovanni. NetCat. http://netcat.sourceforge.net/ (2004)
" http://www.e-fense.com/helix/

CMU/SEI-2005-HB-003 105

http://www.sysinternals.com/ntw2k/freeware/listdlls.shtml
http://uranus.it.swin.edu.au/~jn/linux/rawwrite/dd.htm
http://biatchux.dmzs.com/?section=main
http://www.sysinternals.com/
http://netcat.sourceforge.net/
http://www.e-fense.com/helix/

up a command window has been renamed from cmd.exe to t_cmd.exe. This ensures that the
tool or application being used is from the response CD and not the local machine.

Now we begin the process.

1. Insert your response disk into the target machine.
2. Click the “Start” button.

3. Click “Run.”
4

Enter the path to the tool to
be used. In this example,
the CD drive is the D:\

= Type the name of a program, folder, document, ar

drive and we are using : Internet resource, and Windows will open it For wou,
t_cmd.exe as a tl_fUSted Cpen: | DdWTools\t_crnd. exe "
command shell in the '
WTools folder.

A command shell will open. Lok J[cancel |[Browse..

Please note the
“D:\WTools\t_cmd.exe” at
the top of the command
shell. This indicates that the
command shell is, in fact, spawned from the trusted CD.

Figure 61: Running a Trusted Command

Microsoft Windows HEP [Uersion 5.1.268801
CC>» Copyright 19852001 Microsoft Corp.

D:=WTools>

Figure 62: Command Shell Spawned from a Trusted CD

5. On the collection system, set up a netcat listener to receive the results from the pslist
you will run on the target machine by typing the command below.

[nc I —p 3333 > pslistText.txt |

The netcat application is called with nc, -1 tells netcat to listen, - p denotes what port to
listen on. Any port above the reserved ports 1-1024 can be selected for netcat to listen
on. We chose 3333, as it’s easier to keep and audit separate from other common ports.
Finally, anything received on port 3333 will be written to the file pslistText.txt.

[rootPLinuxbWorkstation dataltt

[rootBLinuxborkstation datal# nc -1 -p 3333 > pslistText.txt_

Figure 63: netcat Command to Listen on Port 3333

6. On the target machine, run the trusted pslist command and pipe the results to the collec-
tion machine via netcat using the command below.

106 CMU/SEI-2005-HB-003

| t_pslist.exe | t_nc.exe 192.168.30.50 3333 |

We are using the trusted pslist and netcat tools from the resource CD, as denoted by the
”t_.” To send the results to the collection machine, where the listener was set up, you
must specify the IP address and the listening port.

e [:\WTools\t_cmd.exe

Microzoft Windows HAP [Version 5.1.26801
CC» Copyright 1985-2001 Microsoft Corp.

D:“Wlools>t_pslist.exe | t_nc.exe 192.168.380.58 3333

Figure 64: Using Trusted pslist and netcat to Specify IP Address and Listening
Port

7. Look for suspicious processes by examining the results on the collection machine. To do
this, type the following command and then use the up and down arrows to scroll through
the results.

|cat pslistText.txt | less |

[rootPLinuxorkstation datal#t 1=
pelistText . txt

[rootBLinuxborkstation datal# cat pslistText . txt iless_

Figure 65: Looking for Suspicious Processes Using cat

8. On this example machine, take notice of a process near the bottom of the list called tini.
Tini is a simple and very small (3kb) backdoor for Windows that listens on TCP port
7777 and provides a remote command prompt to anyone that connects. This process is
suspicious enough for our purposes.
iCCH ppa 33 i bho 5 H .
UMwareService 1828 484 : - .562

tini 1196 128 ‘BB :80.156
1468 232 :BB:BA.171

1628 528 :AB:86.189

Figure 66: Suspicious Process Found

9. Next, we need to locate where the executable for the process is located. On the collec-
tion machine, set up a netcat listener and send the results to a text file (tinilnfo.txt) by
typing the command below.

[nc —| —p 4444 > tinilnfo.txt

Again, any port above the reserved ports can be selected to set up a listener. This session
will listen on port 4444 and send the results to the file tinilnfo.txt.

CMU/SEI-2005-HB-003 107

10.

11.

12.

[rootPLinuxborkstation datal#t

[rootPLinuxWorkstation datal# nc -1 -p 4444 > tinilnfo.txt_

Figure 67: netcat Command to Listen on Port 4444

From the target machine, send the data to the collection machine using the following
command.

[t_listdlls.exe —d tini | t_nc 192.168.30.50 4444 |

These tools are run from the resource CD of trusted tools and not the local machine.
Specify the machine that has the netcat listener set up and what port it is listening on.

cv D:\WTools\t_cmd.exe

Microzsoft Windows HP [Uersion 5.1.26881
CC» Copyright 19852801 Microsoft Corp.

D:~WTools>t_pslist.exe | t_nc.exe 192.168_.38.568 3333
D:*WTools>t_listdlls.exe —d tini | t_nc.exe 192_.168.38.58 4444

Figure 68: Specifying netcat Listener Machine and Port

To view the tinilnfo.txt file with the results from the trusted ListDLL command run on
the target machine, use the command below from the collection machine. As you can
see, tini.exe is located at c:\windows\system32\tini.exe.

| cat tinilnfo.txt

[rootBLinuxWorkstation datal#
[rootBLinuxWorkstation datal#t nc -1 -p 4444 > tinilnfo.txt
[root@LinuxWorkstation datalt 1=

pslistText . txt tinilnfo.txt
[rootBLinuxWorkstation datal#t cat tinilnfo.txt

ListDLLs VZ2.23 - DLL lister for Win9x~sNT
opyright (C) 1997-Z888 Mark Russinowvich
http://wuww.sysinternals.com

ini.exe pid: 1196
ommand line: tini.exe

Base Jize Uersion Path
dxH8488888 BHx168888 ciswwindowsssystem3Zntini .exe
[rootBLinuxborkstation datal# _

Figure 69: Viewing Path to a Suspicious Process

Now that we know the path to the suspicious process, we are ready to collect it. On the
collection machine, enter the following to set up a netcat listening session, selecting a
new port and file to write the capture as previously discussed.

| nc —| —p 5555 > capturedTl NI |

108

CMU/SEI-2005-HB-003

13.

14.

[root@LinuxbWorkstation datalst

[rootlPLinuxWorkstation datal#t nc -1 -p 5555 > capturedTINI

Figure 70: Setting Up a Listening Session on a Suspicious Process

On the target machine, using the trusted tools, enter the command below to copy the
executable and send it to the collection machine.

t_dd.exe if= c:\wi ndows\systenB2\tini.exe bs=512 | t_nc

192. 168. 30. 50 5555

Eé\ggggls}t_dd.exe if =c:“windows“systemd2:tini.exe bs=512 | t_nc.exe 192.168.38.
Forensic Acguiszition Utilitie=s. 1, @, 8. 1835

d. 3, 16, 2. 1835

opyright <G> 2002-28004 George M. Garner Jr.

ommand Line: t_dd.exe if=c:“windows:system32:tini.exe bhs=512

Bazed on original version developed by Paul Rubin, David MacKenzie, and Stuart K
emp

Microsoft Windows: Uersion 5.1 (Build 2608._.Professional Service Pack 2>

H4-83-20885 18:42:48 (UTC>
A4-03-2005 13:42:48 (local timel

urrent User: HEPCOMPROMISEDUMSStudent System
opying ciswindowsssystem32stini.exe to CONMOUTS. ..

6+A records in
b+ pecords out

Figure 71: Collecting the Executable of a Suspicious Process

Once this is done, return to the collection machine and calculate a hash of the captured
process. This will allow you to verify the integrity of any copies made for the purpose of
analysis.

| mi5sum col | ectedTINI > tini.mi5 |

[rootPLinuxborkstation datal#t mdSsum capturedTINI.dd > tini.mdS5_

Figure 72: Calculating a Hash of a Captured Process

CMU/SEI-2005-HB-003 109

Linux System

The same ... but different

= List the processes
= |dentify suspicious processes

= Copy process to remote
location for further analysis

Running processes ps —aux

Image file using dd
=—FFRT

It is possible to leave a much smaller footprint on a Linux box than on a Windows machine.
This is because the trusted tools on a Linux response disk can be completely self-contained.
Without access to Windows source code, it is much more difficult to create completely self-
contained trusted tools.

When responding to a Linux system, the procedure is pretty much the same, unless the file
that spawned the process has been deleted from the running system. The ps —aux command
will list the running processes with associated binaries or the command-line arguments used
to execute them. Once the location is enumerated, the dd or cp tools can be used to copy the
file(s).

However, unlike Windows, a Linux user can delete the file used to launch a running process
(and other files opened by the process) once the process has been executed and is running in
memory. The file space will remain protected as long as the process continues to run and
won’t be overwritten. Retrieving the file data becomes significantly more complicated be-
cause the file associated with the process is no longer visible to ordinary file system tools,
such as Is. If the process is selectively terminated or a reboot or shutdown occurs, then the
file space will be marked as free and the process information may be lost from physical
memory, as would be expected.

It is quite feasible to recover the data from a deleted file bound to a process, partly because
the operating system has to protect the disk space while the process is running. While the file
name is no longer visible in the directory structure, the inode that allocates the data space for
the file is preserved until the process terminates. It’s easy to search for files that have been
deleted (or “unlinked”) but are still protected by running processes. The command Isof +al.1

110 CMU/SEI-2005-HB-003

will list all open files with an inode value of less than one, which is the case when they have
been deleted. This command will display the inode and other metadata for the unlinked
file(s). There are both commercial and open source tools that will take this value and recover
the associated files. One such open source tool is icat, part of The Sleuth Kit, which is avail-
able at http://www.sleuthkit.org.

Collecting such information is not an overly complex process; however, it does exceed the
scope of this handbook. This topic, “Recovering a Deleted Running Process in Linux,” will
be dealt with in a separate security improvement module (SIM).

CMU/SEI-2005-HB-003 111

http://www.sleuthkit.org

Summary

Have response tools ready before they are
needed

Be familiar with processes normal to the hosts
on your network

Leave as small a footprint as possible during
collection

— CERT

There are a few things that can be done to significantly increase the chances of successfully
identifying and extracting suspicious processes from a live system. First, have the tools built
and tested before they are needed. Second, have a list of processes that normally run on a sys-
tem. It is much more effective to compare running processes against a list of expected proc-
esses than to rely on a gut feeling regarding what is “normal.” Finally, leave the smallest pos-
sible footprint while performing a capture.

112 CMU/SEI-2005-HB-003

5 Module 5: Understanding Spoofed Email

CERT

First Responders Guide to
Computer Forensics

Module 5:
Understanding Spoofed Email

© 2005 Carnegie Mellon University % Software Engineering Institute

CMU/SEI-2005-HB-003

113

Objectives

1. Understand how email is sent and received

2. Be able to interpret email
headers

3. Review how spoofed email
Is sent

4. Learn to identify spoofed email

5. Tools and techniques for tracing spoofed

email
=—CERT 1

5.1 Objectives
This module has five main objectives. First, it is important for individuals to understand how
email is sent and received. Understanding the life cycle of an email and its back-end proc-
esses is the crux for being able to trace back spoofed messages. Second, individuals need to
be able to interpret email headers. Doing so allows one to reconstruct the path an email mes-
sage takes. Third, there are a variety of ways spoofed email can be sent, and it is important to
keep them in mind when attempting to trace them back. The investigative approach being
used may need to be adjusted depending on the spoofing technique. Fourth, email can be
spoofed with great sophistication, and it is imperative that individuals are able to distinguish
well-spoofed messages from legitimate ones. Fifth, there are numerous tools and techniques
that can be used to trace the origins of a spoofed email message. Understanding the purposes
of each will enable a person to potentially harvest a great deal of information from a spoofed
email regarding the true sender.

114 CMU/SEI-2005-HB-003

.
o
=~

A
Ny

Identifying Spoofed Email

© 2005 Carnegie Mellon University #= Software Engineering Institute

5.2 Identifying Spoofed Email

CMU/SEI-2005-HB-003 115

The Threats

Criminals

Phishing schemes and
deception to extort money
and personal information

Attackers

Viruses, Trojans, and
worms propagated via
email

m Are yo

Customer Sign In

Custaormer Mo

Password

If you have forgotten
password, please call our [
Intermet Help Line

5.2.1 Definition of the Problem

Spoofed email has become a part of the daily messages that are delivered to a person’s inbox.
Spam has become a profitable enterprise for overzealous marketers and is a point of conten-
tion for those who receive it. However, spoofed email has become more than just a nuisance;
it is a viable security threat to individual home users, organizations, and businesses. Attackers
use spoofed email messages to propagate viruses, Trojans, and worms. Criminals use them
for phishing schemes that attempt to extort money and information from unsuspecting users.
Due to the lack of authentication in SMTP (Simple Mail Transfer Protocol), attackers and
spammers can easily obfuscate their tracks and make it difficult to trace the origin of their

email.

S==CFAT

116

CMU/SEI-2005-HB-003

The Life Cycle of an Email 1

Alice wants to send an email to Bob

Four computers involved

1. alice.alphanet.com (Alice’s computer)

2. smtp.alphanet.com (Alice’s mail server)
3. mailhost.betanet.com (Bob’s mail server)
4. bob.betanet.com (Bob’s computer)

— CERT

5.2.2 Understanding the Process of Sending and Receiving
Email

5.2.2.1 The Life Cycle of an Email

Before attempting to identify the path of an email, one must first understand its life cycle.
This topic will outline the order of events from the composition of an email all the way to its
delivery to the receiver. For this example we are assuming that the email is legitimate and
that it is being sent outside of the sender’s network.

Typically, an email is handled by a minimum of four separate computers: the computer it is
sent from, the mail server of the sender, the mail server of the receiver, and the computer that
receives the email. Assume that Alice wants to send an email to her friend Bob. Alice and
Bob use different Internet service providers for sending and receiving email. Alice uses al-
phanet.com and Bob uses betanet.com. The first thing that Alice does is compose an email on
her computer, which we will call alice.alphanet.com. When Alice completes the message, she
instructs her email client to send the message. At this point, her computer, alice.alphanet.com,
sends the email to her mail server, smtp.alphanet.com. When smtp.alphanet.com sees that the
message is to be delivered to someone in the betanet.com domain, it sends the message to
betanet’s mail server, mailhost.betanet.com. Mailhost.betanet.com knows that the message is
for Bob and places it in his inbox. The next time Bob checks his email, Alice’s message is
delivered to him.

CMU/SEI-2005-HB-003 117

Table 10: The Life Cycle of an Email

Step 1: | Message is composed by Alice on her computer, alice.alphanet.com

Step 2. | alice.alphanet.com sends the email to smtp.alphanet.com

Step 3: | smtp.alphanet.com sends the email to Bob’s email server, mailhost.betanet.com*

Step 4: | Bob uses his computer, bob.betanet.com, to check his email

Step 5: | bob.betanet.com retrieves Alice’s email from mailhost.betanet.com

* At this point smtp.alphanet.com may not know the mail server it needs to contact; rather it may only
know that it needs to send an email to someone within the betanet.com domain. In this case,
smtp.alphanet.com will perform a DNS query in order to find the mail server for betanet.com.

Figure 73 depicts the life cycle of Alice’s email to Bob.

smtp.alphanet.com mailhost.betafet.com

192.168.0.100 169.0.0.87
]}
Step 1 g
Alice’s computer Bob’s computer
alice.alphanet.com bob.betanet.com
192.168.0.5 169.0.0.12
Alice Bob
alice.price@alphanet.com bob.doe@betanet.com

Figure 73: The Life Cycle of an Email

118 CMU/SEI-2005-HB-003

Overview of SMTP

Simple Mail Transfer Protocol
Developed in the early 1980s
RFC 821, 2821

Acts as a push protocol
Other protocols needed to retrieve email (POP, IMAP)
Requires a TCP connection on port 25

No Authentication!

.

During the life cycle of an email, the process of it being sent to a mail server is handled by
the Simple Mail Transfer Protocol (SMTP). SMTP was developed in the early 1980s and is
outlined in RFC 821, which subsequently was obsoleted by RFC 2821 [NWG 01]. SMTP
acts as a push protocol and only performs email delivery. As a result, separate protocols such
as POP (Post Office Protocol) and IMAP (Internet Message Access Protocol) are needed to
retrieve email messages from mail servers [Wikipedia 05€e]. For the scope of this module,
knowledge of POP and IMAP are not needed.

5.2.2.2 Overview of the Simple Mail Transfer Protocol

At first glance it may seem more efficient for Alice’s mail client to send the email directly to
mailhost.betanet.com rather than through her mail server, smtp.alphanet.com. However, Al-
ice’s mail server is much better equipped at guaranteeing delivery. During instances of con-
nectivity interruptions or temporary computer downtime, the mail server is able to queue the
message for delivery. Also, in general one can assume that a services machine will have more
reliable uptime than a user machine. Lastly, mail servers have better name resolution and er-
ror handling capabilities.™®

Before an email can be delivered via SMTP the client (sending computer) must initiate a TCP
connection on port 25 with the receiving mail server. Once this connection is established, the
client will send a sequence of commands to the server to identify itself, specify the sender,
specify the receiver, pass off the email, and end the SMTP session. Other SMTP commands

18 Carnegie Mellon Computing Services. Cyrus Technology Overview.

http://asg.web.cmu.edu/cyrus/1994-techoverview.html (1994).

CMU/SEI-2005-HB-003 119

http://asg.web.cmu.edu/cyrus/1994-techoverview.html

exist, but it is not necessary to focus on them for this topic. For a complete listing and expla-
nation of SMTP commands, refer to RFC 2821.

120 CMU/SEI-2005-HB-003

SMTP Commands

Most common SMTP commands

» HELO: used by sending machine to identify
itself

= MAIL: initiates a mail transaction and provides
the sender’s email address

» RCPT: specifies the email address of the
recipient

» DATA: signifies the message portion of the
email

» QUIT: signals the termination of an SMTP
session
= CERT

5.2.2.2.1 The HELO Command

Once the SMTP session is established, the mail server sends a 220 code (<domain> Service
ready) to signal that it is ready. At this point the client will send a HELO command. The cli-
ent essentially uses the HELO command to identify itself to the mail server. For example, if
alice.alphanet.com was sending an email to smtp.alphanet.com, its HELO command would
be “HELO alice.alphanet.com.” It is important to note that the identifying information is pro-
vided by the client and there is no process of authentication to ensure that the client is who it
says it is. Today, most mail servers have tools that are capable of determining the client’s
identity and recording it in the email headers. If the mail server accepts the client’s HELO
command, it replies back with a 250 code (Requested mail action okay, completed).

5.2.2.2.2 The MAIL Command

The MAIL command is used to identify the sender’s email address and initiate a mail transac-
tion. In Step 2 of Figure 73, the command would appear as “MAIL FROM: al-
ice.price@alphanet.com.” The mail server may or may not verify that the given address is
valid. If the command is accepted, the server will reply with a 250 code.

5.2.2.2.3 The RCPT Command

The RCPT command is similar to the MAIL command in that it specifies the email address of
the recipient. In Step 2 of Figure 73, the RCPT command would appear as “RCPT TO:
bob.doe@betanet.com.” This command does not verify that the email address provided is
valid. If the command is accepted, the server will reply with a 250 code.

CMU/SEI-2005-HB-003 121

5.2.2.2.4 The DATA Command

The DATA command indicates that the client would like to transmit the message portion of
the email to the mail server. If the mail server accepts this command, it responds with a code
354 (Start mail input; end with <CRLF>.<CRLF>). The client signals the end of the email by

placing a “.” on a line of its own. If the command is accepted, the server will reply with a 250
code.

5.2.2.2.5 The QUIT Command

When the client wishes to terminate its SMTP session with a mail server, it issues a QUIT
command.

5.2.2.2.6 SMTP Sequence of Figure 73, The Life Cycle of an Email

In Step 2 of Figure 73 the client, alice.alphanet.com, needs to use SMTP to deliver the email
to the mail server smtp.alphanet.com. An SMTP transaction for this step is illustrated with
client commands in bold [Lucke 04]:

220 snt p. al phanet.com ESMIP Sendmai | 8.12.10/8.12.10
HELO alice.alphanet.com

250 snt p. al phanet.com Hel |l o alice. al phanet.com[192.168.0.5], pleased to
meet you

MAIL FROM: alice.price@alphanet.com

250 alice.price@l phanet.com.. Sender ok

RCPT TO: bob.doe@betanet.com

250 bob. doe@et anet.com .. Sender ok

DATA

354 Pl ease start nmail input

From: alice.price@alphanet.com

To: bob.doe@betanet.com

Subject: Lunch

Bob,
It was good to see you again at the reunion. We should get together for
lunch the next time you are in town. Say “hi” to your wife for me.

Regards,
Alice

250 Mail queued for delivery.
QUIT
221 d osing connection. Good bhye.

122 CMU/SEI-2005-HB-003

Sample Email Headers

Return-Path: <alice.price@alphanet.com>

Received: from smtp.alphanet.com (smtp.alphanet.com [192.168.0.100])
by mailhost.betanet.com with smtp (Exim 4.44)id 1DtsVC-000112-02
Mon, 25 Jul 2005 11:40:06 -0400

Received: from alice.alphanet.com (alice.alphanet.com [192.168.0.5])
by smtp.alphanet.com (8.12.10/8.12.10) with ESMTP id j6PFdtHm024126
for <bob.doe@betanet.com>; Mon, 25 Jul 2005 11:39:55 -0400

Message-1D: <42E507CC.2080100@alphanet.com>

Date: Mon, 25 Jul 2005 11:39:55 -0400

From: Alice Price <alice.price@alphanet.com>

User-Agent: Mozilla Thunderbird 1.0.6 (Windows/20050716)

X-Accept-Language: en-us, en

MIME-Version: 1.0

To: Bob Doe <bob.doe@betanet.com>

Subject: Lunch

Content-Type: text/plain; charset=1S0-8859-1Content-Transfer-Encoding: 7bit

CERT

5.2.3 Understanding Email Headers

During the life cycle of an email, headers are added when the email is handled by different
parties. In Figure 73 headers would be added in at the time of composition, at the al-
phanet.com mail server and betanet.com mail server. These headers contain information re-
garding the computers that handle a particular email. Being able to interpret these headers is
an essential component to identifying and tracing spoofed email. In an email all header names
are appended by a “:”.

5.2.3.1 Interpreting Email Headers

Mail clients by default usually do not display the full headers of a message. Usually there is
an option to enable the display of all the headers or to view the message source. For example,
in Mozilla Thunderbird one can display the full headers through the menu option View -
Headers = All. One can also view the headers by displaying the message source: View -
Message Source. It is important to note that not all mail headers are identical. The exact for-
matting and amount of information provided depends on the configurations used by the mail
clients and mail servers involved.

Assume that Bob received the email sent by Alice in Section 5.2.2.2.6. Displaying all the
headers of that message would produce the following:

CMU/SEI-2005-HB-003 123

Table 11: Email Headers

Ret urn-Path: <alice. pri ce@l phanet. conp
Recei ved: from sntp. al phanet. com (snt p. al phanet.com [192. 168. 0. 100])

3 by mail host. betanet.comwith smp (Exim4.44)id 1Dt sVC 0001l 2- Q2
Mon, 25 Jul 2005 11:40: 06 -0400
Recei ved: from alice. al phanet.com (alice. al phanet.com[192. 168.0.5])
5 by sntp. al phanet.com (8.12.10/8.12.10) with ESMIP id j 6PFdt HMD24126

for <bob. doe@et anet. conP; ©Mon, 25 Jul 2005 11:39:55 -0400
Message- | D. <42E507CC. 2080100@l phanet . conr

Date: Mon, 25 Jul 2005 11:39:55 -0400

From Alice Price <alice.price@lphanet.conp

User - Agent: Mbzilla Thunderbird 1.0.6 (W ndows/20050716)
X- Accept - Language: en-us, en

1| MME-Version: 1.0

To: Bob Doe <bob. doe@et anet. con

Subj ect: Lunch
Cont ent - Type: text/plain; charset=lSO 8859-1
Cont ent - Tr ansf er - Encodi ng: 7bi t

The first thing to understand about mail headers is that they are written from the bottom up.
New headers are always written on top of the existing headers. In this example Alice’s mail
client wrote the first set of messages, Alice’s SMTP server wrote the second set, and Bob’s
mail server wrote the third set.

5.2.3.1.1 Headers from the Client

Most of the headers added by the client such as “From:”, “To:”, and “Subject:” are self-
explanatory. The “Date:” header in this section signifies the time the email was composed.
The rest of the headers can be interpreted as follows:

M ME- Version: 1.0

Cont ent - Type: text/plain; charset=I SO 8859-1

Cont ent - Tr ansf er - Encodi ng: 7bi t

The email is in plain text using the 1ISO-8859-1 character set with 7-bit message encoding.

| X- Accept - Language: en-us, en |

124 CMU/SEI-2005-HB-003

This is an X-header, which is a non-standard header that provides additional information. The
“X-Accept-Language” header informs the receiving server that email should be sent back in
English.*®

| User-Agent: Mozilla Thunderbird 1.0.6 (W ndows/20050716) |

Alice used the Windows version of Mozilla Thunderbird v1.0.6 as her mail client.

5.2.3.1.2 Headers from smtp.alphanet.com

Once Alice finishes composing the email, her mail client sends it to her SMTP server, which
in turn adds additional headers to the email. These headers can be found in section 2 of Table
11. Since the “Received” header consists of many components, it will be broken down line by
line for better understanding.

| Recei ved: from alice. al phanet.com (alice. al phanet.com [192. 168. 0. 5]) |

This message was received from a computer claiming to be alice.alphanet.com. The receiving
machine determined that the sending machine’s fully qualified domain name (FQDN) is al-
ice.alphanet.com and its IP address is 192.168.0.5.

| by sntp.al phanet.com (8.12.10/8.12.10) with ESMIP id j 6PFdt H1D24126 |

This message was received by smtp.alphanet.com, which is running Sendmail version
8.12.10/8.12.10. The message was assigned an ID of j6PFdtHmM024126 by
smtp.alphanet.com.

| for <bob.doe@et anet.conp; Mn, 25 Jul 2005 11:39:55 - 0400 |

The message is for bob.doe@betanet.com and was received on Monday, July 25, 2005, at
11:39:55 EST (Eastern Standard Time is -0400 GMT during daylight saving time).

| Message- | D <42E507CC. 2080100@l phanet . con» |

The Message-ID is a unique identifier that is assigned to each message. This is usually per-
formed by the first mail server that handles the message. The first part of the ID is usually a
unique string and the second part identifies the machine that assigned the ID. This is a uni-
versal 1D, as opposed to the ESMTP or SMTP ID, which is specific to the receiving machine
[Lucke 04].

5.2.3.1.3 Headers from mailhost.betanet.com

Once smtp.alphanet.com processes the email, it is sent to mailhost.betanet.com, where Bob
will eventually retrieve the message.

% The A3C Connection. Headers of a Legit Email Message.

http://www.uic.edu/depts/accc/newsletter/adn29/legitmail.html#Language (2000).

CMU/SEI-2005-HB-003 125

http://www.uic.edu/depts/accc/newsletter/adn29/legitmail.html#Language

| Recei ved: from sntp. al phanet.com (snt p. al phanet.com [192. 168. 0. 100]) |

This message was received from a computer claiming to be smtp.alphanet.com. The receiving
machine determined that the sending machine’s FQDN is smtp.alphanet.com and its IP ad-
dress is 192.168.0.100.

| by mail host. betanet.comwith smp (Exim4.44)id 1Dt sVC 00011 2- 2 |

This message was received by the computer mailhost.betanet.com, which is running Exim
version 4.44. The receiving mail server, mailhost.betanet.com, assigned this message an ID of
1DtsVVC-000112-02 for its own records.

| Mon, 25 Jul 2005 11:40:06 -0400 |

The mail server mailhost.betanet.com received this message on July 25, 2005 at 11:40:06
EST. Notice that the timestamps in the headers are in chronological order. This will help later
in trying to distinguish between real headers and fake headers.

| Return-Path: <alice. price@l phanet. conp |

Any replies to this email should be sent to the address alice.price@alphanet.com. The “Re-
turn-Path” header is written by the SMTP server that makes the final delivery. The address in
this header is the address that was provided in the MAIL command.

126 CMU/SEI-2005-HB-003

How Spoofed Email Is Sent

Open relays
Compromised machines
Self-owned mail servers
Temporary accounts

Hijacked accounts

= CERT[

5.2.4 How Spoofed Email Is Sent

5.2.4.1 Open Mail Relay

An open mail relay refers to a mail transfer agent that will deliver mail for any sender, re-
gardless of who it is. Up until the late 1980s, email was not delivered directly from the sender
to the receiver. Instead, routes were set up where the messages would be relayed from point
to point [Lucke 04]. This paradigm allowed individuals to send messages through a mail
server even if they were not valid users of the system. However, this model has become open
to abuse by individuals attempting to mask their origin, such as criminals and unethical ad-
vertisers. The norm now is to allow only valid users of a system to send email from it.

As an example, in the email life-cycle diagram, pretend there is a third email server called
smtp.gammanet.com. Alice is a valid user of the alphanet.com domain but not of the gam-
manet.com domain. As a result, Alice can send email only via smtp.alphanet.com but not
smtp.gammanet.com (Figure 74).

CMU/SEI-2005-HB-003 127

Mail Relay Allowed

S

Alice’s computer
Alice alice.alphanet.com
alice.price@alphanet.com 192.168.0.5 215.75.90.150

smtp.alphanét.com

192.168.0.100

Mail Relay Denied:

Figure 74: Mail Delivery for Valid Users

However, if smtp.gammanet.com was configured to be an open relay, Alice would not be
prohibited from sending email via it. Since Alice is not a user in the gammanet.com domain
and since she does not have to provide valid credentials (host identity and source email ad-
dress), she can easily cover her tracks by sending email via smtp.gammanet.com. Figure 75
shows how Alice can easily spoof an email using an open relay.

. et.com
215.75.90.150 169.0.0.87
(open relay)

Bob Checks His Email

Eake Email Sent via SMTP

HELO carol.fake.com

MAIL FROM: carol.burns@fake.com
RCPT TO: bob.doe@betanet.com

-Alice Composes Fake Email g

#} ——Email From “Carol*-

N Alice’s computer Bob’s computer
Alice h Bob
alice.price@alphanet.com alice.alphanet.com bob.betanet.com bob.doe@betanet.com
' ' 192.168.0.5 169.0.0.12 ')

Figure 75: Spoofed Email via an Open Relay

Since most mail servers stamp the host’s true identity (usually the IP address) in the email
headers, Alice is not able to completely cover her trail, but it is more than enough to fool an
unsuspecting recipient.

128 CMU/SEI-2005-HB-003

5.2.4.2 Compromised Machines

One method that spammers have used in order to gain access to open relays is to compromise
machines on the Internet. Often this is through the installation of a Trojan. These applications
gained their name through the similarities with the Trojan horse from the Greek story of the
Trojan War. Like the horse in the myth, a Trojan application may appear to be legitimate, but
in reality it is a tool used by attackers to compromise a host. Often, Trojans will be posted to
file-sharing networks named as legitimate files, enticing users to download them.

The Sobig worm and its variants were received via an email with an attachment. Once the
attachment was opened, it would infect any computer running Microsoft Windows. The
worm would then use the host computer to spread itself by sending email to other users or
copying itself to any open network shares, and would also download a proxy application
from the Internet. Once downloaded, the proxy would function as a mail relay listening on a
non-standard port for incoming connections or would attempt to send out mail.

5.2.4.3 Self-Owned Mail Servers

Perhaps one of the easiest ways to send spoofed email is to set up one’s own mail server.
There are many programs that make it easy to do this. Some readily available programs in-
clude Sendmail, Postcast and QK. Through the use of these and similar applications, a person
with a broadband Internet connection could send over 1,000,000 10-50KB email messages in
one hour [Sendmail 05]. When spammers use this method they can add extra received head-
ers to obfuscate the true path of the email. Adding extra headers to an email will make it ap-
pear as though the mail was actually sent from a machine other than the spammer’s mail
server.

5.2.4.4 Temporary Accounts

Another method that spammers use to send spoofed email is to create temporary mail ac-
counts with ISPs. This can be done by using false credentials or stolen credit cards. The tem-
porary account is used until the ISP cancels it for being used to send spam. Other forms of
temporary email accounts include services such as Hotmail and Yahoo. Spammers have also
been known to write scripts that sign up for multiple accounts and send spam automatically.

5.2.4.5 Hijacked Accounts

An alternative to using temporary accounts or compromised machines is hijacking valid user
accounts. While this is not the most popular method for spammers, there have been recorded
incidents of such activity. The benefit of using temporary or hijacked accounts is that they
will often be able to bypass spam filters, since they have not been used for spam and appear
to be legitimate. For example, in 2002 a spammer by the name of Charles Frye used a pass-
word cracking tool called WWWHack to hijack dozens of accounts and send millions of
spam messages [McWilliams 05]. In 2005 Frye was sentenced to one year in jail and six
years of probation. During that time he is not permitted to use a computer.

CMU/SEI-2005-HB-003 129

Identifying Spoofed Email

The “Received” headers are crucial!

FARY

Received: from

by mailhost@legitserver.com (8.12.10/8.12.10)
with SMTP id j6PFVvp5027789

for <realuser@Iegitserver.com>; Mon, 25 Jul 2005 11:31:58 -0400

= CERTI

5.2.5 How to Identify Spoofed Email

5.2.5.1 Carefully Examine the “Received” Headers

There are a number of telltale signs that may indicate an email is not legitimate. All of them
involve interpreting a message’s headers. One of the more resourceful and useful headers is
the “Received” header. Sections 5.2.3.1.2 and 5.2.3.1.3 show that this header includes the
sender’s fully qualified domain name and/or its IP address. Additionally, the receiving com-
puter determines the sender’s IP address on its own and adds that information into the header.

Received: from émtp.alp\rfnet.cog (smtp.alphanet.com [192.168.0.100])

——
From sender via SMTP Stamped from the receiving machine,
HELO mailhost.betanet.com

In a legitimate email the two addresses will match. However, if a sender provides invalid host
information in the HELO command, it will be reflected in the “Received” header. The fol-
lowing “Received” header is from an actual spoofed email:

130 CMU/SEI-2005-HB-003

Recei ved: from fusi onse. com
(AMari got - 102- 1- 4- 205. w81- 248. abo. wanadoo. fr [81. 248. 108. 205])
by mail host @egi tserver.com (8.12.10/8. 12. 10)
with SMIP id j 6PFVWp5027789
for <real user @egitserver.conr; Mn, 25 Jul 2005 11:31:58 -0400

Notice that the sender claims to be fusionse.com but the receiving mail server determined that
the sender really came from an ISP in France. In this instance, it is most likely that this email
was sent from a compromised host.

CMU/SEI-2005-HB-003 131

Fake “Received” Headers

Always read headers from the top down

s_?)
J{ 9-Ts

2.16.6.65])
Received: from gal
by mail. kf38fj2c0
Fri, 22

— CERT

5.2.5.2 Look Out for Spoofed Headers

One technique that spammers and attackers use to cover up their tracks is to add bogus head-
ers to a message. These headers are intended to confuse individuals attempting to trace an
email’s true origin. The best way not to be fooled by fake headers is to read email headers
starting at the top. Since fake headers are added by the sender, they will always be beneath
the real headers. Illustrated next is a set of headers from an email that contains a fake “Re-
ceived” header:

Ret urn-Pat h: <mal | ory@vil . org>
Recei ved: from fakehost. happy.com (dr.evil.org [192. 16. 6. 65])
by mail host. betanet.com (8.12.10/8.12.10) with
SMIP id j 6MFcRDQ015361;
Fri, 22 Jul 2005 11:38:31 -0400
Recei ved: from GEW@ ocal host by Wr.int (8.11.6/8.11.6);
Fri, 22 Jul 2005 12:37:22 -0400

In this particular set of headers, it is fairly easy to spot the fake received line. First, by read-
ing the headers from the top down one can see there is a discontinuous set of events from the
top “Received” header and the bottom one. The bottom header does not explain how this
message got to dr.evil.org. Second, the information in the bottom “Received” header does not
appear to contain valid host addresses (GEW@Ilocalhost and WIr.int). Third, the timestamp in
the bottom and supposedly first header is almost an hour ahead of the timestamp in the top
header. This could be attributed to an erroneous clock configuration, but because of the other
red flags, it is more likely to be a fake header.

132 CMU/SEI-2005-HB-003

5.2.5.3 Comparing Timestamps

A quick way to check the legitimacy of an email is to compare the timestamps in the “Re-
ceived” headers and ensure that the chronology is reasonably accurate. Since the timestamps
are written by the local, receiving machines, it is likely that they will not be perfectly in sync.
A grossly misaligned timestamp may be an indication that an email is not legitimate. Fake
“Received” headers will most likely contain timestamps that are out of line with the real
timestamps. However, it is conceivable that a skewed timestamp is the result of bad clock
configuration rather than an indicator of a spoofed email.

CMU/SEI-2005-HB-003 133

-

.
o
=~

A
Yy

Tracing Spoofed Email

© 2005 Carnegie Mellon University #= Software Engineering Institute

[EnY

34 CMU/SEI-2005-HB-003

Tracing Spoofed Email

—

* nslookup

e whois

4

p 43,/

e traceroute

» Sam Spade

= CERTI

5.3 Tracing the Origins of a Spoofed Email

Once a spoofed email has been identified, the next step is to attempt to determine its origin.
Tools such as nslookup, whois, traceroute, and Sam Spade can yield very useful information.
These tools can help find information about the sending host, such as physical location, or-
ganizational affiliation, and contact information. It is possible that using these tools will not
reveal the identity of the culprit; however, they will help one gather more information about
the first known hop. One can then contact system/network administrators at that hop and at-
tempt to gather further information using data from that hop’s “Received” header, such as the
message ID. It is important to note that even if one is able to identify the machine that sent a
spoofed email, it may not be the end of the line. As has been explained in Section 5.2.4.2,
many spoofed messages are sent from compromised computers. In this case, finding the true
sender may involve performing forensics on the compromised machine. In this type of situa-
tion one may need to consult with legal counsel.

CMU/SEI-2005-HB-003 135

nslookup

Legitimate email Do these match?
/

Received: from cpimssmtps03.msn.com [207.46.181.117]
by mx.receiver.com (mxl mta-1.3.8-10p6)
with ESMTP id rvw67324.40386.215.y215;
Thu, 17 Mar 2005 06:41:14 -0500 (EST)

Spoofed email DW? C%

Received: from cign.de ([221.153.24.156])
by mx.domain.com (8.12.10/8.12.10)
with SMTP id g6S3NUK2958123 7 N\
for <receiver@domain.coms; e
Wed, 27 Jul 2005 23:23:33 -0400
CEﬁrl

The nslookup name stands for name server lookup. For the purposes of spoofed email,
nslookup is used to perform reverse DNS lookups on IP addresses and vice versa. It is a use-
ful utility for quickly verifying the host information contained in the “Received” headers
from unreliable hops. As a rule of thumb, one cannot consider hops outside of one’s own do-
main and control to be trustworthy. The nslookup tool works by querying a name server with
either the IP address or FQDN provided by the user. From a Windows command prompt, the
syntax for nslookup is as follows:

(<

5.3.1 nslookup

| C:\> nsl ookup [conputer to find] [nanme server] |

Providing the name server is optional. If a name server is not provided, nslookup will use the
default name server, which is usually the name server for the domain that the querying ma-
chine is on. The default name server may not provide an authoritative answer. To get an au-
thoritative answer, one may need to query the name server for the computer in question.

The following “Received” header is from a legitimate email. Notice that when an nslookup is
performed, it matches the IP address recorded by the receiving mail server:

Recei ved: from cpi mssnt ps03. nsn. com [207. 46. 181. 117]
by mx.receiver.com (nxl_nta-1.3.8-10p6)
with ESMIP id rvwe7324. 40386. 215. y2| 5;
Thu, 17 Mar 2005 06: 41: 14 -0500 (EST)

136 CMU/SEI-2005-HB-003

=+| Command Prompt

C:nrnslookup cpimssmtps@3.msn.com
ng.currentdomain.com
192.8.68.8

cpimssmtpsA3 _msn.com
287.46.181.117

Figure 76: nslookup of Valid Fully Qualified Domain Name

The following “Received” header is from a spoofed email:

Recei ved: fromcign.de ([221.153.24.156])
by mx.domai n.com (8.12.10/8.12.10) with SMIP i d q6S3NUK2958123
for <receiver @onuai n. con»; Wed, 27 Jul 2005 23:23: 33 -0400

The sender claims to be from cign.de, but this information cannot be relied on. An nslookup
can be used in this instance to see if the IP address for cign.de matches the IP address re-
corded by the receiving machine. The results from nslookup (Figure 77) show that the sender
falsified the host information. The address for cign.de, 81.169.145.69, does not match the real
address of the sender, which is 221.153.24.156. Now that the true identity of the sender has
been discovered, nslookup can be used to attempt to find the host’s fully qualified domain
name.

CMU/SEI-2005-HB-003 137

Command Prompt

C:~>nslookup cign.de
i : ns.currentdomain.com
192.8.68.8

nrnglookup 221.153.24.156
Server: ns.currentdomain.com
fAddress: 192.8.8.8

*x% ns.currentdomain.com can’t find 221.153.24.156: Non—existent domain

Figure 77: nslookup of Falsified Host Information

Figure 77 also shows that when nslookup is run on the IP address 221.153.24.156, the name
server cannot find information about that particular IP. The name server used by nslookup
will not always be able to provide information on a given IP address. In these instances it will
be necessary to find out the owner of the IP block that contains the address in question.

138 CMU/SEI-2005-HB-003

Whois — Dual Purpose

IP Block Lookup (';5 "
Who owns 221.153.24.156? (/&;

Domain Name Ownership

Who does b2bpost.com
belong to?

— CERT

5.3.2 whois

The whois utility can be used to determine the owner of a particular IP block, as well as yield
greater information on a domain such as location, contact information, and name servers. All
of this information can be useful in tracking down the sender of a spoofed email. Whois is a
command line utility that is available in the Linux environment but is not native to Windows.
In order to use whois in a Windows environment, one will need to download a third-party
utility. Section 5.3.4 briefly describes the Sam Spade tool for Windows, which incorporates
whois. Whois queries can also be performed via websites such as samspade.org. However, it
is important to consider that the information contained in the WHOIS databases may not be
completely accurate; in fact, it is not uncommon for WHOIS contact information to be falsi-
fied.

5.3.2.1 IP Block Identification

In Section 5.3.1, nslookup failed to provide information regarding the IP address
221.153.24.156. Whois can be used to query the ARIN database (American Registry for
Internet Numbers) to find out information about the IP address in question. ARIN is respon-
sible for the registration and administration of IP addresses in Canada, the United States, and
parts of the Caribbean [Wikipedia 05a]. They maintain a publicly accessible database that
contains ownership information about IP blocks within their geographic domain. To query the
ARIN database in a Linux environment, the following command is used: whoi s

221.153. 24. 156@hoi s. ari n. net .

CMU/SEI-2005-HB-003 139

[12:03] unix4Z [18] ~» whois ZZ1.153.Z4.l156Fvhoiz.arin.net
[whois.arin.net]

OrgName: Azia Pacific Network Information Centre
OrgID: APNIC

Address: PO Box 2131

City: Milton

StateProv: QLD
PostalCode: 4064
Country: ATT

Referralferver: whoisz://whois.apnic.net

NetRange: 22l.0.0.0 - 221.255,255.,233

CIDE: 221.0.0.0/8
NetNane: APNICT

NetHandle: NET-221-0-0-0-1
Parent:

NetType: Allocated to APNIC

NameZerwver: N31.APNIC.NET
NameSerwer: N33.APNIC.NET
NameSerwer: N34,APNIC.NET
Name3erwer: N3-3EC.RIFE.NET
NameSerwer: TINNIE.ARIN.NET

Comment: This IP address range is not registered in the ARTH datahase.
Commernt: For details, refer to the APNIC Thois Database wia

Commernt: WHOIS.APNIC.NET or http://jwnr. aphic.net/aphic-bin/s/wvhoisZ.pl
Comment: %% IMPORTANT NOTE: APNIC is the Regional Internet Registry
Commernt: for the Asia Pacific region. APNIC does not operate networks
Conment: using this IP address range and is not able to inwestigate
Comment: spam ok abuse reports relating to these addresses. For more
Comment: help, refer to http: /s mm. apnic.net/info/fagsabuse

Comment:

Reghate:

Updated: 2005-05-20

OrgTechHandle: AWC1Z-ARIN

OrgTechName: ALPNIC Whois Contact
OrgTechPhone: 461 7 3858 3100

OrgTechEmail: search-apnic-not-arinfapnic.net

Figure 78: WHOIS Query of ARIN

Figure 78 shows that the results of the query found the IP address registered to a net block
within the Asia Pacific Network Information Centre (APNIC), which is the Asian equivalent
of ARIN. The results also show that APNIC has its own database (whois.apnic.net) that can
be queried in order to find more specific information. As a result, the following command is
used to query APNIC’s database: whoi s 221. 153. 24. 156@hoi s. apni c. net . This time the
results of the query yield information about the net block owner:

140 CMU/SEI-2005-HB-003

inetmnun: F7Z1.144.0.0 - EZ1_168_ZEE_ZEE

netname: EORNET

descr: EORE:X TELECOM

descr: MNetwork Management Center

Country: KR

admin-c: DLEZd8-AP

tech-c: GE40-4AP

remar]—zs: AEEEETLT XL XX L LTI E AT LT AL LT LA AA LT LT AT LA E LT 4%
remarks: ERNIC of NIDA is the National Internet Registry
remarks: in Horea under APNIC. If wyou would like to
remarks: find assigmment information in detail
remarks: please refer to the NIDA Whois DE

remarks: http: ffwholis.nida. or.krfenglish/index. htmnl
rEmarkS: FErEEFTEFEEE I I T EE AT EE TSI E A AT T AT A AT A LA AT A AL
status: Allocated Portable

mrrt —bi: MHMT-EPRMIC-AP

mnt-lower: MNT-EPNIC-AF

changed: hm-changed@apnic. net 20030417

changed: hw-changedfapnic.net 0041007

Source: ALPNIC

persomn: LDong-Joo Lee

address: 1z28-9 Teong-Dong Jongro-FEu Sscul

address: Network Management Center

Count Yy ER

phone: t8z-z2-766-1407

fax-no: +2E-z2-Tee-c0082

e-mail: ipins._ kornet. net

nic-hdl: DLz43-AP

mrrt b MATNT-MNEW

chared: hostmaster@nic.or_kr 20010425

Source: APNIC

pErson: Grang—Jun Eim

address: EOBMNET

address: 128-2, Yeong-Dong, Jongro-Fu

address: SEOUL

address: 110-7563

country: KR

phone: tE8z-2-747-9213

fax-no: t82-2-3673-545E

e-majil: ipAns_kornet. net

nic-hdl: CE40-4AP

mit —by: MHT-EPRMIC-AP

chared: hostmaster@nic.or_kr 20010206

Figure 79: WHOIS Query of APNIC

Figure 79, the second whois query, shows that the IP address in question is from Korea Tele-
com, an ISP in Korea. From this information one can speculate that either the spoofed email
came from a home user’s computer that was compromised or the culprit set up a temporary
account to send spoofed email; however, one cannot be certain without more information.
The WHOIS information provided by APNIC also indicates a third WHOIS database,
whois.nida.or.kr, which should be queried to see whether it provides even more information.
At this point, if one wishes to seek out the identity of the sender, the ISP will need to be con-
tacted. Since most home users do not have a static IP address, one address can shuffle
through multiple users. Therefore, it is important to be able to determine the time the email
was sent so that the IP address can be matched with the correct user account. Note that de-
termining the user’s identity may hinge on the ISP’s policies, their willingness to cooperate,
how long they maintain archived logs, the level of detail contained in their logs, and the accu-
racy of their logs. Depending on the situation and location, legal issues and implications may
also need to be considered.

CMU/SEI-2005-HB-003 141

5.3.2.2 WHOIS Information for a Domain Name

The most efficient method to find accurate WHOIS information for a domain name is to start
from the top-level domain and work down. The following “Received” header will be used as
an example:

Recei ved: from b2bpost.com (b2bpost.com [209. 51. 220. 12])
by mx. domai n.com (8.12.10/8.12.10) with ESMIP i d j 6R9f hDQO14750
for <receiver @onai n. con>; Wed, 27 Jul 2005 05:41: 43 -0400

This header shows that the receiving mail server recorded the sender’s IP address to be
209.51.220.12 and its domain name to be b2bpost.com, which matches the HELO informa-
tion provided by the sender. A quick nslookup of the recorded IP address verifies that the
email did, in fact, come from the b2bpost.com domain.

The first step to take is to find out the WHOIS server for the .com domain. This is done by
querying the WHOIS database for the Internet Assigned Number Authority (IANA), which is
whois.iana.org. The command for this query is whoi s com@whoi s. i ana. or g. Figure 80 dis-
plays the results.

Technical Contact:
Name: Fegistry Customer Serwvice
Organization: Verilign Global Registry Services
Addressl: 21345 Ridgetop Circle
Addressz:
Address3:
City: Dulles
State/Province: ¥Wirginia
Country: United States
Postal Code: Z0166
Phone: +1 703 925-59599
Fax: +1 703 421-5528
Email: infoflwverisign-grs.con
Fegistration Date: 0l-Jarmary-1985
Last Updated Date: Ol-Jamuary-19&5
UEL for registration services: http: /jvwwm.werisign-grs. com
Whois Server (port 43): whois.verisign-grs.con

Figure 80: WHOIS Query of IANA

Among the information that is returned from the query is the WHOIS server, whois.verisign-
grs.com, for the .com domain. One can be assured that querying this server will yield infor-
mation regarding b2bpost.com. Sure enough, the following query yields the information
shown in Figure 81:

| whoi s b2bpost . com@hoi s. veri si gn-grs. com |

142 CMU/SEI-2005-HB-003

[16:13] unixd? [36] ~> whoiz bZbpost.comfyhois.verisign-grs.con
[whois.verisign-grs.com]

Whois Server Wersion 1.3

Domain names in the .com and .net domains can now be registered
with many different competing registrars. Go to http:/ wiw. internic.net
for detailed information.

Domain Name: EZBEPOST.COM

Fegistrar: BREGISTEER.COM, TNC.

Thols Jerver: whols.reglster.com
Referral UEL: http://wyw. register.con
Name Server: DN511.REGISTER.COM

Name ZJerver: DIN31:2.REGISTER.COM
Status: ACTIVE

Updated Date: 10-jun-2005

Creation Date: 17-dec-2Z003

Expiration Date: 17-dec-z2007

»»> Last update of whoiz database: Tue, 2 Aug 2005 13:53:31 EDT <<<

Figure 81: Query of .com WHOIS Database

This query returned some basic information regarding the domain b2bpost.com and also pro-
vided the WHOIS server, whois.register.com, of the company where b2bpost.com registered
their domain. This WHOIS server should provide definitive information regarding the do-

main in question. The third query, whoi s b2bpost . com@hoi s. r egi st er . com produced

detailed information about the domain, as shown in Figure 82.

Organi=zation:
Direct Media Network...
Teb Master
PO Box 511736
Boca Raton, FL 33481-1736
s
Phone: 885-207-1002
Email: zinfotechigmail.com

Fegistrar Name....: Register.com
Fegistrar Whois...: whois.register.con
Registrar Homepage: http: //vwy.register.con

Domain Name: BZEPOST.COM

Created oh.eeevveennewa.: Wed, Dec 17, 2003
Expires on...vvcvewewew-.: Mon, Dec 17, 2007
Record last updated on..: Tue, Jul 12, 2005

Administrative Contact:
Direct Media Network...
eb Master
PO Box 511736
Boca Raton, FL 33481-1736
s
Phone: 888-807-1002
Email: zinfotechigmail.com

Figure 82: Query of the Registrar's WHOIS Database

CMU/SEI-2005-HB-003

143

Further investigation will need to be done to determine the validity of the WHOIS informa-
tion. The same issues mentioned at the end of Section 5.3.2.1 may apply.

5.3.3 Traceroute

While WHOIS information may yield contact information, it may not necessarily correspond
to the location of the computer being investigated. It may be the case that the computer in the
WHOIS database is registered to someone in a different geographical location than the actual
machine. Traceroute determines the path a packet takes to a specific computer. This is done
by sending Internet Control Message Protocol (ICMP) packets bound for the target computer
and incrementing the time-to-live (TTL) for each packet. The first packet is sent witha TTL
of 1 so that the packet dies after the first hop. The router at that hop responds and the
traceroute utility now knows the first hop along the path. Traceroute continues to do this so
that the second hop, third hop, etc. respond. By the time an ICMP packet reaches its destina-
tion, traceroute has mapped the entire path to it. Since the ICMP packets are sent directly
from the computer that is running the traceroute, one may desire a different approach if a
low-profile needs to be kept. There are many websites that allow users to perform traceroutes
online. The benefit to performing a traceroute online is that the ICMP packets will originate
from the web server instead of one’s own machine. A good website for performing
traceroutes is http://www.dnsstuff.com.

The traceroute utility can help one pinpoint the true geographic location of a system. In Win-
dows the command to use is tracert. The following example illustrates how an organization
can reside in one location and one of their servers can be in another. The SANS Institute is a
computer security organization located in Bethesda, Maryland. Performing a reverse DNS
lookup on their website, http://www.sans.org, reveals that the IP address of one of their web
servers is 64.112.229.132. From a Windows command prompt, the following command is
used to determine the location of this machine: tracert 64. 112. 229. 132 (Figure 83).

144 CMU/SEI-2005-HB-003

http://www.dnsstuff.com
http://www.sans.org

ommand Prompt

C:s>tracert 64.112.229.132

Tracing route to maverick32.szans.org [64.112.229.1321
over a maximum of 38 hops:

<1 POD-A-UL64.GW.CMU._NET [128.237.224.11
COREA-UL914.GW.CMU.NET [128.2.8.1551]
HYPER-ULS581 .GW.CMU.NET [128.2.33.2251
hal—cmu—ge—4 B-8-8_3rox.net [192.88.115.1811]
me—ge—B-1-8-8_3rox.net [192_88_115.51
—1-1.ar3.JFKl.gblx.net [288.58.254_.451
B-B-2488M.ar3 .NYC1l .gblx.net [67.17.79.181
rint .ard . HYC1 .gblx.net [208.51.134_261
1-hh21- chl 9H@.sprintlink.net [144.232.9.14921
.sprintlink.net [144.232.26.901]
pintlink.net [144.232.28.85]
pintlink.net [144.232_9.1511]
printlink.net [144.232.17.931
gub—tac—18—@_sprintlink_.net [144_.232_17._11
1-micro23-1-B-B.sprintlink.net [168.81.243.661
64-112-224-3—ips—-euwg—or—coreB2.tcpipservices.net [h4.112.224.31
E:3 64-112-227-6%-ips—eug—or—1bB8l-2 .tcpipservices.net [64.112.227.6%1]
mauexlck32 Sans .oprg [64 112 229.1321 wreports: Destination host unreachable.

1
2
3
4
5
[
?
]
2
18
ii
12
13
14
15
16
1?7
i8

Trace complete.

Gas>

Figure 83: Traceroute Example

The final destination, 64.112.229.132, did not reply to the ICMP packet, which is typical of
systems that have been hardened for security purposes. The point of interest is the hop before
the final destination. Hop 17 is in the tcpipservices.net domain. A quick WHOIS query on
this domain shows that the tcpipservices.net appears to be some type of service provider in
Eugene, Oregon. Therefore, while the SANS Institute is located in Maryland, their web serv-
ers are in Oregon [Mandia 01].

5.3.4 Sam Spade

Much of the information gathered using nslookup and whois can also be collected using Sam
Spade, a Windows tool that contains various network utilities such as whois, traceroute, 1P
block lookup, DNS check, and ping. Sam Spade is a freeware tool; it can be downloaded from
the Sam Spade website at http://www.samspade.org/ssw/. Some of the utilities in Sam Spade
are also available directly from the Sam Spade home page: http://www.samspade.org. An-
other website containing some very useful online tools is http://www.dnsstuff.com. All of the
data collection techniques outlined in the previous sections can be performed using Sam
Spade.

CMU/SEI-2005-HB-003 145

http://www.samspade.org/ssw/
http://www.samspade.org
http://www.dnsstuff.com

Summary

No legitimate use for spoofed email

Lack of authentication in SMTP

TCP connection leaves traceable fingerprint
Spoofed email sent many different ways
Header interpretation is the key

Tracing email requires investigative work

.

There is no legitimate reason for spoofed email to be sent. At best, email spoofing is used by
unethical advertisers who churn out billions of messages and hide their tracks to avoid the
repercussions of their actions. At worst, email spoofing is used to propagate all types of mali-
cious software and to aid in various criminal activities, the consequences of which extend
beyond the digital realm. The lack of authentication in SMTP is the major contributor to the
spoofed email problem currently facing society. It was designed at a time when the number of
users was so few that everybody knew everyone else. However, the vast frontier of the Inter-
net has changed the paradigm to one requiring security. While a change may not be on the
horizon in the immediate future, dealing with spoofed email is not a lost cause. Because TCP
is used for mail delivery, senders are not able to completely cover their tracks. The TCP
handshake allows the receiving mail hosts to stamp the sender’s true identity in the “Re-
ceived” header. As a result, spammers have responded with a variety of techniques to muddle
their tracks as much as they can. However, through email header interpretation and various
tools and techniques, security professionals have the ability to trace the true origins of
spoofed messages.

5.4 Summary

146 CMU/SEI-2005-HB-003

References

URLSs are valid as of the publication date of this document.

[Ash 95]

[Barnett 02]

[Bauer 05]

[Duda 87]

[Galleon 04]

[Haas 04]

[Lamp 78]

[LP 05]

[Lucke 04]

[Mandia 01]

Ashton, P. Algorithms for Off-Line Clock Synchronization (Techni-
cal Report TR COSC 12/952). Christchurch, New Zealand: De-
partment of Computer Sciences, University of Canterbury, 1995.

Barnett, Ryan. Monitoring VMware Honeypots.
http://honeypots.sourceforge.net
/monitoring_vmware_honeypots.html (2002).

Bauer, Michael D. Linux Server Security, 2" Edition. Sebastopol,
CA: O’Reilly, 2005.

Duda, A.; Harrus, G.; Haddad, Y.; Bernard, G. “Estimating Global
Time in Distributed Systems.” Proceedings of the 7th International
Conference on Distributed Computing Systems (ICDCS '87). Berlin,
Germany, Sept. 1987. Los Alamitos, CA: IEEE Computer Society
Press, 1987. http://www.informatik.uni-trier.de/~ley/db/conf/icdcs
/icdcs87.html.

Galleon. GPS Time Server. http://www.ntp-time-server.com/gps-
time-server/gps-time-server.htm (2004).

Haas, Juergen. Linux / Unix Command: checkconfig.
http://linux.about.com/library/cmd/blcmdI8_chkconfig.htm (2004).

Lamport, L. “Time, Clocks, and the Ordering of Events in a Dis-
tributed System.” Communications of the ACM 21 (1978): 558-565.

Log Parser 2.2 Documentation. Distributed with Log Parser 2.2.

Lucke, Ken. Reading Email Headers.
http://www.stopspam.org/email/headers.html (2004).

Mandia, Kevin & Prosise, Chris. Incident Response. Berkley, Cali-
fornia: McGraw-Hill, 2001.

CMU/SEI-2005-HB-003

147

http://honeypots.sourceforge.net
http://www.informatik.uni-trier.de/~ley/db/conf/icdcs
http://www.ntp-time-server.com/gps-time-server/gps-time-server.htm
http://linux.about.com/library/cmd/blcmdl8_chkconfig.htm
http://www.stopspam.org/email/headers.html

[McWilliams 05]

[Mills 91]

[Nolan 05]

[NWG 01]

[Ristenpart 04]

[Sendmail 05]

[SourceForge 04]

[Tan 02]

[ULP 05]

[Wikipedia 05a]

[Wikipedia 05b]

[Wikipedia 05c]

[Wikipedia 05d]

McWilliams, Brian. “Hijacked by Spammers.” O’ Reilly Network.
http://www.oreillynet.com/pub/a/network/2005/03/14
/spammerhijack.html (2005).

Mills, D. L. “Internet Time Synchronization: The Network Time
Protocol.” |EEE Trans. Communications 39, 10 (October 1991):
1482-1493.

Nolan, Richard; O’ Sullivan, Colin; Branson, Jake; & Waits, Cal.
First Responders Guide to Computer Forensics (CM U/SEI-2005-
HB-001). Pittsburgh, PA: Carnegie Mellon University, Software
Engineering Institute, 2005. http://www.sel.cmu.edu/publications
/documents/05.reports/05hb001. html.

Network Working Group. RFC 2821.
http://www.fags.org/rfcs/rfc2821.html (2001).

Ristenpart, Thomas; Templeton, Steven; & Bishop, Matt. “ Time
Synchronization of Aggregated Heterogeneous L ogs.”
http://ultimate.cs.ucdavis.edu/SecSemA pril 04.ppt (2004).

Sendmail, Inc. Datasheet: Sendmail Outbound Mail Management
Solution. http://www.sendmail.com/pdfs/datasheets/ds _hvms.pdf
(2005).

SourceForge. Project Info — Svatch.
http://sourcef orge.net/projects/swatch (2004).

Tanenbaum, Andrew S. & van Steen, Maarten. Distributed Systems:
Principles and Paradigms. Singapore: Pearson Education, 2002.

The Unofficial Log Parser Support Site. http://www.logparser.com/
(2005).

Wikipedia. American Registry for Internet Numbers.
http://en.wikipedia.org/wiki/ARIN (2005).

Wikipedia. Coordinated Universal Time.
http://en.wikipedia.org/wiki/UTC (2005).

Wikipedia. Global Positioning System.
http://en.wikipedia.org/wiki/Globa _positioning_system (2005).

Wikipedia. Regular Expressions.
http://en.wikipedia.org/wiki/Regular_expression (2005).

148

CMU/SEI-2005-HB-003

http://www.oreillynet.com/pub/a/network/2005/03/14
http://www.sei.cmu.edu/publications
http://www.faqs.org/rfcs/rfc2821.html
http://ultimate.cs.ucdavis.edu/SecSemApril04.ppt
http://www.sendmail.com/pdfs/datasheets/ds_hvms.pdf
http://sourceforge.net/projects/swatch
http://www.logparser.com/
http://en.wikipedia.org/wiki/ARIN
http://en.wikipedia.org/wiki/UTC
http://en.wikipedia.org/wiki/Global_positioning_system
http://en.wikipedia.org/wiki/Regular_expression

[Wikipedia 05¢€] Wikipedia. Simple Mail Transfer Protocol.

http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
(2005).

[Wikipedia 05f] Wikipedia. SQL. http://en.wikipedia.org/wiki/SQL (2005).

CMU/SEI-2005-HB-003 149

http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://en.wikipedia.org/wiki/SQL

150 CMU/SEI-2005-HB-003

REPORT DOCUMENTATION PAGE ot o 07080188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
(Leave Blank) September 2005 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
First Responders Guide to Computer Forensics: Advanced Topics FA8721-05-C-0003

6. AUTHOR(S)
Richard Nolan, Marie Baker, Jake Branson, Josh Hammerstein, Kris Rush, Cal Waits, Elizabeth Schweins-

berg

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2005-HB-003
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
HQ ESC/XPK REPORT NUMBER

5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS 169

13. ABSTRACT (MAXIMUM 200 WORDS)

This handbook expands on the technical material presented in SEI handbook CMU/SEI-2005-HB-001, First
Responders Guide to Computer Forensics. While the latter presented techniques for forensically sound col-
lection of data and explained the fundamentals of admissibility pertaining to electronic files, this handbook
covers more advanced technical operations such as process characterization and spoofed email. It describes
advanced methodologies, tools, and procedures for applying computer forensics when performing routine log
file reviews, network alert verifications, and other routine interactions with systems and networks. The mate-
rial will help system and network professionals to safely preserve technical information related to network
alerts and other security issues.

14. SUBJECT TERMS 15. NUMBER OF PAGES

computer forensics, information security, spoofed email, log file 168
analysis, data recovery, computer security incident

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20. LIMITATION OF ABSTRACT
OF REPORT THIS PAGE ABSTRACT UL
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	First Responders Guide to Computer Forensics: Advanced Topics
	Table of Contents
	List of Figures
	List of Tables
	Executive Summary
	Abstract
	1 Module 1: Log File Analysis
	2 Module 2: Process Characterization
	3 Module 3: Image Management
	4 Module 4: Capturing a Running Process
	5 Module 5: Understanding Spoofed Email
	References

