Educational Materials
CMU/SEI-89-EM-2
November 1989

APSE Interactive Monitor:
A Software Artifact for
Software Engineering Education

Charles B. Engle

Florida Institute of Technology

Gary Ford

Software Engineering Curriculum Project

James E. Tomayko

Video Dissemination Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

The Software Engineering Institute (SEI) is a federally funded research and development center, oper-
ated by Carnegie Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering
education. These materials are being made available to educators throughout the academic, industrial,
and government communities. The use of these materials in a course does not in any way constitute an
endorsement of the course by the SEI, by Carnegie Mellon University, or by the United States govern-
ment.

Permission to make copies or derivative works of this document is granted, without fee, provided that
the copies and derivative works are not made or distributed for direct commercial advantage, and that
all copies and derivative works cite this document by name and document number and give notice that
the copying is by permission of Carnegie Mellon University.

Copyright © 1989 Carnegie Mellon University

This technical report was prepared for the

SEI Joint Program Office

ESD/AVS1

Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl Shingler
SEI Joint Program Office

This work was sponsored by the U.S. Department of Defense.

Table of Contents

1. Introduction
2. The APSE Interactive Monitor
3. Educational Uses of the Artifact

3.1. Ada Code Reading

3.2. Software Maintenance

3.3. Documentation Issues

3.4. Cost Estimation

3.5. Configuration Management

3.6. Testing and Quality Assurance

3.7. Object-Oriented Design Example

3.8. Performance Improvement Project

3.9. Transportability Issues

3.10. Subject for Static Analysis Tools
References
Appendix 1. Contents of the Distribution Tape
Appendix 2. Documentation
Appendix 3. Network Access to the Software
AIM Order Form

© 00 0 N N o oo o~ b MNP

[= S = T
U Wk O

CMU/SEI-89-EM-2

CMU/SEI-89-EM-1

APSE Interactive Monitor: A Software Artifact
for Software Engineering Education

Abstract

In 1987 the SEI began a search for a well-documented Ada system, developed
under government contract, that could be used in software engineering education.
The APSE Interactive Monitor (AIM) was determined to be appropriate for this
purpose. This system acts as an interface between a user of an Ada programming
support environment (APSE) and the programs that the user executes in the
APSE. It provides facilities to support the concurrent execution of multiple
interactive programs, each of which has access to a virtual terminal. Educational
uses of the system are described, including use as a case study and as the basis
for exercises. Software engineering topics that can be taught with the system
include software maintenance, configuration management, software documenta-
tion, cost estimation, and object-oriented design.

1. Introduction

Educators have long recognized the difficulties in teaching professional software engineering
concepts of large systems when students are constrained to work only on small programs. At
the first SEI Faculty Development Workshop in October 1986, John Brackett of the Wang
Institute (now at Boston University) suggested that the SEI could do a service to software
engineering education by finding a suitable, large-scale, professionally developed software
system, including development documentation, that could be made available to educators and
students. Such a system could be used in many ways, such as a case study in software devel-
opment or as the basis for exercises in software testing and maintenance.

In January 1987 the SEI identified several criteria for selecting an appropriate system,
including that it be coded in Ada, that it include a substantial amount of development docu-
mentation, that the SEI could acquire rights to distribute it, and that it not be subject to
export controls by the Department of Commerce. Through the SEI's industry affiliates, sev-
eral candidate systems were located and investigated.

The first system considered was developed for NASA by Computer Sciences Corporation.
Detailed study of the system showed that it relied on VAX VMS system calls to implement
concurrent tasks, rather than using Ada'’s tasking capabilities. We decided that this made it
less desirable as a teaching tool.

CMU/SEI-89-EM-2 1

The second system considered was the APSE Interactive Monitor (AIM) developed for the
Naval Ocean Systems Center by Texas Instruments (TI). This system made effective use of
most of Ada’s features and thus seemed more appropriate for education.

The system was brought to the SEI for further study. Our first goal was to determine that
the code delivered was complete and usable. The executable image provided by Tl was found
to execute successfully on an SEI VAX system. We then recompiled all the source code to
produce a new executable image, which also executed successfully. At this point, which was
in December 1987, we were satisfied that we had a complete system.

An attempt was made early in 1988 to port the system to a UNIX system. This proved to be
unsuccessful, but some lessons were learned that can be of use to students and instructors;
these are summarized in Section 3.9.

In the summer of 1988, a documentation package was prepared, and the entire system was
released to four designated alpha test sites: Boston University, the University of Maryland,
Arizona State University, and the University of California at Irvine. Copy were also deliv-
ered to The Wichita State University and to the Red River Army Depot, which operates an
engineering education center for the U.S. Army. The test sites agreed to investigate the use
of the system during the 1988-89 academic year and then report their findings to the SEI.

This report describes the AIM system and some possible educational uses. Section 2 gives an
overview of the system, including a description of some of the development documentation
that is available. Section 3 describes several ways that the system might be used for soft-
ware engineering education. Most of this section is based on the experiences of the alpha test
sites. The appendices to the report provide additional information about the system and how
to get machine-readable copies of the software and documentation. An order form appears at
the end of the report.

Instructors who use the AIM system in their classes are encouraged to report their experi-
ences to the SEI, so that they can be incorporated into subsequent packages of educational
materials.

2. The APSE Interactive Monitor

The APSE Interactive Monitor was developed by Texas Instruments, Inc., under a contract
from the Naval Ocean Systems Center. The project had several goals in addition to the pro-
duction of the tool itself. First, it was intended to give the developers experience with Ada
and object-oriented design, both of which were relatively new when the project began in
1982. Second, careful records were kept of project activities, so that a preliminary cost-pre-
diction model for Ada software could be developed [Baskette87]. Third, after initial develop-
ment on a Data General system, the AIM was rehosted on a DEC VAX system to investigate
transportability issues for Ada software systems.

The original developers described the system in the following abstract:

The Ada Program Support Environment (APSE) Interactive Monitor (AIM) is a computer program
that acts as an interface between a user of the APSE and the programs the user executes in the
APSE.

2 CMU/SEI-89-EM-2

The AIM provides facilities to support the concurrent execution of multiple interactive programs,
each of which has access to a virtual terminal. These facilities separate the interactive /O of mul-
tiple programs into disjoint logical terminals, each of which may be displayed on the physical termi-
nal at the discretion of the physical terminal user. The multiprogramming capabilities of modern
operating systems are made accessible to the single user while providing a logical separation of
interactive I/O. Instead of the typical foreground/background constraints, a user’'s programs may be
separated into interactive/non-interactive categories. Each interactive program under the control of
the AIM perceives that it has complete control of the user’s interactive device. It is the intent of the
AIM to provide a facility that executes within the framework of the two Department of Defense
(DoD) Ada Programming Support Environments (the Ada Language System and the Ada Integrated
Environment) and can be extended to other APSEs under development.

The AIM user manual chapter titled “AIM System Capabilities” describes the system this
way:

Purpose

The APSE Interactive Monitor (AIM) is a computer program that acts as an interface between a
user of the APSE and the programs the user executes in the APSE.

General Descriptions

The AIM allows a user to have multiple APSE programs executing while keeping their interactive
inputs and outputs separate both logically and physically. Facilities are provided by a simple com-
mand language to supplement or replace the standard functions available through the APSE user
interface in the area of terminal and program control.

Function Performed
The AIM will interface with page mode computer terminals.

Page mode terminals transmit and receive characters one at a time. When a key is pressed on the
keyboard, the character corresponding to that key is transmitted. When a character is received by
the terminal, the character is displayed or performs a simple function such as carriage return or line
feed.

Additionally, cursor movement and screen editing capabilities such as cursor positioning and char-
acter and/or line insertion/deletion are provided.

Images

An AIM user defines structures called images, each of which is an analog of the user’s display. As
such, the length (number of lines) and width (number of character positions) attributes of an image
are identical to that of the display. Note that only characters will be supported; no graphic support
is provided. Any number of images may coexist at one time, and the user selects which image is
“mapped onto” the display. Being “mapped onto” means that any changes to the information in an
image are immediately reflected on the display. Only one image may be mapped onto the display
at any given time.

Windows

An AIM user also defines structures called windows, a window being the analog of the APSE pro-
gram’s view of the terminal. The terminal output of the APSE program is intercepted by the AIM
and directed to a structure called a window. There is exactly one window associated with each
APSE program executing directly under the AIM.

Viewports

CMU/SEI-89-EM-2 3

A window is mapped onto an image through a structure called a viewport. A viewport is a rectangu-
lar area within an image. The width of a viewport is equal to the width of the image. The length is
user determined but can be no larger than the image length and no smaller than two lines (this
includes a required line for the viewport header).

As many viewports can be defined as will fit on any given image. The user defines the viewports by
creating associations between images and windows and defining the relationships between them
(position and length). Viewports on the same image are non-intersecting. Horizontal partitioning is
supported; vertical partitioning is not. The space on an image that does not contain a viewport is
considered dead space and no information is mapped onto it.

A window may be associated with more than one viewport at the same time, but a specific window
may only be associated with a specific image once.

The AIM system is structured as 240 separately compilable units, totaling approximately
21,000 lines of code. Approximately 10 major development documents are available, as are
three volumes of a final report that documents many of the experiences of and lessons
learned by the development team. Several additional minor documents, such as memoranda
and presentation transparency masters, are also included. Appendix 1 describes the organi-
zation of the source code and documents on the distribution tape, and Appendix 2 presents
some more detailed information about the documentation files.

3. Educational Uses of the Artifact

3.1. Ada Code Reading

At the University of Maryland, the artifact proved useful to students entering the software
engineering research group as a large example of “real” Ada code. In most cases, the stu-
dents were not familiar with Ada or had seen only textbook examples. The documentation
was similarly used to help familiarize the students with some of the kinds of documents that
are produced in an industrial software engineering project.

Of particular interest in a program of this size is the partitioning of the program into Ada
packages. Simply reading the package specification can give students insight into the design
process for the system. Chapters 3-5 of the report Design and Implementation Experiences:
The AIM (Volume 2 of the AIM final report) should be read along with the code; these chap-
ters present some of the Ada lessons learned by the original developers. This report is in
directory [AIM_ARTIFACT.SOURCE_DOCS.IR2] on the distribution tape.

4 CMU/SEI-89-EM-2

3.2. Software Maintenance

The AIM artifact was used as the basis for a number of exercises in a graduate course on
software maintenance taught at The Wichita State University in the spring of 1989. The
goal of these exercises was to teach configuration management as well as corrective, adap-
tive, and perfective maintenance. Some of the exercises are described below; a complete list
of assignments and the syllabus for the course are contained in [Tomayko89].

The artifact runs very inefficiently, mostly because of a design decision that causes the
screen to use considerable computational resources to refresh itself, a genuine fault in a
windowing system. It has few “real” errors. Most are attributable to inconsistencies between
actual behavior and statements in the user manual and test plans. Some “errors” appear
when the system is installed where the terminals do not match the original hardware. There
is some dead code and other naive Ada code.

What this means is that there are many good opportunities to exhibit to students the range
of activities involved in software maintenance.

The following exercises were completed in less than two weeks each (two weeks of normal
course time, not real time!) by teams of three students.

Exercise One: Reallocation of function keys

After AIM was installed and compiled, running the acceptance test suite revealed that the
defined function keys did not correspond to the keys described in the user manual.
Additionally, some of the functions were mapped to the arrow keys on a VT220 terminal.
Because these arrow keys are used for line editing under VMS, the students decided to re-
map some of the AIM functions in a more logical manner and regain the use of the arrow
keys. The actual change request and disposition appear in file [AIM_ARTIFACT
WICHITA_STATE.ODD_GROUP.README]CHANGE.RQST on the distribution tape.

Exercise Two: The TERMINATE function

During the execution of the acceptance test suite, the TERMINATE function, which should
terminate a program running in an AIM viewport, failed to work. The students’ solution
made TERMINATE work, but it had side effects, as indicated in this excerpt from the stu-
dents’ report:

The implementation of this change is not what is expected. The problem is that the TERMINATE
function as it now stands will delete a window completely, and it does not check to see that a pro-
gram is executing in that window. It acts the same as deleting a window. The reason the designed
change was not accomplished is due to the way that programs get executed in a window. They do
not create a new process (as seen with SHOW PROCESS). The alternative plan was to send a
CNTL-C to that window, but a CNTL-C did not work on a program executing in a window when tried
manually.

More effort is needed to fix the TERMINATE function to match the proposed design. The way it
stands, it does more now than when we first ran the acceptance tests.

Thus this exercise can be effective in showing students that changes are not always as
straightforward as they seem.

CMU/SEI-89-EM-2 5

Exercise Three: AIM leaves leftovers on the VMS command line

When exiting AIM, the last line that the user input remains on the screen on the VMS
prompt line. This is not a critical problem but a nuisance. Locating the place for the simple
fix was the essence of the solution.

Exercise Four: Code improvements

One perfective maintenance exercise that can be done with AIM is to have the maintainers
improve the readability of the AIM code or the cohesion of AIM modules. This was the first
large system for which the original developers used Ada, so there are inevitably some rough
spots in the code and some immature packaging concepts. These can be fixed by the students
if they have some reasonable Ada experience. Even if they are beginners using Ada, they can
rewrite some of the code to make it more understandable to them and to gain some Ada liter-
acy.

3.3. Documentation Issues

The AIM system includes a variety of documents that can be used to give students an idea of
current industrial practice. Appendix 2 summarizes the documents available in directory
[AIM_ARTIFACT.SOURCE_DOCS] on the distribution tape.

Of particular interest is Chapter 8 of the report Design and Implementation Experiences: The
AIM (Volume 2 of the AIM final report). (This report is in directory [AIM_ARTIFACT-
.SOURCE_DOCS.IR2] on the distribution tape.) That chapter identifies particular docu-
ments that are required for software developed under U.S. government contracts, and it
describes some problems encountered in trying to document the system according to govern-
ment standards.

The files that make up the documents are not organized particularly well (see Appendix 2).
An instructor may wish to assign a student the task of organizing the document files and
placing them under configuration management in a consistent manner.

3.4. Cost Estimation

Since one of the goals of the AIM project was to help in developing a cost estimation model
for Ada software projects, careful data collection occurred during the development process.
Three life-cycle models and three cost estimation models were examined to determine how
well they matched the collected data. The result is reported in two documents. First, itisin
Chapter 7 of the report Design and Implementation Experiences: The AIM (Volume 2 of the
AIM final report). This report is in directory [AIM_ARTIFACT.SOURCE_DOCS.IR2] on the
distribution tape. It is also reported in the open literature in [Baskette87].

6 CMU/SEI-89-EM-2

3.5. Configuration Management

Many of the documents and all of the source code on the distribution tape appear in two for-
mats: pure text and the format imposed by the DEC Configuration Management System
(CMS) tool. Each directory for which there are two formats contains a subdirectory for each
format, named REFERENCE_COPY and CMSLIB, respectively.

The importance of proper configuration management to the success of student projects based
on this artifact cannot be overemphasized. For example, when Wichita State used the arti-
fact in a software maintenance course, student groups (the “Even” group and the “Odd”
group) were first required to submit plans for maintaining the code and documentation and a
defined process for handling change requests. These two plans appear on the distribution
tape in [AIM_ARTIFACT.WICHITA_STATE.EVEN_GROUP.TAPE]BUG_REPORT.RNO and
[AIM_ARTIFACT.WICHITA_STATE.ODD_GROUP.README]CONFIG.MGMT. Note that
the Even group’s plan concentrates heavily on change flow and that the Odd group did a bet-
ter job of specifying the exact location of all the parts of the software. A merge of the best
points of each plan would result in an outstanding document.

Instead of giving the students the CMSLIB files, instructors may wish to introduce the CMS
software through an exercise that takes the source code text files (in the
REFERENCE_COPY directory) and places them under configuration management. This
gives the students a baseline configuration before any maintenance exercises are attempted.

3.6. Testing and Quality Assurance

Instructors teaching testing and quality assurance classes can use the AIM test plans as
examples. This is an especially valuable use of the AlIM, as the test plans and other valida-
tion procedures are quite well documented.

The documents that are most pertinent to these topics are the acceptance test plan, the
acceptance test procedures, the computer program test specification, the system/integration
test plan, and the system/integration test procedures. These appear in directory
[AIM_ARTIFACT.SOURCE_DOCS] in the subdirectories listed below.

ATP acceptance test plan

ATPRO acceptance test procedures

CPTS computer program test specification
SITP system/integration test plan
SITPRO system/integration test procedures

In discussing the development of a test plan, instructors may want to have students examine
the system specification, which is in file [AIM_ARTIFACT.SOURCE_DOCS.PPS.
REFERENCE_COPY]PPS.RNO. The difficulties of ensuring adequate test coverage for each
functional and performance requirement can be illustrated.

Additional information on testing may be found in Section 3.4 of the report Transporting an
Ada Software Tool: A Case Study (Volume 3 of the AIM final report). This report is in direc-
tory [AIM_ARTIFACT.SOURCE_DOCS.IR3] on the distribution tape.

CMU/SEI-89-EM-2 7

3.7. Object-Oriented Design Example

The AIM artifact can be used as an example of one form of object-oriented design. The expe-
riences of the developers in attempting to apply this design method are documented in
Chapter 2 of the report Design and Implementation Experiences: The AIM (Volume 2 of the
AIM final report). This report is in directory [AIM_ARTIFACT.SOURCE_DOCS.IR2] on the
distribution tape.

Instructors should recognize that the term “object-oriented” has two common interpretations.
The term seems to have been widely used in the Smalltalk community in the late 1970s; in
that sense it is characterized by some of the concepts of the Smalltalk language, including
objects, classes, messages, methods, and inheritance. In the 1980s, the term has been used,
particularly in the Ada community, to describe an approach to programming previously
called “data abstraction.” It is this second sense that is used in the AIM documentation.

3.8. Performance Improvement Project

As an “ultimate” maintenance exercise, a project could be to redesign the system so that it
runs more efficiently. Based on a study done by the students in the Wichita State class, it
would take at least the amount of time and effort available in a one-semester undergraduate
course to accomplish any significant change. This assumes knowledge of Ada and some
experience using it. It is more likely that a full-year graduate project course would be needed
to fully solve the performance problem.

Before choosing to undertake such a project, the instructor should identify specific perfor-
mance problems that are to be corrected. This might be accomplished as a side effect of using
the system in another setting, such as a class doing the maintenance exercises mentioned in
Section 3.2 above.

3.9. Transportability Issues

Because one of the goals of the AIM project was to investigate transportability issues for Ada
software, care was taken to record procedures, problems, and solutions during the porting
process. These are documented in the report Transporting an Ada Software Tool: A Case
Study (Volume 3 of the AIM final report). This report is in directory
[AIM_ARTIFACT.SOURCE_DOCS.IR3] on the distribution tape.

Some of the issues discussed in this report are important for students. Section 1.2 of the
report, for example, discusses issues of designing for transportability. Chapter 2 presents
the procedures to be followed in a rehosting effort. Chapter 3 identifies the problems encoun-
tered and the solutions or work-arounds that were employed.

An attempt was made at the SEI to rehost the AIM system on a DEC MicroVAX under the
Ultrix operating system. Although the code could be moved to the new system and compiled
using the Verdix Ada compiler, it could not be made to operate. The reason for this is that,
while the AIM is very well designed and easy to port from a language point of view, there are

8 CMU/SEI-89-EM-2

differences in the various implementations of the Ada language that make the AIM non-
portable from an implementation point of view.

The AIM generates dynamically the tasks that it needs to support multiple windows and
images. If each of these tasks is created as a separate process (in the sense of a process
known to the operating system), no problems in task interaction will occur when porting the
system. If, however, the runtime environment allocates new tasks as subprocesses, then
there can be severe difficulties in task interoperation.

The DEC Ada compiler for the VMS system allocates tasks as separate processes that cannot
block other tasks. It also has an option (not the default) for requesting that tasks be sched-
uled preemptively (using a time-slicing algorithm). The Verdix Ada compiler for Ultrix allo-
cates tasks as subprocesses, which means that if one of the tasks blocks, as when waiting for
1/0, then all tasks are blocked. There is no means to force preemptive scheduling.

Given the design of the AIM, a runtime system such as the one provided by Verdix is disas-
trous. The only solution seems to be a modification to the runtime environment (proprietary
to Verdix) to allow for preemptive scheduling and separate process allocation for each task.
It was thus decided not to complete the port of the AIM to the Ultrix operating system.

A possible student project is to perform an assessment of the resources required to rehost the
AIM on a UNIX system. This would require that the students understand the process/sub-
process issues outlined above and their relationship to the AIM system requirements. The
assertion in the previous paragraph that the only solution is a modification of the runtime
environment should be considered. A solution requiring redesign and/or recoding of the AlM,
rather than a runtime environment change, might be proposed. The cost in terms of person-
nel and time should be estimated.

3.10. Subject for Static Analysis Tools

A research project on software reuse at the University of Maryland used the artifact as a test
case. A static analyzer and a data binding metrics tool were run on it to help identify poten-
tially reusable components. Unexpectedly, some strange circular data binding relationships
were discovered, making it difficult to isolate independent reusable packages.

Students developing or using static analysis tools, including source code metrics tools, may
find the AIM system useful as a test case. The Ada style checker (available from the SEI; see
[Engle89]) is an example of such a tool.

CMU/SEI-89-EM-2 9

References

Baskette87

Borger86

Engle89

Tomayko89

Baskette, J. “Life Cycle Analysis of an Ada Project.” IEEE Software 4, 1
(Jan. 1987), 40-47.

Borger, M. W. “Ada Task Sets: Building Blocks for Concurrent Software
Systems.” Proc. Second International Conference on Ada Applications
and Environments. IEEE Computer Society, Apr. 1986, 3-10.

Engle, C. B., Jr., Ford, G., and Korson, T. Software Maintenance
Exercises for a Software Engineering Project Course. Educational
Materials CMU/SEI-89-EM-1, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., Feb. 1989.

Tomayko, J. E. “Teaching Maintenance Using Large Software Artifacts.”
Software Engineering Education, SEI Conference 1989; Lecture Notes in
Computer Science 376, Norman E. Gibbs, ed. Heidelberg: Springer-
Verlag, July 1989, 3-15.

10

CMU/SEI-89-EM-2

Appendix 1. Contents of the Distribution Tape

The distribution tape is organized into one top-level directory named AIM_ARTIFACT, which
contains three subdirectories:

SOURCE_CODE all source code and related files

SOURCE_DOCS all forms of documentation as delivered to the SEI from the
Naval Ocean Systems Center and from Texas Instruments
WICHITA_STATE student-written materials, including modified source code,

from the software maintenance course at The Wichita State
University

Further elaboration of the documents in the SOURCE_CODE and WICHITA_STATE direc-
tories may be found in Appendix 2.

Many of the documents and all of the source code on the distribution tape appear in two for-
mats: pure text and the format imposed by the DEC Configuration Management System
(CMS) tool. Each directory for which there are two formats contains a subdirectory for each
format named REFERENCE_COPY and CMSLIB, respectively.

The file name extensions (the three characters after the period in VAX VMS file names) used
by the original developers can help identify the kind of information in the files. The following
extensions are commonly used.
ACT Action file: used for scratch files; contain information about testing
problems, design errors, etc., as seen during the development process.
ADA Ada source file.
AIS Compiler generated file: used in the program library; provide information
to the compilation system on such things as program unit dependencies,
information to support automatic recompilation, etc.

ANS ANSI (ASCII) files: files copied from a T1990 system that was used in
initial development.

CMS Configuration management system files: files used by the CMS tool.
COM Command files: contain procedures written in DEC Command Language

(DCL).
DAT Data files: collections of data for various programs.
DIA Diagram files: source files for diagrams; apparently used by a diagram

producing tool; in many cases the essence of the diagram can be deter-
mined from reading these files.

DOC Document file.

DUM Memorandum file: contain memoranda on needed changes, enhance-
ments, etc., which the designers recorded during the development effort.

ERR Error file: errors reported by CMS.

FOI Foil file: documents intended to be used as overhead projector trans-
parency masters.

G Grammar file: contain the BNF grammar for the AIM.

HIS History file: contain history information for CMS.

INC Include file: files included by other files in document preparation.

CMU/SEI-89-EM-2 11

LIB
LIS
LOG
MEM
NOT
PRE
RNO

TOT

TTL
990

Library file.

Listing file: code listings generated by the compiler.

Terminal log file.

Formatted document file: output from the runoff document processor.
Note file: notes and memoranda from the developers.

Presentation files: presentation documents, similar to FOI files.
Unformatted document file: input to the runoff document processor.

Initialization file: apparently initialization information for a table used
by the parser generator used to develop the command interpreter for the
AlM.

Consolidation file: a “total” file containing both title page and text files
for a runoff document.

Title page file: title or cover pages for documents.
TI1990 files: files related to the original development on the TI1990 system.

12

CMU/SEI-89-EM-2

Appendix 2. Documentation

Most documents have file names ending in RNO, indicating a file intended to be formatted by
runoff, a common DEC document processing system.

The original developers’ documents are in directory [AIM_ARTIFACT.SOURCE_DOCS] on
the distribution tape. The subdirectories and their contents are summarized below:

ATP Acceptance Test Plan

ATPRO Acceptance Test Procedures

COVER_LTR Document transmittal cover letters

CPTS Computer Program Test Specification

IR1 Final Report on Interface Analysis and Software Engineering
Techniques, Volume 1

IR2 Final Report on Interface Analysis and Software Engineering
Techniques, Volume 2

IR3 Final Report on Interface Analysis and Software Engineering
Techniques, Volume 3

MAINT Installation and Maintenance Guide

PDR Preliminary Design Review Documents

PDS Program Design Specification

PPD Program Package Document

PPS Program Performance Specification

RATIONALE Rationale for the Design of the MIL-STD-CAIS

SITP System/Integration Test Plan

SITPRO System/Integration Test Procedures

USERMAN User Manual

The organization of these files and directories is essentially what was delivered to the SEI
from the Naval Ocean Systems Center, which in turn was essentially what was delivered to
them by Texas Instruments. There are some confusing aspects of this organization. For
example, although volumes 1 and 2 of the final report are in directories [IR1] and [IR2] as
described above, all three volumes are in subdirectories [VOL1], [VOL2], and [VOL3] under
directory [IR3]. When students are asked to recover a particular document, it will take a
little detective work to find exactly the file or files needed.

The documents (and the modified source code) produced by the students in the software
maintenance course at Wichita State are in directory [AIM_ARTIFACT.WICHITA_STATE]
on the distribution tape. The class was divided into two groups, called the Even group and
the Odd group, each of which performed many of the same exercises. The results of the two
groups are in subdirectories [EVEN_GROUP] and [ODD_GROUP], which contain the follow-
ing information:

CMU/SEI-89-EM-2 13

[EVEN_GROUP]

CPTS
CODE_CMS
PROBLEMS
TAPE

[ODD_GROUP]

AIMLIB
CMSLIB
README

Students’ work and excerpts from original documents
Source code with students’ changes

24 software problem reports

Students’ work including configuration management plan

Source code with students’ changes
Students’ copies of original documents

Students’ work including configuration management plan (see the
file README.TXT in this directory for details)

14

CMU/SEI-89-EM-2

Appendix 3. Network Access to the Software

In addition to distribution via tape, the SEI is considering distributing the AIM over the
Internet through a mechanism commonly called “anonymous ftp”. If this proves to be feasi-
ble, detailed procedures may be requested from the SEI Education Program or retrieved via
the procedure below.

The following transcript of an anonymous ftp session assumes that you are working from a
system that supports ftp and that is connected to the Internet. The information typed by you
is shown in bold face. Notice that the name of the user must be “anonymous” and that the
password should be your normal user name. The file “readme” that is retrieved will contain
the detailed procedures for getting the AIM system.

$ ftp 128.237.2.163

Connected to 128.237.2.163.

220 fg.sei.cmu.edu FTP server (Version 4.174 <date>) ready
Name (128.237.2.163:myname): anonymous

Password (128.237.2.163:anonymous) :

331 Guest login ok, send ident as password.

230 Guest login ok, access restrictions apply.

ftp> c¢d pub/aim

250 CWD command successful.

ftp> get readme

200 PORT command successful.

150 Opening ASCII mode data connection for readme (298 bytes).
226 Transfer complete.

298 bytes received in n.nn seconds (nn Kbytes/s)

ftp> quit

221 Goodbye.

CMU/SEI-89-EM-2 15

16

CMU/SEI-89-EM-2

AIM Order Form

The AIM software and machine-readable documentation are available from the SEI. These
may be downloaded from the SEI over the Internet via the UNIX ftp facility, or they may be
ordered on tape directly from the SEI. To order, please select the tape format desired (below)
and return this form with payment to:

Education Program

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Checks may be made payable to Carnegie Mellon University and should accompany this
order form.

Desired format for AIM software and machine-readable documentation:

[VAX/IVMS reel tape $20.00
[VAX/IVMS TK-50 cartridge tape $30.00
Send to:
Name

Address

