

Secure Acquisition
Case 5: Product Assurance

January 2020

2

Copyright 2020 The University of Detroit Mercy.

NO WARRANTY
THIS UNIVERSITY OF DETROIT MERCY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. THE UNIVERSITY OF DETROIT
MERCY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. THE UNIVERSITY OF DETROIT MERCY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this
document for internal use is granted, provided the copyright and “No Warranty” statements are
included with all reproductions and derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is
required for any other external and/or commercial use. Requests for permission should be
directed to the Software Engineering Institute at permission@sei.cmu.edu.

3

Case 5: Product Assurance

ISO 9126, defines a complete set of quality characteristics that can be used when evaluating the
adequacy of software products. These can be referenced to the communities of practice involved
in SCRM. For this assignment differentiate between the product assurance characteristics that are
meaningful to the developer versus the customer. Then, using ISO 9126 lay out a common set of
measures that can be used to perform a product assurance process for the company in the Case.
Extra credit will be assigned if you can assign maturity ratings to each measure.

ISO 9126 is an international standard for the evaluation of software. The standard is divided into
four parts which addresses, respectively, the following subjects: quality model; external metrics;
internal metrics; and quality in use metrics. ISO 9126 Part one, referred to as ISO 9126-1 is an
extension of previous work done by McCall (1977), Boehm (1978), FURPS and others in
defining a set of software quality characteristics.

ISO9126-1 represents the latest (and ongoing) research into characterizing software for the
purposes of software quality control, software quality assurance and software process
improvement (SPI). This article defines the characteristics identified by ISO 9126-1.

The ISO 9126-1 software quality model identifies 6 main quality characteristics, namely:

• Functionality
• Reliability
• Usability
• Efficiency
• Maintainability
• Portability

These characteristics are broken down into subcharacteristics, a high level table is shown below.
It is at the subcharacteristic level that measurement for SPI will occur. The main characteristics
of the ISO9126-1 quality model, can be defined as follows:-

Functionality
Functionality is the essential purpose of any product or service. For certain items this is relatively
easy to define, for example a ship's anchor has the function of holding a ship at a given location.
The more functions a product has, e.g. an ATM machine, then the more complicated it becomes
to define it's functionality. For software a list of functions can be specified, i.e. a sales order
processing systems should be able to record customer information so that it can be used to
reference a sales order. A sales order system should also provide the following functions:

• Record sales order product, price and quantity.
• Calculate total price.
• Calculate appropriate sales tax.
• Calculate date available to ship, based on inventory.
• Generate purchase orders when stock falls below a given threshold.

http://www.sqa.net/softwarequalityattributes.html
http://www.sqa.net/index.htm#furps

4

The list goes on and on but the main point to note is that functionality is expressed as a totality of
essential functions that the software product provides. It is also important to note that the
presence or absence of these functions in a software product can be verified as either existing or
not, in that it is a Boolean (either a yes or no answer). The other software characteristics listed
(i.e. usability) are only present to some degree, i.e. not a simple on or off.

Many people get confused between overall process functionality (in which software plays a part)
and software functionality. This is partly due to the fact that Data Flow Diagrams (DFDs) and
other modeling tools can depict process functionality (as a set of data in\data out conversions)
and software functionality. Consider a sales order process, that has both manual and software
components. A function of the sales order process could be to record the sales order but we could
implement a hard copy filing cabinet for the actual orders and only use software for calculating
the price, tax and ship date. In this way the functionality of the software is limited to those
calculation functions. SPI, or Software Process Improvement is different from overall Process
Improvement or Process Re-engineering, ISO 9126-1 and other software quality models do not
help measure overall Process costs\benefits but only the software component.

The relationship between software functionality within an overall business process is outside the
scope of ISO 9126 and it is only the software functionality, or essential purpose of the software
component, that is of interest for ISO 9126.

Following functionality, there are 5 other software attributes that characterize the
usefulness of the software in a given environment.
Each of the following characteristics can only be measured (and are assumed to exist) when the
functionality of a given system is present. In this way, for example, a system cannot possess
usability characteristics if the system does not function correctly (the two just don't go together).

Reliability
Once a software system is functioning, as specified, and delivered the reliability characteristic
defines the capability of the system to maintain its service provision under defined conditions for
defined periods of time. One aspect of this characteristic is fault tolerance that is the ability of a
system to withstand component failure. For example if the network goes down for 20 seconds
then comes back the system should be able to recover and continue functioning.

Usability
Usability only exists with regard to functionality and refers to the ease of use for a given
function. For example a function of an ATM machine is to dispense cash as requested. Placing
common amounts on the screen for selection, i.e. $20.00, $40.00, $100.00 etc, does not impact
the function of the ATM but addresses the Usability of the function. The ability to learn how to
use a system (learnability) is also a major subcharacteristic of usability.

Efficiency
This characteristic is concerned with the system resources used when providing the required
functionality. The amount of disk space, memory, network etc. provides a good indication of this
characteristic. As with a number of these characteristics, there are overlaps. For example the
usability of a system is influenced by the system's Performance, in that if a system takes 3 hours
to respond the system would not be easy to use although the essential issue is a performance or

5

efficiency characteristic.

Maintainability
The ability to identify and fix a fault within a software component is what the maintainability
characteristic addresses. In other software quality models this characteristic is referenced as
supportability. Maintainability is impacted by code readability or complexity as well as
modularization. Anything that helps with identifying the cause of a fault and then fixing the fault
is the concern of maintainability. Also the ability to verify (or test) a system, i.e. testability, is
one of the subcharacteristics of maintainability.

Portability
This characteristic refers to how well the software can adopt to changes in its environment or
with its requirements. The subcharacteristics of this characteristic include adaptability. Object
oriented design and implementation practices can contribute to the extent to which this
characteristic is present in a given system.

The full table of Characteristics and Subcharacteristics for the ISO 9126-1 Quality Model is:-

Characteristics Subcharacteristics Definitions

 Suitability
This is the essential Functionality characteristic and refers
to the appropriateness (to specification) of the functions
of the software.

 Accurateness
This refers to the correctness of the functions, an ATM
may provide a cash dispensing function but is the amount
correct?

Functionality Interoperability

A given software component or system does not typically
function in isolation. This subcharacteristic concerns the
ability of a software component to interact with other
components or systems.

 Compliance

Where appropriate certain industry (or government) laws
and guidelines need to be complied with, i.e. SOX. This
subcharacteristic addresses the compliant capability of
software.

 Security This subcharacteristic relates to unauthorized access to
the software functions.

 Maturity This subcharacteristic concerns frequency of failure of
the software.

Reliability Fault tolerance The ability of software to withstand (and recover) from
component, or environmental, failure.

 Recoverability Ability to bring back a failed system to full operation,
including data and network connections.

6

 Understandability
Determines the ease of which the systems functions can
be understood, relates to user mental models in Human
Computer Interaction methods.

Usability Learnability Learning effort for different users, i.e. novice, expert,

casual etc.

 Operability Ability of the software to be easily operated by a given
user in a given environment.

Efficiency Time behavior Characterizes response times for a given thru put, i.e.

transaction rate.

 Resource behavior Characterizes resources used, i.e. memory, cpu, disk and
network usage.

 Analyzability Characterizes the ability to identify the root cause of a
failure within the software.

Maintainability Changeability Characterizes the amount of effort to change a system.

 Stability
Characterizes the sensitivity to change of a given system
that is the negative impact that may be caused by system
changes.

 Testability Characterizes the effort needed to verify (test) a system
change.

 Adaptability Characterizes the ability of the system to change to new
specifications or operating environments.

Portability Installability Characterizes the effort required to install the software.

 Conformance

Similar to compliance for functionality, but this
characteristic relates to portability. One example would
be Open SQL conformance which relates to portability of
database used.

 Replaceability
Characterizes the plug and play aspect of software
components, that is how easy is it to exchange a given
software component within a specified environment.

	Secure Acquisition
	Case 5: Product Assurance

