
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines
Course Introduction

Software Product Lines

2Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government
position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. The United States Government
has Unlimited Rights in this material as defined by DFARS 252.227-7013.

The text and illustrations in this material are licensed by Carnegie Mellon University under a Creative Commons Attribution 4.0 International
License.

The Creative Commons license does not extend to logos, trade marks, or service marks of Carnegie Mellon University.

Architecture Tradeoff Analysis Method® and ATAM® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

Framework for Software Product Line PracticeSM, IDEALSM, PLQLSM, PLTPSM, Product Line Quick LookSM and Product Line Technical
ProbeSM are service marks of Carnegie Mellon University.

DM20-0358

Software Product Lines

3Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Introductions

Instructor Introduction

Participant Introductions
• name

• company/position

• background

• course expectations

Software Product Lines

4Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Objectives

The Software Product Lines course is a two-day course designed to
• provide an introduction to software product lines
• introduce participants to the technical and management practices needed to

succeed with software product lines
• provide guidelines and patterns helpful in the practical application of product

line techniques
• illustrate software product line concepts with case studies
• introduce participants to a software product line diagnostic method and an

adoption roadmap
• relate software product lines to other technology and business trends

Software Product Lines

5Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Entry Criteria

This course is designed for software engineers and technical managers
interested in effective reuse strategies.

Participants should have
• experience in designing and developing software-intensive systems
• some familiarity with modern software engineering concepts and management

practices
• an understanding of basic software architecture concepts

Software Product Lines

6Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Outcomes

Participants will have a basic understanding of
• the essential activities involved in fielding a software product line
• the costs and benefits of adopting a product line approach
• the software engineering, technical management, and organizational

management practices necessary for successful software product lines
• product line practice patterns that aid in product line adoption
• a product line diagnostic method and an adoption roadmap
• how a product line approach can be combined with other technology and

business trends

Software Product Lines

7Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Structure

Course Introduction

Part 1: Software Product Line Fundamentals

Part 2: Software Product Line Practice Areas

Part 3: Putting the Practice Areas into Action

Wrap-Up

Software Product Lines

8Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Strategy

Lectures and discussion will be used to introduce concepts.
Case studies will be used to illustrate concepts.
Short exercises will be used to reinforce concepts.

The course content is based on
Software Product Lines: Practices and Patterns.

Software Product Lines

9Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Materials

Course notebook
• course description
• course outline
• printed slides
• exercises
• bibliography
• glossary

Software Product Lines: Practices and Patterns book

Supplemental materials
• Salion Case Study

Software Product Lines

10Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Agenda: Day One

Course Introduction

Part 1: Software Product Line Fundamentals
• Basic Ideas and Terms
• Benefits of Software Product Lines
• The Three Essential Activities

Part 2: Software Product Line Practice Areas
• Software Engineering Practice Areas
• Technical Management Practice Areas
• Organizational Management Practice Areas

Software Product Lines

11Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Agenda: Day Two

Part 3: Putting the Practice Areas into Action
• Case Studies

– Cummins, Inc.
– Control Channel Toolkit
– Salion, Inc.

• Software Product Line Practice Patterns
• Product Line Technical Probe
• Product Line Adoption Roadmap

Wrap-Up

Software Product Lines

12Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Rules of Engagement

We will be very busy over the next two days.

To complete everything and get the most from the course, we will need to
follow some rules of engagement:
• Your participation is essential.
• Feel free to ask questions at any time.
• Discussion is good, but we might need to cut some discussions short in the

interest of time.
• Please try to limit side discussions during the lectures.
• Please turn off mobile phones, laptops, and PDAs.
• Let’s try to start on time.

Software Product Lines

13Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Completion Criteria

To receive a certificate for completion of this course participants must
• actively participate in classroom discussions during both days
• not miss any classroom time

Software Product Lines

14Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Questions So Far?

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines
Part 1: Software Product Line Fundamentals
Session 1: Basic Ideas and Terms

Software Product Lines

16Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Structure

Course Introduction

Part 1: Software Product Line Fundamentals

Part 2: Software Product Line Practice Areas

Part 3: Putting the Practice Areas into Action

Wrap-Up

Software Product Lines

17Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Objectives

This session will introduce participants to
• the concept of software product lines
• the basic terms associated with software product lines

Software Product Lines

18Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Contents

What a Software Product Line Is

What Software Product Lines Are Not

Terminology

Software Product Lines

19Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Business Success Requires Software Prowess

Software pervades every sector.
Software has become the bottom line for many organizations, even
those who never envisioned themselves in the software business.

Software Product Lines

20Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

High quality

Quick time to market

Market dominance

Market agility

Product alignment

Low-cost production

Low-cost maintenance

Mass customization

IMPROVED
EFFICIENCY

AND
PRODUCTIVITY

require

Universal Business Goals

Software Product Lines

21Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software (System) Strategies

Process improvement
Technology innovation
Reuse

Software Product Lines

22Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Few Systems Are Unique

Most organizations produce families of similar systems,
differentiated by features.
A reuse strategy makes sense.

Software Product Lines

23Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Reuse: Management Challenge

Over the next n years you have m similar systems under development
and mildly (wildly) different development and maintenance approaches.

At the same time, you have less money to spend, fewer people to work
with, and less time to get the job done.

And, oh by the way, the systems are more complex.

Software Product Lines

24Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Reuse: Developer Challenge

Over the next n years you develop m similar systems using mildly (wildly)
different development and maintenance approaches.

You reuse code, applications, directories, data, and so forth.

But you still have integration problems, testing nightmares, problems
responding to functional volatility, problems handling multiple yet similar
configurations, and continuous pressure from management to do more in
less time.

Software Product Lines

25Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

1960s
SUBROUTINES

1970s
MODULES

1980s
OBJECTS

1990s
COMPONENTS

Focus was small-grained, opportunistic, and technology-driven.
Results did not meet business goals.

Reuse History

Software Product Lines

26Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Reuse History

1960s
SUBROUTINES

1970s
MODULES

1980s
OBJECTS

2000s
SERVICES

1990s
COMPONENTS

Software Product Lines

27Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Imagine Strategic Reuse

BUSINESS STRATEGY

TECHNICAL STRATEGY

STRATEGIC
REUSE

Software Product Lines

28Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

CelsiusTech: Ship System 2000

A family of 55 ship systems
• Need for developers dropped from

210 to roughly 30.
• Time to field decreased from about

9 years to about 3 years.
• Integration test of 1-1.5 million SLOC

requires 1-2 people.
• Rehosting to a new platform/OS

takes 3 months.
• Cost and schedule targets are

predictably met.
• Customer satisfaction is high.

Software Product Lines

29Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Cummins, Inc.: Diesel Engine Control Systems

Over 20 product groups with over
1,000 separate engine applications
• Product cycle time was slashed

from 250 person-months to
a few person-months.

• Build and integration time
was reduced from one year
to one week.

• Quality goals are exceeded.
• Customer satisfaction is high.
• Product schedules are met.
• Product line approach enabled

Cummins to quickly enter and then
dominate the industrial diesel engine market.

Software Product Lines

30Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

National Reconnaissance Office/Raytheon:
Control Channel Toolkit

Ground-based spacecraft command
and control systems
• First system had 10 times fewer defects

than usual.
• The incremental build time was reduced

from months to weeks.
• The system development time and costs

decreased by 50%.
• There was decreased product risk.

Software Product Lines

31Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Market Maker GMBH: Merger

Internet-based stock market software
• Each product is “uniquely” configured.
• Putting up a customized system takes

three days.

Software Product Lines

32Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Nokia Mobile Phones

Product lines with 25-30 new products
per year versus 5 per year originally.

Across products there are
• varying numbers of keys
• varying display sizes
• varying sets of features
• 58 languages supported
• 130 countries served
• multiple protocols
• needs for backwards compatibility
• configurable features
• needs for product behavior
• changes after product release

Software Product Lines

33Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

How Did They Do It?

SOFTWARE
PRODUCT

LINES

Software Product Lines

34Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Lines Are a Proven Concept

Product lines—building a family of products from interchangeable parts—
have existed for centuries.
• Li Chieh, the state architect of the Chinese emperor Hui-tsung, published a set

of building codes for official buildings. This book defined a set of reusable
designs: a “product line” of buildings.

• IBM’s System/360 family of computers, introduced in 1964, was a product line
of computers.

• The Airbus A318/319/320/321 family of commercial aircraft is a product line, as
is the Boeing 757/767 family.

• McDonalds and Burger King each have a product line of restaurant menu
items.

Source: www.burgerking.com

Software Product Lines

35Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Reuse History: From Ad Hoc to Systematic

1960s
SUBROUTINES

1970s
MODULES

1980s
OBJECTS

2000s
SERVICES

1990s
COMPONENTS

SOFTWARE
PRODUCT
LINES

SOFTWARE
PRODUCT
LINES

Software Product Lines

36Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is a Software Product Line?

A software product line is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a
common set of core assets in a prescribed way.
• a new application of a proven concept
• an innovative, growing concept in software engineering

Software Product Lines

37Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Product Lines

Product lines
• take economic advantage of commonality
• bound variation

BUSINESS GOALS/
APPLICATION DOMAIN

ARCHITECTURE

COMPONENTS
and SERVICES

pertain to

share an

are built from

is satisfied by

used to structure

PRODUCTSPRODUCTS

CORE
ASSETS

Software Product Lines

38Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

TOTAL
LIFE-CYCLE

REUSE

MORE
BENEFIT

How Do Product Lines Help?

Product lines amortize the investment
in these and other core assets:
• requirements and requirements analysis
• domain model
• software architecture and design
• performance engineering
• documentation
• test plans, test cases, and test data
• people: their knowledge and skills
• processes, methods, and tools
• defect elimination
• budgets, schedules, and work plans
• components and services

PRODUCT LINES = STRATEGIC REUSE

Software Product Lines

39Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Key Concepts

Use of a core
asset base in the production of a related

set of products

Software Product Lines

40Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use of a core
asset base in the production of a related

set of products

Architecture Production Plan Scope Definition
Business Case

The Key Concepts

Software Product Lines

41Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Contents

What a Software Product Line Is

What Software Product Lines Are Not

Terminology

Software Product Lines

42Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Product Lines Are Not - 1

Fortuitous small-grained reuse
• reuse libraries containing algorithms, modules, objects, or components
• Benefits depend on

– a software engineer’s predisposition to use what is in the library
– suitability of library contents for particular needs
– successful adaptation and integration of library units into the rest of the

system
• Reuse is not planned, enabled, or enforced, and results are not predictable.

Single-system development with reuse
• borrowing opportunistically from previous efforts—“clone and own”
• modifying code as necessary for the single system only
• core asset base never cultivated

Software Product Lines

43Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Product Lines Are Not - 2

Just component-based or service-based development
• selecting components or services from an in-house library, the Web, or the

marketplace
• missing a product line architecture, a production plan, and a management

infrastructure

Just a configurable architecture
• involves the use of a reference architecture or application framework
• does not involve the planned reuse of other assets

Releases and versions of single products
• involves the sequential release of products over time
• no simultaneous release/support of multiple products

Software Product Lines

44Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Product Lines Are Not - 3

Just a set of technical standards
• constraints to promote interoperability and to decrease the cost associated

with maintaining and supporting commercial components
• does not provide assets and production capability

Software Product Lines

45Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Contents

What a Software Product Line Is

What Software Product Lines Are Not

Terminology

Software Product Lines

46Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Important Terms - 1

Core asset: A reusable artifact or resource that is used in the production
of more than one product in a software product line. A core asset may be
an architecture, a software component, a requirements statement or
specification, a document, a plan, a test case, a process description, or
any other useful element of a software production process.

Core asset base: The complete set of core assets associated with a
given software product line.

Development: A generic term to describe how software comes to be. It
may involve building, contracting, open-market purchasing, reworking
existing assets, or any combination of these.

Domain: An area of knowledge or activity characterized by a set of
concepts and terminology understood by practitioners in that area.

Software Product Lines

47Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Important Terms - 2

Product: Deployed software or software-intensive system.

Reuse: Using an item more than once.

Software product line practice: The systematic use of core assets to
assemble, instantiate, or generate the multiple products that constitute a
software product line.

Strategic reuse: Planned, systematic reuse that implements tightly
connected business and technical strategies.

Software Product Lines

48Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Alternate Terminology

Our Terminology Alternate Terminology

Product Line Product Family

Software Core Assets Platform

Business Unit Product Line

Product Customization

Core Asset Development Domain Engineering

Product Development Application Engineering

Software Product Lines

49Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Summary

A software product line is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a
common set of core assets in a prescribed way.

Software product lines involve strategic, planned reuse that differs from
earlier software reuse paradigms.

Software Product Lines

50Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Exercise 1

Examples of non-software and software product lines.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines
Part 1: Software Product Line Fundamentals
Session 2: Benefits of Software Product Lines

Software Product Lines

52Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Objectives

This session will acquaint participants with
• the organizational benefits associated with software product lines
• the individual benefits associated with software product lines
• an examination of the benefits versus the costs of software product lines

Software Product Lines

53Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Organizational Benefits

Individual Benefits

Costs

Software Product Lines

54Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Benefits

Organizations use product line practices to
• achieve large-scale productivity gains
• improve time to market
• maintain market presence
• sustain unprecedented growth
• achieve greater market agility
• compensate for an inability to hire
• enable mass customization
• get control of diverse product configurations
• improve product quality
• increase customer satisfaction
• increase predictability of cost, schedule,

and quality

Software Product Lines

55Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

More Examples of Product Line Benefits - 1

Hewlett Packard (HP) - printer systems
• 2-7x cycle-time improvement (some 10x)
• sample project

– shipped 5x number of products
– that were 4x as complex
– and had 3x the number of features
– with 4x products shipped/person

• The products from HP’s Owen Firmware Cooperative were produced using 1/4
of the staff, in 1/3 of the time, and with 1/25 the number of bugs

Motorola - FLEXworks Project (family of one-way pagers)
• 4x cycle-time improvement
• 80% reuse

Software Product Lines

56Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

More Examples of Product Line Benefits - 2

Bosch – gasoline systems engine control software
• successfully entered new emerging markets
• regained market share in the standard segments
• reduced resource consumption by 20…30%, minimized calibration effort, and

supported increased reuse

LSI Logic – RAID controller firmware product line
• in two years, produced nearly 90 different controller firmware products,

supporting multiple controller hardware platforms, and multiple customer
customizations from one code base

For others, see the Product Line Hall of Fame
http://www.sei.cmu.edu/productlines/plp_hof.html

and the Product Line Catalog
http://www.sei.cmu.edu/productlines/plp_catalog.html

Software Product Lines

57Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary: Organizational Benefits

Improved productivity
• by as much as 10x

Increased quality
• by as much as 10x

Decreased cost
• by as much as 60%

Decreased labor needs
• by as much as 87%

Decreased time to market (to field, to launch...)
• by as much as 98%

Ability to move into new markets
• in months, not years

Software Product Lines

58Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Organizational Benefits

Individual Benefits

Costs

Software Product Lines

59Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Individuals Who Benefit

CEO

COO

Technical
Manager

End User Customer

Marketer

Core Asset
Developer

Architect

Software Product Lines

60Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Individuals Benefits - 1

CEO
• option to quickly develop new products
• large productivity gains
• greatly improved time to market
• sustained growth and market presence
• ability to economically capture a market niche

COO
• efficient use of workforce
• ability to explore new markets, new technology, and/or new products
• fluid personnel pool

Technical Manager
• increased predictability
• well-established roles and responsibilities
• efficient production

Software Product Lines

61Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architect or Core Asset Developer
• greater challenge
• work has more impact
• prestige within the organization
• as marketable as the product line

Software Product Developer
• higher morale
• greater job satisfaction

– can focus on truly unique aspects of products
– easier software integration
– fewer schedule delays
– greater mobility within organization
– more marketable outside
– has time to learn new technology
– is part of a team, building products with an established quality record and reputation

Individual Benefits - 2

Software Product Lines

62Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Individual Benefits - 3

Marketer
• predictable high-quality products
• predictable delivery
• can sell products with a pedigree

Customer
• higher quality products
• predictable delivery date
• predictable cost
• known costs for unique requirements
• well-tested training materials and documentation
• shared maintenance costs
• users’ group

Software Product Lines

63Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Individual Benefits - 4

End User
• product alignment – common “look and feel”
• fewer defects
• better training materials and documentation
• a network of other users

Software Product Lines

64Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Organizational Benefits

Individual Benefits

Costs

Software Product Lines

65Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The product line architecture is central to success.

Necessary Changes

Architecture

Software Product Lines

66Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Costs of a Software Product Line

Core Assets Costs

Architecture Must support variation inherent in the product line

Software Components Must be designed to be general without a loss of
performance; must build in support for variation points

Test Plans, Test Cases,
Test Data

Must consider variation points and multiple instances of the
product line

Business Case and
Market Analysis

Must address a family of software products, not just one
product

Project Plans Must be generic or be made extensible to accommodate
product variations

Tools and Processes Must be more robust

People, Skills, Training Must involve training and expertise centered around the
assets and procedures associated with the product line

Software Product Lines

67Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Economics of Product Lines

Weiss, D. M. & and Lai, C. T. R.
Software Product-Line Engineering: A Family-Based Software Development Process.
Reading, MA: Addison-Wesley, 1999.

C
um

ul
at

iv
e

C
os

ts

Numbers of Products

Current Practice

With Product Line
Approach

Software Product Lines

68Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Economics of Product Lines

Numbers of Products

Current Practice

With Product Line
Approach

PAYOFF POINT

Weiss, D. M. & and Lai, C. T. R.
Software Product-Line Engineering: A Family-Based Software Development Process.
Reading, MA: Addison-Wesley, 1999.

C
um

ul
at

iv
e

C
os

ts

Software Product Lines

69Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Summary

Software product lines have been proven to yield significant
organizational benefits in terms of increased productivity and quality, and
decreased cost and time to market.

Software product lines have been proven to benefit individuals in specific
and desirable ways.

There are costs associated with a product line approach for software that
cannot be ignored.

Software Product Lines

70Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

Identify other potential product line core assets and list the benefits and
costs associated with each one.

How would you decide whether the potential benefits of a software
product line approach outweigh costs and risks in your organization?

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines
Part 1: Software Product Line Fundamentals
Session 3: The Three Essential Activities

Software Product Lines

72Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Objective

This session will introduce participants to the three essential activities for
software product lines.

Software Product Lines

73Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Contents

What Are the Essential Activities?

Core Asset Development

Product Development

Management

Software Product Lines

74Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

But there are
universal essential
activities and practices.

• nature of products

• nature of market or mission

• business goals

• organizational infrastructure

• workforce distribution

• process discipline

• artifact maturity

Product Line Practice

Contexts for product lines vary widely, based on

Software Product Lines

75Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The SEI Framework for
Software Product Line PracticeSM

The SEI Framework for Software Product Line Practice is a conceptual
framework that describes the essential activities and twenty-nine practice
areas necessary for successful software product lines.

The Framework, originally conceived in 1998, is evolving based on the
experience and information provided by the community.

Version 4.0 –
in Software Product Lines: Practices and Patterns

Version 5.0 –
http://www.sei.cmu.edu/productlines/framework.html

SM Framework for Software Product Line Practice is a service mark of
Carnegie Mellon University.

Software Product Lines

76Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Goals of the Framework

The goals of the Framework are to
• Identify the foundational concepts underlying software product lines and the

essential activities to consider before developing a product line.
• Identify practice areas that an organization developing software product lines

must master.
• Define practices in each practice area, where current knowledge is sufficient to

do so.
• Provide guidance to an organization about how to move to a product line

approach for software.

The Framework is not a maturity model or a process guide.

Software Product Lines

77Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Workshops
and conferences

Applied research

SEI Information Sources

Collaborations
with customers on

actual product lines

Case studies, experience
reports, and surveys

Software Product Lines

78Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Three Essential Activities

Product
Development

Core Asset
Development

Management

Software Product Lines

79Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Nature of the Essential Activities

All three activities are interrelated and highly iterative.

There is no “first” activity.
• In some contexts, existing products are mined for core assets.
• In others, core assets may be developed or procured for future use.

There is a strong feedback loop between the core assets and the
products.

Strong management at multiple levels is needed throughout.

Software Product Lines

80Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Contents

What Are the Essential Activities?

Core Asset Development

Product Development

Management

Software Product Lines

81Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Core Asset Development

Product
Development

Core Asset
Development

Management

Software Product Lines

82Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Core Asset Development Goal

The goal of core asset development is to establish a production
capability for products.

Core asset development is iterative.
• New core assets are added as more commonality among products is planned

or discovered.
• Existing core assets are modified to keep pace with product needs.

Core asset development happens in a situational context of existing
constraints and resources. This context influences
• how core asset development is carried out
• the nature of the outputs it produces

Software Product Lines

83Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Core Asset Development

Management

Product Line Scope

Core Asset Base

Production Plan

Product Constraints
Production Constraints
Production Strategy
Preexisting Assets

Core Asset
Development

Software Product Lines

84Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Contextual Factors

1. Product constraints: the commonalities and variations among the
products in the product line, behavioral features, quality requirements,
organizational or domain standards, required infrastructure,
preexisting products that will form the basis for the product line, and
so forth

2. Production constraints: imposed time and resource limits to
produce the products in the product line

3. Production strategy: the overall approach for realizing both the core
assets and products
a. informed by the product and production constraints
b. informs the architecture and its components and their growth path
c. drives the process by which products will be developed from core assets

4. Preexisting assets: the intellectual property (legacy assets, off-the-
shelf assets, open source assets, Web assets, libraries, frameworks,
algorithms, tools) that can be incorporated into the core asset base

Software Product Lines

85Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Core Asset Development Outputs - 1

1. Product line scope: The product line scope is a description of the
products that will constitute the product line or that the product line is
capable of including.
• In its simplest form, the scope may consist of an enumerated list of product

names, but more typically is cast in terms of the things the products have in
common and the ways in which the products vary.

• A product line’s scope reflects the organization’s strategic market goals.
• For a product line to be successful, its scope must be defined carefully.
• The scope of a product line evolves.
• Defining the product line scope is often referred to as scoping.

Software Product Lines

86Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Core Asset Development Outputs - 2

2. Core asset base: The core asset base includes all the core assets,
which are the basis for the production of products in the product line.

• Not every core asset will be used in every product in the product line, but
all will be used in enough products to make their coordinated
development, maintenance, and evolution pay off.

• Among the core assets is the product line architecture—a software
architecture that will satisfy the needs of the product line in general and
the individual products in particular by explicitly admitting a set of variation
points.

• Other technical core assets may include components, models, test plans,
test cases, requirements specifications, tools, processes, and production
infrastructure.

• Nontechnical core assets may include schedules, budgets, plans, training
materials, marketing collateral, and a concept of operations (CONOPS)
that describes how the organization operates as a product line
organization.

• Each core asset should have associated with it an attached process that
specifies how it will be used in the development of actual products.

Software Product Lines

87Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Production Plan

Core Asset Base

Management

Attached Processes

Core Assets

Core Asset
Development

Attached
Process

Software Product Lines

88Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Core Asset Development Outputs - 3

3. Production plan: A production plan prescribes how the products are
produced from the core assets. The production plan fulfills two roles:

a. It includes the process to be used for building products—the production
process that is essentially a set of the attached processes with the
necessary process “glue.”
– must indicate how variation points will be exercised
– must appropriately address the product builders for whom it is

intended
– should describe how specific tools are to be used
– satisfies the production strategy and production constraints
– reflects the production method, which is the overall implementation

approach that specifies the models, processes, and tools to be used
in the attached processes

b. It lays out the project details to enable execution and management of the
production process.
– includes schedule, bill of materials, and metrics

Software Product Lines

89Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Production Plan

Product Line Production Plan

Product Constraints
Production Constraints
Production Strategy

Production Process

Project Details

Production
Method

Software Product Lines

90Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Contents

What Are the Essential Activities?

Core Asset Development

Product Development

Management

Software Product Lines

91Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Development

Product
Development

Core Asset
Development

Management

Software Product Lines

92Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Development Goal

The activity of efficiently turning out products is the ultimate product line
goal.

Mature product line organizations, however, prioritize the health of the
overall product line, especially the core asset base, over the production
of individual products.

Those organizations recognize that nurturing their production capability
enables them to rapidly produce many products.

Software Product Lines

93Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Feedback

New Assets

Product Constraints

Products

Management

Product Description Product
Development

Product Development

Core Asset Base

Product Line Scope

Production Plan

Software Product Lines

94Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Development Inputs and Outputs

Product development depends on
• three inputs that are the outputs of core asset development (the product line

scope, core assets, and production plan)
• plus the product description for each individual product

The creation of products also has a strong feedback effect on the product
line providing
• feedback to improve existing core assets
• new assets
• new product constraints

As a special case, the products developed could actually be
components.

Software Product Lines

95Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Contents

What Are the Essential Activities?

Core Asset Development

Product Development

Management

Software Product Lines

96Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Management

Product
Development

Core Asset
Development

Management

Software Product Lines

97Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Management - 1

Management at multiple levels plays a critical role in successful
product line practice.

Technical management
• oversees core asset development and product development

– makes sure those involved are engaged in the required activities, follow
processes defined for the product line, and collect data sufficient to track
progress

• provides the project management elements of the
production plan

• decides on the production method

Software Product Lines

98Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Management - 2

Organizational management
• identifies production constraints and ultimately determines the production

strategy
• determines a funding model
• achieves the right organizational structure
• allocates resources
• orchestrates the technical activities
• provides training
• rewards employees appropriately
• develops and communicates an acquisition strategy
• manages external interfaces
• creates and implements a product line adoption plan
• launches and institutionalizes the approach in a manner appropriate to the

organization

Software Product Lines

99Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Managing a Software Product Line
Requires Leadership

Some individual or group should be designated to fill the product line
management role and act as a product line champion (or find and
empower one).

A champion must
• set and maintain the vision
• ensure that the appropriate goals and measures are in place
• “sell” the product line up and down the chain
• sustain morale
• deflect potential derailments
• solicit feedback and continuously improve the approach

Software Product Lines

100Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Each of these is essential, as is the blending of all three.

Essential Product Line Activities

Product
Development

Core Asset
Development

Management

Software Product Lines

101Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Different Approaches - 1

Proactive: Develop the core assets first.
• Develop the scope first and use it as a “mission” statement.
• Products come to market quickly with minimum code writing.
• Requires up-front investment and predictive knowledge

Reactive: Start with one or more products.
• From them, generate the product line core assets and then future products;

the scope evolves more dramatically.
• Much lower cost of entry
• The architecture and other core assets must be robust, extensible, and

appropriate to future product line needs.

Software Product Lines

102Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Different Approaches - 2

Incremental: In either a reactive or proactive approach, it is possible to
develop the core asset base in stages, while planning from the beginning
to develop a product line.
• Develop part of the core asset base, including the architecture and some of

the components.
• Develop one or more products.
• Develop part of the rest of the core asset base.
• Develop more products.
• Evolve more of the core asset base.
• …

Software Product Lines

103Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Summary

There are three essential activities involved in a software product line
approach: core asset development, product development, and
management.

Core asset development establishes the production capability for
products.

Product development yields the products in the product line.

Management, at both organizational and technical levels, orchestrates
the product line effort and ensures that the right practices are in
operation.

Software product lines require a blend of technology and business
practices.

Software Product Lines

104Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

Describe what might be an attached process for each of the following: a
product line architecture, a component, a test case, and a product
development estimate.

Can you imagine a situation in which an organization might have to
choose between the health of its product line and the production of a
specific product?
What are telltale signs that it is doing one or the other?

If you wanted to move to a product line approach in your organization,
which approach (proactive or reactive) would you take? Why?
Would you use an incremental approach? Why?

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines
Part 2: Software Product Line Practice Areas
Session 1: Practice Areas

Software Product Lines

106Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Structure

Course Introduction

Part 1: Software Product Line Fundamentals

Part 2: Software Product Line Practice Areas

Part 3: Putting the Practice Areas into Action

Wrap-Up

Software Product Lines

107Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Driving the Essential Activities

Supporting the essential activities are essential practices that fall into
practice areas.

A practice area is a body of work or a collection of activities that an
organization must master to successfully carry out the essential work of a
product line.

The practice areas represent common activities in software development
that are adapted to the needs of a product line approach.

Practice areas help to make the essential activities more achievable by
defining activities that are smaller and more tractable than a broad
imperative such as “develop core assets.”

Software Product Lines

108Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Objective

This session will introduce participants to the concept of product line
practice areas.

Software Product Lines

109Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Practice Area Descriptions

Each practice area is described with
• an introductory description
• aspects that are peculiar to product lines
• its application to core asset development
• its application to product development
• example practices
• associated risks
• further reading

Software Product Lines

110Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Three Categories of Practice Areas

Technical
Management

Practice Areas

Software
Engineering

Practice Areas

Organizational
Management Practice

Areas

Enable and orchestrate Manage and support

Software Product Lines

111Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PRACTICE AREAS
Software Engineering Technical Management Organizational Management
Architecture Definition Configuration Management Building a Business Case

Architecture Evaluation Make/Buy/Mine/Commission
Analysis Customer Interface Management

Component Development Measurement and Tracking Developing an Acquisition
Strategy

Mining Existing Assets Process Discipline Funding

Requirements Engineering Scoping Launching and Institutionalizing
Software System Integration Technical Planning Market Analysis

Testing Technical Risk Management Operations
Understanding Relevant

Domains Tool Support Organizational Planning

Using Externally
Available Software

Organizational Risk
Management

Structuring the Organization

Technology Forecasting
Training

Framework
Version 5.0

ESSENTIAL
ACTIVITIES

Core Asset
Development

Product
Development

Management

Software Product Lines

112Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Summary

Software product line practice areas make the essential activities more
achievable by defining activities that are smaller and more tractable than
the three essential activities.

Practice areas are divided into three categories:
1. software engineering
2. technical management
3. organizational management

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines
Part 2: Software Product Line Practice Areas
Session 2: Software Engineering Practice

Areas

Software Product Lines

114Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Objectives

This session will
• introduce participants to the software engineering practice areas, in general
• acquaint participants with the following specific software engineering practice

areas:
– Understanding Relevant Domains
– Requirements Engineering
– Architecture Definition
– Component Development

Software Product Lines

115Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Software Engineering Practice Areas

Understanding Relevant Domains

Requirements Engineering

Architecture Definition

Component Development

Software Product Lines

116Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Engineering Practice Areas - 1

Software engineering practice areas are those necessary for applying
the appropriate technology to create and evolve both the core assets and
products.

Software Product Lines

117Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Software Engineering Practice Areas - 2

Architecture Definition
Architecture Evaluation
Component Development
Mining Existing Assets
Requirements Engineering
Software System Integration
Testing
Understanding Relevant Domains
Using Externally Available Software

Software Product Lines

118Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Software Engineering Practice Areas

Understanding Relevant Domains

Requirements Engineering

Architecture Definition

Component Development

Software Product Lines

119Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Understanding Relevant Domains - 1

Involves systematically capturing and using knowledge of systems
similar to those that will be in the product line.

Deep and broad domain understanding is critical.

Domain knowledge is characterized by
• a set of concepts and terminology understood by practitioners in that area of

expertise
• an understanding of recurring problems
• known solutions within the domain

Software Product Lines

120Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Understanding Relevant Domains - 2

The practice of understanding the relevant domains involves the
following responsibilities:
• identifying the appropriate areas of expertise (domains)
• identifying the recurring problems and known solutions within these domains
• capturing and representing this information in ways that allow it to be

communicated to the stakeholders, and used and reused across the entire
effort

You need to have enough information to make sound business decisions
without necessarily undertaking an extensive analysis of all applicable
domain knowledge.

Software Product Lines

121Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Understanding Relevant Domains - 3

How is the understanding achieved?
• from a reservoir of expertise from prior experience
• from hired outside experts
• through domain analysis methods that gather, organize, and communicate

domain information in the form of a domain model

The extent to which a formal analysis is performed depends on
• the depth of the organization’s domain experience
• the amount of resources that can be devoted to analysis

Domain understanding should include whatever key domain information
can be used as the vehicle for analysis and reasoning.

Software Product Lines

122Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Understanding Relevant Domains:
Aspects Peculiar to Product Lines

Understanding the relevant domains is the first step to defining the
commonality and variation expected across the product line.
Domain information for a product line helps determine
• which capabilities tend to be common across systems in the domain(s) and

which variations are present
• which subsets of capabilities might be packaged together as assets for the

product line
• what constraints apply to systems in the domain
• what the key terms are and how they are defined
• which assets typically constitute members in the domain
• whether to continue with a product line development effort

Domain understanding informs the product line’s scope and its
associated business case, which in turn drive the architecture and the
other core assets.

Software Product Lines

123Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Understanding Relevant Domains:
Example Practices

Have domain experts available
Scope, commonality, and variability (SCV) analysis

Domain analysis and design process (DADP)

Feature-oriented domain analysis (FODA)

Synthesis process of the reuse-driven software processes (RSP)
approach

Domain analysis of organizational domain modeling (ODM)

Product Line Software Engineering Customizable Domain Analysis
(PuLSE-CDA)

Domain-Specific Modeling (DSM)

Software Product Lines

124Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Understanding Relevant Domains:
Practice Risks

Inadequate domain understanding in the organization will jeopardize the
product line effort.

Inadequate domain understanding can result from
• analysis paralysis
• lack of access to the necessary domain expertise
• inadequate documentation and sharing of relevant domain information
• lack of understanding of an analysis process
• lack of appropriate tool support for the process and products of domain

analysis
• lack of management commitment

Software Product Lines

125Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Understanding Relevant Domains:
For Further Reading

[Arango 1994a]
[Ardis 2000a]
[Bayer 2000a]
[Geppert 2003a]
[Kang 1990a]
[Kang 1998a]
[Lee 2000a]
[SPC 1993b]
[STARS 1996a]
[Tolvanen 2005a]
[Weiss 1999a]

Software Product Lines

126Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Software Engineering Practice Areas

Understanding Relevant Domains

Requirements Engineering

Architecture Definition

Component Development

Software Product Lines

127Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering - 1

“The hardest single part of building a software system is deciding precisely what
to build. No other part of the conceptual work is as difficult as establishing the
detailed technical requirements… No other part of the work so cripples the
resulting system if done wrong. No other part is as difficult to rectify later.”

– Fred Brooks, 1987

Requirements are statements of
• what the system must do
• how it must behave
• the properties it must exhibit
• the qualities it must possess
• the constraints that the system and its development must satisfy

Software Product Lines

128Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering - 2

Requirements engineering consists of
• requirements elicitation: discovering, reviewing, documenting, and

understanding the user’s needs and constraints
• requirements analysis: refining the user’s needs and constraints
• requirements specification: documenting the user’s needs and constraints

clearly and precisely
• requirements verification: ensuring that the system requirements are complete,

correct, consistent, and clear
• requirements management: scheduling, coordinating, and documenting the

requirements engineering activities

[Dorfman 1997a]

Software Product Lines

129Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering - 3

Conceptually, there are three roles at work:
1. requestor – originator of the requirements who may come from many

different organizations
2. developer – designer/implementer of the system
3. author – writer of the requirements

The requirements are pervasive and long lived, affecting all stages of the
system’s (potentially very long) life.

The longer the system’s lifetime, the more it is exposed to changes in the
requirements.

Maintaining traceability is a key task during requirements engineering:
• across time
• across products

Software Product Lines

130Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering:
Aspects Peculiar to Product Lines - 1

Product line requirements are common requirements (those that all
members of the product line share), and they must be managed:
• The common requirements are maintained as a separate core asset.
• The common requirements are written with variation points.
• Requirements for a particular product exercise or fill in those variation

points.
• Product-specific requirements are stored as a set of deltas relative to

the product line requirements.
• The deltas can be an addendum, a set of changes, or a set of

parameter instantiations.

Software Product Lines

131Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering:
Aspects Peculiar to Product Lines - 2

Requirements elicitation must explicitly capture anticipated variations
over the foreseeable lifetime of the product line. The scope is input.

Requirements analysis involves finding commonalities and identifying
variations.

Requirements specification includes preparing a product-line-wide set
of requirements and product-specific requirements.

Requirements verification includes a broader reviewer pool and occurs
in stages.

Requirements management must allow for the dual/staged (common,
specific) nature of the requirements process.

Software Product Lines

132Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering:
Aspects Peculiar to Product Lines - 3

Product line requirements
• use the product line scope as input
• validate that scope and its associated business case
• drive the architecture and software core assets
• drive the product-line-wide testing
• form the basis for product schedules and budgets

Software Product Lines

133Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering:
Example Practices - 1

Domain analysis techniques can be used to expand the scope of the
requirements elicitation, to identify and plan for anticipated changes, to
determine fundamental commonalities and variations in the products of
the product line, and to support the creation of robust architectures.

Stakeholder-view modeling can support the prioritized modeling of the
significant stakeholder requirements for the product line.

Feature modeling can be used to complement object and use case
modeling and to organize the results of the commonality and variation
analysis in preparation for reuse.

Software Product Lines

134Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering:
Example Practices - 2

Use case modeling with variation points can be used to capture and
describe commonality and variation within product line requirements. A
variation point is a location within a use case where a variation (i.e., a
variability) occurs.

Change-case modeling can be used to explicitly identify and capture
anticipated changes. Change cases allow designers to plan for change.

Traceability of requirements to their associated work products can
be used to ensure that the design and implementation of a product
satisfies the requirements for that product.

Software Product Lines

135Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering:
Practice Risks

The major risk is inappropriate requirements. Inappropriate requirements
result from
• failing to distinguish between product-line-wide and product-specific

requirements
• insufficient generality, which results in a design that is too brittle
• excessive generality, which leads to excessive effort in core asset production
• having the wrong variation points, which leads to an inability to be flexible to

customers’ needs
• failing to account for qualities other than functions, which results in products

that don’t meet required quality attribute goals

Software Product Lines

136Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering:
For Further Reading

[Birk 2003a]
[Chastek 2001a]
[Davis 1990a]
[Dorfman 1997a]
[Faulk 1997a]
[Schmid 2006a]
[Sommerville 1997a]

Software Product Lines

137Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Software Engineering Practice Areas

Understanding Relevant Domains

Requirements Engineering

Architecture Definition

Component Development

Software Product Lines

138Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition - 1

The software architecture of a software system is the structure or
structures of the system, which comprise software elements, the
externally visible properties of those elements, and the relationships
among them.1

Architecture is
• the blueprint for a system and the project building it
• the carrier of most system quality attributes
• a forum for resource tradeoffs
• a contract that allows multi-party development
• an essential part of complex systems

1 Bass, L.; Clements, P. & Kazman, R. Software Architecture in Practice, 2nd Edition. Reading, MA:
Addison-Wesley, 2003.

Software Product Lines

139Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The right architecture paves the way for system success.
The wrong architecture usually spells some form of disaster.

Architecture Definition - 2

Represents earliest
design decisions

• hardest to change
• most critical to get right
• communication vehicle

among stakeholders

First design artifact
addressing

• performance
• modifiability
• reliability
• security

Key to systematic reuse • transferable,
reusable abstraction

Key to system evolution • manage future uncertainty
• assure cost-effective agility

Architecture

Software Product Lines

140Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition - 3

Defining an architecture involves
• knowing the architecturally significant requirements and constraints
• designing the important architectural structures
• defining the elements and relations the structures comprise
• specifying element interfaces and providing infrastructure services

Defining an architecture carries the additional obligations of
• documenting the architecture in appropriate views
• communicating it
• evaluating it for fitness of purpose
• assuring conformance to it

Software Product Lines

141Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition:
Aspects Peculiar to Product Lines - 1

Of all a product line’s core assets, the architecture may well be the most
important one for ensuring technical success.

A product line architecture must
• apply to all members of the product line (even if their functions and quality

attributes differ)
• embody the commonalities and accommodate the variations needed by the

products
• include specific mechanisms for variation

The variation mechanisms chosen must support
• the variations reflected in the products
• the production strategy and production constraints
• efficient integration

Software Product Lines

142Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition:
Aspects Peculiar to Product Lines - 2

The product line architecture relates to product line requirements:
• Common requirements tend to map to the non-variable parts of the

architecture.
• Product-specific requirements tend to map to the variations provided for by the

architecture.

Both types of requirements require planning for the managed set of
features that define the product line.

Each product may have its own architecture, which is an instance of the
product line architecture achieved by exercising the variation
mechanisms.

Software Product Lines

143Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition: Example Practices - 1

Understanding the requirements for the architecture
• SEI Quality Attribute Workshop
• use of the production strategy
• planning for architectural variation

Software Product Lines

144Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition: Example Practices - 2

Designing the architecture
• architecture definition and architecture-based development approaches (e.g.,

RUP)
• architectural patterns: client-server, n-tier, cooperating process, layered, and

so forth
– Such patterns have known quality attributes and areas of applicability.
– Patterns impose a vocabulary of design.

• the SEI Attribute-Driven Design (ADD) method
– Given desired quality attributes, it helps the architect choose architectural

strategies/tactics.
• service-oriented architectures: work by “stringing together” services (that have

specific, well-defined functionality) into chains that do sophisticated, useful
work

• aspect-oriented software development
– an approach for modularizing system properties that otherwise would be

distributed across modules

Software Product Lines

145Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition: Example Practices - 3

Architecture variation mechanisms
• component omission or replication
• component substitution where components may be

– aspects
– code components
– plug-ins
– services

• parameterization (including macros, templates)
• compile-time selection of different implementations (e.g., #ifdef)
• inheritance, specialization, and delegation
• configuration and module interconnection languages
• generation and generators
• application or service component frameworks

Software Product Lines

146Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition: Example Practices - 4

Documenting the architecture
• Unified Modeling Language (UML)
• the SEI “Views and Beyond” approach, which first documents relevant views

and then information that applies across views
• specifying component interfaces using a contractual approach

Software Product Lines

147Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition: Practice Risks - 1

Having an unsuitable product line architecture will result in
• components that do not fit together or interact properly

• products that do not meet their behavioral, performance, or other quality
attribute goals

• products that should be in the scope, but cannot be produced from the core
assets at hand

• a tedious and ad hoc product-building process

Unsuitable architectures are characterized by
• inappropriate parameterization

• inadequate specifications

• flawed design of the important architectural structures

• wrong level of specificity

• excessive inter-element dependencies

Software Product Lines

148Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition: Practice Risks - 2

Unsuitable architectures can result from
• the lack of a skilled architect

• the lack of sound input

• poor communication

• lack of supportive management and culture

• architecture in a vacuum

• poor tools

• poor timing

Software Product Lines

149Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Definition: For Further Reading

General software architecture
[Bass 2003a]
[Buschmann 1996a]
[Hofmeister 2000a]
[Schmidt 2000a]
[SEI 2007b]
[Shaw 1996a]

Product line architecture
[Bosch 2000a]

Problem solving
[Jackson 2000a]

Architecture documentation
[Clements 2000a]
[OMG 2007a]

From an object-oriented
perspective
[Booch 1994a]
[Buschmann 1996a]
[Jacobson 1997a]
[Krutchen 2004a]
[Smith 2001a]

Software Product Lines

150Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

1. Why are requirements engineering, scoping, and understanding
relevant domains closely related in a product line context?
Given their close relationship, would you use the same or different
people to carry out each practice area?

2. Which design or architecture patterns might be especially applicable to
a product line architecture? Why?

3. Which qualities should a product line architect possess?

Software Product Lines

151Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Software Engineering Practice Areas

Understanding Relevant Domains

Requirements Engineering

Architecture Definition

Component Development

Software Product Lines

152Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Component Development - 1

A software architecture defines a list of components that populate it.

This list gives the development, mining, and acquisition teams their
marching orders for supplying the parts that the software system will
comprise.

Software Product Lines

153Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Component Development - 2

Components are the units of software that go together to form whole
systems (products), as dictated by the software architecture for those
products. More precisely

“A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third
parties.”1

Component development refers to the production of components that
implement specific functionality within the context of a software
architecture.

1 Szyperski, C. Component Software: Beyond Object-Oriented Programming, 2nd Ed. Reading, MA:
Addison-Wesley, 2002.

Software Product Lines

154Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Component Development:
Aspects Peculiar to Product Lines

In a product line, developed components are either included in the core
asset base—and hence used in multiple products in the product line—or
are product-specific components.

Components that are included in the core asset base must support the
flexibility needed to satisfy the variation points specified in the product
line architecture and/or the product line requirements.

The singular aspect of component development that is peculiar to
product lines is providing required variation in the developed
components.

Software Product Lines

155Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Component Development: Example Practices - 1

Variation mechanisms
• aggregation/delegation: an object-oriented technique in which, the

functionality of an object is extended by delegating work it cannot normally
perform to an object that can

• inheritance: assigns base functionality to a superclass, and extended or
specialized functionality to a subclass

• overloading: reusing a named functionality to operate on different data types
• object attributes in Delphi: Variation is achieved by modifying the attribute

values or the actual set of attributes.
• dynamic class loading in Java: classes are loaded into memory when

needed. A product can query its context and that of its user to decide at
runtime which classes to load.

• static libraries: contain external functions that are linked to after compilation
time. By changing the libraries, one can change the implementations of
functions whose names and signatures are known.

Software Product Lines

156Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Component Development: Example Practices - 2

Variation mechanisms
• dynamic link libraries: give the flexibility of static libraries but defer the

decision until runtime based on the context and execution conditions
• conditional compilation: puts multiple implementations of a module in the

same file, with one chosen at compile time by providing the appropriate pre-
processor directives

• reflection: the ability of a program to manipulate data that represents
information about itself, or its execution environment or state. Reflective
programs can adjust their behavior based on their context.

• aspect-oriented programming: (Already described in the “Architecture
Definition” practice area.)

• design patterns: extensible, OO solution templates catalogued in various
handbooks

Software Product Lines

157Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Component Development: Practice Risks

The overriding risk in component development is building unsuitable
components for the software product line applications.

Doing so will result in
• poor product quality
• inability to field products quickly
• low customer satisfaction
• low organizational morale

Unsuitable components can result from
• an ill-conceived component development effort
• insufficient variability
• too much variability
• choice of the wrong variation mechanism(s)
• poor-quality components

Software Product Lines

158Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Component Development: For Further Reading

[Anastasopoulos 2000a]

[Jacobson 1997a]

[Szyperski 2002a]

Software Product Lines

159Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Summary

Software engineering practice areas are those necessary for applying
the appropriate technology to create and evolve both the core assets and
products.

There are nine software engineering practice areas.

It is essential to have a solid understanding of the domains involved in
the product line before proceeding with a product line effort.

The product line requirements, architecture, and components must
address not only the common features and qualities across the products
in the product line but also the variation among them. Explicit variation
mechanisms are necessary.

Software Product Lines

160Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

1. The “Architecture Evaluation” practice area is one we didn’t examine
in detail. What are some important quality attributes to consider when
evaluating a product line architecture?

2. Should every component be designed with the same variation
mechanism, or is there a case to be made for different components
using different mechanisms to achieve their variability?

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines
Part 2: Software Product Line Practice Areas
Session 3: Technical Management Practice

Areas

Software Product Lines

162Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Objectives

This session will
• introduce participants to the technical management practice areas, in general
• acquaint participants with the following specific technical management practice

areas:
– Scoping
– Configuration Management
– Measurement and Tracking

Software Product Lines

163Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Contents

Technical Management Practice Areas

Scoping

Configuration Management

Measurement and Tracking

Software Product Lines

164Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Technical Management Practice Areas - 1

Technical management practice areas are those necessary for managing
the creation and evolution of the core assets and the products.

Software Product Lines

165Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Technical Management Practice Areas - 2

Configuration Management
Make/Buy/Mine/Commission Analysis
Measurement and Tracking
Process Discipline
Scoping
Technical Planning
Technical Risk Management
Tool Support

Software Product Lines

166Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Contents

Technical Management Practice Areas

Scoping

Configuration Management

Measurement and Tracking

Software Product Lines

167Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scoping

Scoping bounds a system or set of systems by defining those behaviors
or aspects that are in and those that are out.

All system development involves scoping; there is no system for which
everything is in.

In conventional development, scoping is usually done informally (if at all),
as a prelude to the requirements engineering activity.

Software Product Lines

168Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scoping: Aspects Peculiar to Product Lines - 1

The overall goal is to define which products are in the product line and
which are out.

The scope represents the organization’s best prediction about what
products it will be asked to build in the foreseeable future.

The goal is to draw the boundary, so the product line is profitable.

The following things drive the scope definition:
• prevailing or predicted market drivers
• the nature of competing efforts
• the business goals that led to the product line approach
• technology forecasts that identify expected future technologies

Software Product Lines

169Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scoping: Aspects Peculiar to Product Lines - 2

Scope definition lets you determine if a proposed new product can be
reasonably developed as part of the existing (or planned) product line.

The scope starts out broad and very general.

In a product line of Web software
• Browsers are definitely in.
• Aircraft flight simulators are definitely out.
• Email handlers are… well, we aren’t sure yet.

The scope grows more detailed as our knowledge increases and the
product line matures.

Initially, many possible systems will be “on the cusp,” meaning their
“in/out” decision must made on a case-by-case basis. That’s healthy.

Software Product Lines

170Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scoping: Aspects Peculiar to Product Lines - 3

a: space of all possible products
b: early, coarse-grained “in/out” decisions
c: product line scope with a healthy area of indecision
d: product line scope = product line requirements

 a. b. c. d .

If many products appear on the cusp over time, you need to
reactively adjust the scope.

Software Product Lines

171Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Proactively Adjusting the Scope

Companies highly skilled at product line engineering routinely adjust their
scope to take advantage of opportunities that are in the market.
CelsiusTech
• saw that air defense systems were just a short distance away in scope from

ship systems
• was able to enter the air defense market quickly and effectively. Forty percent

of its air defense system was complete on day one.

Cummins, Inc.
• developed a software product line for automotive diesel engines
• saw a lucrative underutilized market nearby in industrial diesel engines
• was able to quickly enter and dominate the industrial diesel engine market

Motorola
• developed software product line for one-way pagers
• saw nearby market for two-way pagers and was able to use the same product

line architecture for both

Software Product Lines

172Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scoping: Example Practices - 1

Apply the What to Build pattern (described in Part 3, Session 4 of this
course)

Examine existing products yours—and others:
• Identify similar products.
• Gather documentation.
• Conduct surveys.
• Identify relevant capabilities and other factors.
• Determine which elements to include in the product line.

Draw a context diagram:
• depicts the important entities that affect or are affected by the product line

Software Product Lines

173Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scoping: Example Practices - 2

Key:
= External Entities

=
Information flow
between system
and environment

= Subsystems

Displays

Motor
Surrogate

Tuner /
Receiver Heads

Controls Sound
Surrogate

Display
Surrogate

Displays

Power and Speed Setting

Signals

Audio

Signals

Control
Selections

Recorded
Media

Speaker /
Phones

Broadcast
System

User

User Information

Personal
Sound
System

Environment

Context diagram of a personal sound system

Software Product Lines

174Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scoping: Example Practices - 3

Conduct stakeholder workshops:
• Identify business goals to be met by product line.
• Map the product line business goals to the organization’s business goals and

to users’ needs
• Describe current and potential future products that will constitute the product

line.
• Identify product and production constraints that may include platforms,

standards, protocols, and processes.

Develop an attribute/product matrix:
• sorts, in order of priority, the important attributes by which products in the

product line differ

Develop product line scenarios:
• describe user or system interactions with products in the product line

Software Product Lines

175Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scoping: Example Practices - 4

Attribute/product matrix for a personal audio system

Low-Cost
Model

Mid-Priced
Model

High-End
Model

Radio Tuner analog digital presets digital presets

Displays none frequency
frequency,
graphical
equalizer

Audio Control volume bass added
full-spectrum

equalizer

Software Product Lines

176Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scoping: Example Practices - 5

PuLSE-Eco (DeBaud and Schmid) is a method for determining the
scope of a product line.
• Product candidates are identified, based on input about the system

domain and stakeholders. Candidates include existing, planned, and
potential systems. The result is a list of potential characteristics for
products in the product line.

• Products and characteristics are combined into a product map, a kind
of product/attribute matrix.

• Evaluation functions are created from stakeholder and business goals.
These functions will enable the prediction of the costs and benefits of
imbuing a particular product with a particular characteristic (such as a
feature).

• Potential products are characterized using product maps and the
evaluation functions.

• Benefit analysis gathers the characteristic and evaluation information
and determines the scope of the product line.

Software Product Lines

177Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scoping: Practice Risks

The major risk associated with product line scoping is that the wrong set
of products will be targeted.
• The scope is too big or too small.

• The scope includes the wrong products.

• Essential stakeholders don’t participate in defining the scope.

These risks will lead to a chronic inability to respond to the needs of the
market and the premature breakdown of the product line.

Software Product Lines

178Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Scoping: For Further Reading

[Cohen 1998a]

[DeBaud 1999a]

[Fritsch 2004a]

[Jandourek 1996a]

[Robertson 1998a]

[Schmid 2001a]

[Withey 1996a]

Software Product Lines

179Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

In what ways does a scope definition resemble or differ from a product
line requirements specification?

Software Product Lines

180Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Contents

Technical Management Practice Areas

Scoping

Configuration Management

Measurement and Tracking

Software Product Lines

181Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Configuration Management - 1

Configuration management (CM) refers to a discipline for evaluating,
coordinating, approving or disapproving, and implementing changes in
artifacts that are used to construct and maintain software systems.

An artifact may be an item of hardware, software, or documentation.

CM enables the management of artifacts from the initial concept through
design, implementation, testing, baselining, building, release, and
maintenance.

CM is intended to eliminate the confusion and error brought about by the
existence of different versions of artifacts.

Software Product Lines

182Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Configuration Management - 2

Successful CM requires a well-defined and institutionalized set of policies
and standards that clearly define
• the set of artifacts (configuration items) under the jurisdiction of CM
• how artifacts are named
• how artifacts enter and leave the controlled set
• how an artifact under CM is allowed to change
• how under CM different versions of an artifact are made available and under

what conditions each version can be used
• how CM tools are used to enable and enforce CM

These policies and standards are documented in a CM process or plan
that informs everyone in the organization just how CM is carried out.

Software Product Lines

183Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Configuration Management:
Aspects Peculiar to Product Lines - 1

CM for product lines is a multidimensional version of CM for single
systems.

Product
Development

Core Asset
Development

Management

CM CM

Product Line CM

Software Product Lines

184Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Configuration Management:
Aspects Peculiar to Product Lines - 2

The mission of product line CM may be stated as allowing the rapid
reconstruction of any version of any product that may have been built
using various versions of the core assets and development/operating
environment plus various versions of product-specific artifacts.

Whereas “ordinary” CM may be different for each product, product line
CM keeps all products under control together.

Product line CM must also support the process of merging results either
because new versions of core assets are included in a product or
because product-specific results are introduced into the core asset base.

Since introducing changes may affect multiple versions of multiple
products, an impact analysis is an essential part of product line CM.

Software Product Lines

185Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Configuration Management:
Aspects Peculiar to Product Lines - 3

Tools, processes, and environments for product line CM must support the
following capabilities:
• parallel development: supporting different groups working on the same items

for different purposes
• distributed engineering: Organizations that develop product lines might be at

more than one site.
• build and release management: Build management enables developers to

create a version of a product for testing and/or integration. Release
management builds the final customer solution that also includes instantiation
of the developing and testing environment. In a product line context, release
management includes the release of core assets to product developers.

• change management: Resolutions of change proposals must be
communicated, and any resultant changes must be planned, assigned,
tracked, and broadcast.

• configuration and workspace management: Configuration and workspace
management specifies what a configuration is.

Software Product Lines

186Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Configuration Management:
Example Practices - 1

IEEE/ANSI standard for CM plans
• detailed IEEE/ANSI CM standard that contains a comprehensive outline for a

CM plan and several fully worked out examples of CM plans for different kinds
of systems and organizations. One sample plan is the “Software Configuration
Management Plan for a Product Line System.”

Best practices from practitioners, for example
• SCM patterns
• applying concept of configuration models from knowledge engineering to the

problem of product derivation in product lines

Software Product Lines

187Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Configuration Management:
Example Practices - 2

CMMI steps for CM
• The SEI Capability Maturity Model® Integration for System and Software

Engineering lists the following practices as instrumental for a CM capability in
an organization:
– Identify the configuration items, components, and related work products

that will be placed under CM.
– Establish and maintain a CM and change management system for

controlling work products.
– Create or release baselines for internal use and for delivery to the

customer.
– Track change requests for the configuration items.
– Control changes in the content of configuration items.
– Establish and maintain records describing configuration items.
– Perform configuration audits to maintain the integrity of the configuration

baselines.

Software Product Lines

188Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Configuration Management: Practice Risks

Without an adequate adhered-to CM process in place, developers will
not be able to build and deploy products correctly, let alone recreate
versions of products produced in the past.

Inadequate CM control can result from the following:
• an insufficiently robust process
• CM occurring too late
• multiple core asset evolution paths
• unenforced CM practices
• insufficiently robust tool support
• CM manager not understanding the tool capabilities or special needs of

product line CM

Software Product Lines

189Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Configuration Management:
For Further Reading

[Burrows 2005a]

[Crossroads 2005a]

[IEEE 1987a]

[Krueger 2002a]

[Leon 2005a]

Software Product Lines

190Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

What is the relationship between the CM tool and the CM process?

Software Product Lines

191Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Contents

Technical Management Practice Areas

Scoping

Configuration Management

Measurement and Tracking

Software Product Lines

192Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement and Tracking

The purpose of measurement is to
• support project tracking
• guide decision making
• determine whether goals are being met over time
• provide management with a justification for effort

Measurement-based tracking is based on
• defining and refining project goals that measurement helps track
• identifying success criteria and indicators for each goal
• defining appropriate measures
• developing a plan to operationalize and verify the measures

The measurement activity comprises two phases:
1. Initiation Phase
2. Performance Phase

Software Product Lines

193Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement and Tracking:
Aspects Peculiar to Product Lines - 1

Practices largely mirror those for single system efforts.

But unlike single-system projects, data collection must provide
information from three perspectives:

• core asset development
• product development
• management of the overall product line

Software Product Lines

194Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement and Tracking:
Aspects Peculiar to Product Lines - 2

Stakeholder Tracking Concern

Product line manager or product line
management oversight group

Efficiency, effectiveness, progress
against goals, and satisfaction of
production constraints of the overall
product line effort

Managers of core asset development Quality and usefulness of the core
assets
Productivity of those producing core
assets

Individual product managers Quality of the products
Efficiency of product developers

Software Product Lines

195Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement and Tracking:
Aspects Peculiar to Product Lines - 3

Measures required to track the progress of the overall product line effort
are mostly aggregated from the measures required to track progress of
its constituent core asset and product efforts.

For example:
Product line goal: Increased Profitability of Product Development
Tracked by
• Measures reported while component core assets are assembled according to

the production plan
• Cost measures associated with the development and evolution of the core

assets

Software Product Lines

196Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement and Tracking:
Aspects Peculiar to Product Lines - 4

Measures for effectiveness indicate Which helps to determine

which core assets are used by product
efforts and how often

whether the available core assets are
useful

how many bugs are found in core assets by
the product developers

the quality of the core assets

how much product efforts expend in finding,
tailoring, and integrating assets

needed improvements in supporting
infrastructure

where product efforts spend time otherwise opportunities for future core asset or
infrastructure work

Software Product Lines

197Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement and Tracking:
Example Practices - 1

Goal-driven software measurement (GDSM)
1. Define the goals.
2. Refine the goals using clarifying questions.
3. Define subgoals for the relevant stakeholder.
4. Operationalize the goal statements.
5. Determine the success criteria for the stakeholder.
6. Determine the success, progress, and analysis indicators associated with

those criteria.
7. Define the organizational strategies and activities for achieving their goals.
8. Determine the measures and data elements needed by all identified

indicators.
9. Assess the current infrastructure and identify actions needed to implement

the measures.
10.Develop a measurement plan that addresses actions to be taken and how

measurements will be verified.

Software Product Lines

198Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement and Tracking:
Example Practices - 2

Choose product line measures based on indicators that are of interest
to a product line manager, a core asset development manager, and a
product development manager.

Collect data using data collection techniques appropriate to the
associated types of measures. Collection techniques (which can be
manual or automated) include

• direct measurement of observable attributes of a process or product
• indirect measurement of objective attributes
• surveys for measuring subjective attributes
• derivation of implicit attribute measures as computations from other measures

Use measure-based reuse models.

Software Product Lines

199Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement and Tracking: Practice Risks

A poor measurement and tracking program will
• be a waste of time and resources
• have an opportunity cost
• cause resentment and mistrust of future measurement efforts
• fail to inform management accurately
• potentially result in bad management decisions

Potential causes of poor measurement and tracking include
• measure mismatch
• goals without measures
• measurement not being aligned
• costly measures
• measures without planned actions
• management by numbers

Software Product Lines

200Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Measurement and Tracking:
For Further Reading

[Geppert 2003a]

[Park 1996a]

[Poulin 1997a]

[Zubrow 2003a]

Software Product Lines

201Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

1. Reduced time to market is a key product line goal. How would you
measure time to market?

2. Some metrics can backfire. Think of the Dilbert cartoon character
who, upon hearing that his company was paying employees who
found bugs, went off to his cubicle to “write myself a new car.”
Which metrics might encourage the wrong behavior? What would you
measure in this case (instead of the “number of bugs found”) to fix the
situation?

Software Product Lines

202Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Summary

Technical management practice areas are those necessary for managing
the creation and evolution of the core assets and the products.

There are eight technical management practice areas.

The product line scope defines what products are targeted by the product
line.

CM is more complex for product lines than for single-system
development.

The measurement and tracking activity for product lines differs from that
for single-system development in that it must provide information about
the three essential product line activities.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines

Part 2: Software Product Line Practice Areas
Session 4: Organizational Management

Practice Areas

Software Product Lines

204Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Objectives

This session will
• introduce participants to the organizational management practice areas, in

general
• acquaint participants with the following specific organizational management

practice areas:
– Launching and Institutionalizing
– Structuring the Organization
– Building a Business Case
– Funding

Software Product Lines

205Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Organizational Management Practice Areas

Launching and Institutionalizing

Structuring the Organization

Building a Business Case

Funding

Software Product Lines

206Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Management Practice Areas - 1

Organizational management practice areas are those necessary for
orchestrating the entire software product line effort.

Software Product Lines

207Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Management Practice Areas - 2

Building a Business Case
Customer Interface Management
Developing an Acquisition Strategy
Funding
Launching and Institutionalizing
Market Analysis
Operations
Organizational Planning
Organizational Risk Management
Structuring the Organization
Technology Forecasting
Training

Software Product Lines

208Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Organizational Management Practice Areas

Launching and Institutionalizing

Structuring the Organization

Building a Business Case

Funding

Software Product Lines

209Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing

Launching and institutionalizing is about organizational change.

Change projects
• help organizations adopt a new technology or new way of doing business
• are highly context dependent; there is no invariant recipe.
• take into consideration the human aspects of change

Organizational change involves
• assessing the current state
• identifying the desired state
• bridging the gulf

Software Product Lines

210Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
Aspects Peculiar to Product Lines - 1

The change being launched and institutionalized is of course the
software product line approach.

Launching and institutionalizing a product line involves technology and
business change.

Launching a product line involves the judicious and timely adoption of
product line practices.
• The goal is to have an operational product line.
• An adoption plan shows how all parts of the organization adopt product line

capabilities, perhaps in a highly staged manner.

Software Product Lines

211Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
Aspects Peculiar to Product Lines - 2

Institutionalizing a product line requires that the organization consistently
use product line practices to achieve its business goals.

Product lines become community practice.

In short, launching and institutionalizing involves putting all of the
practice areas into place in an appropriate manner.

Software Product Lines

212Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
Example Practices - 1

The SEI Adoption Factory pattern (described in Part 3, Session 6 of this
course) can serve as a generic roadmap for product line adoption.

Use the SEI IDEAL model or the IDEAL model and the Adoption Factory
pattern together.

Software Product Lines

213Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
Example Practices - 2

Propose
Future
Actions

Analyze
and

Validate

Charter
Infrastructure

Build
Sponsorship

Set
Context

Initiating

Stimulus
for Change

Diagnosing

Acting

Learning

Establishing

Characterize
Current and

Desired States

Plan
Actions

Develop
Approach

Set
Priorities

Implement
Solutions

Refine
Solution

Pilot / Test
Solution

Create
Solution

Develop
Recommendations

SM IDEAL is a service mark of Carnegie Mellon University.
[McFeeley 96]

The IDEAL Model

Software Product Lines

214Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
Example Practices - 3

Pilot projects can be an important way to reduce risk, learn more, and
build advocacy. The criteria for choosing a pilot include
• scope: The pilot should be done in a relatively short time frame with

reasonable resources.
• importance and visibility: The organization should care whether the pilot

succeeds. But the pilot should not be so important that its failure would be
disastrous.

• probability of success: The effort should have a reasonable chance to
succeed.

• choice of participants: Participants in the pilot should be advocates (or at least
be open-minded).

Use proactive, reactive, and incremental approaches.

Use lightweight approaches first.

Software Product Lines

215Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
Example Practices - 4

Use product line diagnostics:
• SEI Product Line Technical ProbeSM (PLTPSM)
• SEI Product Line Quick Look
• Bosch Product Line Potential Analysis [Fritsch 2004a]
• Business, Architecture, Process, Organization (BAPO) evaluation

[van der Linden 2004a]

Develop product line goals, objectives, and strategies.

Use process improvement as a basis for launching and institutionalizing.

SM Product Line Technical Probe and PLTP are service marks of Carnegie Mellon University.

Software Product Lines

216Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
Practice Risks - 1

An inappropriate launching and institutionalizing strategy can
• result in failure of the product line to meet its business goals
• cause an organization to reject the product line approach

Software Product Lines

217Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
Practice Risks - 2
An inappropriate strategy can be caused by
• the lack of an identifiable champion or having a champion in the wrong

position
• approach mismatch
• inadequate management commitment
• insufficient staff commitment
• insufficient bounding or trying to solve everything at once
• inappropriate application
• premature standardization
• missed or delayed standardization opportunities
• insufficient tailoring of standard practices or trying to force-fit practices on the

organization
• failure to evolve the approach
• ineffective dissemination of information, such as through inadequate training
• lack of an emerging community

Software Product Lines

218Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching and Institutionalizing:
For Further Reading

[Ardis 2000a]

[Boeckle 2002a]

[Bosch 2002a]

[Brassard 2001a]

[Clements 2002c, Ch. 7]

[Clements 2002c, Ch. 8]

[Fritsch 2004a]

[Northrop 2004a]

[Wappler 2000a]

[van der Linden 2004a]

Software Product Lines

219Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

1. Successful launching requires cross-organizational buy-in. Which
groups in the organization would you target?

2. Where in an organization (yours, perhaps) would you expect to
encounter resistance to product line practice adoption? Why? What
would you do to counter it?

3. Sometimes successfully launched product lines fail to become
institutionalized. Why would that happen?

Software Product Lines

220Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Organizational Management Practice Areas

Launching and Institutionalizing

Structuring the Organization

Building a Business Case

Funding

Software Product Lines

221Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization

An organization’s structure determines which groups are responsible for
which activities in a development effort.

Often in traditional structures, a single team has total responsibility for all
aspects of a product.

Software Product Lines

222Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization:
Aspects Peculiar to Product Lines - 1

In a product line organization, roles should be identified that
• determine the production strategy
• determine the product line scope and associated business case and refresh

each in a routine and ongoing way
• produce and maintain the product line architecture
• determine the product line and product requirements
• design, produce, and maintain core assets and the associated production plan
• assess core assets for their utility and guide their evolution
• produce products
• determine the processes to be followed, and measure or assure compliance
• maintain the production environment
• forecast new trends and technologies

Software Product Lines

223Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization:
Aspects Peculiar to Product Lines - 2

For product line organizations, the key question is: Who builds the core
assets?
• a separate group: To avoid over-specialization of core assets to the product

whose team built them
• a product group(s): To avoid over-generalization and inefficiency; to avoid

“beauty but not profit”

Factors to consider:
• size of the effort and the number of products
• new development or mostly legacy-based development
• the funding model
• the high or low cost of tailoring core assets
• the volatility of core assets
• parallel or sequential product development

Software Product Lines

224Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization:
Aspects Peculiar to Product Lines - 3

Responsibilities of the unit(s) assigned to product development include
• making sure each new product uses the core asset base according to the

production plan
• working with the core asset owners to evolve new capabilities if necessary
• providing feedback to the core asset developers concerning the suitability and

quality of the core assets

If product development does not occur in a separate unit or an “open”
philosophy is embraced, the product developer role includes improving
and evolving core assets.

The organizational structure and the concept of operations need to be
closely coordinated and mutually supportive. Both will evolve over time.

Software Product Lines

225Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization:
Example Practices - 1

Organizational models from a product line survey [Bosch 2000b]

Product 2 Product n

. . .

Product 1

Architecture Components

Reusable
product-line
assets

Development Department

Software Product Lines

226Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization:
Example Practices - 2

Organizational models [Bosch 2000b] (cont.)

Product 2Product 1

Product 3

. . .

Business Unit

Architecture Components

Reusable
product-line
assets

Business Unit

Business Unit Business Unit

Product n

Software Product Lines

227Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization:
Example Practices - 3

Organizational models [Bosch 2000b] (cont.)

Domain Engineering Unit

. . .

Product 1

Architecture Components

Reusable
product-line
assets

Product 2

Product Engineering
Unit

Product Engineering
Unit

Product n

Product Engineering
Unit

Software Product Lines

228Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization:
Example Practices - 4

Organizational models [Bosch 2000b] (cont.)

. . .

Product 1

Product Engineering
Unit

Product Engineering
Unit

Product n

Product Engineering
Unit

Domain Engineering Unit

Architecture Component

Reusable
product-line
assets

Architecture

Specialized
product line

Components

. . .

Product 2

Domain Engineering Unit

Software Product Lines

229Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization:
Example Practices - 5

In Software Reuse (Chapter 9), Jacobson, Griss, and Jonsson prescribe
the following “competence units” that contain “workers with similar
competencies and entity object types that these workers are responsible
for:”
• requirements capture unit
• design unit
• testing unit
• component engineering unit
• architecture unit
• component support unit

Hybrid approaches: small distributed core group with component
representatives

Software Product Lines

230Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization:
Example Practices - 6

Structure for a distributed or globally dispersed organization includes
these options
• virtual core asset development teams with leaders in one location and

dedicated core asset developers in other locations
• core asset development teams in one location and product development

teams in other locations
• distributed product line management and architecture team with core assets

and products built by distributed teams who abide by an “open source
philosophy” within their organization

Software Product Lines

231Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization: Practice Risks - 1

Choosing a structure that is inappropriate for the given organizational
context

Lack of ample feedback and communication mechanisms

One size fits all, for all time

Reorganizing too often

Software Product Lines

232Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization: Practice Risks - 2

Ignoring key factors in implementing structural change
• existing organizational stress

• implementation history

• sponsorship

• resistance management

• culture

• change agent skills

Setting up an organizational structure without an accompanying
operational concept

Software Product Lines

233Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization:
For Further Reading

[Bosch 2000b]

[Brownsword 1996a]

[Jacobson 1997a]

Software Product Lines

234Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

1. Should there be a single testing unit for both core assets and products,
or one for each?

2. Conditions change over time. What mechanisms would you put in
place to tell you when it was time to adopt a new organizational
structure?

Software Product Lines

235Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Organizational Management Practice Areas

Launching and Institutionalizing

Structuring the Organization

Building a Business Case

Funding

Software Product Lines

236Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case - 1

A business case is a tool that helps you make business decisions by
predicting how they will affect your organization.

A business case is used
• initially, to justify pursuing a new business opportunity or approach
• later, to examine new or alternative angles on the opportunity

A business case addresses the following key questions:
• What specific changes must occur?
• What are the benefits of those changes?
• What are the costs and risks of those changes?
• How do we measure success?

Software Product Lines

237Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case - 2

The business case documents how closely aligned the opportunity is with
established business goals.

The goal of a business case is to provide management with a sufficient
understanding of the approach and adequate data to determine if the
return on investment (ROI) is sufficient to justify a proposed venture.

A business case should address these tasks [Humphrey 2000a]:
• deciding what to do
• estimating the likely costs and potential risks of all alternatives
• estimating the likely benefits contrasted with the current business practice
• developing a proposal for proceeding
• closing the deal

Software Product Lines

238Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case:
Aspects Peculiar to Product Lines - 1

A business case in a product line context can
• justify the effort to adopt a product line approach
• help decide which products to include in the product line

The business case includes the product line goals that will, in turn, drive
the data to be collected and the measures to be tracked for the product
line.

Organizations that adopt a software product line approach should know
what they expect to gain and what they will have to change. The
business case helps them to predict the payoff and the risk.

The business case reflects the facts and assumptions from domain
knowledge, product line scope, market analysis, and current technology
trends.

Software Product Lines

239Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case:
Aspects Peculiar to Product Lines - 2

Cumulative Cost

0

20

40

60

80

100

120

Time

Project 3

Project 2

Project 1

Production
Costs with
Assets

Asset
Development
Cost

Basic product line economics play into the business case.

Software Product Lines

240Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case:
Aspects Peculiar to Product Lines - 3

The business case for the entire product line is, itself, a valuable core
asset that should be documented, maintained, and revisited periodically
to make sure that the organization’s goals are still being adequately
served.

As products in the product line are developed, the role of the business
case evolves within the organization to become a more tactical
document.

In addition, the business case supports decisions to direct or redirect
resources during the product development and evolution phases.

Software Product Lines

241Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case: Example Practices - 1

Build a “Business case lite:” Every cost and benefit need not be
measured, only the major ones. “We won’t survive otherwise” is (with a
little added clarification/justification) a very compelling business case.

Estimate costs and benefits: Use “standard” product line costs, risks,
and benefits as the basis for a business case template. Then, fill it in
based on data specific to your company/industry.

Use Models: Cost-estimation or economic models can help to quantify
the business case.
• COPLIMO: Constructive Product Line Investment Model, based largely on

COCOMO (COnstructive COst MOdel)
• SIMPLE: Structured Intuitive Model For Product Line Economics

Software Product Lines

242Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case: Example Practices - 2

SEI Structured Intuitive Model For Product Line Economics
(SIMPLE)
• Economic models that use the organization’s current cost to develop a product

as the basis for comparison: Cprod

• Product line costs can be grouped into four cost functions:
– Corg – cost of converting current organization to a product line organization
– Ccab – cost of creating core assets
– Cunique – cost of creating the unique portion of each product
– Creuse – cost of understanding the core assets used in a product

• These functions can be used to define functions that are used to model
product development costs in the product line.

Software Product Lines

243Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case: Example Practices - 3

SIMPLE (cont)

The cost of building the n products using the current approach is

The cost of building the product line of n products is

The power of a product line is shifting as much cost as possible out of the
summation and into the fixed cost expressions.

()* prodCn

n

i
reuseuniquecaborg CCCC

1
())()(()()

Software Product Lines

244Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case: Example Practices - 4

()* prodCn

Weiss, D. M. & and Lai, C. T. R.
Software Product-Line Engineering: A Family-Based Software Development Process.
Reading, MA: Addison-Wesley, 1999.

C
um

ul
at

iv
e

C
os

ts

Numbers of Products

Current Practice

With Product Line
Approach

n

i
reuseuniquecaborg CCCC

1
())()(()()

SIMPLE (cont)

Software Product Lines

245Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case: Practice Risks

An inadequate business case (or lack of any business case) can set up a
product line organization for failure.

An inadequate business case can result from
• insufficient data
• unreliable historical data
• approaches that fail to work across organizational boundaries
• uncertain market conditions
• management indecision
• a shift in organizational goals and needs (trying to hit a moving target)

Software Product Lines

246Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case: For Further Reading

[Baldwin 2002a]
[Boehm 2003a]
[Clements 2002c, p. 226]
[Cohen 2003a]
[Ganesan 2006a]
[Humphrey 2000a]
[Reifer 1997a]
[SEI 2007h]
[Weiss 1991, pp. 45-49]

Software Product Lines

247Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

1. What happens if the predictions in a business case are too optimistic?

2. How does a business case relate to product line scoping?

Software Product Lines

248Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Organizational Management Practice Areas

Launching and Institutionalizing

Structuring the Organization

Building a Business Case

Funding

Software Product Lines

249Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Funding - 1

Software development efforts have to be financed; this practice area
addresses how.

Funding sources and models vary according to the organizational culture
and the nature of the software product being developed.
• Multiple copies of the software product are to be marketed, the organization

usually appropriates development funds to a business unit, or the business
unit appropriates its own funds.

• New products often get funded initially out of research and development
allocations.

• For products made specifically to serve the needs of one customer, the
customer usually provides the funds.

• The funding of product maintenance may come from a different source than
that of the development financing.

Software Product Lines

250Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Funding - 2

Whatever the source, somehow the funds are procured to support what it
takes to develop and then to evolve the software product.

Good estimates are required so that an adequate amount is allocated,
thereby providing a stable funding source through product completion.

Software Product Lines

251Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Funding: Aspects Peculiar to Product Lines - 1

Investment is required for any organizational change—a move to product
lines is no different. It will require funds for
• training
• different processes
• different management practices
• different tools
• establishing the production strategy and production method
• establishing the core asset base
• performing the initial analysis (such as achieving an understanding of the

relevant domains, scoping, requirements engineering, architecture definition,
and so on)

• establishing a production infrastructure

Software Product Lines

252Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Funding: Aspects Peculiar to Product Lines - 2

Funding must be sufficient so that the core assets can be of high quality
and have the appropriate applicability.

Funding provides ongoing investment to
• keep the core assets current
• update the analysis
• modernize the infrastructure

Funding must be stable and enduring so that the assets can be
maintained and the associated product line practices and tools can be
supported and improved.

The funding profile depends on the product line approach taken.

The magnitude of the funding required should be defined in the business
case for the product line.

Software Product Lines

253Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Funding: Example Practices - 1

Specific funding strategies include
• product-specific funding (individual customer, for example)
• direct funding from corporate sponsor/program
• product line organization’s discretionary funds
• borrowing funds from corporate sources
• first product (project) funds the effort
• multiple projects band together to share costs
• taxing of participating projects
• product-side tax on customers
• fee based on asset usage
• prorated cost recovery

Software Product Lines

254Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Funding: Example Practices - 2

Software Product Lines

255Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Funding: Practice Risks

Inadequate attention to the funding model for a product line will result in a
core asset base and products whose owners compete in unhealthy ways
for the finite resources available.

A poor funding model can result from any of the following:
• the inflexibility of the organization’s fiscal infrastructure
• waning management commitment
• externally imposed fiscal constraints
• a lack of strategic focus
• inadequate funding

Software Product Lines

256Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Summary

Organizational management practice areas are those necessary for
orchestrating the entire software product line effort.

There are twelve organizational management practice areas.

Launching and institutionalizing is a special case of organizational
change—one that involves technical and business dimensions.

There are choices of organizational structures for product lines;
organizational structure and operational concept go hand in hand.

A business case is needed to justify the product line approach and
continuously inform the scope.

A funding model for software product lines is both nontrivial and key.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines

Part 3: Putting the Practice Areas into Action
Session 1: Case Studies: Cummins, Inc.

Software Product Lines

258Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Structure

Course Introduction

Part 1: Software Product Line Fundamentals

Part 2: Software Product Line Practice Areas

Part 3: Putting the Practice Areas into Action

Wrap-Up

Software Product Lines

259Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Objectives

This lecture will acquaint participants with the
• usefulness of product line case studies
• context for the Cummins software product line
• practices that were used to launch and sustain the product line
• management practices employed on the effort
• results achieved by the Cummins effort
• lessons learned during the Cummins effort
• current Cummins status

Software Product Lines

260Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Contents

Case Studies

Cummins Background

Launching the Cummins Product Line

Practice Areas of Particular Interest

Cummins’ Results

Software Product Lines

261Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PRACTICE AREAS
Software Engineering Technical Management Organizational Management
Architecture Definition Configuration Management Building a Business Case

Architecture Evaluation Make/Buy/Mine/Commission
Analysis Customer Interface Management

Component Development Measurement and Tracking Developing an Acquisition
Strategy

Mining Existing Assets Process Discipline Funding

Requirements Engineering Scoping Launching and Institutionalizing
Software System Integration Technical Planning Market Analysis

Testing Technical Risk Management Operations
Understanding Relevant

Domains Tool Support Organizational Planning

Using Externally
Available Software

Organizational Risk
Management

Structuring the Organization

Technology Forecasting
Training

Review of
Framework
Version 5.0 ESSENTIAL

ACTIVITIES

Core Asset
Development

Product
Development

Management

Software Product Lines

262Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PRACTICE AREAS
Software Engineering Technical Management Organizational Management
Architecture Definition Configuration Management Building a Business Case

Architecture Evaluation Make/Buy/Mine/Commission
Analysis Customer Interface Management

Component Development Measurement and Tracking Developing an Acquisition
Strategy

Mining Existing Assets Process Discipline Funding

Requirements Engineering Scoping Launching and Institutionalizing
Software System Integration Technical Planning Market Analysis

Testing Technical Risk Management Operations
Understanding Relevant Domains Tool Support Organizational Planning

Using Externally
Available Software Organizational Risk Management

Structuring the Organization

Technology Forecasting
Training

Review of
Framework
Version 5.0

Key to differences from V4:
New Name and Substantial
Change
Substantial Change

ESSENTIAL
ACTIVITIES

Core Asset
Development

Product
Development

Management

Software Product Lines

263Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Dilemma: How Do You Apply
the 29 Practice Areas?

Organizations still have to figure out how to put the practice areas
into play.

Twenty-nine is a big number!

Software Product Lines

264Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Probe

GUIDANCE

Patterns

Help to Make It Happen

PRACTICE AREAS
Software Engineering Technical Management Organizational Management

CurriculumCase Studies

ESSENTIAL
ACTIVITIES

Core Asset
Development

Product
Development

Management

Software Product Lines

265Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Case Studies

CelsiusTech – CMU/SEI-96-TR-016
http://www.sei.cmu.edu/publications/documents/01.reports/96.tr.016.html

Cummins, Inc. – Software Product Lines: Practices and Patterns

Market Maker – Software Product Lines: Practices and Patterns

NRO/Raytheon – CMU/SEI-2001-TR-030
http://www.sei.cmu.edu/publications/documents/01.reports/02tr030.html

NUWC – CMU/SEI-2002-TN-018
http://www.sei.cmu.edu/publications/documents/02.reports/02tn018.html

Salion, Inc. – CMU/SEI-2002-TR-038
http://www.sei.cmu.edu/publications/documents/02.reports/02tr038.html

U.S. Army – CMU/SEI-2005-TR-019
http://www.sei.cmu.edu/publications/documents/05.reports/05tr019.html

Software Product Lines

266Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Contents

Case Studies

Cummins Background

Launching the Cummins Product Line

Practice Areas of Particular Interest

Cummins’ Results

Software Product Lines

267Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Cummins, Inc.

World’s largest
manufacturer of
commercial diesel engines
above 50 hp

25,000 employees

350 controls and
electronics engineers

$7B annual sales

Software Product Lines

268Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Domain with Complex Variation

Today’s diesel engines are driven by software.

• Micro-control of ignition timing is needed to achieve an optimum mix of power,
economy, and emissions.

• Conditions change dynamically as a function of road incline, temperature,
load, and so forth.

• Must also respond to statutory regulations that often change.

• Reliability is critical! Multimillion dollar fleets can be put out of commission by
a single bug.

• Software is about 130KSLOC – C, assembler, microcode.

• They have different sensors, platforms, and requirements.

Software Product Lines

269Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

In 1993, Cummins Had a Problem

The market was demanding new products:
• Six engine projects were underway.
• Another 12 were planned.

Each project had complete control over its development process,
architecture, and choice of language. Two were trying to use object-
oriented methods.

Ron Temple (VP in charge) realized that he would need another 40
engineers to handle the new projects, which was out of the question.

Temple realized this was no way to do business. In May 1994, he halted
all the projects.

Software Product Lines

270Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Contents

Case Studies

Cummins Background

Launching the Cummins Product Line

Practice Areas of Particular Interest

Cummins’ Results

Software Product Lines

271Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

First Steps

Temple split up the staff on the leading project:
• One half built core assets – generic software, documentation, and other assets

that every product could use.
• The other half became a pilot project for using the core assets to turn out a

product.
• The staff on the remaining projects trained or served as reviewers.

Software Product Lines

272Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case

At the same time, Temple made the business case to his management,
which in this case was direct and simple:

We simply cannot continue to do
business one project at a time.

Projected gains cited in the business plan included
• a cycle-time reduction—hope to shave a year off
• the ability to turn out more products without having to

hire 40 engineers
• product quality improvements
• a risk reduction
• higher customer satisfaction

Software Product Lines

273Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps

Cummins saw rolling out the product line as a six-step job:

1. Establish and implement the core asset implementation plan. Select and
task the core group.

2. Select legacy software for the starting point.

3. Establish core asset and development teams. Modify the legacy software to
make it meet the architecture.

4. Establish the workflow and tool set to be used. Establish detailed project
plans.

5. Pilot the first application. Improve the workflow and tool set.

6. Roll out subsequent products, and continue to improve the workflow and tool
set.

Software Product Lines

274Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

• Establish and implement the core
asset implementation plan. Select and
task the core group.

Software Engineering
Practice Areas

Architecture Definition

Architecture Evaluation

Component Development

Using Externally Available Software

Mining Existing Assets

Requirements Engineering

Software System Integration

Testing

Understanding Relevant Domains

Launching Steps as Practice Areas

Software Product Lines

275Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement the core

asset implementation plan. Select and
task the core group.

• Select legacy software for the starting
point.

Software Engineering
Practice Areas

Architecture Definition

Architecture Evaluation

Component Development

Using Externally Available Software

Mining Existing Assets

Requirements Engineering

Software System Integration

Testing

Understanding Relevant Domains

Software Product Lines

276Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement the core

asset implementation plan. Select and
task the core group.

• Select legacy software for the starting
point.

• Establish core asset and development
teams. Modify the legacy software to
make it meet the architecture.

Software Engineering
Practice Areas

Architecture Definition

Architecture Evaluation

Component Development

Using Externally Available Software

Mining Existing Assets

Requirements Engineering

Software System Integration

Testing

Understanding Relevant Domains

Software Product Lines

277Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement the core

asset implementation plan. Select and
task the core group.

• Select legacy software for the starting
point.

• Establish core asset and development
teams. Modify the legacy software to
make it meet the architecture.

• Establish the workflow and tool set to be
used. Establish detailed project plans.

Software Engineering
Practice Areas

Architecture Definition

Architecture Evaluation

Component Development

Using Externally Available Software

Mining Existing Assets

Requirements Engineering

Software System Integration

Testing

Understanding Relevant Domains

Software Product Lines

278Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement the core

asset implementation plan. Select and
task the core group.

• Select legacy software for the starting
point.

• Establish core asset and development
teams. Modify the legacy software to
make it meet the architecture.

• Establish the workflow and tool set to be
used. Establish detailed project plans.

• Pilot the first application. Improve the
workflow and tool set.

Software Engineering
Practice Areas

Architecture Definition

Architecture Evaluation

Component Development

Using Externally Available Software

Mining Existing Assets

Requirements Engineering

Software System Integration

Testing

Understanding Relevant Domains

Software Product Lines

279Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

• Establish and implement the core
asset implementation plan. Select and
task the core group.

• Select legacy software for the starting
point.

• Establish core asset and development
teams. Modify the legacy software to
make it meet the architecture.

• Establish the workflow and tool set to be
used. Establish detailed project plans.

• Pilot the first application. Improve the
workflow and tool set.

• Roll out subsequent products, and
continue to improve the workflow
and tool set.

Software Engineering
Practice Areas

Architecture Definition

Architecture Evaluation

Component Development

Using Externally Available Software

Mining Existing Assets

Requirements Engineering

Software System Integration

Testing

Understanding Relevant Domains

Launching Steps as Practice Areas

Software Product Lines

280Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement the core asset

implementation plan. Select and task the
core group.

Technical Management
Practice Areas

Configuration Management

Measurement and Tracking

Make/Buy/Mine/Commission
Analysis

Process Discipline

Scoping

Technical Planning

Technical Risk Management

Tool Support

Software Product Lines

281Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement the core asset

implementation plan. Select and task the
core group.

• Select legacy software for the starting
point.

Technical Management
Practice Areas

Configuration Management

Measurement and Tracking

Make/Buy/Mine/Commission
Analysis

Process Discipline

Scoping

Technical Planning

Technical Risk Management

Tool Support

Software Product Lines

282Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement the core asset

implementation plan. Select and task the
core group.

• Select legacy software for the starting
point.

• Establish core asset and development
teams. Modify the legacy software to
make it meet the architecture.

Technical Management
Practice Areas

Configuration Management

Measurement and Tracking

Make/Buy/Mine/Commission
Analysis

Process Discipline

Scoping

Technical Planning

Technical Risk Management

Tool Support

Software Product Lines

283Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement the core asset

implementation plan. Select and task the
core group.

• Select legacy software for the starting
point.

• Establish core asset and development
teams. Modify the legacy software to
make it meet the architecture.

• Establish the workflow and tool set
to be used. Establish detailed project
plans.

Technical Management
Practice Areas

Configuration Management

Measurement and Tracking

Make/Buy/Mine/Commission
Analysis

Process Discipline

Scoping

Technical Planning

Technical Risk Management

Tool Support

Software Product Lines

284Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement the core asset

implementation plan. Select and task the
core group.

• Select legacy software for the starting
point.

• Establish core asset and development
teams. Modify the legacy software to
make it meet the architecture.

• Establish the workflow and tool set
to be used. Establish detailed project
plans.

• Pilot the first application. Improve
workflow and tool set.

Technical Management
Practice Areas

Configuration Management

Measurement and Tracking

Make/Buy/Mine/Commission
Analysis

Process Discipline

Scoping

Technical Planning

Technical Risk Management

Tool Support

Software Product Lines

285Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

• Establish and implement the core asset
implementation plan. Select and task the
core group.

• Select legacy software for the starting
point.

• Establish core asset and development
teams. Modify the legacy software to
make it meet the architecture.

• Establish the workflow and tool set
to be used. Establish detailed project
plans.

• Pilot the first application. Improve
workflow and tool set.

• Roll out subsequent products,
continue to improve the workflow
and tool set.

Technical Management
Practice Areas

Configuration Management

Measurement and Tracking

Make/Buy/Mine/Commission
Analysis

Process Discipline

Scoping

Technical Planning

Technical Risk Management

Tool Support

Launching Steps as Practice Areas

Software Product Lines

286Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement core

asset implementation plan.
Select and task the core group.

Organizational Management
Practice Areas

Building a Business Case

Customer Interface Management

Developing an Acquisition Strategy

Funding

Launching and Institutionalizing*

Market Analysis

Operations

Organizational Planning

Organizational Risk Management

Structuring the Organization

Technology Forecasting

Training

* all activities

Software Product Lines

287Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement core

asset implementation plan.
Select and task the core group.

• Select legacy software for the starting
point.

Organizational Management
Practice Areas

Building a Business Case

Customer Interface Management

Developing an Acquisition Strategy

Funding

Launching and Institutionalizing*

Market Analysis

Operations

Organizational Planning

Organizational Risk Management

Structuring the Organization

Technology Forecasting

Training

* all activities

Software Product Lines

288Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement core

asset implementation plan.
Select and task the core group.

• Select legacy software for the starting
point.

• Establish core asset and development
teams. Modify the legacy software to
make it meet the architecture.

Organizational Management
Practice Areas

Building a Business Case

Customer Interface Management

Developing an Acquisition Strategy

Funding

Launching and Institutionalizing*

Market Analysis

Operations

Organizational Planning

Organizational Risk Management

Structuring the Organization

Technology Forecasting

Training

* all activities

Software Product Lines

289Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement core

asset implementation plan.
Select and task the core group.

• Select legacy software for the starting
point.

• Establish core asset and development
teams. Modify the legacy software to
make it meet the architecture.

• Establish the workflow and tool set to
be used. Establish detailed project
plans.

Organizational Management
Practice Areas

Building a Business Case

Customer Interface Management

Developing an Acquisition Strategy

Funding

Launching and Institutionalizing*

Market Analysis

Operations

Organizational Planning

Organizational Risk Management

Structuring the Organization

Technology Forecasting

Training

* all activities

Software Product Lines

290Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Steps as Practice Areas
• Establish and implement core

asset implementation plan.
Select and task the core group.

• Select legacy software for the starting
point.

• Establish core asset and development
teams. Modify the legacy software to
make it meet the architecture.

• Establish the workflow and tool set to
be used. Establish detailed project
plans.

• Pilot the first application.
Improve the workflow and tool set.

Organizational Management
Practice Areas

Building a Business Case

Customer Interface Management

Developing an Acquisition Strategy

Funding

Launching and Institutionalizing*

Market Analysis

Operations

Organizational Planning

Organizational Risk Management

Structuring the Organization

Technology Forecasting

Training

* all activities

Software Product Lines

291Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

• Establish and implement core
asset implementation plan.
Select and task the core group.

• Select legacy software for the starting
point.

• Establish core asset and development
teams. Modify the legacy software to
make it meet the architecture.

• Establish the workflow and tool set to
be used. Establish detailed project
plans.

• Pilot the first application.
Improve the workflow and tool set.

• Roll out subsequent products, continue
to improve the workflow and tool set.

Organizational Management
Practice Areas

Building a Business Case

Customer Interface Management

Developing an Acquisition Strategy

Funding

Launching and Institutionalizing*

Market Analysis

Operations

Organizational Planning

Organizational Risk Management

Structuring the Organization

Technology Forecasting

Training

Launching Steps as Practice Areas

* all activities

Software Product Lines

292Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Contents

Case Studies

Cummins Background

Launching the Cummins Product Line

Practice Areas of Particular Interest

Cummins’ Results

Software Product Lines

293Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building the Core Assets - 1

Mining Existing Assets

• Cummins chose a single system under development
as the source of its software core assets.

• That system’s architecture was the most modular and well documented.

• It had demonstrated the necessary reliability and stability.

Software Product Lines

294Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building the Core Assets - 2

Requirements Engineering/
Understanding Relevant Domains

• Cummins used a combination of traditional
requirements analysis and lightweight domain analysis.

• Features (customer-visible capabilities) were the basic unit.

• Domain experts in different market segments were interviewed. They
identified features and points of variability.

• Features were labeled “unique” (assigned to product teams) or “common”
(assigned to the core asset team).

• Features were assigned likelihood, delivery timing, and relative priority.

Software Product Lines

295Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building the Core Assets - 3

Architecture Definition/
Software System Integration

Cummins relied on modularity and the ability to
combine different feature-implementing modules.
• Wrappers were used to “rehabilitate” legacy components and provide

parameter-based variability.
– highly parameterized code. 300 parameters are available for the

customer to set after delivery.
• Generators were used to implement the variability.
• Build tools were used to automate builds.

– “...build tools more than paid for themselves by removing human error from
tedious, time-consuming work. They also provided a structure to enforce
the use of the architectural variability mechanisms.”

Software Product Lines

296Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization

At Cummins, engines are roughly divided
into automotive, industrial, and power
generation, with one business unit for each.

To prevent stove-piping, each business unit (BU) has
only partial responsibility; none is self-sufficient.
• The core asset group is part of the industrial BU.
• The automotive BU has some of the resources for manufacturing commonality.

Cooperation is ingrained in the culture: BU managers have “personal
commitments” to one another. Everyone understands that nobody
succeeds unless everybody succeeds.

Software Product Lines

297Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Funding

At Cummins, funding policy helps makes the
organizational structure work.

In addition to paying for creating the core assets,
Cummins’ funding policy assures that they are used.
• The core asset group’s budget is established.
• Each BU is billed a portion of that budget in proportion to its sales.
• Thus, each BU pays for core assets whether it uses them or not.

Thus, there is every incentive to use the core assets.

Software Product Lines

298Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational/Technical Planning

Cummins makes the organizational structure work.

The core asset group does not set priorities.
They are set by the business units at weekly
meetings where progress is reported.

“Face-to-face meetings are critical...”
• “…because you have to look the other managers in the eye when you say

what your project’s priorities are.”

• This is where “personal commitments” are made.

• Such meetings discourage cheating. No manager wants to admit he had the
resources to bypass the core asset group and build a component himself. In
Cummins’ culture, that’s a sign of an overfunded project!

Software Product Lines

299Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Other Practice Areas at Cummins

Architecture Evaluation
• frequent, unstructured reviews of architecture

Testing
• unit testing, subsystem integration testing, system testing,

deployment testing, regression testing, acceptance or field testing
• Core asset team performs generic testing.
• Product teams perform product testing.

Risk Management
• Every contract includes risk management in stated activities.
• standard “identify/analyze/plan/track/control” model
• addressed during technical reviews, management reviews, and weekly

coordination meetings

Software Product Lines

300Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Contents

Case Studies

Cummins Background

Launching the Cummins Product Line

Practice Areas of Particular Interest

Cummins’ Results

Software Product Lines

301Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Cummins’ Results

In early 1995, the product was launched on time (relative to revamped
schedule) with high quality. Others followed—on time and with high
quality.

Achieved a product family capability with a breathtaking capacity for
variation, or customization
• nine basic engine types
• 4-18 cylinders
• 3.9 - 164 liter displacement
• 12 kinds of electronic control modules
• five kinds of microprocessors
• 10 kinds of fuel systems
• diesel fuel or natural gas

Software Product Lines

302Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Quantitative Results - 1

Twenty product groups were launched, which account for over 1,000
separate engine applications.

Seventy-five percent of all software, on average, comes from core
assets.

Product cycle time has plummeted. The time to first engine start went
from 250 person-months to a few person-months. One prototype was
built over a weekend.

Software quality is at an all-time high, which Cummins attributes to the
product line approach.

Software Product Lines

303Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Quantitative Results - 2

Customer satisfaction is high. Productivity gains enable new features to
be developed (more than 200 to date).

Projects are more successful. Before product line approach, 3 of 10
were on track, 4 were failing, and 3 were on the edge. Now, 15 of 15 are
on track.

There is a widespread feeling within Cummins that developers are more
portable and hence more valuable.

Software Product Lines

304Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Quantitative Results - 3

Achieving this flexibility without the product line approach would have
required 3.6 times the current staff.

Supported
Components

1992 1993 1994 1995 1996 1997 1998

Electronic control
modules (ECMs)

3 3 4 5 5 11 12

Fuel Systems

2 2 3 5 5 10 11

Engines

3 3 5 5 12 16 17

Features * ECM 60 80 180 370 1100 2200 2400

Features per ECM

Software Product Lines

305Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Quantitative Results - 4

Today’s largest teams are smaller than yesterday’s smallest teams. Two-
person teams are not unusual.

Cummins’ management has a history of embracing change—carefully
targeted change.
• Managers estimate that process improvement alone has brought a benefit/cost

ratio of 2:1 to 3:1.
• Managers estimate that the product line approach has brought a benefit/cost

ratio of 10:1.

The product line approach let the company quickly enter and then
dominate the industrial diesel engine market.

Software Product Lines

306Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Lessons Learned - 1

Cummins credits its success to an effective, well-placed champion
(Temple).

A culture of cross-organizational cooperation reinforced by policy was a
recurring theme.

Mining small assets is often the most feasible task, but it delivers the
smallest payoff. Resolving this tradeoff is the key to successful mining.

Developers recognized that configuration management is critical and
strongly suggest keeping traces from requirements - test cases.

Software Product Lines

307Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Lessons Learned - 2

The product builder’s guide started out as a “guide” that was hundreds of
pages long and was descriptive rather than prescriptive. Compliance
was not enforced. All of these were mistakes that were later corrected.

Cummins tracks cost, reuse, and conformance metrics of various kinds.
“Metrics are a challenge. Institutionalize them up front.”

Engineering the requirements across business units was critical.

Software Product Lines

308Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Current Status - 1

The original product line that Cummins built is now called the Core I
product line.

The Core I product line was a success beyond expectations, but it did
have shortcomings and Cummins’ organizational context changed a bit
over the years.

The original Core I team did a self-diagnosis against the 29 practice
areas and noted deficiencies.

Cummins launched a Core II product line
• not from emergency business needs, as was Core I
• but rather from a mature realization that the organization could do better

Software Product Lines

309Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Current Status - 2

Core II includes
• a new core asset base
• newly derived products
• a new product line process
• a new production method, strategy, and plan
• a new organizational structure
• a new operational concept
• a powerful, new toolset

Core II is meeting its goals.
• It is a much fuller and more mature product line capability.

Software Product Lines

310Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Current Status - 3

The overall impact of a software product line approach on Cummins as
measured by Core II results includes
• freed up resources (time, money, and people) to invest in new technologies

and state-of-the-art tools and simulation capabilities
• an all-time high in product quality
• continuously shrinking time to market
• an ability to handle increased breadth and complexity of products
• an ability to outpace its market rivals

Product lines have now become institutionalized at Cummins.
• There is no longer a need for a product line champion.
• The product line approach is community practice—everyone is a champion

of the product line approach.

Software Product Lines

311Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 1 Summary

Cummins’ product line launch story echoes product line success themes
seen on other successful efforts, namely

• a compelling business case

• deep domain expertise

• a rich legacy base

• a dedicated champion

• organizational cohesion

• courage to try new engineering approaches

Cummins’ product line institutionalization story shows how an
organization can translate product line adoption into a continuous,
competitive edge.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines

Part 3: Putting the Practice Areas into Action
Session 2: Case Studies: Control Channel

Toolkit

Software Product Lines

313Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Objectives

This lecture will acquaint participants with the
• CCT context
• practices that were used to launch CCT
• CCT core assets and the processes that generated them
• management practices employed on the CCT effort
• results achieved by the CCT effort
• lessons learned by the CCT effort

Software Product Lines

314Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Contextual Background

Launching CCT

Engineering the CCT Core Assets

Managing the CCT Effort

Early Benefits from CCT

Lessons and Issues

Software Product Lines

315Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Background

The Control Channel Toolkit (CCT) is a software asset base for ground-
based spacecraft command and control systems that was commissioned
by one organization (the National Reconnaissance Office [NRO]) and
built under contract by another (the Raytheon Company).

Software Product Lines

316Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Control Channels - 1

Ground-based command and control is employed throughout the life
cycle of a space vehicle project.
• Ground-based spacecraft command and control systems are also called

control channels.
• A typical control channel is 500,000 LOC.

Control channels provide ground processing to support spacecraft so that
operations staff can
• monitor spacecraft functions
• configure spacecraft service and payload systems
• manage spacecraft orbits and attitudes
• perform mission planning

Software Product Lines

317Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Control Channels - 2

Some control channel processing is real time or near real time and is
called execution processing.

The remainder is batch or off-line processing and is called planning.

Software Product Lines

318Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Control Channels: Execution Processing

The control channel
• receives raw telemetry from the spacecraft and the antenna ground system

through its front-end processing equipment and converts it into a client-usable
form

• distributes the telemetry to client processes to make real-time assessments of
the spacecraft’s health

• permits client processes to initiate command requests
• archives telemetry, command, and other system data
• models the on-board processor instruction and data loading and its execution

Software Product Lines

319Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Control Channels: Planning

The control channel performs planning functions to
• estimate and propagate the spacecraft orbit and attitude
• calculate maneuvers to change orbit or attitude
• schedule future contacts and resource needs

These functions include both launch and early-orbit support as well as
on-orbit operations.

Software Product Lines

320Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The CCT Concept

CCT (begun in August 1997) emerged from earlier reuse efforts
(DCCS, 1994; SSCS, 1996).

CCT was originally conceived to be a “toolkit” that would consist of
• a set of reusable software components
• tools to help integrate them into complete systems

The toolkit concept evolved into a software product line asset base.

Software Product Lines

321Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is CCT?

CCT is a software product line asset base consisting of
• generalized requirements
• domain specifications
• a software architecture
• a set of reusable software components
• test procedures
• a development environment definition
• a guide for reusing the architecture and components

Software Product Lines

322Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

CCT Users

CCT users build products.

CCT users are individual government contractors commissioned by a
government office to build spacecraft command and control systems
using the CCT software assets.

Software Product Lines

323Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Three Essential Activities and CCT

CCT
Development
by Raytheon

Product
Development

by CCT
Users

Technical
Management
– Raytheon

Organizational
Management

- NRO

Software Product Lines

324Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Profiles: The NRO

The NRO
• designs, builds, and operates defense reconnaissance satellites
• provides intelligence products that can warn of potential trouble spots around

the world, help plan military operations, and monitor the environment

Software Product Lines

325Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Profiles: Raytheon

The NRO selected Raytheon* as the prime contractor for the CCT
development.

Raytheon
• had broad experience in satellite ground control systems

– was knowledgeable in orbit dynamics, coordinate system transformations,
vehicle configuration variability, and so forth

• was accustomed to following defined processes for both software project
management and software development

* Actually the NRO selected the Hughes Electronics Corporation, which subsequently
merged with the Raytheon Company.

Software Product Lines

326Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational Profiles: CCT Development Team

The Raytheon CCT team
• had 20-25 members through architecture implementation
• had 45 members during component engineering
• was part of the Denver, CO office
• had few subcontractors

Software Product Lines

327Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Contextual Background

Launching CCT

Engineering the CCT Core Assets

Managing the CCT Effort

Early Benefits from CCT

Lessons and Issues

Software Product Lines

328Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Launching Practice Areas

The feasibility study team, and the initial CCT team that followed,
exercised practices in the following software product line practice areas:
• Building a Business Case
• Developing an Acquisition Strategy
• Structuring the Organization
• Technical Planning
• Organizational Planning
• Operations

Together these practices areas made up the Launching part of the
“Launching and Institutionalizing” practice area.

Software Product Lines

329Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case for CCT - 1

The business goals for CCT were to
• reduce life-cycle costs
• reduce development risks
• promote interoperability
• provide flexibility

– Flexibility meant accommodating multiple implementation contractors and
enabling the integration of both commercially available and legacy assets.

Software Product Lines

330Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case for CCT - 2

The feasibility study team examined an array of government and
commercial spacecraft command and control systems, including the
three under primary investigation. They determined
• original program estimates as baselines
• the commonality of requirements
• risks and mitigation strategies
• the overall cost savings for systems using CCT from1997 to 2009

– development: 18.2% savings
– sustainment: 27.8% savings

Software Product Lines

331Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building a Business Case for CCT - 3

The feasibility study concluded that
• There was a credible CCT development schedule.
• CCT would ensure significant cost savings for the three programs over a 10-

year period.
• Risks that could preclude CCT’s success were manageable.
• CCT supported the overall U.S. government reuse vision.

Program sponsors were sold on the vision of greatly reduced risk and the
promise of cost savings in the future.

Software Product Lines

332Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Acquisition Strategy

The CCT asset base was commissioned by the U.S. government.

Three government programs formed a partnership to acquire software
that could be used across those programs, as well as others.

The U.S. government retains total rights to the architecture and
components.

Raytheon is free to develop commercial derivations.

Software Product Lines

333Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization

There were four organizational groups (stakeholders) involved in the
CCT effort:
1. the NRO
2. Raytheon (the commissioned developer)
3. organizations developing the systems for which CCT was launched

(Spacecraft C2 System, DCCS, and SSCS)
4. future CCT users

Software Product Lines

334Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization: Raytheon - 1
Organizational Unit
contractor program office

program support

domain engineering and
architecture

component engineering

application engineering

test engineering

training

sustainment engineering

Responsibilities
technical management of development effort; accountable to the
NRO’s CCT Program Office

technical management support functions: for example, configuration
management, quality assurance, business operations

requirements engineering; architecture definition

component development

testing of architecture that demonstrates the ability to build products
from CCT

component and assembly testing

training materials and internal training of CCT personnel

fixing and enhancing of CCT baseline; working with application
engineers and users to refine, deliver, and maintain the CCT assets

Software Product Lines

335Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization: Raytheon - 2

CCT development was structured into six overlapping increments with an
integrated development team responsible for each.
• Members of the integrated teams came from a cross section of the

organizational units (with the exception of the first increment that involved only
the Domain Engineering and Architecture groups).

• The phases and the integrated teams made the iteration explicit.

Software Product Lines

336Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization: NRO

The NRO’s organizational unit for CCT was the CCT Program Office
consisting of
• a small team of government management and technical personnel who

managed CCT development at the organizational level
• a small number of technical personnel from two government research centers

(the SEI and the Aerospace Corporation)

The NRO also created a variety of working groups to ensure effective
communication and guide CCT over the extended life cycle.

• CCT Working Group – coordinated project-level decisions for the CCT
program and ran the stakeholder working groups

• Stakeholder Working Groups – provided direction for the CCT component and
sustainment engineering groups

• Architecture Working Group – advised the CCT Working Group on issues
related to the CCT architecture

Software Product Lines

337Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational and Technical Planning - 1

The NRO and Raytheon partnered in the planning of CCT.
• The development period was from August 1997 to December 1999.
• The development plan addressed

– the NRO’s organizational management needs
– Raytheon’s technical management needs for plotting and tracking
– Spacecraft C2’s needs for the CCT assets

Software Product Lines

338Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Organizational and Technical Planning - 2

• Other plans included
– Configuration management
– Risk management
– Quality assurance
– Testing
– Transition
– Sustainment

All CCT plans were
• accessible at the CCT Web site
• updated religiously

Software Product Lines

339Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Operations - 1

Operations for core asset development were governed by the plans set in
motion:
• The integrated teams for each of the six development increments carried out

the development tasks.
• The CCT effort was process driven and took advantage of what was available

(legacy assets, proven algorithms, and COTS products).
• There were frequent technical interchange meetings, weekly status meetings

with the CCT Program Office, and extensive use of the CCT Web site.

Software Product Lines

340Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Operations - 2

Operations for core asset development were governed by the
plans set in motion: (cont)
• The NRO held a modest number of reviews.
• Metrics were defined, and corresponding data was collected.
• A proof-of-concept prototype for mining was developed.

The NRO developed the CCT Program Concept of Operations
(CONOPS) to document explicitly
• how the CCT effort would connect with the product line it was intended to

support
• procedures and criteria for working with potential CCT users

Software Product Lines

341Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Contextual Background

Launching CCT

Engineering the CCT Core Assets

Managing the CCT Effort

Early Benefits from CCT

Lessons and Issues

Software Product Lines

342Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

CCT Software Engineering Processes - 1

The CCT development effort consisted of six major software engineering
processes:
1. domain engineering and architecture – defined and specified the product line

and created the architecture
2. component engineering – created the components
3. application engineering – created an application as a test product and tested

“reusability” of the assets
4. test engineering – validated CCT
5. sustainment engineering – managed the maintenance and evolution of the

assets
6. training – created training materials for CCT team and users

Note: These processes map to the practice areas, but CCT parlance is used to be
faithful to the experience

Software Product Lines

343Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

CCT Software Engineering Processes - 2

These processes
• proceeded through six increments, delivering successively more complete

versions of the CCT assets
• incorporated many of the practices of Jacobson’s incremental and iterative

reuse-based approach and Kruchten’s “4+1 view” model
• evolved during the course of the development (e.g., an architecture evaluation

step and the architecture model as a separate deliverable were added)
• resulted in the major CCT assets

– domain specification
– architecture model
– reference architecture
– reuse guide
– components

Software Product Lines

344Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Domain Analysis - 1

Though a formal domain analysis method was not used, the following
essential tasks of domain analysis were performed:
• capture and analyze common requirements and their variation across several

systems
• synthesize them into a set of common requirements for the product line
• capture the essential terminology

Software Product Lines

345Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Domain Analysis - 2

Product line requirements were classified into two domains:
• Execution
• Planning

Within these two domains, component categories were identified (e.g.,
the handling of telemetry streams and orbit estimation) as were the
common services that support these categories (e.g., persistent storage
services and event notification services).

This partitioning provided the basis for the logical view of the CCT
architecture.

Software Product Lines

346Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Domain Analysis - 3

There were three documents that described the scope and the general
requirements of the product line:
1. Domain Definition Document – described the common features and defined

the scope in terms of the mission and system characteristics that CCT
supports

2. Generalized Requirements Specification – documented the CCT
requirements, capturing common capabilities to be provided and expressing
variability in terms of variation points

3. CCT Domain Specification Document – contained use case diagrams and
descriptions for the common requirements

Software Product Lines

347Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture - 1

The architecture follows the “4+1” view model and was described in
UML, as supported by the Rational Rose tool.*

Architecture definition and component engineering were closely coupled.

The process for defining the software architecture evolved considerably
during the development of the CCT assets.

* The tool did not support some CCT architectural representations that consequently
had to be handled separately.

Software Product Lines

348Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture - 2

Two key documents describe the CCT architecture and its use:
1. CCT Architecture Model – provides a complete description of the architecture

(philosophical underpinnings, architectural drivers, architectural and design
patterns,* and architectural views)

2. CCT Reuse Guide – documents the CCT assets that could be used to build a
product in the product line and the programming approaches to use

* A notable feature of the CCT architecture is the abundant use of architectural and
design patterns, which provided a vocabulary for describing and reasoning about
the architecture.

Software Product Lines

349Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture - 3

The CCT architecture
• uses the Common Object Request Broker Architecture (CORBA) for the inter-

component communication infrastructure
– CORBA facilities are used for common services.

• has two subsystems: planning and execution
• within the subsystems, divides functionality into component categories

– Components in different categories might use each other in well-defined
ways to achieve system functions.

– Component categories across the two subsystems do not interact except by
reading data from and writing data to shared files.

Software Product Lines

350Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture - 4: CCT Execution Architecture

Front-End
Processor Status

LRV

HistoryOBP

Persistence
Service

ORB

Operator
Displays

External
Interfaces

Naming
Service

Control

CCT

Store

Software Product Lines

351Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture - 5: CCT Planning Architecture
Operator
Display

Operator
Display

Operator
Display

Persistence
Service

Event
Service

Naming
Service

Vehicle
Components,

Control,
Environment

CCT

Operator
Display

Timeline
Display

Schedule
Passplan,

create
connectivity

Maneuver
Station

keeping,
prediction,

momentum,
mgmt,

injection
and

transfer

Orbit
Generation,
estimation,

event.
analysis

Attitude
Generation,
estimation,

event.
analysis

Evaluation
retrieve,

trend

ORBPlanning
Data Access

Store

Software Product Lines

352Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture - 6: Variation Support

Each variation point identified during domain specification was supported
in the architecture by one of six standard mechanisms:
1. dynamic attributes
2. template
3. inheritance
4. parameterization
5. function extension (callbacks)
6. scripting

Software Product Lines

353Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Building Products from CCT Assets

The process of starting with the architecture and components and
building applications included the following steps:
1. Determine COTS and legacy usage in the intended system.
2. Identify real-time user interface products and database implementations.
3. Select a CORBA vendor to provide the intra-system communication

infrastructure.
4. Address security needs by adding security layers or secure gateways.
5. Determine how to extend and vary the CCT components.
6. Package the components into executable applications and allocate to nodes

on the intended system’s physical network.

Software Product Lines

354Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Architecture Evaluation

Both the planning and execution architecture underwent explicit
evaluation using the SEI Software Architecture Analysis Method (SAAM).
• The SAAM is a scenario-based architecture evaluation approach that

specifically examines modifiability and that involves the system (in this case,
the product line) stakeholders in the evaluation process.

For CCT, the SAAM produced scenarios of usage for ground-based
spacecraft command and control systems.
• Some were aimed at illuminating the production plan by which systems are

built from the CCT assets.

Neither the planning nor the execution architecture revealed any
modifiability problems that would require more than a few person-months
to correct.

Software Product Lines

355Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Component Engineering

The components in each component category were implemented:
• according to the development plan in planned increments (with a few

exceptions)
• to handle the variation points already specified
• to have the interfaces and interconnection mechanisms called for by the

software architecture
– Descriptions of component interfaces were included in the Architecture

Model and restrictions were specified in the Reuse Guide.

Software Product Lines

356Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Testing - 1

Application engineering and test engineering together built the system
test architecture and executed detailed test procedures.

The system test architecture was a test application that was
incrementally built and used to perform the formal testing of CCT
components.

The test engineers validated CCT’s reusability, including the architecture
and other assets:
• They built test plans and cases based on the use cases in the Domain

Specification.

Software Product Lines

357Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Testing - 2

CCT defined four levels of testing:
1. Level 0: unit testing (informal, performed by component engineering)
2. Level 1: requirements verification of components and component categories

(formal, performed by test engineering)
3. Level 2: integration testing using the test architecture (informal, performed by

application engineering
4. Level 3: system-level performance requirements verification (formal,

performed by test engineering)

Software Product Lines

358Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Testing - 3

Assets

System Test
Architecture

Increment 1 Increment 2 . . . Final Increment

Spacecraft
C2 System

Software Product Lines

359Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Testing - 4

The Test and Integration Plan described the test methodology in generic
terms for the first increment and then in more specific terms, on an
increment-by-increment basis.

Discrepancy reports documented and tracked all problems discovered
during testing.

The test engineering process validated CCT’s reusability.

The test engineering group participated throughout the CCT development
cycle and in all the standing meetings.

Software Product Lines

360Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Documentation

Because it was a product line, the CCT program produced some
documents that are not found in typical government procurement cycles,
including
• CCT Domain Definition
• Generalized Requirements Specification
• CCT Domain Specification
• CCT System Test Architecture
• CCT Portability Demonstration Plan
• CCT Sustainment Support Plan
• CCT Program Concept of Operations
• CCT Architecture Model
• CCT Reuse Guide

Software Product Lines

361Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Contextual Background

Launching CCT

Engineering the CCT Core Assets

Managing the CCT Effort

Early Benefits from CCT

Lessons and Issues

Software Product Lines

362Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Management Practices - 1

Raytheon’s process sophistication and discipline resulted in the superb
execution of CCT’s technical management activities.

Practices from the following practice areas were stitched into the fabric of
the CCT development process:
• Technical Planning
• Configuration Management
• Technical Risk Management
• Process Discipline
• Measurement and Tracking
• Make/Buy/Mine/Commission Analysis
• Scoping
• Testing

Software Product Lines

363Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Management Practices - 2

The NRO management chain responsible for CCT all supported strategic
reuse.
• They were open to the changes that a product line approach necessitated.
• They provided unwavering support.
• The CCT program manager was deeply committed to the effort, flexible,

innovative, and willing to listen to advice from the experts he involved on the
government side.

The Raytheon CCT program manager was structured, well organized,
technically well grounded, and a superb communicator who turned others
in his organization into CCT believers.

Together, the NRO and Raytheon managers (Ohlinger and Shaw)
provided a protective shield and a supportive environment for the CCT
team; they led the CCT product line effort.

Software Product Lines

364Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Contextual Background

Launching CCT

Engineering the CCT Core Assets

Managing the CCT Effort

Early Benefits from CCT

Lessons and Issues

Software Product Lines

365Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The CCT Development Effort

CCT is a groundbreaking effort within its government communities.

CCT was completed on schedule and within budget in December 1999
with no outstanding risks and no outstanding actions.

Software Product Lines

366Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

First CCT-Based Product - 1

Because of CCT, the Spacecraft C2 Program is enjoying reduced
development costs, schedules, number of required workers, and product
risks, as well as increased product flexibility.
• quality: There was one-tenth the typical number of discrepancy

reports for a system of this type, and the problems identified were all
local.

• performance: Using CCT improved performance over the results
predicted without CCT.

Software Product Lines

367Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

First CCT-Based Product - 2

• integration time: Incremental builds were completed in weeks rather
than months.

• code volume: Total SLOC developed by Spacecraft C2 was 76% less
than originally planned.

• productivity:
– development staff of 15 versus 100+
– 50% reduction of overall costs
– 50% reduction of overall development time
– flexibility in meeting requests for modifications

Software Product Lines

368Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

First CCT-Based Product - 3

CCT was treated like a COTS product initially; training was required, and
then development proceeded on the basis of a domain specification,
interface definitions, and the Reuse Guide.

Interviews with Spacecraft C2 developers revealed
• high morale
• low attrition
• praise for the CCT assets
• greater professional satisfaction with the product line approach than with the

traditional single-systems approach

Software Product Lines

369Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Beyond the First Customer

The NRO is using the CCT assets in other programs.

The NRO and SEI jointly developed a business case based on the CCT
experience for NRO-wide strategic reuse through product lines.

Raytheon is using the CCT assets in other systems and the CCT
processes and tools in other efforts.

Other commercial organizations have access to CCT assets.

Software Product Lines

370Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Contents

Contextual Background

Launching CCT

Engineering the CCT Core Assets

Managing the CCT Effort

Early Benefits from CCT

Lessons and Issues

Software Product Lines

371Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Lessons Learned

Many lessons were learned during the CCT effort. Some are issues that
nag other product line efforts:
• Tool support is inadequate.
• Domain analysis documentation is important.
• An early architecture focus is best.
• Product builders need more support.
• CCT users need reuse metrics.
• It pays to be flexible.
• Cross-unit teams work.
• A real product is a benefit.

Software Product Lines

372Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Current Status - 1

The lessons from CCT have been applied across Raytheon.
• The whole product line approach has been replicated.
• CCT spawned a Collaborative Product Reuse (CPR) strategy within this

division of Raytheon.

Raytheon is now at version 8.0 of CCT.
• There is still the original execution and planning structure.
• There is a single maintenance effort that keeps track of multiple baselines.
• CCT still uses CORBA, but there is a move to services; CCT lends itself to a

service-oriented approach.

Software Product Lines

373Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Current Status - 2

There are formal and informal users of CCT.
• All formal users are classified systems. The benefits continue to be

substantial.
• The original production plan is followed. The users use the CCT Reuse Guide.
• Parts of CCT have been ported to another product line.
• Parts of CCT and the CCT philosophy have been ported to other systems.
• No contractor other than Raytheon has used CCT.

Leaving out the man-machine interface (MMI) has had adverse effects.
• CCT has no “face” to it to demonstrate its capabilities to other potential

customers.

Software Product Lines

374Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 2 Summary

CCT echoes product line successful launch themes seen on other
successful efforts, namely
• deep domain expertise
• a rich legacy base
• process maturity
• a dedicated champion (in this case two)
• a strong architectural vision
• an incremental development and refinement approach

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines

Part 3: Putting the Practice Areas into Action
Session 3: Case Studies: Salion, Inc.

Software Product Lines

376Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Objectives

This lecture will acquaint participants with the approach Salion, Inc. took
in its product line effort.

Software Product Lines

377Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Salion, Inc.

A small organization: 21 people

Maker of software for suppliers who sell complex products via proposals:
• Salion Revenue Process Manager - helps suppliers manage

opportunities. It contains a workflow engine and Web-based
communication tools to help a supplier organization manage the
collaboration of design and pricing. It keeps track of a proposal’s
status and assists in the assembly of the final document.

• Salion Knowledge Manager - helps triage and analyze requests for
proposals (RFPs), with decision support capabilities and analysis of
bid performance, win/loss rates, and pricing; helps choose the best
candidates from among all the available opportunities; uses historical
information to prioritize opportunities and improve response rates

• Salion Business Link - extends collaboration between the supplier
and the customer, and between the supplier and subsuppliers

Software Product Lines

378Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Salion’s Specialized but Important Market - 1

“It should take us one day or less to turn a quote around. For some
reason, it takes five weeks. This process is out of control.”
— Director of Engineering, Tier 1 automotive supplier

“We recently rushed a late quote out the door that we thought we had
priced with a ‘nice margin.’ In reality, the quote was for a part that we had
been selling at twice the price we quoted. Luckily, our customer only
asked for one year of retroactive rebates.”
— Director of Sales, Tier 1 automotive supplier

Software Product Lines

379Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Salion’s Specialized but Important Market - 2

“We just spent $100,000 on an opportunity that we had no chance of
winning. We bid on the same business two years ago and our price was
50% too high. We have no way to capture or analyze our historical sales
and bidding performance, so we make the same mistakes over and
over.”
— Tier 2 automotive supplier

“We spent $600,000 in overnight shipping costs last year.”
— Tier 1 automotive supplier

Software Product Lines

380Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Variations Handled by Salion, Inc. - 1

Customers run different combinations of products.

There are three installation options:
1. run on customer’s hardware (installed)
2. run on Salion’s dedicated hardware (hosted)
3. run on Salion’s shared hardware

Software Product Lines

381Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Variations Handled by Salion, Inc. - 2

Each customer will have a unique workflow, a unique set of input screens
and other user-interface concerns, and a unique set of reports he/she
wants to generate.

Each customer will have unique “bulk load” requirements, involving the
transformation of existing data and databases into forms compatible with
Salion’s products.

An automotive industry trade group has defined a business-to-business
transaction framework encompassing some 120 standard objects to be
used to transfer information from organization to organization. Not every
customer will want to make use of all 120 objects.

Software Product Lines

382Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

How Salion Builds Its Product Line

Salion first produced a “standard” product as its entry into the market.

That product formed the basis for Salion’s software product line and the
basis for each new customer-specific product it fielded.

The standard product was more than an engineering model from which
“real” systems were produced; it was also sold.

Typical product: 40 modules, 150K SLOC

Software Product Lines

383Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Customization Versus Configuration

Salion builds subsequent products by
• customizing elements of the “standard” product
• configuring elements of the “standard” product

Early on, Salion tried to make many elements configurable:
• forms manager
• customized reports manager

The results were wasted effort, wrong guesses, and bloated software.
Now, Salion customizes these aspects.

Tool support plays an important role in managing these variations:
• 3,333 files for 3 products
• 88 files represent variations

Software Product Lines

384Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Practice Areas Especially Germane to the
Salion Effort

Scoping
Understanding Relevant Domains
Process Discipline
Architecture Definition
Using Externally Available Software
Tool Support
Market Analysis
Customer Interface Management
Operations
Measurement and Tracking
Structuring the Organization

Software Product Lines

385Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Salion’s Product Line Benefits

Seven developers produce and support sophisticated, highly secure, high-
availability, COTS-intensive systems.

At the time the SEI wrote the Salion case study, Salion had produced its 12th 30-
day release, and all releases were on schedule.

Building the standard product took 190 person-months.
• Building the first customer product took just 15 person-months with 97% reuse.
• Building the second product took 30% less effort.

Salion’s approach gives it a superb position to answer investors’ question: “How
are you going to scale?”

• normal answer: Rewrite the product to make it robust, increase development staff, and
bring on the QA staff.

• Salion’s answer: Nothing. We can scale right now, as we are.

Software Product Lines

386Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Summary

Salion’s software product line story is that of a small, nimble organization
that from the beginning recognized that a reactive product line approach
was the way to achieve flexibility in an application domain in which the
future could not be predicted reliably.

Software Product Lines

387Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Discussion

Contrast the product line approaches taken by Cummins, Raytheon (on
CCT), and Salion, and comment on the appropriateness of each for the
organization in question.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines
Part 3: Putting the Practice Areas into Action
Session 4: Software Product Line Practice

Patterns

Software Product Lines

389Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Objectives

This lecture will introduce participants to
• the concept of software product line practice patterns
• the product line practice template
• sample software product line practice patterns and how they can be used
• the current software product line practice pattern collection

Software Product Lines

390Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Contents

The Value of Patterns
Pattern Descriptions
Example Patterns
• What to Build
• Factory
• Each Asset
• Product Parts
• Product Builder
• Assembly Line
• Process
• Cold Start

Pattern Collection

Software Product Lines

391Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PRACTICE AREAS
Software Engineering Technical Management Organizational Management

Architecture Definition Configuration Management Building a Business Case

Architecture Evaluation Make/Buy/Mine/Commission
Analysis Customer Interface Management

Component Development Measurement and Tracking Developing an Acquisition
Strategy

Mining Existing Assets Process Discipline Funding

Requirements Engineering Scoping Launching and Institutionalizing
Software System Integration Technical Planning Market Analysis

Testing Technical Risk Management Operations
Understanding Relevant

Domains Tool Support Organizational Planning

Using Externally
Available Software

Organizational Risk
Management

Structuring the Organization

Technology Forecasting
Training

Framework
Version 5.0 ESSENTIAL

ACTIVITIES

Core Asset
Development

Product
Development

Management

Software Product Lines

392Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Help to Make It Happen

ProbePatternsCase Studies

GUIDANCE

PRACTICE AREAS
Software Engineering Technical Management Organizational Management

Curriculum

ESSENTIAL
ACTIVITIES

Core Asset
Development

Product
Development

Management

Software Product Lines

393Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Patterns Can Help

Patterns are a way of expressing common context and
problem-solution pairs.

Patterns have been found to be useful in building architecture,
economics, software architecture, software design, software
implementation, process improvement, and others.

Patterns assist in effecting a divide-and-conquer approach.

Software Product Lines

394Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PATTERN

Organizational SituationContext

What part of a product line
effort needs to be
accomplished

Problem

Grouping of practice areas
Relations among these
practice areas (and/or
groups if there is more than
one)

Solution

Software Product Line Practice Patterns

Software Product Lines

395Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

How Do Product Line Practice Patterns Help?

Product line practice patterns
• address recurring product line problems
• codify existing, well-proven software product line experience
• identify and specify abstractions that are broader in scope than single practice

areas
• provide an additional common vocabulary for understanding product lines
• are a means of documenting new and ongoing product line efforts
• help manage complexity
• can be combined to build complex product line solutions

Software Product Lines

396Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 3 Contents

The Value of Patterns
Pattern Descriptions
Example Patterns
• What to Build
• Factory
• Each Asset
• Product Parts
• Product Builder
• Assembly Line
• Process
• Cold Start

Pattern Collection

Software Product Lines

397Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Pattern Descriptions

Patterns need to be described
• in an easily understandable way
• with sufficient detail to permit you to recognize the pattern context and

problem and to implement the solution
• consistently

Software Product Lines

398Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Template for Software Product Line Practice
Patterns
Name: a unique and intuitive pattern name and a short summary of the
pattern
Example: one or more scenarios to help illustrate the context and the
problem
Context: the organizational situations in which the pattern may apply
Problem: what part of a product line effort needs to be accomplished
Solution: the basis for the practice area pattern grouping underlying the
pattern
Static: lists the practice areas in each group
Dynamics: a table, diagram(s), or possibly scenario(s) describing the
relations among the practice areas in each group and/or among the
groups if there is more than one
Application: any suggested guidelines for applying the pattern
Variants: a brief description of known variants or specializations of the
pattern
Consequences: the benefits and any known limitations of the pattern

Software Product Lines

399Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A Word About Pattern Dynamics

Software product line activities are iterative.
• Any relation that shows a dynamic interaction between two practice areas has

to be iterative.
• The relations will vary with the pattern.
• Whatever the relation, it is always iterative.
• The arrow shown below denotes the shifting of active emphasis but NOT

sequential activity.

practice area A practice area B

Software Product Lines

400Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Contents

The Value of Patterns
Pattern Descriptions
Example Patterns
• What to Build
• Factory
• Each Asset
• Product Parts
• Product Builder
• Assembly Line
• Process
• Cold Start

Pattern Collection

Software Product Lines

401Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What to Build Pattern - 1

Name:
The What to Build pattern helps an organization determine what
products ought to be in its software product line—what products to build

Context:
An organization has decided to field a software product line and knows
the general product area for the set of products.

Problem:
To determine what products should be included in the product line

Solution:
Determining what to build requires information related to the product
area, technology, and market; the business justification; and the process
for describing the set of products to be included in the product line.

Software Product Lines

402Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What to Build Pattern - 2

Static:
The practice areas that address the solution and that provide the
structure for the What to Build pattern are
• Market Analysis
• Understanding Relevant Domains
• Technology Forecasting
• Building a Business Case
• Scoping

Software Product Lines

403Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Dynamic Structure

What to Build Pattern - 3

Understanding
Relevant
Domains

Market Analysis Technology
Forecasting

Building a
Business Case

Scoping

Domain
Models

Product
Set

Market
Climate

Product Line
Scope

Justification

Product Set

Business
Case

Technology
Predictions

Technology
Predictions

Market
Climate

Dynamic Structure

Software Product Lines

404Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What to Build Pattern - 4

Application:
• Practices from “Market Analysis,” “Understanding Relevant Domains,” and

“Technology Forecasting” can be conducted in parallel by separate groups.
• The pattern is especially applicable to those well versed in the marketplace.
• It can be carried out by any size organization.
• It can (and should) be applied after a product line already exists.

Variants:
• Analysis pattern
• Forced March pattern

Consequences:
The What to Build pattern provides a handle on what practices are
needed to figure out what is in the product line.

Software Product Lines

405Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Contents

The Value of Patterns
Pattern Descriptions
Example Patterns
• What to Build
• Factory
• Each Asset
• Product Parts
• Product Builder
• Assembly Line
• Process
• Cold Start

Pattern Collection

Software Product Lines

406Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Factory Pattern - 1

Name:
The Factory pattern is a composite pattern that describes the entire
product line organization.
Context:
An organization is considering (or fielding) a product line.
Problem:
To map the entire product line effort
Solution:
Fielding a product line involves
• deciding what products to include in the product line
• preparing the organization for a product line approach
• designing and providing the core assets that will used to construct products
• building and using the production infrastructure (plans, processes, tools)
• building products from core assets in a prescribed way
• monitoring the product line effort and making course corrections

Software Product Lines

407Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Factory Pattern - 2

Static:
The Factory pattern consists of the following other patterns:
• Assembly Line
• Each Asset
• Cold Start
• In Motion
• Product Builder
• Product Parts
• Monitor
• What to Build

Software Product Lines

408Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Dynamic Structure

Factory Pattern - 3

Dynamic Structure

Cold Start In Motion Monitor

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line

Informs and information flow

Supports

Software Product Lines

409Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Factory Pattern - 4

Application:
The Factory pattern gives a high-level view of a product line organization.

Variants:
• Adoption Factory pattern

Consequences:
The Factory pattern is a top-down view of the product line organization
and a blueprint for a divide-and-conquer strategy.

Software Product Lines

410Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Contents

The Value of Patterns
Pattern Descriptions
Example Patterns
• What to Build
• Factory
• Each Asset
• Product Parts
• Product Builder
• Assembly Line
• Process
• Cold Start

Pattern Collection

Software Product Lines

411Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Each Asset Pattern - 1

Name:
The Each Asset pattern should be used whenever any asset in the core
asset base is being developed.

Context:
The pattern user knows the asset to be developed, has the specifications
or other necessary information for the asset, and knows who will
complete the task. The person(s) to complete the task is knowledgeable
in that area.

Software Product Lines

412Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Each Asset Pattern - 2

Problem:
To use the proper set of practices to build the asset so that it will be an
effective member of the product line’s asset base

Solution:
The asset needs to be built in a way that is appropriate for an asset of its
type and with the appropriate tools. Other necessities of asset building
need to be addressed (e.g., work plan for the construction, data
collection and tracking, attached process development, and testing).

Software Product Lines

413Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Each Asset Pattern - 3

Static:
The practice areas that address the solution and that provide the
structure for the Each Asset pattern are
• the practice area that relates to the development of the asset in question - PA*
• Tool Support
• Technical Planning
• Process Discipline
• Testing
• Configuration Management
• Measurement and Tracking

Software Product Lines

414Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Each Asset Pattern - 4

Dynamic Structure

Process
Discipline

Work Plan
Progress and

Changes

Testing

Configuration
Management

Tool Support

Technical
Planning

Measurement and Tracking

Data

Work
Plan

Tools

Attached
Processes

CM
Process

Test Cases,
Procedures

Tested, Baselined Asset
with Attached Process

PA*

PA* = practices to develop the asset
(e.g., “Architecture Definition” for
the architecture,
“Requirements Engineering” for
requirements, etc.)

Software Product Lines

415Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Each Asset Pattern - 5

Application:
The Each Asset pattern is an atomic pattern that you can use for building
each and every asset that is included in the core asset base.

Variants:
• Each Asset Apprentice pattern
• Evolve Each Asset pattern

Consequences:
The Each Asset pattern is useful in the following ways:
• It points the way in the construction of each and every core asset.
• It shows how the technical management and software engineering practice

areas are blended to perform the essential activity of core asset development.
• It assumes known asset responsibility, asset specifications, and requisite

knowledge.

Software Product Lines

416Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Contents

The Value of Patterns
Pattern Descriptions
Example Patterns
• What to Build
• Factory
• Each Asset
• Product Parts
• Product Builder
• Assembly Line
• Process
• Cold Start

Pattern Collection

Software Product Lines

417Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Parts Pattern - 1

Name:
The Product Parts pattern is a composite pattern. It consists of practice
areas and other patterns that should be used to provide the core assets
that will be part of the products in the product line.

Context:
An organization knows what products are to be included in the product
line and has designated knowledgeable individuals or groups to develop*

the core assets.

* build, buy, mine, or contract

Software Product Lines

418Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Parts Pattern - 2

Problem:
To develop the core assets that will be joined together to form the
products in the software product line.

Solution:
The core assets of interest to Product Parts are the product line
requirements, the product line architecture, the components, and their
test-related artifacts. Each of these core assets needs to be equipped
with an attached process that describes how it will be used in the
construction of products. The best source for each component needs to
be determined. Individual components could be built in-house, mined
from something the organization already has, bought if commercially
available, or contracted out to someone else to build. Each core asset
needs to be tested, and the suite of core assets needs to be integrated
and tested.

Software Product Lines

419Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Parts Pattern - 3

Static:
Four practice area patterns and seven practice areas address the
solution and provide the structure for the Product Parts pattern.
The patterns are
• Each Asset for requirements
• Each Asset for architecture
• Each Asset for components
• Each Asset for test-related artifacts

The practice areas are
• Architecture Evaluation
• Make/Buy/Mine/Commission Analysis
• Mining Existing Assets
• Using Externally Available Software
• Developing an Acquisition Strategy
• Software System Integration
• Testing

Software Product Lines

420Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Parts Pattern - 4

Dynamic StructureData Flow

Informs

Requirements

Using Existing
Available
Software

Each Asset

Testing
Software
System
Integration

Each Asset
Architecture

Components

Testing

Make/Buy/Mine/Commission Analysis

Each Asset
Mining

Existing
Assets

Developing
an Acquisition

Strategy

Architecture
Evaluation

Each Asset

Software Product Lines

421Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Parts Pattern - 5

Application:
• Individuals and teams with a combination of software engineering and

technical management skills are required.
• The practices will get parceled out depending on the way the product line

organization has been structured and the way the roles and responsibilities
have been defined.

Variants:
• Green Field pattern
• Barren Field pattern
• Plowed Field pattern

Consequences:
The Product Parts pattern links together the practices that design and
provide the parts for the products. It provides a roadmap for core asset
development assuming you know the scope of the product line and have
delineated responsibilities for core asset development.

Software Product Lines

422Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Contents

The Value of Patterns
Pattern Descriptions
Example Patterns
• What to Build
• Factory
• Each Asset
• Product Parts
• Product Builder
• Assembly Line
• Process
• Cold Start

Pattern Collection

Software Product Lines

423Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Builder Pattern - 1

Name:
The Product Builder pattern should be used whenever any product in
the product line is being developed.

Context:
An organization has already established the production plan, the
production capability, and the core asset base and has designated
knowledgeable individuals or groups to develop a product that has been
determined to be in the product line.

Problem:
To develop a product from the core assets using the production plan

Solution:
The production plan is followed using the established production
capability to create an instance of the product line.

Software Product Lines

424Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Builder Pattern - 2

Static:
The practice areas that address the solution and provide the structure for
the Product Builder pattern are
• Requirements Engineering
• Architecture Definition
• Architecture Evaluation
• Component Development
• Testing
• Software System Integration

Software Product Lines

425Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Builder Pattern - 3

Dynamic Structure

Architecture
Definition

Requirements Engineering

Product
Requirements

Architecture
Evaluation

Component
Development

Software
System
Integration

Testing

Product
Requirements

Product
Architecture

Product
Components

Informs

Software Product Lines

426Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Builder Pattern - 4

Application:
• involves following the production plan, which includes an attached process for

the major assets
• is performed by a product development team

Variants:
• Product Gen pattern

Consequences:
The Product Builder pattern collects those practices that are needed to
construct products.
It assumes
• production capability
• an existing asset base
• knowledgeable product developers

Software Product Lines

427Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Contents

The Value of Patterns
Pattern Descriptions
Example Patterns
• What to Build
• Factory
• Each Asset
• Product Parts
• Product Builder
• Assembly Line
• Process
• Cold Start

Pattern Collection

Software Product Lines

428Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Assembly Line Pattern - 1

Name:
The Assembly Line pattern should be used to set up and run the
production capability of a software product line.

Context:
An organization has made a decision to launch a product line effort.

Problem:
To provide and use the tools and processes necessary to support the
development of products from the product line’s core assets

Solution:
The assembly line dictates how to assemble the products from their core
asset parts and specifies which asset versions to use and where to find
them, the schedule for the assembly, the tools, and the coordination of
activities.

Software Product Lines

429Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Assembly Line Pattern - 2

Static:
The practice areas that address the solution and that provide the
structure for the Assembly Line pattern are
• Configuration Management
• Process Discipline
• Tool Support
• Operations
• Technical Planning
• Organizational Planning

Software Product Lines

430Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Assembly Line Pattern - 3

Dynamic Structure

Configuration
Management

Process
Discipline

Tool Support

Operations

Organizational
Planning

Technical
Planning

Production
Plan

Tooling

Product Line Plans

Product Plans

CM
Process

Operational
Concept

Software Product Lines

431Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Assembly Line Pattern - 4

Application:
A large organization might charter a software support group carrying out
the technical management practices in the Assembly Line pattern and
assist the product managers and the product line manager.

In a small organization, the product line manager and one or two
developers would perform the Assembly Line pattern practices.

Variants:
None known.

Consequences:
The Assembly Line pattern provides the handle on those practices that
are needed to use the core assets routinely and efficiently.

Software Product Lines

432Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Contents

The Value of Patterns
Pattern Descriptions
Example Patterns
• What to Build
• Factory
• Each Asset
• Product Parts
• Product Builder
• Assembly Line
• Process
• Cold Start

Pattern Collection

Software Product Lines

433Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process Pattern - 1

Name:
The Process pattern should be used to support all the product line
activities that require processes.

Context:
An organization has made a decision to launch a product line effort.

Problem:
To develop the processes necessary to support both the development of
core assets and the development of products from those assets

Solution:
A software product line approach requires processes for carrying out an
assortment of activities so that those activities are performed routinely
and with predictable results by one or more teams operating
harmoniously.

Software Product Lines

434Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process Pattern - 2

Static:
There is a single group that contains practice areas and a pattern that
address the solution and provide the structure for the Process pattern.
The pattern is
• Each Asset for all assets in the asset base

The practice areas are
• Configuration Management
• Measurement and Tracking
• Process Discipline
• Operations
• Organizational Planning
• Organizational Risk Management
• Technical Planning
• Technical Risk Management

Software Product Lines

435Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process Pattern - 3

Dynamic Structure

Each Asset *

Process Discipline

Organizational
Risk

Management

Technical
Risk

Management

Measurement
and Tracking

Operations

Configuration
Management

Organizational
Planning

Technical
Planning

Informs

* For each asset

Software Product Lines

436Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Process Pattern - 4

Application:
Often, in a medium-sized to large organization, a group is dedicated to
process definition and improvement.
In a small organization, someone must have process definition
capabilities because defined processes are important for the discipline
required for product lines, even if those processes are lightweight ones
for a small organization context.

Variants:
• Process Improvement pattern

Consequences:
The Process pattern is a building-block pattern that is required to support
the product line operation. It is the scaffolding for the assembly line.

Software Product Lines

437Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Contents

The Value of Patterns
Pattern Descriptions
Example Patterns
• What to Build
• Factory
• Each Asset
• Product Parts
• Product Builder
• Assembly Line
• Process
• Cold Start

Pattern Collection

Software Product Lines

438Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Cold Start Pattern - 1

Name:
The Cold Start pattern should be used when an organization is
launching a software product line for the first time.

Context:
An organization is launching its first software product line.

Problem:
To effectively prepare the organization for its first software product line
production

Solution:
The person in charge must launch the effort—fund, staff, provide training,
prepare customers, arrange for suppliers, develop a concept of
operations, and create the requisite plans.

Software Product Lines

439Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Cold Start Pattern - 2

Static:
The practice areas that address the solution and that provide the
structure for the Cold Start pattern are
• Launching and Institutionalizing
• Funding
• Customer Interface Management
• Developing an Acquisition Strategy
• Operations
• Organizational Planning
• Organizational Risk Management
• Structuring the Organization
• Training

Software Product Lines

440Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Cold Start Pattern - 3

Informs or
provides input to Dynamic Structure

Launching and Institutionalizing

Structuring the Organization

Customer
Interface
Management

Organizational
Planning

Organizational
Risk Management

TrainingDeveloping an
Acquisition Strategy

Operations

Funding

Software Product Lines

441Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Cold Start Pattern - 4

Application:
• People in charge apply the Cold Start pattern.
• Organizational management skills, authority, and leadership are required.
• Begin with the launching practices as a way to frame the other practices.

Variants:
• Warm Start pattern

Consequences:
The Cold Start pattern is very helpful to managers who have newly opted
for a product line approach.

The Cold Start pattern relies on the authority, the commitment, and the
organizational skills of the pattern user.

Software Product Lines

442Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Contents

The Value of Patterns
Pattern Descriptions
Example Patterns
• What to Build
• Factory
• Each Asset
• Product Parts
• Product Builder
• Assembly Line
• Process
• Cold Start

Pattern Collection

Software Product Lines

443Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

About the Pattern Collection

We have developed a useful, starter set of 12 patterns, some of which
have variants.

The context for some of the patterns is universal, while for others, it is
specific to organizational conditions.

There are relationships among some of the patterns.

Software Product Lines

444Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Pattern Variants

Assembly Line
Cold Start Warm Start
Curriculum
Each Asset Each Asset Apprentice

Evolve Each Asset
Essentials Coverage
Factory Adoption Factory
In Motion
Monitor
Process Process Improvement
Product Builder Product Gen

Product Parts Green Field
Barren Field
Plowed Field

What to Build Analysis
Forced March

Current Set Of Patterns

Software Product Lines

445Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Pattern Coverage

The practice area patterns can help you put the practice areas into play
in a manageable way, but they don’t do all your work.

Moreover, using any of the practice area patterns does not constitute a
waiver to exclude any of the 29 practice areas not covered.

All the practice areas are essential to a real mastery of software product
lines.

Software Product Lines

446Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Summary

Product line practice patterns give common product line problem/solution
pairs, where the problems are product line work to be done and the
solutions are the groups of practice areas that must be applied to
accomplish the work.

A collection of 12 product line practice patterns has been defined.

Product line practice patterns make the move to product lines more
manageable.

Software Product Lines

447Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Exercise 2

Relating the case studies to the What to Build pattern.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines
Part 3: Putting the Practice Areas into Action
Session 5: SEI Product Line Technical Probe

Software Product Lines

449Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 4 Objectives

This session will acquaint participants with the
• SEI Product Line Technical ProbeSM (PLTPSM)
• PLTP process

SM Product Line Technical Probe and PLTP are service marks of Carnegie Mellon University.

Software Product Lines

450Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Line Technical Probe Overview

PLTP Participants

PLTP Process

PLTP Interview Questions

Other Diagnostics

Session 4 Contents

Software Product Lines

451Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

ProbePatternsCase Studies

GUIDANCE

PRACTICE AREAS
Software Engineering Technical Management Organizational Management

Curriculum

ESSENTIAL
ACTIVITIES

Core Asset
Development

Product
Development

Management

Help to Make It Happen

Software Product Lines

452Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

When embarking on a new approach (such as a software product line
approach), you need to know the answers to the following questions:
• Which practices lead to success?
• How does my organization stack up against those practices?

Answers to the first question may be found in the practice areas (as
described in the SEI Framework for Software Product Line PracticeSM).

Answers to the second question can result from conducting a software
product line diagnostic such as the SEI Product Line Technical Probe
(PLTP).

It will then be possible to chart a course from where you are to where you
want to be.

One Way to Begin

SM Framework for Software Product Line Practice is a service mark of Carnegie Mellon University.

Software Product Lines

453Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is a Product Line Technical Probe (PLTP)?

The PLTP is a method for examining an organization’s readiness to
adopt or ability to succeed with a software product line approach.
• It is a diagnostic tool based on the SEI Framework for Software Product Line

Practice.
• The 29 practice areas are the basis of data collection and analysis.

Software Product Lines

454Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Framework and the Product Line Technical
Probe (PLTP)

The Product Line Technical Probe compares an organization’s practices
against the practice areas in the Framework.

Software Product Lines

455Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Applying the Practice Areas in the PLTP

The PLTP process uses structured interviews based on questions
derived from the 29 practice areas.

29

Practice
Areas

PLTP

Practice
Area

Questions

Software Product Lines

456Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PLTP Outcomes

Set of findings that portray organizational
• strengths
• challenges

with regard to a product line approach

Findings can be used to develop an action plan with the goal of making
the organization more capable of achieving product line success.

Software Product Lines

457Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PLTP Applicability

When an organization
• is considering adopting a software product line approach
• has already initiated a software product line approach

Software Product Lines

458Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Why Do a PLTP?

To take a baseline snapshot of the product line organization

To do a reality check

To avoid common pitfalls

To capitalize on strengths

To shore up weaknesses

To identify and mitigate risks early

To get stakeholder buy-in

To gauge progress in an ongoing product line effort

Software Product Lines

459Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PLTP Basis

Mechanism
• SEI Software Risk Evaluation
• SEI Capability-Based Assessment
• SEI early product line evaluations

Content
• SEI Framework for Software Product Line Practice

Software Product Lines

460Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Line Technical Probe Overview

PLTP Participants

PLTP Process

PLTP Interview Questions

Other Diagnostics

Session 4 Contents

Software Product Lines

461Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Executives

Managers

Architects

Developers

Technical support staff

Marketers

Customers/End users

Engineers

The Product Line’s Stakeholders

Who Are the Participants?

Software Product Lines

462Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Line Technical Probe Overview

PLTP Participants

PLTP Process

PLTP Interview Questions

Other Diagnostics

Session 4 Contents

Software Product Lines

463Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

How Is a PLTP Executed?

Preliminary Phase
• one-day meeting at customer site
• probe preparation

Technical Probe Phase
• data gathering
• data consolidation and analysis
• reporting
• four days at customer site

Follow-On
• report writing
• optional: facilitated development of action plan to address findings
• optional: tailored assistance

Software Product Lines

464Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Preliminary Phase

Determine organizational context
• goals for the product line effort
• status of the product line effort
• expectations for the PLTP

Plan technical probe execution
• determine the stakeholders for interview groups
• script interview questions from the PLTP question bank
• arrange the logistics

– facilities
– dates
– schedule
– point of contact

Software Product Lines

465Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Overall Context

PLTP Context

Terminology Mapping

Process Context

Legacy Context

Management and Structural Context

Implementation Context

Documentation Context

Preliminary Phase Meeting Topics

Software Product Lines

466Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Technical Probe: Data Gathering - 1

Series of structured interviews of small groups
• peer groups

– no reporting relationships
• no preparation required
• all comments non-attributable
• questions derived from the SEI Framework for Software

Product Line Practice
– scripted based on Preliminary Phase of the PLTP

Software Product Lines

467Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Technical Probe: Data Gathering - 2

Sample interview groups
• senior managers
• middle managers
• project managers
• technical team leads
• architects and/or senior designers
• systems engineers
• requirements analysts
• developers
• testers
• marketers
• internal customers
• support groups (quality assurance, configuration management, tool support,

process group)

Software Product Lines

468Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Technical Probe: Data Consolidation and
Analysis

The PLTP team
• consolidates and compares data gathered against

practice areas documented in the Framework
• identifies findings

– strengths
– challenges
– other relevant information that impacts the

organization’s product line effort

Software Product Lines

469Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Technical Probe: Reporting

The PLTP team reveals findings in a final
presentation:
• delivered at the end of the Technical Probe phase
• to an audience designated by the organizational sponsor

Software Product Lines

470Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Follow-On Phase

Written report delivered after the probe

Optional action planning workshop to address the
PLTP findings

Optional tailored assistance in specific areas of the
action plan

Software Product Lines

471Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

PLTP Final Report Contents

Context
• the SEI Framework for Software Product Line Practice
• the SEI Product Line Technical Probe (PLTP)
• the organization’s context
• the PLTP applied to the organization

Summary of findings
• general observations
• overall strengths
• major challenges

Recommendations

Detailed findings
• findings and discussions for all 29 practice areas

Software Product Lines

472Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Use of Software Product Line Practice Patterns
in the PLTP

Software product line practice patterns address specific product line
contexts and problems.

Patterns are used during the probe by
• finding the root cause of surfaced weaknesses
• classifying the results above the practice area level
• packaging and prioritizing the results
• packaging and prioritizing a course of action

Software Product Lines

473Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Line Technical Probe Overview

PLTP Participants

PLTP Process

PLTP Interview Questions

Other Diagnostics

Session 4 Contents

Software Product Lines

474Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Structuring the Organization
If a product line effort is already underway:
• Would you please describe your planned organizational structure for the

product line effort? Include the roles, responsibilities, and size associated with
each unit; for example,
– architecture responsibility and authority
– component engineering responsibility and authority
– product development responsibility and authority
– requirements engineering responsibility and authority
– testing responsibility and authority
– core asset evolution responsibility and authority
– …

If a product line effort is not already underway:
• Would you please describe your plan for the overall organizational structure

for the product line effort?
– … (as before)

Example Practice Area Questions - 1

Software Product Lines

475Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering
If a product line effort is not already underway:
• How are requirements engineering activities typically planned?
• How are changes to requirements typically handled?
• How do you plan to tailor existing requirements engineering processes to

address:
– product line requirements
– commonalities and variations in the requirements
– product specific requirements
– requirements changes
– communication of changes to requirements
– the traceability of requirements to relevant core assets

Example Practice Area Questions - 2

Software Product Lines

476Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Requirements Engineering
If a product line effort is already underway:
• Would you please describe how requirements engineering activities for the

product line are planned?
• Do you have a documented requirements engineering process for the product

line? Please describe it?
• How are commonalities and variations in the requirements identified and

modeled?
• How are requirements communicated to the architects and the component

developers?

Example Practice Area Questions - 3

Software Product Lines

477Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Line Technical Probe Overview

PLTP Participants

PLTP Process

PLTP Interview Questions

Other Diagnostics

Session 4 Contents

Software Product Lines

478Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Other Product Line Diagnostics

Patterns can also be used to narrow the PLTP’s focus (a focused PLTP is
possible).

SEI Product Line Quick LookSM (PLQLSM)

Bosch Product Line Potential Analysis [Fritsch 2004a]

European Union ITEA (Information Technology for European
Advancement) BAPO (Business, Architecture, Process, Organization)
Evaluation [van der Linden 2004a]

SM Product Line Quick Look and PLQL are service marks of Carnegie Mellon University.

Software Product Lines

479Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 5 Summary

Product line diagnostics can help an organization troubleshoot its own
product line effort.
The SEI Product Line Technical Probe (PLTP) is a diagnostic method for
examining an organization’s readiness to adopt, or ability to succeed
with, a software product line approach.
The 29 practice areas of the Framework for Software Product Line
Practice serve as a reference model for the PLTP both in data collection
and analysis.
The PLTP follows a structured process based on proven mechanisms
and includes a series of structured interviews of small peer groups within
the organization, followed by data analysis.
The PLTP results include a characterization of an organization’s
strengths and challenges relative to its product line effort.
The product line practice patterns are used in the PLTP.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines
Part 3: Putting the Practice Areas into Action
Session 6: Product Line Adoption Roadmap

Software Product Lines

481Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 6 Objectives

This session will introduce participants to a product line adoption
roadmap that can be used to plan and track product line adoption and
progress.

Software Product Lines

482Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 6 Contents

Need for Adoption Support

Adoption Factory Pattern

Software Product Lines

483Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Product Line Adoption Support

The tremendous benefits of taking a software product line approach are
well documented.

Nonetheless, there are still considerable barriers to product line adoption.

The “Launching and Institutionalizing” practice area lays out what needs
to occur when an organization adopts a product line approach.

A generic roadmap to product line adoption would be useful.

The Factory pattern can serve as the basis for such a roadmap.

Software Product Lines

484Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 6 Contents

Need for Adoption Support

Adoption Factory Pattern

Software Product Lines

485Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Dynamic Structure

Factory Pattern Revisited

Dynamic Structure

Cold Start In Motion Monitor

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line

Informs and information flow

Supports

Software Product Lines

486Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

A Variant for Adoption

The Factory pattern is already a high-level view of the entire product line
organization and a blueprint for a divide-and-conquer strategy.

It is deficient as an adoption roadmap because
• The “Process Discipline” practice area is part of the Assembly Line pattern but

is so fundamental that it should be called out separately.
• The Factory pattern lacks perspectives on timing and focus areas as well as a

detailed mapping to practice areas.

To make it useful as an adoption roadmap, a variant called the Adoption
Factory pattern was created where
• The “Process Discipline” practice area was added as a separate element.
• A number of different perspectives or views were created.

Software Product Lines

487Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Adoption Factory Pattern

Cold Start In Motion Monitor

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line
Process
Discipline

Dynamic Structure
Informs and information flow

Supports

Software Product Lines

488Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Adoption Phases View

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line
Process
Discipline

Adoption Factory Pattern
Informs and information flow

Supports

Cold Start In Motion Monitor

Phases

Establish Context Establish Production
Capability Operate Product Line

Software Product Lines

489Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Focus Areas

Product

Process

Organization

Focus Areas View

Adoption Factory Pattern

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line
Process
Discipline

Informs and information flow

Supports

Cold Start In Motion Monitor

Software Product Lines

490Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Focus Areas

Product

Process

Organization

Phases and Focus Areas View

Adoption Factory Pattern
Informs and information flow

Product Builder

Each Asset

What to Build Product
Parts

Assembly Line
Process
Discipline

Supports

Phases

Establish Context Establish Production
Capability Operate Product Line

Cold Start In Motion Monitor

Software Product Lines

491Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Practice Areas View

Establish Context Establish
Production Capability Operate Product Line

Product • Market Analysis
• Understanding Relevant Domains
• Technology Forecasting
• Building a Business Case
• Scoping

• Requirements Engineering
• Architecture Definition
• Architecture Evaluation
• Mining Existing Assets
• Component Development
• Using Externally Available Software
• Software System Integration
• Testing

• Requirements Engineering
• Architecture Definition
• Architecture Evaluation
• Mining Existing Assets
• Component Development
• Using Externally Available Software
• Software System Integration
• Testing

Process • Process Discipline • Make/Buy/Mine/Commission Analysis
• Configuration Management
• Process Discipline
• Tool Support
• Measurement and Tracking
• Technical Planning
• Technical Risk Management

Organization • Launching and Institutionalizing
• Funding
• Structuring the Organization
• Operations
• Organizational Planning
• Customer Interface Management
• Organizational Risk Management
• Developing an Acquisition Strategy
• Training

• Launching and Institutionalizing
• Funding
• Structuring the Organization
• Operations
• Organizational Planning
• Customer Interface Management
• Organizational Risk Management
• Developing an Acquisition Strategy
• Training

• Measurement and Tracking
• Technical Risk Management
• Organizational Risk Management
• Customer Interface Management
• Organizational Planning

Software Product Lines

492Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Using the Adoption Factory Pattern - 1

To use the Adoption Factory pattern as a roadmap
• Elaborate the practice areas associated with its subpatterns.
• Plan to master these practice areas in a continuous way that begins at

the phase where they first appear.

The Adoption Factory pattern applies regardless of the adoption strategy
chosen—proactive, reactive, incremental.

The Adoption Factory pattern also has “Roles” and “Outputs” views.

Software Product Lines

493Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Using the Adoption Factory Pattern - 2

You can also use the Adoption Factory pattern to gauge where in the
adoption process by phase your organization is and benchmark your
activities by measuring yourself against the practice areas in that phase.

• We use the Adoption Factory pattern in the analysis part of the PLTP and also
in framing recommendations.

• You can use the Adoption Factory pattern as an easily understood adoption
vocabulary that can be shared across an organization and that marks
organizational progress.

Cautions:
• Because of the inherent iteration in product line practices, any position in the

roadmap indicates heightened awareness, not strict linear progression.
• The roadmap does not address organizational change mechanisms.
• The roadmap needs to be tailored to meet any organization-specific details

and circumstances.

Software Product Lines

494Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

For Further Reading

Northrop: Software Product Line Adoption Roadmap [Northrop 2004a]

Software Product Lines

495Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Session 6 Summary

Organizations need product line adoption support to lower the barriers to
adoption.

A variant of the Factory pattern, called the Adoption Factory pattern,
provides a useful product line adoption roadmap that can be used to plan
and track product line adoption.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

[DISTRIBUTION STATEMENT A] Approved for public
release and unlimited distribution.

Software Product Lines
Course Wrap-Up

Software Product Lines

497Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Course Structure

Course Introduction

Part 1: Software Product Line Fundamentals

Part 2: Software Product Line Practice Areas

Part 3: Putting the Practice Areas into Action

Wrap-Up

Software Product Lines

498Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What Is a Software Product Line?

A software product line is a set of software-intensive systems sharing a
common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a
common set of core assets in a prescribed way.

Software Product Lines

499Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

In a Nutshell

Software product lines epitomize the concept of strategic, planned reuse.

The product line concept is about more than a new technology. It is a
new way of doing one’s software business.

There are essential product line activities and practices areas as well as
product line patterns to make the move to product lines more
manageable.

PRACTICE AREAS
Software Engineering Technical Management Organizational Management

ESSENTIAL
ACTIVITIES

Core Asset
Development

Product
Development

Management

Software Product Lines

500Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

ProbePatternsCase Studies

GUIDANCE

Help to Make It Happen

PRACTICE AREAS
Software Engineering Technical Management Organizational Management

Curriculum

ESSENTIAL
ACTIVITIES

Core Asset
Development

Product
Development

Management

Software Product Lines

501Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Five Courses

Software
Product Lines

Adopting
Software Product Lines
Developing
Software Product Lines

PLTP Team Training

PLTP Leader Training

PLTP Lead Observation

Software
Product Line
Professional

PLTP
Team
Member

PLTP
Leader

Three Certificate Programs

The SEI Software Product Line Curriculum

: course required
to receive certificate

Software Product Lines

502Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Five Courses

Software
Product Lines

Adopting
Software Product Lines
Developing
Software Product Lines

PLTP Team Training

PLTP Leader Training

PLTP Lead Observation

Software
Product Line
Professional

PLTP
Team
Member

PLTP
Leader

Three Certificate Programs

The SEI Software Product Line Curriculum

: course required
to receive certificate

Software Product Lines

503Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Entire Picture

ProbePatternsCase Studies

GUIDANCE

PRACTICE AREAS
Software Engineering Technical Management Organizational Management

Curriculum

ADOPTION FACTORY

ESSENTIAL
ACTIVITIES

Core Asset
Development

Product
Development

Management

Software Product Lines

504Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

What’s Different About Reuse with Software
Product Lines?
Business dimension

Iteration

Architecture focus

Preplanning

Process and product connection

Software Product Lines

505Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

At the Heart of Successful Product Lines

A pressing need that addresses the
heart of the business

Long and deep domain experience

A legacy base from which to build

Architectural excellence

Process discipline

Management commitment

Loyalty to the product line as a
single entity

Software Product Lines

506Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Truth About Software Product Lines

Unlike earlier reuse approaches, software product lines constitute a
strategic business and technical reuse agenda.

To adopt software product line practices, an organization must adapt its
• technical practices
• management practices
• organizational structure and personnel
• business and acquisition approaches

and must embrace a software architecture-centric approach.

Software Product Lines

507Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Product Line Adoption Endgame

To have an operational software product line.

To do that, an organization must
• have

– a core asset base
– supportive processes and organizational structures

• develop products from that asset base in a way that achieves business goals
• prepare itself to institutionalize product line practices

Software Product Lines

508Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Adoption and Institutionalization

Innovators and early adopters demonstrated the feasibility and the
benefits of software product lines:
• CelsiusTech
• Cummins, Inc.
• Hewlett-Packard
• Motorola
• Nokia

The SEI and others have tried to lower the adoption barrier by codifying
practices, writing case studies, perfecting methods useful in product line
approaches, and engendering a software product line community.

Many organizations are now handsomely achieving their business goals
using a software product line approach.

Software Product Lines

509Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

• mobile phones
• shipboard command and control

systems
• satellite ground-station systems
• avionics systems
• command and control/situational

awareness systems
• pagers
• engine control systems
• mass storage devices

• billing systems
• Web-based retail systems
• printers
• consumer electronic products
• acquisition management

enterprise systems
• financial and tax systems
• medical devices
• fish farm management

software

Widespread Use of Software Product Lines

Successful software product lines have been built for families of among
other things

Software Product Lines

510Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

The Time Is Right

Rapidly maturing, increasingly sophisticated software development technologies
including component technology, aspect-oriented technology, model-driven
development, open source, and service-oriented approaches.

A global realization of the importance of architecture

A universal recognition of the need for process discipline

Role models and case studies that are in the literature and trade journals

Books, conferences, workshops, and education programs on software product
lines

Company and intercompany product line initiatives

A rising recognition of the significant benefits that are possible

Software Product Lines

511Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Summary of SEI Contributions

Models and Guidance
• A Framework for Software Product Line PracticeSM

• product line practice patterns
• product line adoption roadmap

Methods and Technology
• product line analysis
• architecture definition, documentation, evaluation

(ATAM®), and recovery
• production planning
• Structured Intuitive Model for Product Line Economics

(SIMPLE)
• Product Line Technical ProbeSM (PLTPSM)
• Product Line Quick LookSM (PLQLSM)
• interactive workshops in product line measurement,

variability management, product line management
• prediction-enabled component technology

Book
Software Product Lines:
Practices and Patterns

Curriculum and
Certificate Programs

• five courses and three
certificate programs

• product line executive seminar

Conferences and Workshops
• SPLC 1, SPLC2, SPLC 2004; SPLC 2006

product line workshops 1997 – 2005
Army product line workshops 2007, 2009

Technical Reports, Publications, and Web Site

Software Product Lines

512Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

New Challenges and SEI Research

Challenge: Automating all or part of the product line production process.
Our Research:
• use of aspect-oriented programming to support product lines
• product line production, including automated derivation

Challenge: Combining a software product line approach with new
technologies and contexts
• system of systems
• service-oriented architectures
• open source and collaborative development approaches
• globalization
• predictable assembly
• ultra-large-scale systems

Our Research: adapting software product line concepts to exploit new
technologies and serve new contexts

Software Product Lines

513Software Product Lines
© 2020 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for public release
and unlimited distribution.

Final Word

If properly managed, the benefits of a product line approach far exceed
the costs.

Strategic software reuse through a well-managed product line approach
achieves business goals for
• efficiency
• time to market
• productivity
• quality
• agility

Software Product Lines:
Reuse That Makes Business Sense.

