
Artificial Intelligence and
Cyber Intelligence
An Implementation Guide

Artificial Intelligence and Cyber Intelligence:
An Implementation Guide

Authors
April Galyardt
Ritwik Gupta
Dan DeCapria
Eliezer Kanal
Jared Ettinger

Design
David Biber

Alexandrea Van Deusen
Todd Loizes

Copyright 2019 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official
Government position, policy, or decision, unless designated by other documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering
Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN
“AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice
for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided
the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form
without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should
be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-0447

Table of Contents
Introduction .. 1

Conditions for Success in ML ... 2

Use Cases for ML in Cyber Intelligence 5

The ML Pipeline .. 7

Decision Maker Reporting and Feedback 17

Organizational Structure for ML .. 18

1

INTRODUCTION

Machine learning (ML) tools and techniques have been demonstrated to effectively improve cyber
intelligence workflows across environment, data gathering, threat analysis, strategic analysis,
and feedback to decision makers. Simply adding ML capability to existing organizational toolsets,
procedures, and workflows will not solve all cyber intelligence challenges. These technologies work in
concert with experienced and qualified personnel who know how to understand, integrate, and even
improve ML processes in the context of cyber intelligence challenges. Only by combining modern
tooling with personnel knowledgeable about its use and procedures can organizations begin to realize
the significant benefits ML can provide.

KEY JUDGMENTS
• Setting up an effective ML–cyber intelligence collaboration will require proper consideration,

preparation, and communication.
• Introducing operationally effective ML into the cyber intelligence workflow requires a repeatable,

consistent, and well-defined process.
• Prior to using ML, it is essential to walk through the ML checklist to answer relevant questions such

as “Does ML help with this?” and “Have we considered the broader context?” Any doubts that arise
when completing this checklist highlight gaps in analytical understanding that must be discussed
with the cyber intelligence team.

• There are important ethical and data-use dilemmas associated with ML, especially when paired
with the world of intelligence. Enumerate, weigh, and address these dilemmas to the fullest extent
possible before proceeding with ML capabilities.

• In ML, the biggest performance improvements result from higher-quality data, not more
sophisticated algorithms. Expect to spend the majority of your time and effort on data acquisition,
curation, and processing.

• A large variety of people are needed to make an effective ML and cyber intelligence effort; namely,
talented cyber intelligence analysts, ML scientists, and ML and/or data engineers. While expertise
may initially be divided into silos in each member’s domain, the team must work together to nurture
domain expertise in a cross-functional manner and maintain open lines of communication.

• Be creative and have fun with the data sources you have. The reason to use ML is to tap the hidden
knowledge potential within those data sources, so think critically about what new things can be
extracted from the data that already exists and how to use it effectively. Don’t forget to balance this
creativity with operational and engineering considerations.

Machine Learning
and Cyber Intelligence

2

DEFINITIONS
ML is a field at the intersection of statistics and computer science.
Fundamentally, it is about learning from data: summarizing patterns,
making predictions, and identifying key characteristics of a group of
interest (among many other tasks). The term artificial intelligence
(AI) has many definitions, but broadly speaking it refers to systems
that understand the world and independently make smart decisions
based on that understanding.1 If an AI system can interact with and
learn from interactions with the surrounding world, it must be learning
from data. To that extent, ML is an integral part AI. Unfortunately, the
language around AI and ML is further muddied by the fact that some ML
algorithms, particularly neural networks, are often referred to as “AI”
by the general public. In this guide, we focus on ML and the practice of
learning from data.

Within ML, a model refers to a set of equations that could describe the
data. When we train or fit a model, we search over a family of models to
find the single model that best fits the data. This trained model is often
referred to as simply the model. Within this context, an algorithm is a
specific process for fitting the model to data. Features or variables refer
to the different kinds of information recorded in the data; for example,
if our data is a set of documents, one feature might be the author’s name
and another might be the number of words in the document.

The work of designing a model, fitting a model, and extracting
information is generally performed by an analyst. However, within a
cyber intelligence framework, we must disambiguate this work from
the work of a cyber intelligence analyst.

We use ML scientist to refer to people who carry out the ML analysis
and data engineer to refer to people who collect and prepare the data
for analysis.

CONDITIONS FOR SUCCESS IN ML

ML is a powerful tool, and it has spurred tremendous leaps in
capability and productivity across many areas. However, just as
hammers work well with nails but poorly with screws, ML is ideally
suited to some tasks and poorly suited to others. This section is
designed to help identify problems for which setting up an ML pipeline
would justify the investment.

In popular conceptualizations, ML focuses on algorithmic capabilities;
for instance, recommender systems in shopping carts (“You may like

1 https://ai.cs.cmu.edu/about

ARE YOU READY TO USE ML FOR
CYBER INTELLIGENCE?
1. Can you state your problem as either:

a. I would like to use ___ data to

predict ___, or

b. I would like to understand the

structure of the features recorded in

___ data?

2. Is it a large-scale problem?

3. Have you already done exploratory

analysis?

4. Have you considered the broader

context?

3

this”) or automated labeling of people, places, or objects in images. However, less-visible aspects of
ML are just as critical to the process as algorithm choice: data storage, processing, and cleaning; the
augmentation of data (“feature engineering”); reporting and visualization; and the development of
software and hardware to support the entire ML pipeline
(among others). Many organizations already perform these tasks to support other business needs, and
ML is often added to existing analysis pipelines to take advantage of existing tools that perform some
of these duties.

To help determine whether your organization is ML ready, we’ve developed a checklist of necessary
capabilities. If you aren’t yet performing these data analytic practices, we recommend that you
incorporate these items into your analytics pipeline and familiarize yourself with their output and
value before adding ML capabilities.

PROBLEM STRUCTURE
ML algorithms can be broadly divided into two categories: supervised learning algorithms and
unsupervised learning algorithms. A supervised learning problem can be framed as “I would like
to use some set of data to predict an unknown.” For example, you might want to identify the actors
responsible for constructing and deploying a particular piece of malware. Statistically, this is a
prediction problem and can be reframed as “I would like to use hashes of malware files to predict who
made the malware.” As another example, cyber intelligence analysts often have more information
coming in than they are able to process. The supervised learning problem can be framed as “We
might want to use data about what information cyber intelligence analysts have previously found
most useful to predict which new information is most important for the analysts to consume.” These
two examples will use vastly different data, but because they can both be framed as a problem of
making a prediction using data, supervised learning algorithms can be applied to these problems.

Unsupervised learning problems can be framed as “I would like to understand the structure of the
features recorded in a given set of data.” The structure we’re looking for could be very different
depending on context. One common kind of structure we might look for comprises subgroups and
clusters; for example, we might analyze resolved incident tickets collected over the past year by
looking for clusters of related tickets. A second kind of structure comprises groups of closely related
features. For example, if we are collecting data on insider threat indicators, we might want to examine
which features are highly correlated with each other. If we identify 10 to 12 features that are all closely
related and effectively measuring the same thing, then we may be able to reduce our data collection
burden and only collect the 5 or 6 most useful. Note that in the section below, “Examples of ML for
Cyber Intel,” we refer to these two problem structures so you can see how they are applied in practice.
Later, in the section “The ML Pipeline,” we discuss the requirements and conditions under which you
can apply both supervised and unsupervised learning.

4

SCALE
ML will frequently reap the largest return on investment when it is applied to a task at a large scale.
This scale could take many different forms. A common problem of scale is a task that needs to be
executed repetitively. For example, satellites collect images faster than humans can label them.
However, an ML algorithm can label the petabytes of images collected each day and flag anomalous
images for human review. In other situations, an analysis might only be needed once, but the data
available is of large scale—more than can be handled by a single person. For example, analysts might
have a large amount of information on a particular set of network intrusions. In such a case, ML
algorithms could find patterns in the data. This information then increases the capability and speed of
the human cyber analyst.

The second way ML can address a problem of scale is to provide greater consistency across
repetitions. For example, if we are looking at data and deciding whether or not to open an insider
threat investigation, two humans might reasonably disagree. Supplementing the human analyst with
information from an ML algorithm can foster greater consistency in decision making.

EXPLORATORY ANALYSIS
A good rule of thumb is to always run simple analyses first. This includes basic information about data,
such as how much data is missing, lists of the most frequently observed data for different datatypes,
and data visualizations, such as histograms and time series charts. Statisticians frequently refer to this
as exploratory data analysis. You should be able to answer basic questions about your data, such as
“How many?”, “How often?”, and “What kind?” before attempting to apply ML techniques.

There are two reasons for addressing these questions. First, you can gain tremendous insights from
your answers. How many of your incident tickets contain the words “technical debt?” How many
contain the word “malware?” Simply identifying the “top 10” lists for different types of data frequently
uncovers significant trends you may not be aware of. This type of analysis is very straightforward to
perform using data analysis tools, and taking advantage of this low-hanging fruit can be a very cost-
effective way to make use of existing data.

The second reason for addressing these questions is that the data cannot be put into an ML algorithm
until it has already been sufficiently processed. The ability to answer these basic questions indicates
that the data is processed enough for use in an ML algorithm. Furthermore, often what you find when
conducting the simple exploratory analysis provides insight that will help shape the ML analysis. For
example, you might discover that one sensor is, essentially, replicating the information from another
sensor. Therefore, only one of those sensors should be used by the ML algorithm. Another common
discovery is that, from date X to date Y, a sensor was misfiring and therefore should be omitted for
those dates. When you try to apply an ML algorithm without first acquiring this basic understanding of
the data, errors will happen.

5

BROADER CONTEXT
Every ML analysis takes place within a broader context that includes ethical and legal ramifications.
These issues will vary with context, but there are two that every ML analysis will share in common and
which should be addressed when deciding whether to implement an ML algorithm: 1) What are the
consequences of a data breach? and 2) What are the consequences of an incorrect decision based on
the ML algorithm?

The large amounts of data required to make ML efficient also make data breaches more problematic.
The Pennsylvania Supreme Court recently ruled that businesses can be held legally responsible for
not taking adequate safeguards with sensitive information.2 We also know that many algorithms,
particularly neural networks, “leak” information: if someone has access to any of the decisions or
output of an algorithm, they can make strong inferences about the information that was used to train
the algorithm. The consequences of such a breach vary from case to case, ranging from an increased
risk of identity theft for consumers to national security issues.

ML models are probability based. There is always a level of irreducible error in the output of an ML
algorithm. For instance, if we are looking at predicting insider threat, there will always be cases in
which the algorithm indicates someone is a threat (but they are not) and cases in which someone is a
threat (but the algorithm misses it). This is true in every single application. As you implement an ML
model, you must develop the procedures and responses to situate the output within your organization.
Is this a case in which the response to the ML output can be automated? Or, do you have a case in
which the response must be escalated to a human decision maker?

USE CASES FOR ML IN CYBER INTELLIGENCE

There are many different types of ML, each best suited to solving a particular set of challenges. To
provide a better understanding of how these tools can augment your cyber intelligence analysis, the
following section describes a number of use cases demonstrating these capabilities in a variety of
common scenarios.

ENVIRONMENTAL CONTEXT: INSIDER THREAT ANALYSIS
One increasingly common application of ML is to predict which individuals within an organization
might represent insider threats. This use case is usually a supervised learning problem: Collect as
much relevant behavioral computer activity as possible on users (web browsing, network share access,
logon/logoff logs) and use this data to predict the extent to which an individual is, or has the potential
to be, an insider threat. This problem could also be framed as an unsupervised learning problem of
anomaly detection: Most employees will exhibit relatively consistent usage patterns (e.g., logging on at
a consistent time of day). A starkly anomalous usage pattern may be a red flag. The statistical problem
is then to identify the anomalies in the data.

2 https://www.jdsupra.com/legalnews/pennsylvania-supreme-court-recognizes-34420/

6

There are two points to highlight in this use case. First, this application of ML
would require proactive coordination between the insider threat team, the cyber intelligence team,
and the ML team. Second, models and data collection should be updated regularly: Attack surfaces
change constantly, and gaps in coverage are continually relevant.

DATA GATHERING: IDENTIFYING REDUNDANT INFORMATION
When dealing with large, disparate datasets, there is frequently significant redundancy in the available
data. Since this redundancy can substantially increase analyst workload, especially as the scale of
the data increases, ML can help identify which information is redundant to save time and storage
requirements. Unsupervised learning methods (including clustering and the feature reduction
algorithms discussed below), combined with simple comparison metrics, can be used to group the data
and flag redundancy. On large datasets, this can result in a significant reduction in data the analyst
needs to examine and in greatly reduced data storage needs.

THREAT ANALYSIS
Malware Attribution
Given a set of executable files that are known to be malware, we may be interested in identifying
the sources of the malware to identify a threat actor. If we have access to a labeled dataset in which
different pieces of previously collected malware have been tagged with their source, we can use that
data to build a supervised learning model to predict which of our new malware files has come from
each source.

Sorting and Prioritizing Information for Cyber Intelligence Analysts
Not all information has equal importance or priority when running through a cyber intelligence
pipeline. Under normal circumstances, it is only after an intelligence analyst has reviewed the
information that it can be given a priority rating; however, ML methods may be able to predict these
priority ratings, and the historical relevance of similar data, from the task at hand. Assuming that we
have access to past data that has already been given priority ratings, we can use supervised learning
methods to sort incoming data by priority using a trained model.

STRATEGIC ANALYSIS: IDENTIFYING COMMONALITIES IN ATTACKS
Strategic analysis is the work of conducting holistic analysis on both threats and opportunities. Holistic
assessment of threats is based on analysis of threat actor potential, organizational exposure, and the
impact the threat has on an organization. One might also perform strategic analysis to provide deep
clarity on the who and why behind threats and threat actors. Strategic analysis goes beyond threat
analysis to incorporate analysis of emerging technologies and geopolitics that may impact and/or
provide opportunities for the organization now and in the future.

When reviewing data for strategic analysis, analysts often search for associations between actors,
events, or activities. We can rephrase this as an unsupervised learning question: “Given a dataset
consisting of resolved incident tickets from the past year, can we find clusters of tickets that relate
to similar threats or threat actors?” Identifying commonalities would ease the discovery of a modus
operandi or positive threat actor identification.

7

Clustering analysis could be augmented using active learning techniques, which help analysts identify
where more data is required to make proper decisions. For example, consider an analyst attempting
to identify the threat actor or actors behind a series of seemingly unrelated, discrete threats. In the
course of her analysis, she classifies different threats into discrete buckets. This allows her to apply a
clustering technique, which can automatically label new data as it comes in by comparing it to existing
buckets. Furthermore, by applying active learning to her data, she can understand where her own
model is strongest and weakest. When new data comes in and is automatically labeled, she can quickly
know the extent to which the new label requires further manual analysis.

REPORTING: VISUALIZATIONS AND AUTOMATIC REPORT GENERATION
Pairing ML with other automation provides an additional advantage. When an ML analysis is repeated
regularly, the reports and graphs based on that analysis can be automatically updated and sent to cyber
intelligence analysts or leadership for human review. There are several commercially available tools
that streamline automatic report generation even further.

THE ML PIPELINE

The fuel powering the entire ML process is data. This data must be processed, cleaned, and prepared
before being put through the algorithm. The output of the algorithm is some useful result that
the analyst can use. However, just as a car isn’t very useful without seats, the ML process requires
significant external tooling to make the whole thing useful.

In this section, we outline the main steps for performing analysis:

5. requirements definition
6. data input and processing
7. model design, development, and execution
8. reporting and feedback

The overall model is visible in Figure 1. Note that we do not show intelligence requirements (IR) in the
figure since they are too high-level for the purposes of ML.

8

Data Processing

Priority Intelligence
Requirements (PIRs)

Specific Intelligence
Requirements (SIRs)

Information Extraction
Requirements (IERs)

Data Intelligence
Requirements (DIRs)

Analysis & Modeling

Requirements

Gather

Store

Transform

Cloud Disks Solid State
Devices

Reporting & Feedback

TrainTest

CPUs GPUs

Design

Feature Engineering

Figure 1. The machine learning pipeline for strategic analysis.

DEFINING REQUIREMENTS
Consistent with current cyber intelligence best practices, an ML planning process should begin with
specific intelligence requirements (SIR) that map to priority intelligence requirements (PIR) from your
collection management team. These cyber intelligence requirements are your north star. Without an
intelligence requirement stated in a clear problem definition, analysts can veer into questions such as
“What will happen if I try this fancy new algorithm on this data?” While that kind of exploration can
be useful for getting to know the data and trying out whether a new algorithm works as advertised, it
probably won’t solve the big picture problems for the organization.

9

A common complaint from many organizations is, “I have more data
than I know what to do with.” This happens because data was collected
without any particular use in mind. Consequently, the organization
often does not record information that would be useful to answer any
particular question. Not all data is equal, and for most companies
enormous stores of inert data provide no incremental value. The
planning stage is critical to avoiding this problem.

We suggest creating explicit information extraction requirements
(IERs) and data intelligence requirements (DIRs) that map directly to
the organization’s intelligence priorities held by the collection
management team. These requirements will help guide the ML
analysis and data collection and provide an explicit mechanism for
tracking how data is used. The IERs and DIRs need to be developed in
tandem, because the kinds of ML analysis desired will have different
data needs and the data available will shape what ML analyses are
possible. The IERs need to answer questions such as

• What kind of data science method should we be using?
• What metrics will we use for success?
• Are there any other criteria necessary to make the results useful?

The IERs should be developed by the ML scientist and the cyber
intelligence analysts. The consumers of the ML output are there to
ensure that the ML scientists understand their needs. The ML scientist
must be there to translate those needs into properties of the analysis.
When an ML scientist first meets with a client, she will listen and ask
a series of questions in order to understand the client’s needs. The
IERs simply make these needs explicit and directly link them to the
organizations’ PIRs and SIRs.

To develop the IER, it’s helpful to begin by asking questions such as

• What does a minimally sufficient solution look like?
• How good does an ML model have to be to be useful?

The answers very much depend on the use context for a problem. If all
conclusions must be strong enough to present as evidence in a court
of law, that is a very different threshold than one needed to simply ask
analysts to investigate a suspicious anomaly. When we are deciding
what criteria our model should optimize and what thresholds it must
meet, we must take this context into account.

BEST PRACTICES
SETTING THRESHOLDS
While a 5% error rate has been a

standard threshold in statistics and data

science for about a century, it may be

a bad threshold for your application.

A popular social media platform

recently deployed an ML algorithm to

detect adult content published on its

platform. This is a prediction algorithm

designed to detect whether a given

image contains particular types of

nudity. Like any prediction algorithm,

it will make mistakes. However, for

this large platform, a 5% false positive

rate constitutes approximately 500

million misclassified images and a

corresponding number of users unhappy

that their images are being blocked for

no apparent reason. The default 5%

error rate is not low enough for this

context. It is worth spending the time

and effort to determine what kind of

criteria must be met for a solution to be

useful for your problem.

10

DIRs follow from IERs. Once IRs, PIRs, SIRs, and IERs are specified, DIRs address concerns such as

• What data do I need to fulfill these IERs?
• How much data do I need?
• Are there any data collection methodologies that need to be followed?
• What are potential sources of the data that is needed for analysis?

Different analyses require different amounts of data. Simple analyses might require hundreds of data
points, while more complex analyses, such as neural networks, require tens of thousands. The DIRs
make these kinds of requirements explicit. In the section “Modeling” below, we discuss when labeled
data is necessary and why it is imperative that the collection conditions match exactly the conditions in
which an ML model will be used. The DIRs specify these requirements.

Defining the collection conditions is an essential part of a documented and repeatable process of
requirements generation. It is also important to frequently verify DIRs. As the nature of any cyber
intelligence analysis changes, the types, amount, and sources of data also change. Consequently,
ensure that DIRs are not carried over from previous tasks simply because previous tasks seem similar.

One last point regarding IERs and DIRs: They should all be designed with specific expiration dates. The
questions of interest to an organization will necessarily change as the cyber threat landscape changes,
and an organization should adapt its analysis to meet the new questions. Design the requirements with
this in mind.

Gap Analysis
Gap analysis can be useful in defining requirements. This is a formalized process
for answering

• Where are we now?
• Where do we want to be?
• How do we close the gap between here and there?”

Through this gap analysis process, you may discover that the data you currently collect does not
actually contain the necessary information to address your problem.
For example

• Where are we now?
 ◆ We analyze netflow data to determine whether our network is under attack.

• Where do we want to be?
 ◆ We want to learn the identity of our attacker.

• Identify the gap.
 ◆ Netflow data is too coarse to identify how the attack is being executed.

• How are we going to close the gap?
 ◆ We need to collect data directly on the computer being attacked and, possibly, examine logs and

memory dumps.

11

This netflow example highlights an important lesson: Just because you have data, that doesn’t mean
it has the right information to answer your current question. Netflow data is perfectly adequate
to provide evidence that an attack is occurring. But it’s completely insufficient to answer how the
attackers got in, how they are moving through your network, or what they’re doing inside. Gap analysis
is a useful tool for identifying requirements in general, including which new data needs
to be collected.

er.

.

DATA PROCESSING
Data gathering and data processing are where you should expect to spend the majority of your time
and effort. It should be noted that, within the field of ML, the biggest improvements in performance
come from a foundation of better, higher-quality data.3 This is true in cyber intelligence as well.
For example, in one study the authors tried seven different algorithms to predict, from three sets of
features, whether or not a file was malware. The differences among the algorithms’ performances
was minimal. The differences among the prediction accuracy for different features were pronounced
(Table 1). This example highlights two things that are almost always true about ML: 1) Better data
generally makes more of a difference than algorithm choice, and 2) There is generally a different cost
associated with different features.

Feature of Executable File Ease of Extraction Prediction Accuracy

n-grams of bytes Cheap and easy to extract 60–80%

Opcodes Requires disassembling the file, medium cost and effort 85–95%

API calls used by executable High effort and computational time to extract 90–95%

Table 1. Prediction accuracy in malware detection algorithm study

3 https://arxiv.org/pdf/1808.01201.pdf

QUESTIONS YOU SHOULD BE ABLE TO ANSWER AT THE
PLANNING STAGE

• What is the relevant IR/PIR/SIR?
• What does a “minimally sufficient solution” look like?
• Create information extraction requirements (IERs).

 ◆ What kind of analysis is required (e.g., classification, anomaly detection, clustering…)?
 ◆ What metrics will be used to measure success?
 ◆ Are there other criteria that must be met (e.g., specific run time, processing limitations)?

Note: You should not settle on any particular algorithm at this stage, simply identify the needed
metrics and criteria

• Create data intelligence requirements (DIRs).
 ◆ What data do I need to answer this question?
 ◆ How much of that data do I need?
 ◆ Are there any specific collection requirements (e.g., random sample)?
 ◆ You might have a couple of data sources in mind, but it’s too early to commit to a specific one.

12

The majority of the work in ML takes place in the data preparation stage. Some estimates suggest you’ll
need as many as five data engineers for each ML scientist. In our experience with customers, this is not
unrealistic; the amount of work required to prepare data for ML should not be underestimated.

One of the best practices we observed was to automate data gathering and processing as much
as possible. Anything you do more than once should be automated. In fact, one team noted that
achieving any sort of scale without automation is impossible. Having an automated data collection
and processing system, on the other hand, allows teams to get more and different data, allows for
continuous improvement, and results in direct savings in labor costs. Furthermore, the automation
provides time for the analysts to work on more pressing issues.

GATHERING DATA
First and foremost, identify data sources in your DIRs that meet your needs rather than collecting and
storing data using an ad-hoc approach. We also recommend tracking the sources and making that
information part of how you store the data. When gathering data, it is already common practice among
database experts to create an extensive data dictionary describing what each data element is and how it
was generated. However, in the context of ML, consider adding the source of each data element to the
dictionary. Doing so will not only help you track where data elements come from, reducing technical
debt later on as models are updated, but also allow you to assess the usefulness of each data source in
the future. This assessment can help you decide whether or not to continue to collect particular data.
In addition, an ML algorithm can be adapted to weight each source based on prior knowledge about
source quality or the algorithm’s assessment of the data’s value in making predictions.

It should also be noted that manual data entry is highly error prone, expensive, and often infeasible
at scale. Avoid manual entry as much as possible. We reiterate that automation in all aspects of data
gathering should be pursued to the extent possible.

DATA TRANSFORMATION
Once data sources have been obtained, the data must be prepared for storage and subsequent analysis.
This typically entails at least three steps: cleaning, storage, and feature engineering. In this section, we
will discuss the first two steps. Feature engineering will be discussed in greater detail at the end of the
section “Modeling.”

Data cleaning entails ensuring the data is of proper quality for future analysis. This work includes
tasks such as handling missing data, outliers, correct-but-highly-unlikely values, and similar problems.
While each of these tasks can be handled in any number of ways, the key here is consistency.
Mishandling these data corner cases can result in the loss of significant data, incorrect conclusions,
or missing entire swaths of data for a variety of reasons. Given that data is the fuel that powers all
analysis, the intelligence analyst, the ML specialists, and any subject matter experts should all agree on
how such corner cases are handled.

Over the past two decades, the technology for storing data has become incredibly sophisticated: It is
now possible to store almost any type of data using commercial-off-the-shelf products. Unfortunately,
this can make life difficult for the ML practitioner, because it’s now often far easier to simply toss

13

data into a database than it is to prepare it for subsequent analysis.
Consequently, storage should be performed with the end goal in
mind; in this case, subsequent usage in an ML algorithm. So, when
considering a data storage solutions such as relational databases,
time-series databases, NoSQL engines, binary blobs, graph entities,
and document-based storage, it is critical to consider how the stored
data will be consumed. It may be, for instance, that the data should
be stored in multiple formats—columnar tables as well as JavaScript
Object Notation (JSON)—to enable different types of analytics. Because
the nature of the analysis will vary tremendously based on the use
case, analysts should ensure that the data storage format is working to
their advantage rather than posing a hindrance.

MODELING
In this section, we will discuss the two broad categories of ML problems
(supervised and unsupervised learning) with the goal of enabling
leadership and cyber intelligence analysts to work effectively with their
ML team. The type of modeling you need is determined by your PIR and/
or SIR. It should be specified in the IER, which you established based
on your PIR. Categorizing an ML problem this way can help constrain
it, and it can help you begin the process of translating an organizational
need into a tractable data science problem.

We emphasize that basic exploratory descriptive statistics should
always be completed before beginning a more complex ML analysis.
Descriptive summaries are some of the most basic tools, but also
the most useful. Such summaries include visualizations, averages,
standard deviation, correlations, and proportions. Every project
will need them, and many problems can be solved with these tools
alone. They answer the question, “What does normal look like in
this dataset?” For example, knowing how much traffic your network
usually carries on Monday morning as opposed to Thursday afternoon
is very useful in planning infrastructure and scheduling system
updates. This information could also be used to provide a baseline
for an ML algorithm against which network traffic anomalies could
be detected. Moreover, creating a simple visualization is often the
fastest way to reveal errors in data collection; for example, a negative
number denoting the number of logons on a particular day would
be a clear indicator that the data collection process needs to be
checked. Descriptive summaries provide a necessary foundation for
interpreting the results of more complicated analyses.

14

PREDICTION AND SUPERVISED ML
A supervised learning problem can be framed as “I would like to use _________ data to predict _________.”
The key requirement for supervised learning is labeled data. For instance, if you want to use the hash
of a binary executable file to predict who made the malware, then you need to have the hashes of other
binary files that have already been labeled by source. Likewise, if you want to predict which new pieces
of information are most important for human cyber intelligence analysts, then you must have data on
prior information that the analysts have labeled as useful or not useful.

This labeled data will serve as the “ground truth” for training the ML algorithm.4 The quality of labels
applied to the training data will directly impact the quality of the ML output.5 For example, let’s assume
a case in which labels from cyber intelligence analysts on different pieces of information indicate
whether the information was useful or not. It is easy to imagine different analysts disagreeing about
how to label the same piece of information. Moreover, certain pieces of information might meet some,
but not all, of the criteria for earning the label “useful.” How should these data points be labeled? All of
these small decisions will impact the utility of the results from any ML algorithm applied to the data.
Indeed, when we fit a supervised algorithm, the final model is the one that makes the best predictions
on a test set of the labeled data, so it is imperative that the labels be meaningful and accurate.

The second consideration in selecting a supervised learning algorithm is to identify what kinds of
information you need to be able to get out of your analysis. Do you need to predict whether or not a
new source, piece of data, or method of analysis will be useful? Or do you need to infer what features
of the information indicate whether it will be useful? The first case could be valuable if you just need
to help your intelligence analysts figure out what needs their attention most. The second case is more
important if you are evaluating which information services you want to continue to collect. Many
methods can be used for either prediction or inference (e.g., logistic regression), but some methods
can only be used for prediction (e.g., k-nearest neighbors).

Supervised learning models work under specific assumptions and constraints. A supervised learning
model is trained on one set of labeled data and then applied to new data. For this to be successful, the
assumptions and conditions that held true during training must also be enforced during deployment.
Consider again the malware example: There are large open source repositories of malware files that
could be used to train an algorithm. But these repositories have been highly curated and contain files
that are easily and distinctively identified as malware. Malware “in the wild” will not be so easy to
identify. If you train your algorithm to identify malware from one of the curated repositories, it will
only catch the “easy-to-identify” cases.

Moreover, the order for a supervised learning process is always
1. Collect the labeled data.
2. Train a model.
3. Apply the model.

4 Ground truth is simply defined as “the correct answer.” Labeled data provides the correct answers for every input.

5 https://ssrn.com/abstract=2477899 or http://dx.doi.org/10.2139/ssrn.2477899

15

Therefore, the labeled data is always data from the past that we will leverage for the present. When we
apply a supervised learning model, we are making a bet that tomorrow will be the same as yesterday.
This is often a bet we are willing to make. For example, using the pixels of an image to predict whether
or not there is a face in that image is not a task that will evolve rapidly over time. However, tomorrow’s
malware attack probably won’t look very much like one in the past. Immutability over time is simply
one example of the general immutability constraint. There can be disastrous results if the application
conditions do not sufficiently match the conditions for the collection of training data.

SUMMARIZING STRUCTURE AND UNSUPERVISED ML
Unsupervised learning methods answer the question, “I would like to understand the structure of the
features recorded in _____ data.” The most important consideration for using unsupervised ML is “What
kind of structure are you looking for?” Different algorithms will find different kinds of structure. The
three most common types of structures we might be interested in are clusters, anomalies, and sets
of highly correlated variables. Other kinds of structures include lower-dimensional representations,
density estimates, and latent variable representations. The IERs based on the PIRs and SIRs should
specify the kinds of structures we are interested in for a particular analysis. The reason you must pre-
specify the structure you are interested in is twofold. First, any patterns discovered in the data have
to be functionally meaningful to the intelligence analyst. Second, many of these methods will impose
structure on the data, even when that structure might not actually be present; if you pre-specify the
patterns of interest, it is easier to evaluate whether or not the patterns you find are actually real.

In a clustering problem, the question is “Are there meaningful subgroups in this data?” For example,
we might be interested in identifying users with similar patterns of usage (e.g., early risers, night owls,
and system administrators). We could be looking for groups of incident tickets that all have the same
attack patterns. Common methods for extracting clusters include k-means, mixture modeling, and
distance-based hierarchical clustering.

Anomaly detection tries to answer the question “Is there anything in this data that doesn’t look similar
to the rest?” For example, if our computer is infected with malware, it might be sending or receiving
unusually large amounts of data; an anomaly detection algorithm might be useful for implementing a
system to detect
an infection.

Assume the question “I have a whole pile of variables—are any of them related to each other?” For
this case, simple dimension reduction methods that look for sets of highly correlated variables are
appropriate. For example, if you are looking at usage statistics on a website, then number of clicks
and total time spent on the page are going to be highly related: The more time someone spends on the
page, the more links they’re likely to click. In general, dimension reduction techniques (called factor
analysis in some communities of practice), focus on finding a simpler representation of the data that
contains the same information as the original data. One of the most popular techniques for dimension
reduction is principal components analysis (PCA), which uses basic linear algebra to find groups of
features that are linearly correlated. However, PCA is most appropriate for numerical data. Other
methods, such as word2vec or latent Dirichlet allocation, are more appropriate for textual data.

16

Measuring the success of a supervised learning method is fairly
easy: How well do my predictions match the truth? In comparison,
measuring the success of an unsupervised learning method is much
trickier. If you ask a clustering algorithm to find five clusters in
the data, it will find five clusters, but they may not be meaningful
(see Figure 2). One of your criteria for success is that the patterns
discovered have to be functionally meaningful to an intelligence
analyst; this criterion could be measured informally or with a survey,
depending on how big the team is.

10

5

5

0

0

-5

-5

10

10

5

5

0

Fe
at

ur
e

2

-10

-10 0

-5

-5
Feature 1

FEATURE ENGINEERING
Feature engineering is an integral part of the feedback between data
processing and modeling. If we can refine and improve the features
we use to train a model, then we can achieve increased operational
effectiveness through greater model accuracy or reduced training time.
Feature engineering can take two forms. The first is feature selection,
which is used to mitigate redundant features (information is already
contained in another feature, duplication) and irrelevant features
(features contain no lift to an applicable ML task at hand). The second,
feature extraction, is used in creating new features by combining
original features under a consistent methodology. The PCA technique
mentioned above is often used for automated feature extraction.

It is worth emphasizing that manual feature engineering requires
more thought and effort but often produces greater rewards. Through
close collaboration between the ML team and the cyber intelligence
team, it is common to discover that, for example, “We’ve been using
the total count of event X, but we get better results if we use the time
that has passed since the last event X.” As discussed earlier, better data
often provides more improvement than better algorithms. Similarly,
leveraging the domain expertise of the cyber intelligence team in
feature extraction will produce better
ML results.

Figure 2. When clusters are present

(left), a clustering algorithm will find

clusters. When a different structure is

present, (the spiral is a type of lower

dimensional manifold), a clustering

algorithm will still try to find clusters.

17

ADVERSARIAL ML
Adversarial ML is not a substantial threat yet, but it will be in the near future. Adversarial ML is still
largely the domain of the research community, which is working to document the different ways in
which ML systems might be vulnerable; methods for hardening AI systems against adversarial attacks
are cutting edge research. The methods of attack have not permeated the script kiddie community
yet; however, adversarial examples are already abundant. Most of these examples follow a pattern
in which an organization trains and deploys an ML system, then the adversary builds an attack that
deceives it. However, they are nonetheless powerful for demonstrating the dangers: a 3D printed
turtle6 classified as a gun and a pair of glasses7 that causes facial recognition software to believe you
are John Malkovich. Another attack type we can expect in the medium-term future is the injection, by
an adversary, of malicious examples into your training data.8

DECISION MAKER REPORTING AND FEEDBACK

No matter the ML technique or the area of application, the results must be understandable to the
end users of the output (the “consumer”). Even more importantly, these ML consumers must have a
mechanism for providing actionable feedback to developers and analysts to ensure that the analysis
is not only understandable but also valuable. The most effective way to ensure this conversation can
happen is by defining a common language. Given the expected widespread adoption of ML solutions,
developers and analysts cannot assume that all consumers will be literate in ML techniques, lingo,
and nuances. However, a certain amount of literacy is required to ensure that useful feedback can be
provided. Literacy in the following specific concepts should be enforced:

• The concept of “probabilistic answers” is common in ML. Many ML algorithms do not answer
questions with a “yes” or “no” but rather with a likelihood that a given scenario has occurred. For
example, consider an algorithm observing a large amount of network traffic coming from a known
bad set of IP addresses. The algorithm may be intelligent enough to recognize the activity as a
component of an attack, but may not have enough additional data to further classify the attack,
or it may not be trained to recognize this specific type of activity as an attack, or any of a number
of similar possibilities. In this scenario, algorithm output may indicate that an attack is occurring
with 34% likelihood. While this is not something a person would say, it represents how algorithms
process input.

Additionally, these outputs could be mapped to ICD 2039 expressions of likelihood. ICD 203 §D.6.e.2.a
describes colloquial terminology ranging from “almost no chance” to “almost certainly,” mapping
likelihoods to seven possible categories. It is critical for executives to understand that these terms
are not chosen arbitrarily but correspond to specific likelihoods provided by the algorithm.

• Algorithm performance depends on two factors: the training set and the currently available
data. Continuing our previous example, assume that our analyst recognizes that this type of traffic

6 https://www.theverge.com/2017/11/2/16597276/google-ai-image-attacks-adversarial-turtle-rifle-3d-printed

7 https://qz.com/823820/carnegie-mellon-made-a-special-pair-of-glasses-that-lets-you-steal-a-digital-identity/

8 https://www.cs.umd.edu/~tomg/projects/poison/

9 https://www.dni.gov/files/documents/ICD/ICD%20203%20Analytic%20Standards.pdf

https://www.theverge.com/2017/11/2/16597276/google-ai-image-attacks-adversarial-turtle-rifle-3d-printed
https://www.theverge.com/2017/11/2/16597276/google-ai-image-attacks-adversarial-turtle-rifle-3d-printed
https://qz.com/823820/carnegie-mellon-made-a-special-pair-of-glasses-that-lets-you-steal-a-digital-identity/

18

is perfectly normal. Does this recognition mean that the algorithm is junk and should therefore
be ignored? Of course not! The algorithm only knows what it was shown in the past and what it
has available to it at the moment. Unfortunately, it is all too common for the consumer to use this
data point to dismiss the AI as “junk.” Misbehavior in one scenario does not imply misbehavior
elsewhere. Users of AI systems should find out what types of data the AI is best equipped to handle
and be extra cautious about trusting output when feeding the system data outside its expertise.
Similarly, when dealing with the AI’s “specialty” data, pay close attention to the output before
dismissing a seemingly spurious result: The AI may see a pattern or trend that a human would
normally miss.

Note also that some AI systems possess the ability to continuously learn new information. For
example, modern spam filters are “preprogrammed” to identify generic spam. As users tag the spam
they personally receive, the system learns new types of spam and classifier performance increases.
Some cyber intelligence systems possess a similar capability; if this is the case, consumers should be
aware that their labels are being included in the system.

• Appropriate trust is key. When it comes to AI, trusting the output too much or too little can be
problematic. In the earliest uses of AI in aviation, there were crashes because pilots did not trust
the AI system. In contrast, we know that there are systematic biases in which AI results deserve less
trust. Trusting a system too much may be particularly problematic if an adversary figures out how
to craft an attack specifically targeted to avoid detection by the AI—even if the human would have
identified the attack without AI assistance, overreliance on an AI system may lead analysts to trust
output without validating it. “Trust but verify” is a healthy motto.

Once consumers understand and internalize these concepts, they must then understand how to convey
feedback to analysts. “This doesn’t make sense” is almost never considered useful feedback. Rather, we
recommend that consumers try to make their feedback more actionable, focusing on the levers that
analysts can tweak. The following examples demonstrate various types of actionable feedback. In all
cases, “you” refers to the consumer.

ORGANIZATIONAL STRUCTURE FOR ML

There are many concerns related to creating an ML activity within your cyber intelligence organization.
It is difficult to understand the team composition, how to collaborate with an ML activity, and how to best
support the ML activity with proper policies and infrastructures. In this section, we outline how to organize
your cyber intelligence team to achieve success with ML, and we also look at how you can incorporate some
classic software engineering principles to ML to ensure high-quality output.

19

ORGANIZING AN ML EFFORT WITHIN AN INTEL TEAM
An understanding of the relationships among IRs, PIRs, and SIRs over time, region, and industry is
maintained through individual roles and responsibilities. A team that can function effectively at the
intersection of cyber, intelligence, and ML must include people with specific backgrounds, skillsets,
and traits. Moreover, the team members must have a clear separation of roles and responsibilities
while at the same time allowing close collaboration and effective information sharing.

A successful ML–cyber intelligence effort requires three parts:

• domain expertise: knowledge of cyber intelligence and other organizational context
• ML expertise: understanding of the underlying theory in ML and how to apply it
• data engineering expertise: ability to engineer systems that integrate and scale ML and cyber

intelligence capabilities

Without these three kinds of expertise, an ML effort within a cyber intelligence team will find it
difficult to succeed and scale.

ML scientists, cyber intelligence analysts, and data engineers must all have depth in their respective
domains, but they must also be able to understand and, most importantly, communicate across their
domains. These are three very large bodies of knowledge, so it is rare to be able to hire an individual
with expertise in more than one of these areas. However, within a cross-domain cyber intelligence
team, individual members will usually have a primary area of specialty and will develop expertise
in a secondary area as they work in the intersection. This can be facilitated with formal training and
collaboration sessions, but is often achieved informally via day-to-day interaction and collaboration.

Close collaboration and open communication are critical at all times and can likely be better facilitated
within a fusion center, where diverse teams come together to analyze disparate information. There
are complex design requirements that exist in each domain of work that require each practitioner to
take the restrictions and needs of another domain into consideration at every step of their work. For
example, there are fundamental limitations to what a compute resource can accomplish. The cyber
intelligence analysts and ML scientists must listen and make adjustments to ensure their solutions do
not grossly overestimate the fundamental assumptions that a software engineer is taking for granted.
The ML and engineering personnel need to be on, or work closely with, the cyber intelligence team.
Since their jobs involve directly modeling and analyzing data collected and tagged by cyber intelligence
analysts, it is essential for them to be included in regular information sharing and planning meetings,
especially regarding information collection practices or procedures.

20

SOFTWARE ENGINEERING FOR ML
While ML processes can be used to effectively monitor, assess, and model environmental events, they
are not without their operational concerns. Under the best circumstances, an ML system designed
today will need to be monitored and adjusted as time passes.

Stakeholders must understand, at least on a high level, that software engineering for ML looks
different from software engineering elsewhere in their organization, because following good software
engineering practices will enable you to adapt to changing circumstances. Traditional software
engineering attributes, such as functionality, usability, reliability, performance, and supportability
(FURPS), still apply to the world of ML. However, their specific implementations will look different for
the ML pipeline.

Specifically, ML systems require much more verification at each step of the process than
the surrounding software pipeline. The following list breaks this idea down into the specific
FURPS components:

• Functionality: As the model is training and constantly updating, and as it is
being exposed to more data, does it still achieve the task it is being created to
solve? The passage of time and the application of training updates does not guarantee functionality.
Consequently, verification must be woven into the functionality pipeline.

• Usability: Is the model consistent? Does it produce outputs humans can
understand and reason about? Does the consistency change as the model
gets new training updates?

• Reliability: Does the model provide stable outputs? If the model predicts an input as class 1 with
high confidence at time t, will it still predict class 1 within the same confidence at time t+1? This
must be verified regularly and not taken for granted.

• Performance: Does training the model more and more increase the runtime requirements for
inference? Does the model become too large to feasibly deploy to production systems? Constant
performance checks must be in place.

• Supportability: Is it simple to influence the behavior of the model early in the training process?
How about late in the training process? How can you update a production model and ensure its
veracity? A verification pipeline must be constructed here as well.

There are two places in which the differences between software engineering for ML and traditional
software engineering are particularly stark. First, the mental representations a software engineer uses
to think about data are fundamentally different from the mental representations an ML scientist uses
to think about data and modeling. These differences can cause communication difficulties between the
software engineering team and the ML team, so it is critical to have open lines of communication to
resolve these issues.

Second, ML creates a tight coupling between the content of the data, the model, and the final use of the
information. In fact, the model is created specifically to connect the data to the end use. This is in stark
contrast to traditional software engineering, in which tight coupling is forbidden. However, the format
of the data storage, the hardware, and the implementation of the algorithm can and should all be
loosely coupled. Once again, close collaboration between the ML team and the software engineering
team is required to address these issues.

21

INFRASTRUCTURE AND HARDWARE
A strong computing infrastructure is necessary to maintain a healthy and capable data science effort.
Namely, the availability of computing infrastructure with networked storage and compute (CPU and
GPU) capabilities is essential. Many companies will already have infrastructure for this purpose
elsewhere in the organization, so partnering with those teams and growing their infrastructure is a
strong possibility.

Along with computing infrastructure, quick and reliable data storage is a necessity. Data is processed
repeatedly in ML R&D and production; strong data storage capabilities will augment the volume and
speed of the ML effort.

With large data environments, there need to be strong measures in place to protect the transfer, usage,
and availability of data. All ML and cyber intelligence personnel must follow rules set by the CISO
organization. These measures also include data governance and compliance, which can apply to both
on-premise and cloud infrastructures. Due to the tight data coupling in the ML domain, guidance must
be created in conjunction with the CISO organization to avoid any potential issues.

©2019 Carnegie Mellon University | 5098 | 05.20.2019

About the SEI

The Software Engineering Institute is a federally funded
research and development center (FFRDC) that works
with defense and government organizations, industry,
and academia to advance the state of sthe art in software
engineering and cybersecurity to benefit public interest.
Part of Carnegie Mellon University, the SEI is a national
resource in pioneering emerging technologies, cybersecurity,
software acquisition, and software lifecycle assurance.

Contact Us
CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE; PITTSBURGH, PA 15213-2612

sei.cmu.edu
412.268.5800 | 888.201.4479
info@sei.cmu.edu

http://sei.cmu.edu
mailto:info%40sei.cmu.edu?subject=

	Introduction
	Conditions for Success in ML
	Use Cases for ML in Cyber Intelligence
	The ML Pipeline
	Decision Maker Reporting and Feedback
	Organizational Structure for ML

