
Materials for Teaching
Software Inspections

James E. Tomayko
SEI MSE Project

James S. Murphy
School of Computer Science

Carnegie Mellon University

Approved for public release.
Distribution unlimited.

This document was prepared for the

SEI Joint Program Office
ESC/ENS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This document has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This work was funded by the U.S. Department of Defense.
Copyright © 1993 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of scienti
and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government agen
personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information Center, At
FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering, plea
contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-93-EM-7 i

Table of Contents

1. Preface iii

2. Software Inspections: History, Technique, and Results 1
2.1 The Formal Inspection Process 2
2.2 Pitfalls of Inspections 2
2.3 Results of Inspections 3

3. Using the Materials 5

Annotated Bibliography 7

ii CMU/SEI-93-EM-7

CMU/SEI-93-EM-7 iii

Preface

This educational materials package was developed for instructors of software
verification techniques in graduate and undergraduate software engineering courses,
and for those who teach industrial continuing education courses on the meaning and
methods of software inspections.

Software inspections are a low-tech, highly effective verification technique. Research
has consistently shown that the defect detection rate of inspections is higher than that
of many traditional testing techniques. This package includes materials for
demonstrating how to perform an inspection and also for “selling” students on the
effectiveness of inspections. It complements EM-5, Scenes from Software Inspections,
providing additional background material and exercises for using that set of educational
materials.

Materials for Teaching Software Inspections contains the following:

1. Introductory essay on the history and results of software inspections

2. Annotated bibliography

3. Teaching suggestions for the instructor

4. Inspection materials: code, report forms, and actual results

5. Video: Software Inspections: Utility or Futility, a report on inspection results on
an actual project

6. Video: Candid Inspection, which shows portions of an actual inspection

Note: Both videos are on the same tape cartridge, separated by titles. The inspection
materials and videos (items 4, 5, and 6) can be ordered from the SEI. An order
form is provided at the end of this document.

iv CMU/SEI-93-EM-7

CMU/SEI-93-EM-7 1

Software Inspections: History, Technique, and
Results

Inspections are one of the most effective, yet lowest technology, quality assurance
techniques that can be applied to software development at all stages of the life cycle. In
conventional manufacturing, inspections by quality assurance specialists are an
accepted practice. These inspections take place at selected points on an assembly line
and are used to certify that parts and assemblies are correctly built to the specifications.
Even with the advent of advanced tools such as X-ray and sonic devices coupled to
expert systems, the most common form of inspection remains a human being making an
experienced judgment.

Michael E. Fagan of IBM is credited with introducing the use of inspections in software
development. Though many programmers use informal peer reviews of their code,
Fagan made the formal inspection an integral part of the development process [Fagan
76]. Inspections have the obvious benefit of locating errors in code or other
documentation. Fagan also viewed them as a contributor to disciplined development. By
requiring inspections at various points in the development life cycle, software engineers
not only improved the quality of the work products involved but also gained valuable
data on defect injection and resolution.

The completeness of a software product is most often determined by testing. Inspections
can also contribute to the determination of when a product is ready for shipment. In
Fagan’s original data, design and code inspections located 82 percent of all errors in a
specific product. Acceptance test and actual use by a customer for six months revealed
zero defects.

Inspections are used to inculcate quality throughout the development process, not just
at the implementation stage. Even though most of the examples and data given in the
literature refer to code inspections, successful project teams use inspections for all
deliverables, including requirements and design documentation, as well as user
manuals. Following the principle that the earlier a defect is found, the easier and
cheaper it is to fix, the utility of inspections for work products other than code is
apparent.

If an organization maintains records of inspection results and the results of all other
defect identification methods, it can determine the average percentage of errors located
and thus indicate when a product is ready to move on to the next step in development.

2 CMU/SEI-93-EM-7

The Formal Inspection Process

Inspections are a team activity. Most inspections can be accomplished by four people:
the producer of the item to be inspected (such as code, design, or user manual), a
moderator to facilitate the process, and two technically competent inspectors. One
person also acts as a recorder. The inspection is preceded by a period of preparation by
each member of the group. Except for the moderator sometimes, team members usually
need at least an hour to prepare. The inspection itself is usually limited to two hours
because longer durations tend to reduce the efficiency of the team. After the inspection
meeting is a follow-up period, beginning with a report and ending with the closure of
open items such as the disposition of major defects.

Preparation includes two possible activities: a group overview and solo study. The first
time an inspection team has to deal with the components of a particular product, a lead
designer or someone with similar knowledge of the software product gives an overview
of the requirements and design. Each inspector spends time individually studying the
document or code prior to its inspection.

The inspection meeting begins with team members reporting the time each spent in
preparation, a valuable metric. Then one of the inspectors acts as a reader, going
through the code or design one line or item at a time. Each member of the team has an
opportunity to ask for clarification or point out a defect in the current item. The recorder
writes down the defects, which are later classified as “minor” or “major” (a minor defect
could be a syntax error such as a missing semicolon in code; a major defect could be a
failure to implement a requirement either through logic error or omission).

After the inspection is completed, the recorder prepares a report listing metrics such as
preparation time, elapsed time of the inspection meeting itself, and the major and minor
defects (sample report forms are in [Fagan 76]. The minor defects are usually turned
over to the original producer of the inspected material for rectification. The major
defects may require the attention of the configuration control board or other change
control mechanism. Defect repair is accompanied by any necessary changes to
documentation prior to closure. Records of defect type and location in the product can be
used for causal analysis and continuous process improvement.

Pitfalls of Inspections

One of the greatest dangers of inspections is the inability of producers and inspectors to
differentiate the product from the person creating the product. Software engineers are
sometimes embarrassed by the inspection process when their carelessness or bad
judgment is revealed in a “public” setting. When a particular product has many errors,
inspectors may sometimes get caught up in a “feeding frenzy,” attacking the producer.
The moderator is charged with the responsibility of keeping the inspection focused on
the product and also maintaining a professional tone during the meeting. Under no
circumstances should the results of inspections be used as part of performance
appraisals.

CMU/SEI-93-EM-7 3

Another pitfall is attempting to use inspections without adequately budgeting time for
preparation and follow-up. Insufficient preparation reduces the number of lines or items
that can be inspected in a particular meeting because time is spent in trying to
understand the code. Insufficient follow-up often means that defects remain, defects
that may not be found by later testing. Since the results of the inspections in locating
defects are so outstanding, it is much cheaper to spend time at these early stages in
product development than to find and repair defects later.

Results of Inspections

The results of using formal inspections are most marked in the decreasing cost of
rework and in the side effect of improving individual software engineering skills.
Fagan’s early data indicated that 82 percent of all errors in applications software
development could be found with inspections. A later report of a 6,000-line business
application indicates that inspections found 93 percent of all defects [Ackerman 89].
Since inspections can be conducted even prior to unit testing, they are inexpensive
compared to finding errors in integration or acceptance testing phases. The Jet
Propulsion Laboratory estimates it saves $25,000 in each inspection [Bush 90].
However, the process does not lend itself to saving more money through acceleration:
Russell reports that defects found per thousand lines of code dropped from 50 to 15
when the pace of inspections increased from 150 to 450 lines per hour [Russell 91].
Finally, although it has not been quantified, software engineers report that their own
programming skills improve as a result of participating in inspections. This is not so
surprising since people are taught to be better writers by reading good writing and by
receiving critiques. The same principle can apply to programming.

4 CMU/SEI-93-EM-7

CMU/SEI-93-EM-7 5

Using the Materials

This educational materials package, together with EM-5, Scenes from Software
Inspections, provides the instructor with a variety of materials to use in teaching the
techniques of software inspection.

In a recent course on software verification techniques, the authors used the following
assignment and activity sequence:

1. Read [Fagan76], [Ackerman89], and [Russell91], and view the video Software
Inspections: Utility or Futility. Then write an essay on the following: What are the
potential advantages and disadvantages of inspection technology in your personal
software development field? In what ways can advances in information technology
be utilized to improve the inspections process?

2. Attend software inspections training, which uses the Scenes from Software
Inspections video and the Candid Inspection video as a basis for demonstration and
discussion.

3. Participate in an inspection, including all preparation and follow-up work.

4. Write an individual evaluation of the inspection you participated in, commenting
on its effectiveness at defect identification and on its process.

Attachment A contains the design overview, code, and sample results of the
assignments specified here so that instructors can see what might be expected from
students who do these assignments. Attachment E is the hard-copy version of the slides
from the Software Inspections: Utility or Futility videotape, and Exhibit F is the design
overview and code inspected in Candid Inspection.

Another sequence of assignments and activities in a course with a lab component could
be the following:

1. The instructor lectures on the origins of inspections and their effectiveness.
Students prepare by reading [Fagan76], and [Russell91] prior to attending the
lecture; the instructor uses Software Inspections: Utility or Futility during the
lecture as additional material.

2. The instructor lectures on how to conduct an inspection, reviewing the roles and
method. Scenes from Software Inspections and Candid Inspection are used as
examples.

6 CMU/SEI-93-EM-7

3. Students are split into teams and conduct an inspection during a laboratory
period. The instructor, hopefully with some help, listens in to the inspection teams
to ensure that they are performing the inspection correctly.

4. Attachments C and D contain design documentation, pre-inspected code,
inspection reports, and post-inspection code for two different modules of software
that is being used in a robot to maintain the Space Shuttle thermal protection
system. Either of these may be used for the exercise. Instructors should distribute
Attachment B, which contains the coding standards (violations of coding
standards are considered defects) and system header files for the example
modules, along with one of the pre-inspected code listings.

5. After the inspection, distribute the report and resulting repaired code to compare
with the results of the in-class inspection. Alternatively, one of the complete
exhibits could be used for an in-class walkthrough and the other for an actual
inspection.

CMU/SEI-93-EM-7 7

Annotated Bibliography

[Ackerman 89] Ackerman, Frank A.; Buchwald, Lynne S.; and Lewski, Frank H.
“Software Inspections: An Effective Verification Process.” IEEE
Software (May 1989): 31-36.
The authors recount experiences with inspections at AT&T. The article
contains a useful chart of a requirements inspection checklist. The
section on experiences is a good survey of industry practice and results.

[Bush 90] Bush, Marilyn. “Improving Software Quality: The Use of Formal
Inspections at the Jet Propulsion Laboratory,” 196-198. Proceedings
of the 12th International Conference on Software Engineering, IEEE
Computer Society Press, 1990.
A “work in progress” paper describing the Jet Propulsion Laboratory’s
initial uses of software inspections.

[Fagan 76] Fagan, Michael E. “Design and Code Inspections to Reduce Errors in
Program Development.” IBM Systems Journal 15, 3 (1976): 182-211.
The original paper describing the software inspection technique. Fagan
gives detailed specifications for the roles of participants in an
inspection and the content of reports. He also gives an overview of early
results of the use of inspections in IBM. His emphasis in the paper is
how inspections are just a part of the overall process control of the
development of software.

[Fagan 86] Fagan, Michael E. “Advances with Inspections.” IEEE Transactions
on Software Engineering (July 1986): 744-751.
This paper is more a ten-year update than a report on spectacular
advances. Fagan has considerably more results to survey.

[Russell 91] Russell, G. W. “Experience with Inspection in Ultralarge-Scale
Developments.” IEEE Software (January 1991): 25-31.
This paper is an exceptionally good report of results on large projects.
Russell does a data analysis that reveals such metrics as the rate of
defect detection as a function of the speed at which an inspection is
conducted. A very convincing case for the use of inspections on big
projects.

8 CMU/SEI-93-EM-7

CMU/SEI-93-EM-7 1

Attachment A

Example Inspection Exercise

2 CMU/SEI-93-EM-7

Attachment A

Contents

Section 1 MAPS Software Overview

Section 2 State Sensor Producer’s Overview

Section 3 state_sensor Program

Section 4 Module 2 - Software Inspections

Section 5 Lessons Learned from the State Sensor Inspection

Section 6 An Essay on Software Inspections

Section 7 Software Inspections

CMU/SEI-93-EM-7 3

Attachment B

Coding Standards and System Headers for
Exercises

4 CMU/SEI-93-EM-7

Attachment B

Contents

Section 1 MAPS Coding Standards

Section 2 maps.h

CMU/SEI-93-EM-7 5

Attachment C

Design and Code for State Sensor Inspection
Exercise

6 CMU/SEI-93-EM-7

Attachment C

Contents

Section 1 MAPS Design - State Sensor

Section 2 state.before

Section 3 state.resolve

CMU/SEI-93-EM-7 7

Attachment D

Design and Code for Master Sequencer
Inspection Exercise

8 CMU/SEI-93-EM-7

Attachment D

Contents

Section 1 MAPS Design - Master Sequencer

Section 2 master.before

Section 3 master.resolve

Section 4 master.after

CMU/SEI-93-EM-7 9

Attachment E

Slide Set for Video Formal Inspections: Utility
or Futility?

10 CMU/SEI-93-EM-7

CMU/SEI-93-EM-7 11

Attachment F

Design and Code for Video Candid Inspection

12 CMU/SEI-93-EM-7

Attachment F

Contents

Section 1 MAPS Design - Joystick Manager

Section 2 MAPS Document - Joystick Manager

Section 3 joystick.c.lined

CMU/SEI-93-EM-7 13

Section 1

MAPS Software Overview

14 CMU/SEI-93-EM-7

Section 2

State Sensor Producer’s Overview

CMU/SEI-93-EM-7 15

Section 3

state_sensor Program

16 CMU/SEI-93-EM-7

Section 4

Module 2 - Software Inspections

CMU/SEI-93-EM-7 17

Section 5

Lessons Learned from the State Sensor Inspection

18 CMU/SEI-93-EM-7

Section 6

An Essay on Software Inspections

CMU/SEI-93-EM-7 19

Section 7

Software Inspections

20 CMU/SEI-93-EM-7

Section 1

MAPS Coding Standards

CMU/SEI-93-EM-7 21

Section 2

maps.h

22 CMU/SEI-93-EM-7

Section 1

MAPS Design - State Sensor

CMU/SEI-93-EM-7 23

Section 2

state.before

24 CMU/SEI-93-EM-7

Section 3

state.resolve

CMU/SEI-93-EM-7 25

Section 1

MAPS Design - Master Sequencer

26 CMU/SEI-93-EM-7

Section 2

master.before

CMU/SEI-93-EM-7 27

Section 3

master.resolve

28 CMU/SEI-93-EM-7

Section 4

master.after

CMU/SEI-93-EM-7 29

Section 1

MAPS Design - Joystick Manager

30 CMU/SEI-93-EM-7

Section 2

MAPS Document - Joystick Manager

CMU/SEI-93-EM-7 31

Section 3

joystick.c.lined

