
Method Engineering and COTS Evaluation
B. Henderson-Sellers

Faculty of Information Technology
University of Technology, Sydney

PO Box 123, Broadway, NSW,
Australia

+61 2 9514 1687

brian@it.uts.edu.au

C. Gonzalez-Perez
Faculty of Information Technology
University of Technology, Sydney

PO Box 123, Broadway, NSW,
Australia

+61 2 9514 4477

cesargon@it.uts.edu.au

D.G. Firesmith
SEI

Carnegie Mellon University
Pittsburgh

USA

dgf@sei.cmu.edu

M.K. Serour
Faculty of Information Technology
University of Technology, Sydney

PO Box 123, Broadway, NSW,
Australia

+61 2 9514 4479

mserour@it.uts.edu.au

ABSTRACT
This position paper argues that a successful COTS evaluation
process should be based on the principles of method engineering
(ME). Following a brief description of an ME approach
underpinned by a metamodel, some method fragments related to
component-based software engineering are offered as the starting
point for the creation of a complete suite of method fragments for
future COTS evaluation processes.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Object-oriented design
methods

General Terms
Management, Design, Standardization, Theory

Keywords
Method engineering, COTS, process, method, methodology.

1. INTRODUCTION
The evaluation of COTS is but one component of a software
development method. COTS evaluation may involve several
steps, several focussed tasks and supporting techniques with the
results of the evaluation being documented in some sort of output
derived by the evaluation process. Consequently, the challenge is
to identify the appropriate methodological fragments to support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MPEC’05 at ICSE’05, May 21, 2005, St Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-129-5/00/0004…$5.00.

COTS evaluation. Here, we propose an approach, method
engineering, that offers significant infrastructure support.

In Section 2, we outline the method engineering approach and
then, in Section 3, discuss how method fragments are created and
stored in a repository. Some pre-existing component-based
software engineering (CBSE) method fragments are introduced in
Section 4 in order to initiate discussion on how they might form
an initial set of descriptors for future COTS-focussed fragments.
Section 5 concludes with proposals for some possible future
directions.

2. METHOD ENGINEERING
Method engineering is an approach in which a method (a.k.a.
methodology) is conceived of not as a single intertwined and
interdependent entity but as a set of disparate fragments [1-3, 24;
29]. Those fragments are usually first identified by dissecting
existing “one-size-fits-all” methodologies and also frequently
created “bottom-up” from software engineering theory [20]. The
fragments, which ideally comply with an underpinning
metamodel [12], are stored in a repository. This is effectively
standardized, either by an independent body or by the repository
“inventors” and made available to software development
organizations (generally commercially-focussed).

The software development team, perhaps headed by a method
engineer and/or a project manager, then has the challenge of
creating a “personalized” method. They select the most
appropriate method fragments from the repository and assemble
them into a full-blown method that has been effectively created
precisely to fit the needs of the organization, product and/or
project.

Ways by which method fragments are, firstly, selected and,
secondly, used in method construction have been evaluated by
several authors e.g. [2, 7]. Some approaches found useful are the
use of pre- and post-conditions and the use of deontic matrices [8,
15]. Other potential sources of ideas for construction rules include
[2, 6, 17, 19, 21-24]. However, there still remains work to be

undertaken to ensure that such approaches gain commercial
acceptance.

3. METHOD FRAGMENT REPOSITORY
3.1 Granularity Issues
A repository for method fragments is generally constructed by a
group of methodologists and method engineers in which the
individual fragments conform to some specific “in-house” rules.
In the approach of Ralyté [20], each fragment (called by her a
“method chunk”) involves a tight coupling between a task and a
technique. In contrast, the granularity assumed in the OPEN
Process Framework (OPF) approach [7] is that a fragment may be,
inter alia, either a task or a technique. This latter approach allows
a many-to-many relationship to exist between task and technique
method fragments whereas in the former, for example, a
technique used by two tasks will be redundantly incorporated into
two different method chunks. Maintenance and integrity of the
chunks in the repository thus becomes a significant issue since
autonomy is obviated.

In addition, in the OPF approach, which we follow here, each of
the method fragments is created by direct instantiation from an
entity in the predefined and standardized metamodel. Currently,
the OPF metamodel is that devised by the OPEN Consortium e.g.
[7] but current and future work will align it directly with a new
Australian Standard [28] in this area.

3.2 The Three Layers of the OPF
Elements of the metamodel (Figure 1) of the OPF cover technical,
process, product, organizational and human-oriented aspects.
Instances of these elements and their subtypes are then created
(Figure 2) to cover a wide range of software engineering
applications.

metamodelmetamodel

methodmethod

projectproject

represents

represents

Figure 1 Representation of the metamodel, the method and the project

levels.

The major elements in the metamodel are:

Work Unit. Work unit fragments describe what kinds of things are
done (tasks and activities) and how these are accomplished
(techniques)

Work Product. Work product fragments describe kinds of things
input or output from work units.

Producer. Producer fragments document those people and tools
being used for the creation and maintenance of work products.

Stage. Stage fragments (e.g. lifecycle, phase, milestone) are used
to describe temporal aspects of an endeavour.

Language. Language fragments denote resources used to program,
document designs or just plainly describe work products.

Framework/metamodel
Repository of process

components

…….

…….

…….

Example
1of
Concept A

Concept C

Concept A

Concept B Example
2of
Concept A

Example
1of
Concept B

Example
2of
Concept B

Example
1of
Concept C

Example
2of
Concept C

Framework/metamodel
Repository of process

components

…….

…….

…….

Example
1of
Concept A

Example
1of
Concept A

Concept C

Concept A

Concept B Example
2of
Concept A

Example
2of
Concept A

Example
1of
Concept B

Example
1of
Concept B

Example
2of
Concept B

Example
2of
Concept B

Example
1of
Concept C

Example
1of
Concept C

Example
2of
Concept C

Example
2of
Concept C

Figure 2 Instantiating metamodel elements in order to populate the

repository with method fragments

Fragments generated as instances of these metamodel classes are
stored in a repository located at the method level (Figure 1).
Actual methodologies are then constructed from a selection of
these repository-held fragments. Such a method may be
configured specifically for use in a number of kinds of software or
systems development, such as web-based applications [9, 15],
organizational transition [14, 26], agent-oriented applications [13]
and component-based software engineering (CBSE) [11, 27].
CBSE-focussed fragments are of relevance to COTS and are
summarized below as a precursor to their extension and re-
evaluation for use in COTS evaluations.

4. NEED FOR COTS FRAGMENTS
The fragments currently in the OPF repository do not currently
fully support COTS. Indeed, we propose here a merger of the
existing non-COTS, metamodel-based ME framework of the OPF
with COTS evaluation ideas to be discussed in the 2005
ICSE/MPEC workshop.

As a first step, we would propose commencing with the existing
OPF fragments devised to support the evaluation of components
[11]. In summary, these CBSE-focussed method components are:

ACTIVITY: “Component selection” expands upon existing OPF
fragments by the incorporation of CBSE-focussed ideas [18].

TASK: “Capture Business Requirement”. To identify and analyze
the business requirements for evaluating and acquiring COTS.
This task should produce a checklist (see Technique: Checklist).

TASK: “Screen the candidate list of components”. Vendors and
available components are identified and screened against the
business and development team’s list of requirements.

TASK: “Evaluate the potential components”. Full testing is
undertaken of the potential candidates against pre-specified
criteria.

TASK: “Choose appropriate components”. Based on the
evaluation, a choice can be made based on a risk analysis and a
trade-off analysis of costs and benefits.

TASK: “Integrate components”. The main focus on building
systems from components and COTS software involves
integration. Some useful support is also found in [25] and in
Catalysis [5]

TECHNIQUE: “QESTA”. This is a technique for component
evaluation devised by Hansen [10] that may be useful also for
COTS evaluation. QESTA stands for Quantification,
Examination, Specification, Transformation and Aggregation.

TECHNIQUE: “Checklist”. This is a useful technique to support
the component selection tasks.

TECHNIQUE: “Compliance matrix template”. For tasks (see
above) based on compliance evaluation, this template provides a
useful starting point.

Using these CBSE-focussed fragments, we can analyze their
utility, either directly or by extension, to COTS evaluation. For
example, since COTS can readily be considered as a single (albeit
large) component, the OPF Activity: “Component selection”
would appear to be highly useful and relevant. Other tasks and
techniques from those listed above should be similarly evaluated.
In other COTS evaluation areas, no doubt there will be no pre-
existing repository fragments – we anticipate that this workshop
will help to identify these necessary additions to the OPF
repository.

In addition to the method fragments listed above, the OPF can
incorporate some method fragments defined in the context of the
OOSPICE project [16, 27], which focussed solely on component-
based software engineering. OOSPICE included the development
of a method for object-oriented and component-based software
development, and a number of method fragments were created.
The OOSPICE metamodel is slightly different to the OPF
metamodel, but straightforward mappings between the two can be
easily done. The OOSPICE Task, Technique and Work Product
metamodel elements have identical semantics to those in OPF
with the same names. The semantics of the OOSPICE Process
metamodel element are very close to those of the OPF Activity.
Following these mappings, the following additional method
fragments can be taken from OOSPICE and into OPF:

ACTIVITY: “Component Requirements Engineering”. The
purpose of this activity is to elicit, analyse, specify and maintain
evolving customer needs and requirements for the component.

ACTIVITY: “Component Architecture”. The purpose of this
activity is to determine the logical and physical structure of the
component in terms of its sub-components and mechanisms.

ACTIVITY: “Component Preparation”. The purpose of this
activity is to prepare a component for integration in a particular
application.

WORK PRODUCT: “Component Evaluation Document”. An
evaluation conducted to ascertain the component's functional and
quality characteristics so that decisions may be made about its
suitability for integration into the product. The evaluation may
vary from informal and cursory to formal and extensive. The
evaluation would be expected to cover: functionality; quality

characteristics such as reliability, robustness, performance;
compatibility with the intended product; cost, including
deployment costs; licensing restrictions.

WORK PRODUCT: “Component Acquisition List”. A list of
components to be acquired. The list should describe each
component and its requirements to guide attempts to acquire it.

In addition, a number of different tasks can be imported into the
OPF from OOSPICE, namely “Analyse technologies”, “Develop
vision statement for the component”, “Obtain requirements for the
component”, “Analyse component requirements” and “Specify
component requirements” (related to the “Component
Requirements Engineering” activity); “Identify architecture styles
and patterns”, “Determine logical elements of the component”,
“Determine component infrastructures”, “Determine
components”, “Make build/buy decisions”, “Establish traceability
between component requirements and specification” and “Verify
component architecture” (related to the “Component
Architecture” activity); and “Evaluate component”, “Identify
integration mechanisms for the component”, “Identify
modifications”, “Implement modifications” and “Verify modified
component” (all related to the “Component Preparation” activity).

5. FUTURE WORK
We have introduced here the notion that a method engineering
approach, underpinned by a metamodel, can offer a firm and well-
established base for the creation of method fragments for the
evaluation of COTS. Standardizing COTS-related method
fragments in this way permits researchers to evaluate different
approaches to COTS evaluation within the same framework thus
removing any biases due to incompatibilities of data sources. We
therefore offer the OPF metamodel and repository as a starting
point for future work on COTS evaluation.

6. ACKNOWLEDGMENTS
This is contribution number 05/03 of the Centre for Object
Technology Applications and Research.

7. REFERENCES
[1] Brinkkemper, S., 1996, Method engineering: engineering of

information systems development methods and tools, Inf.
Software Technol., 38(4), 275-280

[2] Brinkkemper, S., Saeki, M. and Harmsen, F., 1998,
Assembly techniques for method engineering. Proceedings
of CAISE 1998, Springer Verlag, 381-400.

[3] Brinkkemper, S., Saeki, M. and Harmsen, F., 2001, A
method engineering language for the description of systems
development methods (extended abstract), CAiSE 2001 (eds.
K.R. Dittrich, A. Geppert and M.C. Norrie), LNCS 2068,
Springer-Verlag, Berlin, 473-476

[4] Constantine, L.L. and Lockwood, L.A.D., 1999, Software for
Use, Addison-Wesley/ACM Press, New York, N.Y., USA,
579pp

[5] D’Souza, D.F. and Wills, A.C., 1999, Objects, Components,
and Frameworks with UML. The Catalysis Approach,
Addison-Wesley, Reading, MA, USA, 785pp

[6] Firesmith, D.G., http://www.donald-firesmith.com

[7] Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN
Process Framework. AN Introduction, Addison-Wesley,
Harlow, Herts, UK

[8] Graham, I., Henderson-Sellers, B. and Younessi, H., 1997,
The OPEN Process Specification, Addison-Wesley, UK.

[9] Haire, B., Henderson-Sellers, B. and Lowe, D., 2001,
Supporting web development in the OPEN process:
additional tasks, Procs. 25th Annual International Computer
Software and Applications Conference. COMPSAC 2001,
IEEE Computer Society Press, Los Alamitos, CA, USA,
383-389.

[10] Hansen, W.J., 1999, A generic process and terminology for
evaluating COTS software, in TOOLS 30 (eds. D. Firesmith,
R. Riehle, G. Pour and B. Meyer), IEEE Computer Society,
Los Alamitos, CA, USA, 547-551

[11] Henderson-Sellers, B., 2001, An OPEN process for
component-based development, Chapter 18 in G.T.
Heineman and W. Councill (Eds.) Component-Based
Software Engineering: Putting the Pieces Together,
Addison-Wesley, Reading, MA, USA, 321-340

[12] Henderson-Sellers, B., 2003, Method engineering for OO
system development, Comm. ACM 46(10): 73-78.

[13] Henderson-Sellers, B., 2005, Creating a comprehensive
agent-oriented methodology - using method engineering and
the OPEN metamodel, Chapter 13 in Agent-Oriented
Methodologies (eds. B. Henderson-Sellers and P. Giorgini),
Idea Group, Hershey, PA, USA

[14] Henderson-Sellers, B. and Serour, M.K., 2000, Creating a
process for transitioning to object technology, Proceedings
Seventh Asia-Pacific Software Engineering Conference.
APSEC 2000, IEEE Computer Society Press, Los Alamitos,
CA, USA, 436-440

[15] Henderson-Sellers, B., Haire, B. and Lowe, D., 2002, Using
OPEN's deontic matrices for e-business, Engineering
Information Systems in the Internet Context (eds. C. Rolland,
S. Brinkkemper and M. Saeki), Kluwer Academic
Publishers,

[16] Henderson-Sellers, B., Bohling, J. and Rout, T., 2004,
Creating the OOSPICE model architecture – a case of reuse,
Software Process Improvement and Practice, 8(1), 41-49

[17] Hruby, P., 2000, Designing customizable methodologies,
JOOP, 13(8), 22-31

[18] Kuruganti, I., 1999, A component selection methodology
with application to the internet telephony domain, in TOOLS
30 (eds. D. Firesmith, R. Riehle, G. Pour and B. Meyer),
IEEE Computer Society, Los Alamitos, CA, USA, 552-556

[19] Martin, J. and Odell, J.J., 1995, Method engineering, Chapter
1 in Object-Oriented Methods: Pragmatic Considerations,
Prentice-Hall

[20] Ralyte, J., 2004, Towards situational methods for
information systems development: engineering reusable
method chunks, Procs. 13th Int. Conf. on Information
Systems Development. Advances in Theory, Practice and
Education (eds. O. Vasilecas, A. Caplinskas, W.
Wojtkowski, W.G. Wojtkowski, J. Zupancic and S. Wrycza),
Vilnius Gediminas Technical University, Vilnius, Lithuania,
271-282

[21] Ralyté, J. and Rolland, C., 2001, An assembly process model
for method engineering, in K.R. Dittrich, A. Geppert and
M.C. Norrie (Eds.) Advanced Information Systems
Engineering), LNCS2068, Springer, Berlin, 267-283

[22] Ralyté, J., Deneckère, R. and Rolland, C., 2003, Towards a
generic method for situational method engineering, Procs.
CAiSE2003 (ed. M.M. J. Eder), Springer-Verlag

[23] Ralyté, J., Rolland, C. and Deneckère, R., 2004, Towards a
meta-tool for change-centric method engineering: a typology
of generic operators, Procs. CAiSE 2004 (eds. A. Persson
and J. Stirna), LNCS 3084, Springer-Verlag, 202-218

[24] Rolland, C. and N. Prakash, 1996. A Proposal for Context-
Specific Method Engineering. In Procs. IFIP WG8
International Conference on Method Engineering. Atlanta,
GA.

[25] Seacord, R.C. and Nwosu, K.C., 1999, Life cycle activity
areas for component-based software engineering processes, ,
in TOOLS 30 (eds. D. Firesmith, R. Riehle, G. Pour and B.
Meyer), IEEE Computer Society, Los Alamitos, CA, USA,
537-541

[26] Serour, M., Henderson-Sellers, B., Hughes, J., Winder, D.
and Chow, L., 2002, Organizational transition to object
technology: theory and practice, Object-Oriented
Information Systems (eds. Z. Bellahsène, D. Patel and C.
Rolland), LNCS 2425, Springer-Verlag, Berlin, 229-241.

[27] Stallinger, F., Dorling, A., Rout, T., Henderson-Sellers, B.
and Lefever, B., 2002, Software process improvement for
component-based software engineering: an introduction to
the OOSPICE project, Procs. Euromicro 2002 Conference,
IEEE Computer Society Press, Los Alamitos, CA, USA,
318-323

[28] Standards Australia, 2004, Australian Standard 4651-2004:
Standard metamodel for software development
methodologies, ISBN 0 7337 6195 X, 23 August 2004,
Standards Australia International Ltd., Sydney, 72pp

[29] ter Hofstede, A.H.M. and T.F. Verhoef, 1997. On the
feasibility of situational method engineering. Information
Systems. 22(6/7): p. 401-422.

	Method Engineering and COTS Evaluation
	Abstract
	Introduction
	Method Engineering
	Mwthod Fragment Repository
	Need for Cots Fragments
	Future Work
	Acknowledgments
	References

