
Pittsburgh, PA 15213-3890

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Developing Software Product Lines

2Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. The United States
Government has Unlimited Rights in this material as defined by DFARS 252.227-7013.

The text and illustrations in this material are licensed by Carnegie Mellon University under a Creative Commons Attribution 4.0 International
License.

The Creative Commons license does not extend to logos, trade marks, or service marks of Carnegie Mellon University.

Architecture Tradeoff Analysis Method® and ATAM® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

Framework for Software Product Line PracticeSM, IDEALSM, PLQLSM, PLTPSM, Product Line Quick LookSM and Product Line Technical
ProbeSM are service marks of Carnegie Mellon University.

DM20-0360

3Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 1
8:30 – 9:00 Introductions, Background, and a

Product Line Refresher
9:00 – 9:15 The Adoption Factory Pattern
9:15 – 9:30 The What to Build Pattern
9:30 – 10:00 Building A Business Case for a

Software Product Line
10:00 – 10:15 BREAK
10:15 – 12:00 Group Exercise: Writing a Business Case

12:00 – 13:00 LUNCH

13:00 – 14:30 The Cold Start Pattern
14:30 – 14:45 BREAK
14:45 – 16:30 Group Exercise: Writing a Concept of Operations

4Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Objectives
This course will help you carry out the activities necessary
for starting and sustaining a software product line.

It will expose you to key decision points in a realistic
software product line environment.

It will help you answer
• What do we do now?
• What do we tomorrow?
• And, how do we do it?

5Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

How This Course Relates to Others
This course is one of six courses in the SEI Software Product Line
Curriculum and is designed to be taken after you complete the
Software Product Lines course.

Completion of this course is a requirement for earning three SEI
certificates:

• Software Product Line
Professional

• Product Line Technical
ProbeSM (PLTPSM) Team
Member

• PLTP Leader

SM Product Line Technical Probe and PLTP are service marks of Carnegie Mellon University.

6Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Outcomes
After taking this course, you should
• know how to determine whether a software product line

approach is right for your organization
• be able to sketch a business case, concept of operations,

attached process for a product line architecture, and a
production plan for a software product line

• know the most important patterns for product line practice
and when and how to apply them

• know the major artifacts involved with launching a product
line

7Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Strategy
This course will combine lectures, group exercises, and directed
discussions:
• Lectures will provide necessary background.
• Group exercises will give you hands-on experience in

creating key software product line artifacts.
• Directed discussions will give you an idea of what is involved

in making product line decisions.

A running example – a pedagogical product line – for the
fictional company Arcade Game Maker will be used throughout
the course.

AGM
Example

8Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Outline - 1
Introduction, Background, and a Product Line Refresher:
Provides brief review of software product line basic concepts:
essential activities, framework, practice areas, and patterns

An Overall Vision of a Product Line Organization: Shows
how a software product line development effort can be structured
around the practice areas specified in the Adoption Factory
pattern. Also introduces the Arcade Game Maker pedagogical
product line and its background and context, which will apply
throughout the course

Finding the Right Mix of Products: Introduces What to Build
as the best pattern for helping an organization define (initially) its
product line. Also describes the constituent practice areas,
delving into a few in detail
Exercise: Writing a business case

9Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Outline - 2
Launching the Product Line: Introduces Cold Start as the best
pattern for getting an aspiring product line organization off the
ground. Describes the constituent practice areas, delving into a few
in detail. Also compares Cold Start to the In Motion pattern and
discusses when to use both patterns
Exercise: Writing a concept of operations

Developing the Core Asset Base: Introduces Product Parts as
the best pattern for showing an organization how to set up its
production capability and its core asset base. Describes the
constituent practice areas, delving into a few in detail.
Exercises:
1. Developing the architecture for a product line
2. Writing a production plan for the product line

10Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Other Patterns: Provides a quick look at other relevant
patterns, such as Monitor, In Motion, Assembly Line, and
Product Builder

Conclusions, Wrap-Up, and Q&A: Provides a review of
the Adoption Factory pattern and the course—its major
takeaways and conclusions.

Course Outline - 3

11Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 1
8:30 – 9:00 Introductions, Background, and a

Product Line Refresher
9:00 – 9:15 The Adoption Factory Pattern
9:15 – 9:30 The What to Build Pattern
9:30 – 10:00 Building A Business Case for a

Software Product Line
10:00 – 10:15 BREAK
10:15 – 12:00 Group Exercise: Writing a Business Case

12:00 – 13:00 LUNCH

13:00 – 14:30 The Cold Start Pattern
14:30 – 14:45 BREAK
14:45 – 16:30 Group Exercise: Writing a Concept of Operations

12Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 2
8:30 – 9:15 Developing the Core Asset Base:

The Product Parts Pattern
9:15 – 10:00 Architectures for Product Lines

10:00 – 10:15 BREAK
10:15 – 12:00 Exercise: Architecture and the Core Asset Base

12:00 – 13:00 LUNCH

13:00 – 13:30 Production Plans
13:30 – 15:00 Group Exercise: Writing a Production Plan
15:00 – 15:15 BREAK
15:15 – 15:45 Other Patterns
15:45 – 16:15 Group Discussion: Measurement
16:15 – 16:30 Conclusions, Q&A

13Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Rules of Engagement

We will be very busy over the next two days. To complete
everything and get the most from the course, we will need
to follow some rules of engagement:
• Your participation is essential.
• Feel free to ask questions at any time.
• Discussion is good, but we might need to cut some

discussions short in the interest of time.
• Please try to limit side discussions during the lectures.
• Please turn off your cell phone ringers and computers.
• Let’s try to start on time.
• Participants must be present for all sessions in order to

earn a course completion certificate.

14Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Introductions

Who am I?

Who are you?

Why are you here?

15Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session, you should
• regain familiarity with the definition and basic concepts of

software product lines
• regain familiarity with the three essential activities
• remember the SEI Framework for Software Product Line

PracticeSM, along with its structure and goals, and
remember what a practice area is

• have a good understanding of the three practice area
categories and the practice areas they contain

Introduction and background

SM Framework for Software Product Line Practice is a service mark of Carnegie Mellon University.

16Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Refresher:
What Is a Software Product Line?

A software product line is a set of software-intensive systems
sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a
prescribed way.1

Introduction and background

1 Clements, P. & Northrop, L. Software Product Lines: Practices and Patterns. Boston, MA: Addison-
Wesley, 2001.

17Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Key Concepts

Introduction and background

Use of a core
asset base in the production of a related

set of products

Architecture Production Plan Scope Definition
Business Case

18Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

How Do Product Lines Help?
Product lines amortize the investment in these and other core assets:

• requirements and requirements analysis
• domain model
• software architecture and design
• performance engineering
• documentation
• test plans, test cases, and test data
• people: their knowledge and skills
• processes, methods, and tools
• budgets, schedules, and work plans
• components

product lines = strategic reuse

earlier
life-cycle

reuse

more
benefit

Introduction and background

19Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Three Essential Activities

• All three activities are
interrelated and highly iterative.

• Core asset development may
precede product development.

• Existing products can be
mined for core assets.

• There is a strong feedback loop
between core asset development
and product development.

• Strong management at multiple
levels is needed throughout.

Introduction and background

Core Asset
Development

Management

Product
Development

20Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Core Asset Development

•Management

•Product Line Scope

•Core Asset Base

•Production Plan

•Product Constraints
•Production
Constraints
•Production Strategy
•Preexisting Assets

•Core Asset
Development

21Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

•Production Plan

•Core Asset Base

•Management

Attached Processes
•Core Assets

•Core Asset
Development

•Attached
Process

22Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

•Production Plan

Product Line Production Plan

•Product Constraints
•Production
Constraints
•Production Strategy

•Production
Process

•Project Details

•Production
Method

23Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

•Feedback

•New Assets

•Product Constraints

•Products

•Management

•Product Description •Product
Development

Product Development

•Core Asset Base

•Product Line Scope

•Production Plan

24Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Management

•Product
Development

•Core Asset
Development

•Management

25Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Management
• Management at multiple levels plays a critical role in the

successful
product line practice by

• achieving the right organizational structure
• allocating resources
• coordinating and supervising
• providing training
• rewarding employees appropriately
• developing and communicating an acquisition strategy
• managing external interfaces
• creating and implementing a product line adoption plan
• launching and institutionalizing the approach in a manner

appropriate to the organization

26Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The SEI Framework for Software
Product Line Practice - 1

Beneath the level of the essential activities are essential
practices that fall into practice areas: bodies of work or a
collection of activities that an organization must master to
successfully carry out the essential work of a product line.

A description of the essential activities and practice areas
form a conceptual framework for software product line
practice.

Introduction and background

27Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The goals of this Framework include
• identifying practice areas that an organization developing

software product lines must master
• defining practices in each practice area, where current

knowledge is sufficient to do so

This Framework is evolving based on the experience and
information provided by the product line community.
The latest version is available at
http://www.sei.cmu.edu/productlines/framework.html

The SEI Framework for Software
Product Line Practice - 2

Introduction and background

28Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Engineering Practice Areas
These practices are necessary for applying the appropriate
technology to create and evolve both core assets and products:

Core Asset
Development

Product
Development

Management

• Architecture Definition
• Architecture Evaluation
• Component Development
• Using Externally Available

Software1

• Mining Existing Assets
• Requirements Engineering
• Software System Integration
• Testing
• Understanding Relevant

Domains

Introduction and background

1 Formerly called “COTS Utilization”

29Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Technical Management Practice Areas
These management practices are necessary for the
development and evolution of the core assets and products:

• Configuration Management
• Measurement and Tracking1

• Make/Buy/Mine/Commission
Analysis

• Process Discipline2

• Scoping
• Technical Planning
• Technical Risk Management
• Tool Support

Introduction and background

Core Asset
Development

Product
Development

Management

1 Formerly called “Data Collection, Metrics, and Tracking”
2 Formerly called “Process Definition”

30Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Management
Practice Areas
These practices are necessary for the orchestration of the entire
product line effort:

• Building a Business Case
• Customer Interface Management
• Developing an Acquisition Strategy
• Funding
• Launching and Institutionalizing
• Market Analysis
• Operations
• Organizational Planning
• Organizational Risk Management
• Structuring the Organization
• Technology Forecasting
• Training

Introduction and background

Core Asset
Development

Product
Development

Management

31Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 1
8:30 – 9:00 Introductions, Background, and a

Product Line Refresher
9:00 – 9:15 The Adoption Factory Pattern
9:15 – 9:30 The What to Build Pattern
9:30 – 10:00 Building A Business Case for a

Software Product Line
10:00 – 10:15 BREAK
10:15 – 12:00 Group Exercise: Writing a Business Case

12:00 – 13:00 LUNCH

13:00 – 14:30 The Cold Start Pattern
14:30 – 14:45 BREAK
14:45 – 16:30 Group Exercise: Writing a Concept of Operations

32Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session, you should
• regain familiarity with the concept of product line practice

patterns and why they are useful
• know how a pattern is described
• understand how the Adoption Factory pattern defines the

vision for an entire product line organization
• know the subpatterns and practice areas that make up the

Adoption Factory pattern
• understand some of the available entry points into and

paths through the Adoption Factory pattern

Adoption Factory Pattern

33Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Running Example Used for This Course
We have developed a pedagogical software product line
to serve as a running example throughout this course.
• The fictional company Arcade Game Maker (AGM), a

producer of computer games, wishes to develop its
products as a software product line.

• We will develop plans and other documents necessary to
help it along.

• For the remainder of this course, we all work in the office
of AGM’s vice president of product development (VPPD).

The pedagogical software product line is available at
http://www.sei.cmu.edu/productlines/ppl

34Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Special Formatting Used to Highlight
AGM-Specific Information
The formatting includes four things:
1. this special AGM Example icon

2. this character in the slide title
►

3. a red rule going down the left side of the text

4. bright-blue-colored text

AGM
Example

35Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

►AGM - 1
AGM makes computer games.

They currently produce three products:

AGM
Example

Brickles Pong Bowling

36Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

►AGM - 2

AGM maintains a presence in three different markets:
1. personal computer freeware
2. wireless devices
3. a customizable version for company advertising

Games can vary by user interface and rules and by the platform
on which they run. These are successful products.

However, trouble is looming on the horizon!

AGM
Example

37Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

►AGM - 3
The number of platforms
our games must run on
is increasing. Marketing
is demanding more and
more product variations
with shorter time to
market.

The complexity of our
products will soon be
out of control. Mass
hiring is not an option.

Brickles

Pong

Bowling

Games

Market

Freeware Wireless Customized

Nokia
Motorola

Panasonic

Windows
Linux

Platform
Variations

AGM
Example

38Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► AGM - 4
It has become clear that
• AGM is building multiple systems with significant

commonality.
• There is an overall fit for a software product line

approach.
AGM has articulated goals that it is trying to achieve with
a software product line approach. The benefits of
successful product lines match the goals of the
organization.
The AGM VPPD1 is familiar with the SEI Framework for
Software Product Line Practice.

AGM
Example

1 Vice President of Product Development

39Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► AGM - 5
The VPPD1 has launched a software product line effort
at AGM:
• This means there is sufficient support within the

organization to launch a software product line
adoption effort. The VPPD is willing to spearhead the
effort.

• AGM has embraced the Adoption Factory pattern as
the basis for its product line adoption plan.

Our job is to help the VPPD develop the product line.

AGM
Example

1 Vice President of Product Development

40Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Review: Product Line Practice Patterns
Product line practice patterns

• are ways of expressing solutions to common
context/problem pairs

• address recurring product line problems, such as
- How do I get started?
- What products should my product line include?
- How do I build a core asset base?

• codify existing, well-proven software product line
experience

• provide an additional common vocabulary for
understanding product lines

• can be combined to build complex product line solutions

What to Build Pattern

41Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Product Line Practice Pattern

Pattern
Context – organizational situation
Problem – what part of a product line effort

needs to be accomplished

Solution grouping of practice areas

relations among these practice
areas (or subpatterns)

What to Build Pattern

42Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building the Software Product Line

We now turn to a pattern that describes a software
product line organization in full swing—the Adoption
Factory pattern.

We’ll use this pattern as a picture of the ultimate desired
state and roadmap for how to get there.

Adoption Factory Pattern

43Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Adoption Factory Pattern - 1

Name: The Adoption Factory pattern is a composite
pattern* that describes the entire product line
organization.

Context: An organization is considering (or fielding) a
product line.

Problem: To map the entire product line effort

* A composite pattern is one composed of other patterns (subpatterns).

Adoption Factory Pattern

44Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Solution: Fielding a product line involves
• deciding what to build
• building and running the production capability
• preparing the organization
• designing and providing the product parts
• running the assembly line to produce products
• monitoring the process
• defining processes that are important during adoption

Adoption Factory Pattern - 2

Adoption Factory Pattern

45Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Static Structure: The Adoption Factory pattern consists of the
following subpatterns:

• Assembly Line
• Each Asset
• Cold Start
• In Motion
• Product Builder
• Product Parts
• Monitor
• What to Build

…plus one practice area
• Process Discipline

Adoption Factory Pattern - 3

Adoption Factory Pattern

46Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Adoption Factory Pattern - 4

Dynamic View
•Informs and information flow

•Supports

•Phases

•Product Builder

•Each Asset

•What to Build •Product
Parts

•Assembly Line
•Process
Discipline

•Monitor•Cold Start •In Motion

•Establish Context •Establish Production
Capability •Operate Product Line

Adoption Factory Pattern

47Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Adoption Factory Pattern - 5
Many paths through the Adoption Factory pattern are
possible. (They are discussed more in the SEI Adopting
Software Product Lines course.)

Which one you choose depends on your context and how
much preliminary work or thinking has been done about
software product lines.

Also, you don't always complete one thing before you start
another.

We will explore one path through the Adoption Factory
pattern, based on the hypothetical situation of AGM and the
adoption plan it built.

Adoption Factory Pattern

48Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Using the Adoption Factory Pattern
at AGM
The Adoption Factory pattern embodies the overall
concept of product line adoption and will help us explain
our vision of AGM to those above and below the office of
the VPPD1.

However, since the Adoption Factory pattern is
composed of other patterns; we cannot carry it out
directly.

Rather, we must choose one or more subpatterns to start
with.

AGM
Example

1 Vice President of Product Planning

49Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► A Starting Point for AGM

First, AGM will work to establish context:
• For products, this is carried out by the What to Build pattern.
• For the organization, the Cold Start pattern is what we need.

Since AGM already has a product set, following the What to Build pattern
should be relatively easy. The VPPD chooses to first concentrate there.

AGM
Example

•Phases

•Product Builder

•Each Asset

•What to Build •Product
Parts

•Assembly Line
•Process
Discipline

•Monitor•Cold Start •In Motion

•Establish Context •Establish Production
Capability •Operate Product Line

50Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 1
8:30 – 9:00 Introductions, Background, and a

Product Line Refresher
9:00 – 9:15 The Adoption Factory Pattern
9:15 – 9:30 The What to Build Pattern
9:30 – 10:00 Building A Business Case for a

Software Product Line
10:00 – 10:15 BREAK
10:15 – 12:00 Group Exercise: Writing a Business Case

12:00 – 13:00 LUNCH

13:00 – 14:30 The Cold Start Pattern
14:30 – 14:45 BREAK
14:45 – 16:30 Group Exercise: Writing a Concept of Operations

51Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session, you should
• understand the static and dynamic structure of the What

to Build pattern
• understand how the What to Build pattern is useful and

how it can help an organization decide whether the
software product line approach is right for it

• be able to use the What to Build pattern to reach a
decision about product line adoption

What to Build Pattern

52Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What to Build Pattern - 1

Name: The What to Build pattern helps an
organization determine what products ought to be in its
software product line—what products to build.

Context: An organization has decided to field a
software product line and knows the general product
area for the set of products.

Problem: To determine what products should be
included in the product line

What to Build Pattern

53Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Solution: Determining what to build requires information
related to the product area, technology, and market; the
business justification; and the process for describing the set
of products to be included in the product line.

Static Structure: The following practice areas address the
solution and provide the structure for the What to Build
pattern:

• Market Analysis
• Understanding Relevant Domains
• Technology Forecasting
• Building a Business Case
• Scoping

What to Build Pattern - 2

What to Build Pattern

54Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What to Build Pattern -3
Understanding
Relevant
Domains

Market Analysis Technology
Forecasting

Building a
Business Case

Scoping

Domain
Models

Product
Set

Market
Climate

Product Line
Scope

Justification

Product Set

Business
Case

Technology
Predictions

Technology
Predictions

Market
Climate

Dynamic StructureArtifact

Key
Informs

Output of
activity

What to Build Pattern

55Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What to Build Pattern - 4

Application:
• Practices from the “Market Analysis,” “Understanding

Relevant Domains,” and “Technology Forecasting”
practice areas can be conducted in parallel by separate
groups.

• The pattern is especially applicable to those well versed
in the marketplace.

• It can be carried out by any size organization.
• It can (and should) continue to be applied after a

product line already exists.

What to Build Pattern

56Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 1
8:30 – 9:00 Introductions, Background, and a

Product Line Refresher
9:00 – 9:15 The Adoption Factory Pattern
9:15 – 9:30 The What to Build Pattern
9:30 – 10:00 Building A Business Case for a

Software Product Line
10:00 – 10:15 BREAK
10:15 – 12:00 Group Exercise: Writing a Business Case

12:00 – 13:00 LUNCH

13:00 – 14:30 The Cold Start Pattern
14:30 – 14:45 BREAK
14:45 – 16:30 Group Exercise: Writing a Concept of Operations

57Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session, you should
• understand a recommended structure for a business case

document
• know the technical and organizational inputs that feed the

business case
• see how the business case is built in conjunction with

other activities
• know the basic modeling constructs of the SIMPLE

product line economics model
• be able to build a complicated SIMPLE formula that

models a product line scenario
• be ready to write a business case for a software product

line

What to Build Pattern:
Building a Business Case

58Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► What Are the Right Products for AGM?

We need to write a business case for AGM, because it will
determine the right products for AGM.

The What to Build pattern shows that the business case is
influenced by three things:

1. technology predictions
2. market climate
3. an initial product set (scope)

Our first task is to assemble this information. We ask the
VPPD to gather together the company’s technology experts,
market experts, and product experts to produce three initial
reports.

These initial reports will lay the groundwork but should be
updated as needed throughout the life of the product line.

AGM
Example

59Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► 1. AGM’s Technology Predictions
The VPPD has chartered a number of forward-looking technology-
exploration projects.

• These studies have investigated the impact of new platforms such
as the N-Gage from Nokia, the implications of the life cycle of the
Mobile Information Device Protocol (MIDP) set of standards, and
the viability of TinyOS to support game play on ultra-small devices.

• These studies do not affect the current product space, as they
identified no new technologies that are market mature. The MIDP
study showed that the planned product line should remain with the
MIDP1.0 standard, since the MIDP2.0 standard will not be widely
supported until after the launch times of the current products.

The studies do influence the identification of variation points but not
their current implementations.

You can see the AGM Technology Forecast at
www.sei.cmu.edu/productlines/ppl.

AGM
Example

60Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► 2. AGM’s Market Climate - 1
The number of platforms and venues for computer
games continues to expand. AGM’s vice president of
product planning (VPPP) has chartered a regular update
of the Marketing and Product Plan (MPP).

The most notable current opportunity is for wireless
devices such as PDAs, cell phones, and the various
permutations of these devices. The new N-Gage product
line of game “decks” from Nokia presents interesting
possibilities, although current sales are disappointing.

AGM
Example

61Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The most likely emerging opportunity will be the
infotainment aspects of vehicles. Several new devices
are being developed to provide a game platform at
various points in automobiles, planes, and other
vehicles.

Additional information is provided in the AGM
Marketing and Product Plan (MPP), which will be used
in the first exercise.

(You can see AGM’s Marketing and Product Plan in the
“Background” booklet.)

► 2. AGM’s Market Climate - 2

AGM
Example

62Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Variation representation
• Feature models are used to

represent the commonality and
variability among products in a
product line.

• Unfilled circles represent optional
features.

• The bottom portion shows a
product configuration. All variation
has been resolved.

63Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► 3. AGM’s Initial Product Set (Scope) - 1

mandatory

optional

alternative

!

?

AGM’s product/feature map was constructed using an
Eclipse plug-in that supports feature modeling

AGM
Example

64Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► 3. AGM’s Initial Product Set (Scope) - 2

We know that the current product set will be carried forward.
• 3 games
• Each game implemented on 3 platforms

We are also planning to add new products based on the new
platforms shown earlier. These new products come from the
“Understanding Relevant Domains,” “Market Analysis,” and
“Technology Forecasting” practice areas.

The new products will include additional games, such as a pinball
game, and additional platforms for all of the games. The scope of the
product line will be stated to provide for this eventual evolution but will
not include specific products beyond the three games.

Additional information is provided in the AGM Scope document which
will be used in the first exercise.

AGM
Example

65Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Making the Case
A business case is essentially a justification for a course of
action. There are many ways to justify a product line, but
they all must relate the proposed product line to the strategic
goals of the organization.

The business case writers will use forecasts about
technology trends and market trends to justify the products
that are included in the product line.

We will consider how to build an economic model that can
support assertions made in the business case.

What to Build Pattern:
Building a Business Case

66Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Market Analysis for AGM
As part of his continuing responsibilities, AGM’s VPPP1

commissioned an analysis of the markets in which AGM is
interested.

The resulting MPP2 identifies trends in the game industry and,
in this case, a niche opportunity.

The MPP provides a feature model for the envisioned products
that technical managers can use to estimate the effort required
to produce the product.

The MPP provides important input into the business case by
predicting sales figures and suggesting the price point at which
each product can be sold. This data helps determine release
dates, quality attributes, and production techniques.

AGM
Example

1 Vice President of Product Planning
2 Marketing and Product Plan

67Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Scoping for AGM
Representatives of the VPPP and the VPPD cooperate to
“scope” (determine which products belong to) the product
line. The initial product set is a starting point.

A balance is struck between having sufficient
commonality to achieve strategic levels of reuse (for the
VPPD) and sufficient variability to satisfy a number of
markets (for the VPPP).

This activity will produce scenarios that are analyzed as
part of the business case activity. The results of these
analyses will be fed back into the scoping activity.

AGM
Example

VPPD = Vice President of Product Development
VPPP = Vice President of Product Planning

68Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Business Case Content
The content of the business case includes

1. a mapping of the business goals to the product line
strategy

2. a description of alternative approaches to meeting the
goals

3. analysis of the strengths/weaknesses/
opportunities/threats associated with the product line
(SWOT1 analysis)

4. analysis of strategic factors that influence the product
line strategy

5. comprehensive scenario analysis including
cost/benefits

6. recommended course of action

What to Build Pattern:
Building a Business Case

1 Strengths/Weaknesses/Opportunities/Threats

69Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

1. Mapping of Business Goals
The context section of the business case describes how the
recommendations made in the business case will support the
goals of the organization.

One way this is done is to list the quality attributes of the
products and the production process that are related to each
goal.

For example, an organizational goal of “greatly reduced time
to market” can be addressed by “achieve strategic levels of
reuse” in the production process.

What to Build Pattern:
Building a Business Case

70Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

2. Alternative Approaches
There are several ways to meet the specified business goals.

A scenario is created for each feasible approach. The
scenario describes the approach and defines the range of
values for any variable in the scenario.

For example, the scoped set of products can be produced
within the specified time frame by building each product
separately if the organization would hire x number of
additional personnel. The cost/benefit analysis should provide
for comparing this approach to the product line approach.

What to Build Pattern:
Building a Business Case

71Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► 3. SWOT Analysis (for AGM)
The business case includes a SWOT analysis to capture
the elements of risk associated with the product line:

Strengths – the organization’s experience in the
domain

Weaknesses – difficulty maintaining expertise in a wide
range of platforms

Opportunities – mass customization, which could open
a new market for specialized games

Threats – open source availability of much game
software

AGM
Example

72Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

4. Analysis of Strategic Factors
This is the heart of the business case. In this section, factors
that affect the achievement of the strategic goals are
identified and discussed.

For example, the increasing variety of intelligent platforms
opens new markets for our products, as long as we port to
those platforms. The cost of the ports versus their affect on
sales is analyzed.

This section also contains the cost/benefit analysis that uses
the strategic factors, as well as inputs from the scope and
Marketing and Product Plan, to analyze the costs and
benefits of each approach that has been defined.

What to Build Pattern:
Building a Business Case

AGM
Example

73Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

5. Comprehensive Scenario Analysis
(including cost/benefit analysis)

Structured Intuitive Model for Product Line Economics (SIMPLE)

• The business case argues for a particular development scenario
by reducing the costs and benefits to a common denominator:
money.

• Even the quality attributes of the products and the degree to
which business goals are achieved are all reduced to money.

• SIMPLE provides a basic starting point from which a model can
be developed.

• Each function in the model can be implemented in a variety of
ways depending on the context of your product line.

What to Build Pattern:
Building a Business Case

74Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Basic Costs

The cost of building a product as a stand-alone product can be
represented by Equation A above.

Cprod is a cost function. Given actual parameters, the function
returns the portion of the cost of building producti during the time
interval t.

This expression is used to evaluate the approach in which the
organization hires sufficient staff to build n standalone products. The
value returned by Cprod includes all costs associated with that staff
and other related costs (including severance costs for when the
project is completed).

What to Build Pattern:
Building a Business Case

),(
1

tproductC
n

i
iprod

(A)

75Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Cost Benefit Analysis – Cost Functions

Four basic cost functions support the modeling of most of the costs of a
software product line:

1. Corg returns the cost to an organization of adopting the product line
approach for its products.

2. Ccab returns the development cost to develop a core asset base
suited to satisfy a particular scope.

3. Cunique returns the development cost to develop unique software that
itself is not based on a product line platform.

4. Creuse returns the development cost to reuse core assets in a core
asset base.

Rather than rigorously defined mathematical functions, these are
invitations to do thought experiments to come up with a reasonable
cost (or monetary benefit) estimate in each area.

)),(),(()()(
1

tproductCtproductCtCtC ireuse

n

i
iuniquecaborg

What to Build Pattern:
Building a Business Case

(B)

76Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

nbrBen

j
ben tB

j
1

)(

Cost Benefit Analysis: Benefit Functions

A general benefit function can be used to model as many
benefits as necessary.

Bben returns the value derived from a particular benefit.
• The difference between two release dates can be

modeled as a difference in revenue.
• Increased quality or customer satisfaction might be

modeled as increased revenue from increased sales and
as a reduction in costs for handling trouble reports.

The benefit of reduced cost is captured in the cost functions.
Be careful not to count that benefit twice!

What to Build Pattern:
Building a Business Case

(C)

77Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example Scenario - 1

Suppose
• There are 5 products, all roughly the same size and complexity:

n=5
• Each product costs about 3 person-years (PY) to build as a stand-

alone project:
Cprod(producti,t) = 3PY

What to Build Pattern:
Building a Business Case

),(
1

tproductC
n

i
iprod

(A)

= 5 × 3PY

= 15PY

Cost of building the family in a stand-alone fashion:

78Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example Scenario - 2

Suppose
• We ignore benefits for now.
• It takes 1 PY to turn the organization around: Corg = 1PY
• It takes 2 PY to build the core asset base for these 5 products:

Ccab = 2PY
• Each product is about ½ core assets and ½ unique content:

Cunique() = 50% * 3 PY = 1.5 PY.
• We take Creuse() = 15% [1] of one-half of 3PY = 15%(1.5PY) =

0.225 PY [2].

–

What to Build Pattern:
Building a Business Case

nbrBen

j
benireuse

n

i
iuniquecaborg tBtproductCtproductCtCtC

j
11

)()),(),(()()((D)
Cost of building the products as a software product line:

= 1PY + 2 PY + 5(1.5 PY)

= 11.625 PY

+ 0.225 PY

79Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example Scenario - 3

Cost savings of the product line approach

= Equation A – Equation D

),(
1

n

i
iprod tproductC

))),(),(()()((
1

tproductCtproductCtCtC ireuse

n

i
iuniquecaborg

–

What to Build Pattern:
Building a Business Case

(E)

= 15 PY –

11.625 PY

= 3.375 PY (ignoring benefits)

80Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example Scenario - Footnotes

[1] This value is the accepted value for opportunistic reuse. A product line will
have a smaller value than 15%, because there is no search or qualification cost.
Boehm’s COPLIMO model uses a figure of around 5%. We use 15% as a very
conservative estimate in this example but suggest that each company measure
its local cost.

[2] Cunique and Creuse are both functions of the fraction of each product that the
core asset base provides. As that fraction rises, Cunique decreases and Creuse
increases.

[3] This savings is calculated over a single time period (the period of building the
products), and the scenario does not take into account any changes to the
products or core assets over time.

A web site is available for modeling product line scenarios using SIMPLE:
http://simple.sei.cmu.edu

What to Build Pattern:
Building a Business Case

81Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A Return to Scoping
The analyses used to build the business case may not always
show that a product line is the best course of action.

The volatility of the domain may simply not support the use of
the product line strategy.

The variation among products may be too great. By
narrowing the scope, the variation is reduced, and the
product line approach may look better when you run the
numbers a second time.

What to Build Pattern:
Building a Business Case

82Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

6. Recommended Course of Action
The final section of the business case summarizes the analyses of
the previous sections and recommends a course of action.

The recommended actions are justified by the contents of the
other sections in the business case.

What to Build Pattern:
Building a Business Case

Individual Products vs. Product Line

0

5

10

15

20

1 2 3 4 5

Number of Products

Cu
m

ul
at

iv
e

Co
st

s

Series1
Series2

83Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 1
8:30 – 9:00 Introductions, Background, and a

Product Line Refresher
9:00 – 9:15 The Adoption Factory Pattern
9:15 – 9:30 The What to Build Pattern
9:30 – 10:00 Building A Business Case for a

Software Product Line
10:00 – 10:15 BREAK
10:15 – 12:00 Group Exercise: Writing a Business Case

12:00 – 13:00 LUNCH

13:00 – 14:30 The Cold Start Pattern
14:30 – 14:45 BREAK
14:45 – 16:30 Group Exercise: Writing a Concept of Operations

84Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session, you should
• understand what is needed to construct a business case

that supports adoption of a software product line strategy
• be able to structure those analyses in a document

What to Build Pattern:
Exercise: Building a Business Case

85Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Exercise: Build a Business Case for AGM
Goal: Explore the development of the business case for the AGM
product line.

Preparation: In the Background book, take about 15 minutes to read
• the AGM Product Line Overview
• the AGM Market and Product Plan
• the AGM Scope document
• the partial AGM Business Plan that your team will complete during

this exercise.

Activity: Form teams of size 3-4. Take about 45 minutes to complete
the partial business case in the Exercise book

• Complete section 3 (SWOT analysis), page 5
• Complete sections 5.1.1, 5.1.2, and 5.1.3, pages 8 and 9. Record

any assumptions you make.
• Complete section 5.3 (table of SIMPLE formulas), page 12. Here

you only need to provide relative sizes (e.g., “high,” “medium,”
“low”) to compare the approaches against each other.

AGM
Example

86Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Taking Stock of AGM’s Situation
The What to Build pattern has revealed that software product
lines are a sound strategy for AGM.

The VPPD’s business case has convinced the CEO, CFO, and
CTO who have given the go-ahead to plan the necessary
changes. They are concerned about changing everything at
once, so an incremental approach is called for.

At this point, we have the following artifacts:
• an initial scope definition
• a market forecast
• a technology forecast
• a business case for the product line

These are our first core assets!

AGM
Example

87Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What to Build Lives On
A software product line can operate for a number of years
depending on the size and complexity of the products and
the release schedule.

The market climate and technology predictions can change
in ways that affect the viability of the product line.

The What to Build pattern is reapplied according to the usual
planning cycle for the product line organization. Plans are
reviewed and updated when appropriate.

What to Build Pattern:
Building a Business Case

88Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 1
8:30 – 9:00 Introductions, Background, and a

Product Line Refresher
9:00 – 9:15 The Adoption Factory Pattern
9:15 – 9:30 The What to Build Pattern
9:30 – 10:00 Building A Business Case for a

Software Product Line
10:00 – 10:15 BREAK
10:15 – 12:00 Group Exercise: Writing a Business Case

12:00 – 13:00 LUNCH

13:00 – 14:30 The Cold Start Pattern
14:30 – 14:45 BREAK
14:45 – 16:30 Group Exercise: Writing a Concept of Operations

89Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session you should
• understand when to use the Cold Start pattern
• know which practice areas are part of the Cold Start

pattern
• have a good understanding of each constituent practice

area
• understand how each practice area would be handled or

carried out in the AGM example
• be ready to develop a Concept of Operations for a

software product line organization

Cold Start Pattern

90Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Reminder: Adoption Factory Pattern

Dynamic Structure

•Informs and information flow

•Supports

Phases

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line
Process
Discipline

MonitorCold Start In Motion

Establish Context Establish Production
Capability Operate Product Line

Cold Start Pattern

91Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Cold Start Pattern - 1
Name: The Cold Start pattern consists of practice areas
that should be used when any organization is launching a
software product line for the first time

Context: An organization is launching its first software
product line.

Problem: To effectively prepare the organization for its first
software product line production

Cold Start Pattern

92Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Cold Start Pattern - 2
Solution: The organization must shape itself so it can
effectively use a product line approach to turn out products.
Those in charge must
• fund the effort
• put in place an organizational structure that designates

core asset developers, product developers, assembly line
builders, and so forth

• provide training for the people involved
• prepare customers for the new approach
• develop an acquisition strategy for any suppliers that will

be involved
• develop a Concept of Operations
• establish an organizational risk management program
• create a product line adoption plan

Cold Start Pattern

93Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Cold Start Pattern - 3
Static Structure: The Cold Start pattern consists of the
following practice areas:
• Launching and Institutionalizing
• Funding
• Customer Interface Management
• Developing an Acquisition Strategy
• Operations
• Organizational Planning
• Organizational Risk Management
• Structuring the Organization
• Training

Cold Start Pattern

94Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Cold Start Pattern - 4
Launching and Institutionalizing

Informs or provides input to

Structuring the Organization

Customer
Interface
Management

Organizational
Planning

Organizational
Risk Management

TrainingDeveloping an
Acquisition Strategy

Operations

Dynamic Structure

Funding

Cold Start Pattern

95Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Planning

Cold Start Pattern

Launching and Institutionalizing

Informs or provides input to

Structuring the Organization

Customer
Interface
Management

Organizational
Planning

Organizational
Risk Management

TrainingDeveloping an
Acquisition Strategy

Operations

Funding

96Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Planning - 1
At this point, organizational planning gives us some advance warning
about the plans that need to be produced:
• product line adoption plans

- how to transition an organization to a product line approach
- covered under the “Launching and Institutionalizing” practice area

• core asset funding plan
- Funding the development and maintenance of the core asset

base is likely to be done at the organizational level.
- covered under the “Funding” practice area

• configuration management (CM) plan
- CM reaches across all the core asset and product-building

projects and possibly even across product lines.
- Hence, it is appropriate to plan CM at the organizational level.

Cold Start Pattern:
Organizational Planning

97Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Planning - 2
• tool support

- Tool support that is common across products in an organization
should be planned organizationally.

• training plan
- It pays to consider training at the cross-product level.
- Include course content, who provides it, who attends, a schedule,

and resource allocation.
- covered under the “Training” practice area

• organizational structure plan
- details the transition steps and shifts in responsibility, outlines any

logistical or physical relocation, and assigns schedules and
resources

- covered under the “Structuring the Organization” practice area

Cold Start Pattern:
Organizational Planning

98Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

• risk management plan
- assigns people to participate in the process, accounts for

any training or other preparation required, and lays out an
engagement schedule

- covered under the “Organizational Risk Management”
practice area

• priorities for core asset development
- resolve competing needs among projects when new core

assets become available
- especially important when new core assets are being

developed

Organizational Planning - 3

Cold Start Pattern:
Organizational Planning

99Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Planning - 4
Organizational planning also helps us understand that our
plans will have interdependencies induced by the product
line approach:
• Organizational plans will have dependencies with project

plans.
• Project plans will have external dependencies among

other project plans.
• Organization-level plans may be necessary to coordinate

project-to-project dependencies.
• In a product line context, the project plans can relate to

core asset development, product development, or the
activities that cross between them.

Cold Start Pattern:
Organizational Planning

100Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Planning - 5
Organizational plans themselves (or parts of them) make fine
core assets.

Ideally, reusable plans should be tailorable in the same
fashion as other core assets—that is, they have defined
points of commonality and variation.

Cost, effort, and schedule estimates may be useful
candidates, particularly for reuse, as are work breakdown
structures, goals, strategies, and objectives.

Cold Start Pattern:
Organizational Planning

101Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Organizational Planning for AGM
The VPPD
• makes sure that key players’ planning skills are up to

the task
• makes sure that planning tools are in place and people

know how to use them
• builds a list of organizational plans that that AGM will

need, and uses this list as a checklist later
• makes sure to remember the dependencies among

plans so that when planning tasks are assigned, they
take into account those dependencies.

AGM
Example

102Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing

Cold Start Pattern

Launching and Institutionalizing

Informs or provides input to

Structuring the Organization

Customer
Interface
Management

Organizational
Planning

Organizational
Risk Management

TrainingDeveloping an
Acquisition Strategy

Operations

Funding

103Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing
This practice area is about systematic elevation of an organization
from a given state of product line sophistication to a higher state of
product line sophistication.

Carrying it out involves the timely application of the other practice
areas and patterns (especially Adoption Factory), as appropriate to
the needs and capabilities of an organization

Launching a product line is a type of technology change project,
undertaken to help organizations prepare themselves to adopt a
new technology or a new way of doing business.

How to make the change is highly dependent on the context of the
organization; an invariant sequence of steps to execute the project
is inappropriate.

Cold Start Pattern:
Launching and Institutionalizing

104Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
Specific Practices - 1

Use pilot projects to
• Reduce risk.
• Learn more about the organizational and technical issues

associated with the product line effort.
• Build advocacy.
• Run a controlled experiment to test specific ideas or

concerns.

Cold Start Pattern:
Launching and Institutionalizing

105Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use an organizational diagnostic, such as the SEI Product
Line Technical Probe,SM to
• Find the organization’s blind spots.
• Find out where the organization lacks necessary expertise

in one of the practice areas (especially one that tends to
manifest itself early in the product line life cycle, such as
scoping or requirements engineering).

• Learn where to focus resources judiciously.
• Provide input for an adoption plan.

Launching and Institutionalizing:
Specific Practices - 2

SM Product Line Technical Probe is a service mark of Carnegie Mellon University.

Cold Start Pattern:
Launching and Institutionalizing

106Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
Specific Practices - 3

Develop product line goals, objectives, and strategies:
• Establish an appropriate set of goals, which are validated

by supporting rationale.
• Determine objectives and high-level, measurable

indicators of progress toward those goals.
• Consider holding an internal workshop for articulating and

capturing the goals, objectives, and strategies that will
serve as the foundation for building an adoption plan.

• Revisit those goals, objectives, and strategies as the
adoption progresses.

Cold Start Pattern:
Launching and Institutionalizing

107Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
Specific Practices - 4
Create a suitable Product Line Adoption Plan that
• describes how product line practices will be rolled out

across the organization
• may provide the definition of processes, the initiation of

practice areas (e.g., “Training”), or the selection and
implementation of pilots

• should address the entire organization. For example, what
does everyone else do while the pilot project is running?

• is a primary result of the launching and institutionalizing
effort

Cold Start Pattern:
Launching and Institutionalizing

108Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Initiate process improvement as a basis for launching
and institutionalizing:
• Process discipline provides a foundation for product line

practice.
• If an organization doesn’t have sufficient process discipline,

launching a product line is going to be problematic.

Launching and Institutionalizing:
Specific Practices - 5

109Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► L&I Outcomes for AGM
We help the VPPD to make the following decisions related to
launching and institutionalizing product line practice:
• Keep working with patterns.
• Launch a training program via the “Training” practice area.
• Hold an internal workshop to establish goals and objectives,

and increase buy-in. Use the goals and objectives from the
business case as a “starter” set.

• Use that workshop to choose which products become
members of the product line first.

• Determine what other product teams do in the meanwhile.
• Write an adoption plan based on all of the above.

The VPPD also decides to take the SEI Adopting Software
Product Lines course.

AGM
Example

110Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
Discussion

1. What should second-wave product teams at AGM be
doing in the meanwhile?

2. Who should attend AGM’s goals-and-objectives
workshop?

3. How would you incrementally “roll out” product line
practice across the entire organization once the pilot
project has served its purpose?

Cold Start Pattern:
Launching and Institutionalizing

AGM
Example

111Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► What’s Next for AGM?
The VPPD now has an idea for how the adoption of software
product line practice is going to be rolled out across AGM.

Some decisions are tentative and will need to be revisited. For
instance, choosing which products are going to be in the first
wave may depend on setting up the core asset base, which
hasn’t been done yet. But educated guesses are possible.

The VPPD now wants help in deciding what the major
organizational units of his organization and their responsibilities
are going to be. Hence, we next turn our attention to

Structuring the Organization

AGM
Example

112Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization

Cold Start Pattern

Launching and Institutionalizing

Informs or provides input to

Structuring the Organization

Customer
Interface
Management

Organizational
Planning

Organizational
Risk Management

TrainingDeveloping an
Acquisition Strategy

Operations

Funding

113Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization - 1
An organizational structure should be chosen to at least determine
which unit or units
• produce and maintain the architecture for the product line
• determine the requirements for the product line and product

line members
• design, produce, and maintain the product line’s core assets
• produce products
• determine the processes to be followed and measure or

ensure compliance with them
• maintain the production environment in which products are

produced
• forecast new trends, technologies, and other developments

that might affect the future of the product line

Cold Start Pattern:
Structuring the Organization

114Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

►Structuring the Organization at AGM
Recall that the “Organizational Planning” practice area has
alerted us to the need for the following plans and organizational
units to produce and implement them:
• product line adoption
• core asset funding
• configuration management
• tool support
• training
• structuring the organization
• risk management
• priorities for core asset development

AGM
Example

The VPPD will
create these plans.

115Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization - 2
Structuring the organization is largely about answering the
following questions:

• Who develops and maintains the core assets?
• Who develops and maintains products?

Two main organizational structures occur most often in
product line organizations (although several other variations
are possible):

1. a separate core asset group
2. an integrated product and core asset group

Cold Start Pattern:
Structuring the Organization

116Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization: Discussion
1. What effects do you think the following have on choosing an

organizational structure?
• size of the organization
• number of products (and product projects)
• volatility of core assets
• amount of manual coding or unique code each product requires
• time to market requirements
• organizational process maturity
• sophistication of development tool support

2. What artifact(s) result from making this decision?

3. Which organizational structure for AGM do you recommend to the
VPPD?

4. What will you measure or look for to see if AGM made
the right decision?

Cold Start Pattern:
Structuring the Organization

AGM
Example

117Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► What Tangibles Do We Have So Far? - 1
We have

• an initial scope definition
• a market forecast
• a technology forecast
• a business case

• a blueprint for the organization based on
patterns

• an intent to launch a training program
• a set of goals and objectives for the product

line
• an identified set of stakeholders invested in the

successful rollout of product line practice
• an adoption plan, describing a planned phase-

in of the product line strategy across products

• an organizational chart and a charter for each
unit

What to Build

Launching and
Institutionalizing

Structuring the
Organization

AGM
Example

118Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► What Tangibles Do We Have So Far? - 2

a picture of where we are

a picture of what our
organization will look like in
the future

a vision of our
organization’s capabilities

AGM
Example

We have
• an initial scope definition
• a market forecast
• a technology forecast
• a business case

• a blueprint for the organization based on
patterns

• an intent to launch a training program
• a set of goals and objectives for the product

line
• an identified set of stakeholders invested in the

successful rollout of product line practice
• an adoption plan, describing a planned phase-

in of the product line strategy across products

• an organizational chart and a charter for each
unit

119Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► What’s Next for AGM?
Given an organizational structure decision, the VPPD is
now in a position to turn to any of several possibilities in
the Cold Start pattern, in order to decide how the units
• are to be funded
• should manage organizational risk
• are going to present a unified, consistent interface to

the customer
• are going to jointly manage acquisition policy

AGM
Example

All of this is leading up to a definitive description of the
day-to-day operations of the product line—an operational
concept.

120Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Funding

Cold Start Pattern

Launching and Institutionalizing

Informs or provides input to

Structuring the Organization

Customer
Interface
Management

Organizational
Planning

Organizational
Risk Management

TrainingDeveloping an
Acquisition Strategy

Operations

Funding

121Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Funding
Funding is largely about deciding who pays for the core
assets.

Many schemes are possible. Major ones include
• first product(s) pay
• taxing every product
• taxing every product group
• using R&D or other corporate funds

Cold Start Pattern:
Funding

122Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Line
Development Activities

 to be
 Funded

 Funding
 Strategies

Planning
and

Analysis

Infra-structure

Developm
ent

Asset

Developm
ent

Product Line

Sustainm
ent

and Evolution

Product

Developm
ent

Sustainm
ent

and Evolution

1 Product-specific funding
(individual customer, for example)

 XX XXX

2 Direct funding from corporate
sponsor/program XXX XX XX

3 Product line organization’s
discretionary funds X XXX X X

4 First product (project) funds effort XX XX XX X XXX

5 Multiple projects banded together
to share costs XXX XX XXX XX X

6 Taxing of participating projects X X XXX

7 Product-side tax on customers X XXX

8 Fee based on core asset usage XXX

9 Prorated cost recovery X XX X X

Cold Start Pattern:
Funding

Funding Strategies

123Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Funding: Discussion

1. What funding model do you think the VPPD should
recommend for AGM? (Remember that the funding model
can change as the product line grows and evolves.)

2. How does our selection of an organizational structure
constrain or affect our funding model choices?

3. What artifact(s) result from making this decision?

4. What will you measure or look for to see if AGM made the
right decision?

Cold Start Pattern:
Funding

AGM
Example

AGM
Example

124Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Funding: Final Word
A funding policy should be chosen that will further the goals
of the overall software product line strategy.

The rationale for the choice should be communicated clearly
to the parties involved. Ideally, they should have a voice in
setting the policy.

Measures should be put in place to see if the goals are being
met. If they are not, the funding policy should be revisited.

Cold Start Pattern:
Funding

125Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Risk Management

Cold Start Pattern

Launching and Institutionalizing

Informs or provides input to

Structuring the Organization

Customer
Interface
Management

Organizational
Planning

Organizational
Risk Management

TrainingDeveloping an
Acquisition Strategy

Operations

Funding

126Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Risk Management
Recommended practice: Team Risk Management

Cold Start Pattern:
Organizational Risk Management

127Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Risk Management:
Discussion

1. Who should be on the organizational risk management
team?

2. What activities should they perform? How often?

3. What artifact(s) result from this practice area?

Cold Start Pattern:
Organizational Risk Management

AGM
Example

128Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Customer Interface Management

Cold Start Pattern

Launching and Institutionalizing

Informs or provides input to

Structuring the Organization

Customer
Interface
Management

Organizational
Planning

Organizational
Risk Management

TrainingDeveloping an
Acquisition Strategy

Operations

Funding

129Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Customer Interface Management - 1
In all organizations, there is a need to understand and manage the
commitments between producers and customers.

What the customer sees needs to be managed:
• Who are the customer representatives and what are their

customer interface responsibilities?
• What are the standard product offerings and the preplanned

feature variation?
• What are the corresponding cost, schedule, and quality

benefits?
• What is the product line strategy for future features and

evolution?

Cold Start Pattern:
Customer Interface Management

130Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Customer Interface Management - 2
The ground rules for transacting business need to be defined:
• What protocol must be followed, and what policies and

procedures apply?
• How are customer requirements to be negotiated and

managed?
• How will a disciplined interface with the customer be enforced?

The customer representatives of a product line organization
typically include
• marketers
• a product manager
• domain experts
• a users group coordinator
• other individuals explicitly assigned roles and responsibilities

that require them to interface with the customer.

Cold Start Pattern:
Customer Interface Management

131Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Customer Interface Management - 3
In a product line approach
• Customers are urged to choose from standard product offerings,

relinquishing some flexibility in return for cost and time-to-market
advantages.

• Specialized requirements can be accommodated but must be
considered individually and have special cost and schedule
implications to which both parties must agree.

• Strict product line organizational interfaces are enforced.
• Customers may form user groups to give the market a voice and

drive requirements for product evolution jointly.
• The organization should establish centralized product support for

customers.

Cold Start Pattern:
Customer Interface Management

132Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Customer Interface Management:
Discussion
1. What are some of the ways that marketers in a software

product line organization will behave differently?

2. What artifact(s) result from this practice area?

3. To what extent should customers be discouraged from
requesting new features? To what extent should they be
encouraged?

4. Who are AGM’s customers? What would the customer
interface for those people look like?

Cold Start Pattern:
Customer Interface Management

AGM
Example

133Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Developing an Acquisition Strategy

Cold Start Pattern

Launching and Institutionalizing

Informs or provides input to

Structuring the Organization

Customer
Interface
Management

Organizational
Planning

Organizational
Risk Management

TrainingDeveloping an
Acquisition Strategy

Operations

Funding

134Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Developing an Acquisition Strategy
This practice area is about managing our organization’s purchases
and subcontracts (if any) as a coherent whole, across the entire
product line.

We want to prevent individual product teams from interfacing directly
with suppliers in a conflicting way.

In the AGM product line, our major acquisitions are tools—AGM
acquired Microsoft Visual Studio for the first increment’s
implementation. Palm OS’s SDK, which is implemented in Eclipse,
will be acquired for the second increment. (It is open source, but
AGM still takes an acquisition approach to bring the tool into the
development environment.) The VP of Purchasing is responsible for
developing this, see Memo05-01 in the Background Material.

Cold Start Pattern:
Developing an Acquisition Strategy

AGM
Example

135Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Developing an Acquisition Strategy
The acquisition strategy team will be informed by
• the product line scope
• the chosen funding strategy
• the architecture for existing and planned products
• technology forecasts

Discussion:

1. What is our result? What do we recommend to the
VPPD?

Cold Start Pattern:
Developing an Acquisition Strategy

AGM
Example

136Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Training

Cold Start Pattern

Launching and Institutionalizing

Informs or provides input to

Structuring the Organization

Customer
Interface
Management

Organizational
Planning

Organizational
Risk Management

TrainingDeveloping an
Acquisition Strategy

Operations

Funding

137Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Training - 1
The focus is on establishing a core competence in the creation and
usage of core assets:

• It is not enough, for example, to send people to a course in
object-oriented technology or software reuse and then expect
them to build product lines.

• Product line training must be viewed as a strategic activity that
should be planned accordingly.

The primary outcome is a training plan that
• identifies training needs
• describes how those needs will be met
• addresses how skills will be maintained
• addresses how the new training is related to existing training:

does it augment the existing training? Replace it? Add to it?

Cold Start Pattern:
Training

138Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Training - 2
Possible training elements for a software product line
approach include
• introductory course on product line concepts and

terminology
• overview of the organization’s current and planned

product lines
• overview of the proposed development process, including

changes in existing processes, organizational structure,
and roles

• presentation of the Concept of Operations (CONOPS)
• training in specific product line practices or concepts

(e.g., software architecture)
• training in supporting technologies (e.g., tools)

Cold Start Pattern:
Training

139Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Training - 3
Possible training implementation choices include
• in-house courses
• external courses
• short tutorials, brown-bag lunches
• Webcasts
• all-hands meetings
• pilot projects
• mentoring

140Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Summary of AGM’s Training Needs
What training needs/opportunities have we identified so far?
• AGM’s business case for software product lines: why we’re

doing what we’re doing
• the rollout (adoption) plan from the “Launching and

Institutionalizing” practice area
• the goals and objectives from the “Launching and

Institutionalizing” practice area
• our new organizational structure, roles, and responsibilities
• our funding policy
• risk management
• what our planning documents are and how they fit together
• customer interface procedures

AGM
Example

141Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Training for AGM: Discussion
So far there is only a memo from HR setting policy on training
for AGM (see Memo04-05 in the Background Materials). The
functional team leads must work with HR to plan training.
Propose a training curriculum for AGM:
• Identify training needs.
• Develop a training inventory: a series of training elements.

For each training element, say
• what it is and what it conveys
• the format of the training (e.g., course, tutorial, meeting)
• who should attend it
• who should teach it
• how long you expect it to last (e.g., one hour, one day, one

week)

AGM
Example

142Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Operations

Cold Start Pattern

Launching and Institutionalizing

Informs or provides input to

Structuring the Organization

Customer
Interface
Management

Organizational
Planning

Organizational
Risk Management

TrainingDeveloping an
Acquisition Strategy

Operations

Funding

143Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Operations - 1
The end result is to produce a CONOPS:
• It describes the day-to-day operation of the product line

organization so that everyone works towards the same
goals.

• Without it, the organization is mostly just a collection of
staffed units, poised and willing to do the right thing, but
unsure of precisely what that is.

Who is responsible for the CONOPS?
• usually the product line manager who must make sure it’s

well documented, effectively communicated, and closely
followed

Cold Start Pattern:
Operations

144Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Operations - 2
The CONOPS puts together the organization’s management
strategies, policies, and practices with respect to the product
line. It
• facilitates a common understanding among members of

the organization as to how products are fielded and how
the production capability is evolved and maintained

• serves as a baseline when the organization considers
alternatives in its approach as warranted by changing
conditions

• describes how the organizational units work together to
execute their defined processes

• spells out how the organizational structure populates and
nurtures the core asset base and how it uses the core
asset base to build products

Cold Start Pattern:
Operations

145Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A Sample CONOPS Table of Contents -1

1 Overview
1.1 Identification
1.2 Document Map
1.3 Concepts
1.4 Readership
1.5 Product line guiding

principles
1.6 Vision for this product line
1.7 Reference models
1.8 Metrics for success
2 Operations
2.1 Organizational structure
2.2 Communication
2.3 Operational tools

3 Core Asset Development
3.1 Core Asset Building Roles
3.2 Production constraints
3.3 Implications of the

Production Strategy
3.4 Attached processes
3.5 Core asset development

scenarios
3.5.1 Core asset acquisition
3.5.2 Core asset packaging

and delivery
3.5.3 Core asset sustainment

Cold Start Pattern:
Operations

146Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A Sample CONOPS Table of Contents -2

4 Product Development
4.1 Product Building Roles
4.2 Implications of the Production

Strategy
4.3 Using the core assets
4.4 Modifying the core assets
4.5 Providing feedback about

assets
4.6 Product development

scenarios
4.6.1 Constructing a product

using only assets
4.6.2 Constructing a product with

unique requirements

5 Management
5.1 Launch and Adoption Strategies
5.2 Management roles
5.2.1 Vice Presidents
5.2.2 Product Line Manager
5.2.3 Team Leader
5.2.4 Project Lead
5.3 Organizational structure,

roles and responsibilities
5.4 Challenges and risks to

successful implementation
5.5 Continuous improvement
5.6 Management scenarios
5.6.1 Add product to the product line
5.6.2 Begin developing a product
5.6.3 Assessing progress

Cold Start Pattern:
Operations

147Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A Sample CONOPS Table of Contents -3

6 Interconnections
6.1 Core assets and Product

building
6.2 Core assets and

Management
6.3 Product Production and

Management
6.4 Escalation
6.5 Risk management

Appendix: Operational Procedure
Resolutions

Cold Start Pattern:
Operations

148Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Else Does Operations Entail? - 1
The product line manager should
• define and communicate the product line vision

- by posting the vision publicly (e.g., on the Web); crafting slide
presentations for organizational and technical managers; and
discussing the vision at opportune times, from brown-bag lunches
to management seminars

• create personal and organizational performance objectives that
embrace the product line goals and strategies

• establish promotion and reward structures that provide real
benefits to individuals who
- follow the documented product line approach to building products
- design and build core assets that are, in fact, reusable
- contribute to the improvement of the product line effort

Cold Start Pattern:
Operations

149Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The product line manager should (cont’d.)
• communicate product line progress early, openly, and

often
• remove from the critical path individuals who are

barriers to product line success
• champion the product line at higher levels of

management

What Else Does Operations Entail? - 2

150Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Using Scenarios to Define Operations
Scenarios can be created to help the organization understand the
product line operations. Examples include

• using the product line architecture and other core assets to
build a product

• developing product-specific assets
• submitting new or modified components to the core asset base
• updating the core asset base and migrating the changes into

existing or in-development products
• determining whether a candidate product is in or out of the

product line scope
• delivering product line systems to customers
• supporting the implementation and maintenance of the

development and execution environments for product line
systems

Cold Start Pattern:
Operations

151Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 1
8:30 – 9:00 Introductions, Background, and a

Product Line Refresher
9:00 – 9:15 The Adoption Factory Pattern
9:15 – 9:30 The What to Build Pattern
9:30 – 10:00 Building A Business Case for a

Software Product Line
10:00 – 10:15 BREAK
10:15 – 12:00 Group Exercise: Writing a Business Case

12:00 – 13:00 LUNCH

13:00 – 14:30 The Cold Start Pattern
14:30 – 14:45 BREAK
14:45 – 16:30 Group Exercise: Writing a Concept of

Operations

152Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 1
8:30 – 9:00 Introductions, Background, and a

Product Line Refresher
9:00 – 9:15 The Adoption Factory Pattern
9:15 – 9:30 The What to Build Pattern
9:30 – 10:00 Building A Business Case for a

Software Product Line
10:00 – 10:15 BREAK
10:15 – 12:00 Group Exercise: Writing a Business Case

12:00 – 13:00 LUNCH

13:00 – 14:30 The Cold Start Pattern
14:30 – 14:45 BREAK
14:45 – 16:30 Group Exercise: Writing a Concept of

Operations

153Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session, you should be able to
• formulate the operational rules for a software product

line organization
• capture those rules in a Concept of Operations

(CONOPS) document

Cold Start Pattern:
Writing a Concept of Operations

154Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Exercise: Write a CONOPS for AGM
Goal: To gain experience defining the concept of operations for
a product line

Actions:
• Form teams of at least 4 people
• In the Exercise book, read the exercise overview.
• Agree who will play which roles.
• Each person reads his or her role description(s). Do not

read other role description(s).
• Complete the partial CONOPS document in three places by

playing your roles according to the scripts..

AGM
Example

155Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

DAY 2

Developing Software Product Lines

156Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 2
8:30 – 9:15 Developing the Core Asset Base:

The Product Parts Pattern
9:15 – 10:00 Architectures for Product Lines

10:00 – 10:15 BREAK
10:15 – 12:00 Exercises: Architecture and the Core Asset Base

12:00 – 13:00 LUNCH

13:00 – 13:30 Production Plans
13:30 – 15:00 Group Exercise: Writing a Production Plan
15:00 – 15:15 BREAK
15:15 – 15:45 Other Patterns
15:45 – 16:15 Group Discussion : Measurement
16:15 – 16:30 Conclusions, Q&A

157Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session, you should
• understand the practice areas needed to produce the core

assets
• be able to evaluate the options for populating the core

asset base

Product Parts Pattern:

158Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Reminder: Adoption Factory Pattern

Dynamic Structure

•Informs and information flow

•Supports

Phases

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line
Process
Discipline

MonitorCold Start In Motion

Establish Context Establish Production
Capability Operate Product Line

159Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Parts Pattern - 1
Name: Product Parts

Context: An organization knows what products are to be
included in the product line and has designated
knowledgeable individuals or groups to develop the core
assets that will be used to develop the products.

Problem: To develop the core assets that will be joined
together to form the products in the software product line

Product Parts Pattern:

160Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Parts Pattern - 2
Solution: The core assets of interest to this pattern include
• the product line requirements
• the product line architecture
• the components
• their reusable test-related artifacts

Each core asset needs to be equipped with an attached
process.

The best source for each component needs to be determined
(built, mined, bought, contracted).

Each core asset needs to be tested, and the suite of core
assets needs to be integrated and tested.

Product Parts Pattern:

161Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Parts Pattern: Static Structure
The Product Parts pattern is composed of four subpatterns:
• Each Asset for requirements
• Each Asset for architecture
• Each Asset for components
• Each Asset for test-related artifacts

and seven practice areas:
• Architecture Evaluation
• Make/Buy/Mine/Commission Analysis
• Mining Existing Assets
• Using Externally Available Software
• Developing an Acquisition Strategy
• Testing
• Software System Integration

Product Parts Pattern:

162Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Parts Pattern - 3

Dynamic Structure

Data Flow

Informs
Requirements

Using Existing
Available
Software

Each Asset

Testing
Software
System
Integration

Each Asset
Architecture

Components

Testing

Make/Buy/Mine/Commission Analysis

Each Asset
Mining
Existing
Assets

Developing
an Acquisition
Strategy

Architecture
Evaluation

Each Asset

Product Parts Pattern:

163Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Lecture Outline
The Product Parts pattern involves the
• Each Asset subpattern
• Seven practice areas

- “Architecture Evaluation” practice area
- “Make/Buy/Mine/Commission Analysis” practice area
- “Mining Existing Assets” practice area
- “Using Externally Available Software” practice area
- “Developing an Acquisition Strategy” practice area
- “Testing” practice area
- “Software System Integration” practice area

Product Parts Pattern:
Each Asset

164Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Each Asset Subpattern
Each Asset defines those practice areas involved every time
an asset is created, including
• Tool Support
• Technical Planning
• Process Discipline
• Testing
• Configuration Management
• Measurement and Tracking

We will discuss each very briefly in this context.

Product Parts Pattern:
Each Asset

165Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Each Asset Pattern

Dynamic Structure

Process
Discipline

Work Plan
progress and
changes

Testing

Configuration
Management

Tool Support

Technical
Planning

Measurement and Tracking

Data

Work
Plan

Tools

Attached
Processes

CM
Process

Test cases,
procedures

Tested, Baselined Asset
with Attached Process

PA*

•PA* = practices to develop
the asset, e.g., “Architecture
Definition” for the
architecture, “Requirements
Engineering” for
requirements, etc.

Product Parts Pattern:
Each Asset

166Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Tool Support

Each asset needs tool support. A tool may support the asset over
several phases of its life cycle, such as a UML modeling tool for
problem specification and solution design. A tool may be dedicated
to a single activity in the life cycle, such as JUnit for testing.
Configuration management tools handle all types of assets.

AGM has adopted Eclipse as the basic platform upon which a
variety of tools can be built. Modeling, coding, and testing can be
done in one environment. The fmp2 plug-in for feature modeling,
the Omondo community version for UML modeling, Java
development and JUnit test framework are all used. Functional
team leads provide the tools for their particular skill area.

Product Parts Pattern:
Each Asset: Tool Support

AGM
Example

167Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Technical Planning
Technical plans should exist for creating and maintaining
each asset. These plans give the schedule and the allocated
resources for each activity. In particular, technical planning
coordinates the schedules and resources being applied to
each asset. This coordination allows for consistency and
optimization.

AGM has a product line manager and core asset and product
team leaders. These people are responsible for conducting
technical planning for every asset and producing production
plans, test plans, and development plans.

Product Parts Pattern:
Each Asset: Technical Planning

AGM
Example

168Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process Discipline
Each asset requires process discipline. In particular, each
asset has an attached process that must be defined and
followed. Each attached process is used to tell the product
builders how to use the asset in building products. There will
also be a process for building the asset itself.

AGM has a method engineering team (bringing together
process, modeling languages, and tooling) that matrixes into
teams of engineers who have experience in the technical
content of the process. This team provides process definition
knowledge, technology selection, and modeling expertise to
the technical community.

Product Parts Pattern:
Each Asset: Process Discipline

AGM
Example

169Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Testing
Each asset must be examined for correctness and other
qualities. Testing provides a discipline that guides the
evaluation of any asset. The evaluation can be guided by
scenarios. The SEI Architecture Tradeoff Analysis Method®

(ATAM®), a technique for Architecture Evaluation, uses
scenarios to guide the examination of the architecture.

AGM has a comprehensive testing plan. Each phase of each
process has exit criteria that must be passed before the next phase
is entered. These criteria are usually evaluated using the “Testing”
practice area. Individual developers conduct unit tests, integration
and system tests are conducted by the testing team.

Product Parts Pattern:
Each Asset: Testing

AGM
Example

® Architecture Tradeoff Analysis Method and ATAM are registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

170Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Configuration Management
Each asset will be used to produce products, but not every
asset will be used in every product. There is a need to
manage multiple configurations of the assets. The product
line strategy stresses traditional models of configuration
management. Multiple assets, and multiple versions of those
assets, must be shared among multiple product
configurations.

AGM has been a traditional one-product-at-a-time company.
Nothing was shared between projects. Each project was
started on its own. Adopting the product line strategy will
require AGM to establish a configuration management
capability.

Product Parts Pattern:
Each Asset: Configuration Management

AGM
Example

171Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement and Tracking
Each asset must be tracked through its life cycle, especially
the development portion. Metric data is collected to assist
with decision making. Data collection provides input to future
applications of the “Building a Business Case” and
“Operations” practice areas. The Goal-Question-Metrics
(GQM) approach helps define what to measure.

AGM has a minimal metrics program that produces mainly
descriptive measures. The program will need to define
appropriate metrics for each asset. Metrics are defined by
almost every team in the organization to help them quantify
their processes and products.

Product Parts Pattern:
Each Asset: Measurement and Tracking

AGM
Example

172Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Lecture Outline
The Product Parts pattern involves the
• Each Asset subpattern
• Seven practice areas

- “Architecture Evaluation” practice area
- “Make/Buy/Mine/Commission Analysis” practice area
- “Mining Existing Assets” practice area
- “Using Externally Available Software” practice area
- “Developing an Acquisition Strategy” practice area
- “Testing” practice area
- “Software System Integration” practice area

Product Parts Pattern:
Each Asset

173Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Evaluation
Identifying defects among the early design decisions made during
architecture definition results in a large savings of time later in the
development process.

The ATAM was developed by the SEI to analyze the tradeoffs made
during architecture definition. Scenarios based on the required
system qualities are used to explore and evaluate the architecture.

AGM’s ATAM exercise determined the following:
The results of the ATAM showed the need to modify the existing
architecture to include user and system models that allow the
user to control more aspects of the game. The detailed design
process will consider whether to do this through menu
selections or a configuration file. The next step is to revise
the architecture to accommodate these models.

Product Parts Pattern:
Architecture Evaluation

AGM
Example

174Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Make/Buy/Mine/Commission Analysis
Every asset comes into being through one of these actions.
This practice area also provides feedback to practice areas
such as “Architecture Definition.” The commercial availability
of a particular product will influence the precise structure of
the architecture. Decisions made in this practice area may be
revised based on an architecture evaluation.

AGM has been able to take advantage of a number of open
source products for its wireless set of products. Palm OS has
released an IDE for building applications for the Palm. This is
an Eclipse open source plug-in. It was used by core asset
developers and product builders during the second
increment.

Product Parts Pattern:
Make/Buy/Mine/Commission Analysis

AGM
Example

175Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Mining Existing Assets
Most product lines are started by organizations that have already
been producing software for some time. A number of techniques
exist for reverse engineering and extracting architecture information
from the existing code. Existing use cases, domain models, and
architectures provide starting points for the corresponding product
line assets.

AGM has been producing game software for sometime. It has a
large inventory of legacy assets. While the user interface and
operating system interface must be replaced, the core domain
model and a number of the essential abstractions are applicable
and useful. They will be recast in a new implementation using C#
for the freeware games and Java micro edition for the wireless
versions. The core asset development team has this responsibility.

Product Parts Pattern:
Mining Existing Assets

AGM
Example

176Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Using Externally Available Software
One approach to reducing time to market is to build products
by integrating existing products to provide the required
behavior. For example, the applications in the Microsoft Office
suite are available with an application program interface (API)
so that glue code can invoke the functionality of the
applications. The “Using Externally Available Software”
practice area provides feedback to the “Architecture
Definition” practice area.

There are several game engines on the market, but among
other weaknesses they require too much overhead for the
wireless platforms. Therefore, a team of architects and core
asset developers made the decision not to pursue any of
them.

Product Parts Pattern:
Using Externally Available Software

AGM
Example

177Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Developing an Acquisition Strategy
The “Make/Buy/Mine/Commission Analysis” and “Using Externally
Available Software” practice areas can require that the organization
acquire assets that are not developed in-house. Acquisition
requires organizational roles for interfacing with external sources,
coordinating asynchronous release schedules, and certifying that
deliveries meet specifications. These skills are needed whether the
assets are purchased, commissioned, or open sourced.

AGM assigned an assistant product line manager to oversee these
roles. Individual engineers with domain expertise were assigned to
own assets such as the Palm IDE. Those engineers monitored new
releases, tested them, and introduced them only at acceptable
points in the product line life cycle. This strategy is used for open
source software as well as vendor-supplied products.

Product Parts Pattern:
Developing an Acquisition Strategy

AGM
Example

178Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Testing
Every asset should be examined to ensure that it meets its
requirements. Testing is an activity in which an asset is examined
in a systematic manner by using the asset as it was intended to be
used. Test cases (how the asset is to be used) and test data
(offering a specific use of the asset) are large investments and
must be managed for use over as many products and as many
versions of the asset as possible.

AGM established a three-tier test program: (1) Assets are tested in
isolation as they are created. (2) Their interactions with other
assets are examined as the asset is integrated with other assets.
(3) The final product is tested to ensure that it meets its
requirements. AGM’s goal is to find 90% of the defects at unit test
time, using functional and structural tests. A strongly defined
architecture helps enable this.

Product Parts Pattern:
Testing

AGM
Example

179Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software System Integration
Software assets must be combined to produce the final product.
The “Software System Integration” practice area relies on
architecture definition to define interfaces for software assets and to
ensure that the interfaces only allow compatible assets to be
integrated. Integration handles the merging of assets from a variety
of sources and at a variety of times. Integration may be achieved
once an hour, day, or week. The sooner assets are integrated, the
sooner the interaction effects of integrating two assets will become
clear.

AGM defined interfaces between major architecture components. A
modified Model-View-Controller architecture pattern is the basis for
the products. Using a standard architecture pattern makes defining
interfaces much easier. The architecture team made this selection.

Product Parts Pattern:
Software Systems Integration

AGM
Example

180Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 2
8:30 – 9:15 Developing the Core Asset Base:

The Product Parts Pattern
9:15 – 10:00 Architectures for Product Lines

10:00 – 10:15 BREAK
10:15 – 12:00 Exercises: Architecture and the Core Asset Base

12:00 – 13:00 LUNCH

13:00 – 13:30 Production Plans
13:30 – 15:00 Group Exercise: Writing a Production Plan
15:00 – 15:15 BREAK
15:15 – 15:45 Other Patterns
15:45 – 16:15 Group Discussion : Measurement
16:15 – 16:30 Conclusions, Q&A

181Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session, you should
• understand approaches to creating an architecture for a

software product line
• know the major variation mechanisms available in

architecture to support a product line
• be familiar with an approach to documenting an

architecture
• be familiar with a method for evaluating a software

architecture

Each Asset Pattern for Architecture

182Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Reminder: Adoption Factory Pattern

Dynamic Structure

Informs and information flow

Supports

Phases

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line
Process
Discipline

MonitorCold Start In Motion

Establish Context Establish Production
Capability Operate Product Line

Each Asset Pattern for Architecture

Let’s look at the Each Asset pattern for Software Architecture.

183Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture and the “Each Asset” Pattern
What must we produce?

TestingArchitecture
Evaluation

Tool Support
Process
Definition

PA* = Architecture
Definition

Configuration
Management

Measurement and Tracking

Technical
Planning

Work Plan

Work Plan
Progress and

Changes
Data

CM
Process

Test Cases,
Procedures

Tools
Attached
Process

Tested, Baselined Asset
with Attached Process

Each Asset Pattern for Architecture

184Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Lecture Outline:
Architecture-Related Practice Areas
Architecture Definition
Architecture Evaluation
Other architecture-related needs identified in Each Asset
• configuration management (CM) plan for architecture
• tool support for architecture
• work plan for architecture
• data and metrics to track success of architecture
• attached process for architecture

Each Asset Pattern for Architecture
Architecture Definition

185Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition

This practice area refers to the creation and
communication of the software architecture for the product
line.

What do we mean by software architecture?
The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software elements,
the externally visible properties of those elements,
and the relationships among them.1

1 Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, Second Edition.
Boston, MA: Addison-Wesley, 2003.

Each Asset Pattern for Architecture
Architecture Definition

186Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Abstraction

Architecture is an abstraction of a system. The architecture
• defines the system’s elements and how they relate to one

another
• suppresses details of what the elements do internally and

purely local information about the elements; private
details are not architectural.

A product line architecture therefore defines the
software elements that constitute the core assets, as
well as all of their supporting artifacts.

Each Asset Pattern for Architecture
Architecture Definition

187Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Multiple Structures

Systems can and do have many structures:
• No single structure can be the architecture. The set of

candidate structures is not fixed or prescribed.
• Relationships and elements may be runtime

- “sends data to,” “invokes,” or “signals”
- processes or tasks

• Relationships and elements may be non-runtime
- “is a sub-module of,” “inherits from,” or “is allocated to

team X for implementation”
- a class or library

• Different structures provide engineering leverage for
different quality attributes

Each Asset Pattern for Architecture
Architecture Definition

188Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Is a Communication Vehicle

• negotiating requirements with
users

• keeping the customer informed of
progress and cost

• implementing management
decisions and allocations

• in a product line, insuring that
the needs of product developers
and other product stakeholders
are met

Architecture provides a common frame of reference in which
competing interests may be exposed and negotiated. These
interests include

Each Asset Pattern for Architecture
Architecture Definition

189Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture and Quality Attributes
Architecture permits/precludes the achievement of a
system’s desired quality attributes; for example

In a product line architecture, the architecture must satisfy
the quality attributes of the entire family of products

inter-element communication.
(It needs to be managed and protected.)

Security

elements’ responsibilities and their interactions.
(Interactions need to be limited.)

Modifiability

the frequency and volume of inter-element
communication

High
performance

In general, you need to pay attention to…If you desire…

Reusability inter-element dependencies. (They should be minimized.)

Each Asset Pattern for Architecture
Architecture Definition

190Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architectures for Product Lines

A product line architecture must
• apply to all members of the product line (even if their

functions and qualities differ)
• embody the commonalities and variabilities of the family

members
The product line architecture is informed primarily by

• the product line’s scope definition
• the product line requirements specification(s).

Architectural variation mechanisms are often used to make
the architecture work for the entire set of products.

Each Asset Pattern for Architecture
Architecture Definition

191Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Variation Mechanisms
Common variation mechanisms include

• replacement, omission, and replication of architectural elements
• object-oriented (OO) techniques

- inheritance
- specialization
- delegation
- application frameworks

• parameterization (including macros and templates)
- Special case: compile-time selection of different

implementations or implementation fragments (e.g., #ifdef)
• generation and generators
• aspect-oriented programming

- an approach for modularizing system properties that otherwise
would be distributed across modules

Each Asset Pattern for Architecture
Architecture Definition

192Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Tools

Subsystem Interaction Manager

User Interaction Manager
Development Manager

Repository Manager

Display
Station Name

Display
Frequency

Display
Station

use
Module B

Module C

frequency

use

Module D

Module E

name

choose 1

Example of Variation

Reference
architectures with

slots for plug-in
components

This is an example of what kind of variation mechanism?

Each Asset Pattern for Architecture
Architecture Definition

193Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Understanding Architecturally-
Significant Requirements
The organizational goals and the system properties required by the
business are rarely understood, let alone fully articulated.

Software quality attribute requirements are seldom documented,
which results in

• goals not being achieved
• inevitable conflict between different stakeholders

Architects must identify and actively engage stakeholders in order to
• understand the real constraints of the system
• manage the stakeholders’ expectations
• negotiate the system’s priorities
• make tradeoffs

Each Asset Pattern for Architecture
Architecture Definition

194Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Line Analysis - 1
Product line analysis (PLA) is
• early requirements engineering for a product line
• the link between the recognition of a business opportunity

and the design of a product line architecture

PLA is stakeholder focused.

The benefits of PLA include
• systematic identification of opportunities for large-grained

reuse across a product line
• clarified and refined assumptions about the product line

scope
• early feedback on the technical feasibility of the product

line

Each Asset Pattern for Architecture
Architecture Definition

195Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Line Analysis - 2
PLA creates a requirements model comprising four interrelated
work products:

1. The use-case model specifies the product line stakeholders
and their key interactions with the product line.

2. The feature model specifies the stakeholders’ views of the
product line. It captures the functional features of products
and the software quality attributes of the product line and its
products.

3. The object model specifies the product line responsibilities
that support those features, and the commonality and
variations of those responsibilities.

4. The dictionary defines the terminology used in the work
products and supports a consistent view of the product line
requirements.

Each Asset Pattern for Architecture
Architecture Definition

196Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Creating the Software Architecture

There are architecture definition methods and guidelines,
many of which focus exclusively on the functional
requirements.

It is more desirable, however, to create an architecture based
on the quality attribute drivers.

One way to approach quality attribute-driven architecture
creation is to use architectural tactics and patterns and a
method (such as the SEI’s Attribute-Driven Design) that
capitalizes on both.

Each Asset Pattern for Architecture
Architecture Definition

197Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architectural Patterns

An architectural pattern1

• is found repeatedly in practice
• is a package of design decisions
• has known properties that permit reuse
• describes a class of architectures
• is described by a set of element types, a set of interaction

mechanisms or connectors, a topological layout of these
elements, and a set of constraints on topology, element
behavior, and interaction mechanisms

1 Buschmann, F. Pattern-Oriented Software Architecture: A System of Patterns. New York, NY:
Wiley, 1996.

Each Asset Pattern for Architecture
Architecture Definition

198Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example Architectural Patterns
Independent Component
Patterns
• communicating sequential

processes
• communicating parallel

processes
• event systems

- implicit invocation
- explicit invocation

Data Flow Patterns
• batch sequential
• pipe-and-filter

Data-Centered Patterns
• blackboard
• repository

Virtual Machine Patterns
• interpreters
• rule-based systems

Call-Return Patterns
• main program and subroutine
• object oriented
• layers

Each Asset Pattern for Architecture
Architecture Definition

199Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Patterns and Tactics
Any pattern implements several different tactics, often to
promote various quality attributes.
• Tactics are the “building blocks” of design from which

architectural patterns are created.
• A tactic is a design decision that is influential in the

control of a quality attribute response.
Any implementation of a given pattern will also embody
choices regarding tactics that will differ from other
implementations of that pattern.

Each Asset Pattern for Architecture
Architecture Definition

200Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Tactics

Each tactic is a design option for the architect. For example
• to promote availability, we might employ redundancy
• to promote security, we might employ authentication
• to promote testability, we might employ monitors
• to promote performance, we might employ concurrency.

There are catalogs of tactics for quality attributes.

Product line architectures are frequently concerned with modifiability
– changing the architecture to suit individual products.

Tactics to
Control

Response

Stimulus Response

Change
arrives

Change made within
time/budget

Modifiability
example

Each Asset Pattern for Architecture
Architecture Definition

201Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Example: Tactics for Modifiability1

Changes
Arrive

Localize
Changes

Defer
Binding Time

Changes
Made,
Tested,
and
Deployed
Within
Time and
Budget

Prevention of
Ripple Effect

• Semantic
coherence

• Anticipate
expected changes

• Generalize module
• Limit possible

options
• Abstract common

services

Modifiability

• Hide information
• Maintain existing

interface
• Restrict

communication
paths

• Use an
intermediary

• Runtime
registration

• Config. files
• Polymorphism
• Component

replacement
• Adherence to

defined protocols

Each Asset Pattern for Architecture
Architecture Definition

1 Bass, Clements,; & Kazman. Software Architecture in Practice, 2nd Edition, Addison-Wesley, 2003.

202Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition: Practice Risks

An inadequate architecture—one that’s not up to the task of
supporting the correct range of products—can result from
• the lack of a skilled architect
• garbage in, garbage out (bad requirements)
• poor communication
• management and culture shortfalls (e.g., inadequate support for

architecture creation or developers being allowed to develop
without conforming to the architecture)

• no evaluation being performed
• poor tools
• overparameterization
• freezing the architecture too early or too late

Each Asset Pattern for Architecture
Architecture Definition

203Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Lecture Outline:
Architecture-Related Practice Areas
Architecture Definition
Architecture Evaluation
Other architecture-related needs identified in Each Asset
• configuration management (CM) plan for architecture
• tool support for architecture
• work plan for architecture
• data and metrics to track success of architecture
• attached process for architecture

Each Asset Pattern for Architecture
Architecture Evaluation

204Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Evaluation for
Product Line Architectures

Architectures for product lines need to be evaluated for their
ability to support the full range of product architectures, in
addition to the “normal” suite of functional and quality
properties.

The evaluation will tend to focus on variation points.

If a product architecture differs markedly from the overall
family architecture, it may need to be evaluated separately.

Each Asset Pattern for Architecture
Architecture Evaluation

205Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Evaluation:
Specific Practices
The ATAM is a method that helps stakeholders ask the right
questions to discover potentially problematic architectural
decisions.

The purpose of the ATAM is to assess the consequences of
architectural decisions in light of quality attribute requirements and
business goals.

Discovered risks can then be made the focus of mitigation
activities; for example, further design, further analysis, and
prototyping.

Surfaced tradeoffs can be explicitly identified and documented.

Each Asset Pattern for Architecture
Architecture Evaluation

206Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

QAW/PLA

Conceptual Flow of the ATAM

Architectural
Decisions

ScenariosQuality
Attributes

Architectural
Approaches

Business
Drivers

Software
Architecture

impacts

Risk Themes

distilled
into

Analysis

Risks

Sensitivity Points

Tradeoffs

Non-Risks

Each Asset Pattern for Architecture
Architecture Evaluation

207Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 2
8:30 – 9:15 Developing the Core Asset Base:

The Product Parts Pattern
9:15 – 10:00 Architectures for Product Lines

10:00 – 10:15 BREAK
10:15 – 12:00 Exercises: Architecture and the Core Asset Base

12:00 – 13:00 LUNCH

13:00 – 13:30 Production Plans
13:30 – 15:00 Group Exercise: Writing a Production Plan
15:00 – 15:15 BREAK
15:15 – 15:45 Other Patterns
15:45 – 16:15 Group Discussion : Measurement
16:15 – 16:30 Conclusions, Q&A

208Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session, you should be able to
• have an appreciation for the architecture planning process
• understand variation mechanisms applied to the AGM

case
• determine the actions product developers will have to take

to use the software architecture to produce products
• list the contents of the AGM core asset base

Each Asset Pattern for Architecture
Exercise: Architectural Variation

209Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Exercise 1: Architecture Planning –
A Role-Playing Exercise

Divide up between architects and product line managers. The
architects and managers are meeting to plan the
architecture work.

• Architects: What resources and support do you need
from the managers?

• Managers: What outputs and products do you expect
from the architects?

Remember the architecture-related artifacts identified by the
Each Asset pattern for architecture.

AGM
Example

Each Asset Pattern for Architecture
Architecture Evaluation

210Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Reminder: Architecture and “Each Asset”
What must we produce?

TestingArchitecture
Evaluation

Tool Support
Process
Definition

PA* = Architecture
Definition

Configuration
Management

Measurement and Tracking

Technical
Planning

Work Plan

Work Plan
Progress and

Changes
Data

CM
Process

Test Cases,
Procedures

Tools
Attached
Process

Tested, Baselined Asset
with Attached Process

Each Asset Pattern for Architecture

211Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Exercise 2: Architecture Definition
Architecture Evaluation
Other Architecture Work Products

Form teams. Within each team, complete the following assignments.
• ARCHITECTURE DEFINITION

- Look at the scope definition. Propose a list of variation mechanisms
to use.

• ARCHITECTURE EVALUATION
- Give some scenarios especially unique for a product line

architecture. Use the stimulus/environment/response form.

• PROCESS DISCIPLINE
- Sketch an attached process for the architecture to tell how to use it

for a product

• MEASUREMENT AND TRACKING
- What metrics do you collect about the architecture to see if it's

fulfilling its purpose?
AGM
Example

Each Asset Pattern for Architecture
Architecture Evaluation

212Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Discussion: The Core Asset Base
The Product Parts pattern is about building and maintaining

the core asset base.

What core assets have we identified so far? That is, list the
contents of the core asset base.

If you like, you can list them from the point of view of some of
their producers/consumers:

• Product developer
• Product manager
• Functional team lead
• Product line manager

AGM
Example

213Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 2
8:30 – 9:15 Developing the Core Asset Base:

The Product Parts Pattern
9:15 – 10:00 Architectures for Product Lines

10:00 – 10:15 BREAK
10:15 – 12:00 Exercises: Architecture and the Core Asset Base

12:00 – 13:00 LUNCH

13:00 – 13:30 Production Plans
13:30 – 15:00 Group Exercise: Writing a Production Plan
15:00 – 15:15 BREAK
15:15 – 15:45 Other Patterns
15:45 – 16:15 Group Discussion : Measurement
16:15 – 16:30 Conclusions, Q&A

214Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session, you should be able to
• derive a production strategy from the business goals of a

product line
• collect the information needed for the production plan
• identify the product qualities that affect product production

Production Plans

215Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Production Planning - 1
The primary function of a software product line is to produce
products.

Establishing a product production capability is a high priority.

This capability is a function of the strategic goals of the
product line and how the architecture handles variation.

The production strategy is derived from the product line goals.
The production plan is defined by the choices made by the
asset builders in response to the production strategy.

Production Plans

216Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Will We Need?
The production plan describes
• the assets needed to build a product
• how those assets will be used
• the skills needed to produce the product.

Production Plans

217Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Production Strategy - 1
The production strategy sets out how the strategic goals of the product line will be
achieved through product production.

AGM has stated their production strategy as follows:
GOALS: We will position ourselves as the leading provider of
rapidly customized, high-performance, low-cost games by
producing products that are easily modified, have better
performance than our competitors, are sufficiently low cost
to deter potential competitors from entering the market, and
require sufficiently few resources to allow their use on any
embedded computer.

STRATEGY: We will produce the initial products using a
traditional iterative, incremental development process using
a standard programming language, IDE, and available
libraries. We will create domain-based assets, including a
product line architecture and software components, for the
initial products in a manner that will support a
migration to automatic generation of the second
and third increment products.

Production Plans

AGM
Example

218Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Production Strategy - 2
The production strategy defines a number of aspects of development,
including
• the required expertise of the product developers
• how the product developer identifies the product to be built
• the product development process
• the technical environment used to build the software products

The production strategy should identify qualities that ensure that the
production plan supports the goals of the product line.

For AGM, these qualities, described in the business case, include
• flexibility – Abstraction mechanisms keep the products flexible.
• simplicity – As many choices as possible are hidden.
• modularity – Assets are defined and implemented as modules.

Production Plans

AGM
Example

219Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Buildability
Buildability is a quality of the architecture that is directly
related to product production.

Factors affecting buildability include the
• complexity of the relationships among components in the

architecture
• degree of automation possible in product production
• ease with which assets can be modified

Planning product production early in the life of a product line
ensures that the architecture and other core assets will
support buildability.

Production Plans

220Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Variability

The techniques used to provide variability directly affect production
planning:
• Some of the techniques require access to source code. Others

handle variability as data.
• Some techniques require programming skills, while others do

not.

At AGM, variability is provided via class inheritance. A new Game
class is created for each new product. Variability is also provided
by passing the constructor of the GameBoard class a different set
of parameters. These mechanism are a result of choices made by
the method engineers, the architects, and the developers.

The AGM production strategy requires programmer skills and
programming tools.

Production Plans

AGM
Example

221Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Developing the Production Strategy
Begin by identifying those product line goals that are affected by
product production.

Establish priorities among these goals using the SWOT analysis in
the business case and the product line analysis results.

Determine broad production technology directions that will help
achieve these goals.

Develop a statement that unites these goals with the technologies
to describe the intent of the product production capability; for
example
• “We will produce the initial products using a traditional iterative,

incremental development process…”

Production Plans

222Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Production Plan - 1
The production plan is an implementation of the production
strategy. It describes how the core assets are coordinated to
produce products. It is intended as the main communication
vehicle between the core asset developers and the product
builders.

The AGM architecture uses inheritance and parameterization
to provide variability.

The AGM production plan describes which objects are used
as parameters to which other objects in order to produce the
desired product. It also describes which core asset classes
can be used as parents of product-specific classes.

Production Plans

AGM
Example

223Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Production Plan - 2

The production plan expands on the Concept of Operations
(CONOPS) by providing a more complete description of the
process by which products are created.

The production plan specifies the following:
• the inputs needed to build a product
• the activities that result in a completed product
• the roles and responsibilities of the product developers
• the interactions needed with other groups in the organization
• the schedule and resources associated with building the product

Production Plans

224Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Production Plan - 3
The Production Plan provides specifics such as:

• What tools to use and how to use them
• The location of repositories
• Techniques for creating the product-specific portions

The AGM production plan includes directions for beginning a new
product:

Start new ClassLibrary in a Visual Studio Project
using {game name}Definitons as its name. Use
this for new classes other than the game
definition itself.

Start a new Windows Application in a Visual Studio
Project using the name of the game.

Production Plans

AGM
Example

225Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Attached Process
The generic Production Plan is accompanied by an attached
process that describes how to specialize the plan to a product-
specific production plan.

That attached process provides guidance on how to
• select and order the process steps that are needed, based on

the product definition
• develop the product’s bill of materials, listing all the assets that

will be used for this specific product
• create the cost estimates and time schedules for building the

product
• tailor the parts of the product plan’s core asset that must be

changed

The result of applying this process is the product-specific production
plan.

Production Plans

226Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product-Specific Production Plan
The core asset team produces the generic production plan for the
products developed in the product line.

Each product team derives a product-specific production plan from
the generic production plan.

Doing so may be as simple as editing a generic makefile, or it may
require extensive work developing a bill of materials and schedule
for a complex product.

At AGM, the product builder creates a new class for the product
and populates it with the appropriate Sprites that will show the
action on the screen. The makefile is automatically updated to
include the new class as the root of the aggregation hierarchy.

Production Plans

AGM
Example

227Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Production Process
The production plan describes the process for building a
product in the product line.

The entry criteria for this process are defined in the CONOPS
and typically require that the product planning and approval
activities be completed prior to building a product.

The product-building process is described using the process
definition style used for other processes in the organization.

The exact contents of the process depends on the level of
institutionalization, but contains some subset of the Product
Builder pattern and is included in Section 4 of the plan outline.

Production Plans

228Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Outline of Production Plan - 1
1 Overview
1.1 Identification
1.2 Document Map
1.3 Using This Document
1.4 Concepts
1.5 Readership
1.6 Timeline

2 Strategic View of Product
Development
2.1 Assumptions
2.2 Qualities
2.2.1 Product Qualities
2.2.2 Production Process Qualities
2.3 Products Possible From

Available Assets
2.4 Production Strategy

3 Overview of Available Core
Assets
3.1 Source Code Naming

Conventions
3.2 Analysis-Level Assets
3.3 High-Level Design Assets
3.4 Source Code
3.5 Test Cases
3.5.1 Unit Tests
3.5.2 Integration Tests
3.5.3 System Tests
3.6 Inputs and Dependencies
3.6.1 Inputs
3.6.2 Dependencies
3.7 Variations
3.7.1 Absorbing vs. Reflecting
3.7.2 Event Handling

Production Plans

229Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Outline of Production Plan - 2
4 Detailed Production Process
4.1 Identify, Define, and

Analyze the Product
Incrementally

4.2 Design the Product
4.3 Build the Product
4.4 Test the Product

5 Tailoring Production Plan to
Product-Specific Production
Plan

6 Management Information
6.1 Schedule
6.2 Production Resources
6.3 Bill of Materials (BOM)
6.4 Product-Specific Details
6.5 Metrics

7 Attached Processes
7.1 Constructing the

Production Plan
7.2 Changing the Production

Plan

Production Plans

230Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 2
8:30 – 9:15 Developing the Core Asset Base:

The Product Parts Pattern
9:15 – 10:00 Architectures for Product Lines

10:00 – 10:15 BREAK
10:15 – 12:00 Exercises: Architecture and the Core Asset Base

12:00 – 13:00 LUNCH

13:00 – 13:30 Production Plans
13:30 – 15:00 Group Exercise: Writing a Production Plan
15:00 – 15:15 BREAK
15:15 – 15:45 Other Patterns
15:45 – 16:15 Group Discussion : Measurement
16:15 – 16:30 Conclusions, Q&A

231Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session, you should be able to
• to plan how to produce products in your product line
• capture those ideas in a production plan

Production Plans

232Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Exercise: Production Planning
Goal: Explore the development of the production plan for the AGM product line.

Preparation: Assign individual team members to review the vision and strategic
objectives in the AGM Product Line Introduction and the AGM architecture
description focusing of how the architecture handles variability. Take about 15
minutes for this preparation. Everyone should read the partially complete AGM
Product Line Production Plan. You will work with the plan during this exercise.
Activity: Follow the steps given below for developing the production plan
template. As you go fill in the missing material in the partial production plan
template.
1. Establish the product line context. Review the assumptions and goals (see the
information in the MPP, scope document and the product line introduction),
develop alternative approaches, and compare those approaches.
2. Develop a list of qualities that will be one of the drivers for developing the
production process. (see section 2.2.2 in the Production Plan Template)
3. Identify, define, and explain metrics that would be useful during product
production. (See section 6.5 in the Production Plan Template)
4. Be prepared to report your answers to the rest of the class.

AGM
Example

233Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 2
8:30 – 9:15 Developing the Core Asset Base:

The Product Parts Pattern
9:15 – 10:00 Architectures for Product Lines

10:00 – 10:15 BREAK
10:15 – 12:00 Exercises: Architecture and the Core Asset Base

12:00 – 13:00 LUNCH

13:00 – 13:30 Production Plans
13:30 – 15:00 Group Exercise: Writing a Production Plan
15:00 – 15:15 BREAK
15:15 – 15:45 Other Patterns
15:45 – 16:15 Group Discussion: Measurement
16:15 – 16:30 Conclusions, Q&A

234Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session Outcomes
After this session, you should be able to
• enumerate additional issues that must be addressed when

producing products, operating a product line on a
continuing basis, and measuring the operation of the
product line

• identify the practice areas in which your organization must
have skills when producing products, operating a product
line on a continuing basis, and measuring the operation of
the product line

Other patterns

235Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Reminder: Adoption Factory Pattern

Dynamic Structure

Informs and information flow

Supports

Phases

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line
Process
Discipline

MonitorCold Start In Motion

Establish Context Establish Production
Capability Operate Product Line

236Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Builder Pattern - 1
Name: The Product Builder pattern consists of practice areas
that should be used when any product in the product line is
being developed.

Context: An organization has already established the
production plan, the production capability, and the core asset
base and has designated knowledgeable individuals or
groups to develop a product that has been determined to be
in the product line.

Problem: To develop a product from the core assets using
the production plan

Other patterns

237Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Builder Pattern - 2
Solution: The production plan is followed using the established
production capability to create an instance of the product line. Any
additional components are developed and integrated into those
assembled from the core asset base. The components are
integrated and tested according to the production plan.

Static Structure: The practice areas that address the solution and
provide the structure for the Product Builder pattern are
• Requirements Engineering
• Architecture Definition
• Architecture Evaluation
• Component Development
• Testing
• Software System Integration

Other patterns

238Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Builder Pattern - 3

Dynamic Structure

Architecture
Definition

Requirements Engineering

Product
Requirements

Architecture
Evaluation

Component
Development

Software
System
Integration

Testing

Product
Requirements

Product
Architecture

Product
Components

Informs

Other patterns

239Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Reminder: Adoption Factory Pattern

Dynamic Structure

Informs and information flow

Supports

Phases

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line
Process
Discipline

MonitorCold Start In Motion

Establish Context Establish Production
Capability Operate Product Line

240Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Assembly Line Pattern - 1

Name: The Assembly Line pattern should be used to
set up and run the production capability of a software
product line.

Context: An organization has made a decision to launch
a product line effort.

Problem: To provide and use the tools and processes
necessary to support the development of products from
the product line’s core assets

Other patterns

241Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Assembly Line Pattern - 2
Solution: Think of the tools and processes that support the
development of products from core assets as the assembly
line for the software product line; these tools and processes
provide the production capability to build products. The
assembly line dictates how to assemble the products from
their core asset parts. It also specifies which asset versions
to use and where to find them, the schedule for the assembly,
how to use automated tools to speed up the process, and
how to coordinate all the activities involved in the assembly
operation.

Other patterns

242Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Assembly Line Pattern - 3
Static structure: The practice areas that address the
solution and that provide the structure for the Assembly Line
pattern are
• Configuration Management
• Process Discipline
• Tool Support
• Operations
• Technical Planning
• Organizational Planning

Other patterns

243Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Assembly Line Pattern - 4

Other patterns

Configuration
Management

Process
Definition

Tool Support

Operations

Organizational
Planning

Technical
Planning

Production
Plan

Tooling

Product Line Plans

Product Plans

CM
Process

Operational
Concept

Dynamic Structure

244Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Applying Assembly Line at AGM
The first increment of products was built from the first
version of the architecture using C# and the VisualStudio
tool suite.

The second increment was built from the first version of
the architecture but using Java and the Eclipse
development environment.

AGM
Example

245Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Reminder: Adoption Factory Pattern

Dynamic Structure

Informs and information flow

Supports

Phases

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line
Process
Discipline

MonitorCold Start In Motion

Establish Context Establish Production
Capability Operate Product Line

246Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

In Motion - 1
Name: The In Motion pattern consists of practice areas that
keep a product line effort going after it has been launched.
The In Motion pattern is really a variant of the Cold Start
pattern but is described separately, because it plays a major
role in product line efforts.

Context: A product line effort has been launched

Problem: To keep the product line effort going

Other patterns

247Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

In Motion - 2
Solution: The organization must continue to stoke the
product line fire. The people in charge must ensure that
• funds to operate the effort continue to be sufficient
• operations are running smoothly
• personnel are adequately prepared for their tasks
• both customers and suppliers are in close communication

and in tune with the product line effort.
Changes to the organizational structure are made as
necessary.

Other patterns

248Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

In Motion - 3
Static: The practice areas that address the solution and that
provide the structure for the In Motion pattern are
• Customer Interface Management
• Developing an Acquisition Strategy
• Funding
• Operations
• Structuring the Organization
• Training

Other patterns

249Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

In Motion Pattern

Dynamic Structure

Funding

Informs

Operations

Customer
Interface
Management

Training Developing
an Acquisition
Strategy

Structuring
The Organization

Funds

Operational
Concept

Other patterns

250Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

In Motion - 5
Example: A robot manufacturer launched a product line for
the software in its line of warehouse robots.
• Funds were secured, groups were set up and tasked, a

product line manager was appointed, and a product line
adoption plan was developed and is being implemented.

• The product line manager developed an operational
concept, a training program, a risk management program,
and an acquisition strategy.

• She has also prepared the customer for the new approach
being taken to develop the software for warehouse robots.

The groups that were set up to do the product line work are
functioning. The manager now wants to know what practices
she needs to keep the effort in motion.

Other patterns

251Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Applying the In Motion Pattern at AGM
AGM funded the product line as a pilot project. The
first increment of products was largely a training
exercise but resulted in a set of freeware products.

The second increment produced a set of products
for sale and will repay the investment. This set of
products required the marketing team to train to sell
a set of related products.

AGM is modifying its sales organization to reflect
the relationships among products.

AGM
Example

252Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Reminder: Adoption Factory Pattern

Dynamic Structure

Informs and information flow

Supports

Phases

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line
Process
Discipline

MonitorCold Start In Motion

Establish Context Establish Production
Capability Operate Product Line

253Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Monitor - 1
Name: The Monitor pattern consists of practice areas that
all serve to monitor an ongoing product line effort and apply
course corrections to keep activities on track.

Context: An organization has a software product line effort
in play

Problem: To monitor the product line operation and apply
course corrections when needed

Other patterns

254Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Monitor - 2
Solution: Monitoring a product line operation requires
routinely performed practices that keep a pulse on the
organization by
• collecting and analyzing process and product data
• communicating with customers
• identifying and analyzing risks.

It also requires routinely performed practices that precipitate
needed changes in product line operations.

Other patterns

255Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Monitor - 3
Static structure: Two groups of practice areas address the
solution and provide the structure for the Monitor pattern:
• The Listen Group includes these practice areas:

- Measurement and Tracking
- Technical Risk Management
- Organizational Risk Management
- Customer Interface Management

• The Response Group includes these practice areas:
- Technical Planning
- Organizational Planning
- Process Discipline

Other patterns

256Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Monitor Pattern - 4

Dynamic Structure

Listen Group
•Measurement and Tracking
•Technical Risk Management
•Organizational Risk Management
•Customer Interface Management

Response Group
•Technical Planning
•Organizational Planning
•Process Definition

Revised and
New Plans

Revised and
New Processes

Recommendations

Other patterns

257Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Monitor - 5
Examples:
• Scenario 1: A company has a software product line of

flight simulator video games, has a core asset base, and
has fielded five different games, all still being sold, from
the set of assets. The company needs to keep a watchful
eye on the organization to guarantee that all the product
line processes are being followed, existing plans are
realistic, its products are being well received in the market
place, and its staff is performing according to
expectations. The company also needs to be nimble in
changing plans and processes to fine tune its operations
or to become more responsive to its market.

Other patterns

258Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Examples: (cont’d.)
• Scenario 2: TelecomPlus recently launched a software

product line effort for its new line of mobile phones. The
product line architecture has been developed, and
component development is nearing completion. The first
product to be built from the assets is being actively
marketed, and development has just begun. The schedule
to get this first product to market is tight. The company
needs to ensure that its product line effort will get to market
on time and poise TelecomPlus for its second product,
which is to appear close on the heels of the first.

Monitor - 6

259Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Applying the Monitor Pattern at AGM
AGM’s newly formed project management office was
assigned responsibility for measurement. This office
supplies trained project managers to lead core asset and
product development projects. A standard set of metrics
has been defined for immediate collection. Additional
measures will be added as needed.

The CEO’s direct reports handles risk management but
is unsure how to manage risk with so many projects at
one time. A consultant will be needed to train them.

AGM
Example

260Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 2
8:30 – 9:15 Developing the Core Asset Base:

The Product Parts Pattern
9:15 – 10:00 Architectures for Product Lines

10:00 – 10:15 BREAK
10:15 – 12:00 Exercises: Architecture and the Core Asset Base

12:00 – 13:00 LUNCH

13:00 – 13:30 Production Plans
13:30 – 15:00 Group Exercise: Writing a Production Plan
15:00 – 15:15 BREAK
15:15 – 15:45 Other Patterns
15:45 – 16:15 Group Discussion : Measurement
16:15 – 16:30 Conclusions, Q&A

261Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

► Exercise: Measurement
Form into teams. Prepare answers to the following:
1. AGM adopted the product line approach to

achieve what gains?
2. For each gain listed above, give examples of

measurements you would want to be able to test
whether those gains are being achieved.

3. What will you measure to see if your core asset
base is performing as well as it could be?

4. What would you measure to see if product
development was occurring as smoothly as it
could be?

5. What would you measure to gauge the overall
health of the product line organization?

AGM
Example

262Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Schedule: Day 2
8:30 – 9:15 Developing the Core Asset Base:

The Product Parts Pattern
9:15 – 10:00 Architectures for Product Lines

10:00 – 10:15 BREAK
10:15 – 12:00 Exercises: Architecture and the Core Asset Base

12:00 – 13:00 LUNCH

13:00 – 13:30 Production Plans
13:30 – 15:00 Group Exercise: Writing a Production Plan
15:00 – 15:15 BREAK
15:15 – 15:45 Other Patterns
15:45 – 16:15 Group Discussion : Measurement
16:15 – 16:30 Conclusions, Q&A

263Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Conclusions
This course has tried to give you as much hands-on
experience as possible in creating the artifacts and
making the decisions associated with starting a software
product line.

We have taken a pattern-based approach, as patterns
leverage previous solutions to recurring problems.

The overarching pattern for a product line organization is
Adoption Factory. It describes a software product line
organization in full swing. Use it to picture the ultimate
desired state and roadmap for how to get there.

Conclusions

264Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Adoption Factory recognizes that fielding a product line
involves
• deciding what to build
• building and running the production capability
• preparing the organization
• designing and providing the product parts
• running the assembly line to produce products
• monitoring the process
• defining processes that are important during adoption and

operation

Adoption Factory Pattern

Conclusions

265Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Using the Adoption Factory Pattern
Many paths through the Adoption Factory pattern are
possible. (This is discussed more in the SEI Adopting
Software Product Lines course.)

Which one you choose depends on your context and how
much preliminary work or thinking has been done about
software product lines.

Also, you don’t always complete one thing before you start
another.

We have explored one path through the Adoption Factory
pattern, based on the hypothetical situation of Arcade
Game Maker and the adoption plan that it built.

Conclusions

266Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Other Patterns We’ve Seen
What to Build
• helps determine if the product line approach is right for

your organization
• helps set the scope of a product line

Cold Start
• helps get the product line off the ground

Product Parts (with the Each Asset subpattern)
• helps orchestrate the building of the core assets

In Motion and Monitor
• helps assure that an organization stays on track

Conclusions

267Developing Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Takeaways

Experience in writing a business case

Experience in writing a concept of operations

Experience in writing a production plan

An appreciation for the role of architecture

Deeper insight into many product line practice areas

Most of all, a real sense of what’s involved in running a
software product line organization

Conclusions

