

Carnegie Mellon University
Software Engineering Institute

 Measuring
 Object-Orient
 Software
 Products

 Clark Archer
 Winthrop University

 June 1995

 Approved for public release
 Distribution unlimited.

This document was prepared for the

SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This work was funded by the U.S. Department of Defense.
Copyright © 1995 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access
transfer of scientific and technical information for DoD personnel, DoD contractors and potential contracto
other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC d
Defense Technical Information Center, Attn. FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For info
on ordering, please contact NTIS directly: National Technical Information Services, U.S. Departm
Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark hold

SEI-CM-28 Measuring Object-Oriented Software Products i

Preface

This module provides an overview of the merging of a paradigm and a
process, the object-oriented paradigm and the software measurement
process. The concept of a measure and the process of measurement are
discussed briefly, followed by a presentation of the issues raised by object-
oriented software development.

The concept that software systems and the associated software
development process constitute an engineering discipline is gaining
acceptance. It is also clear that measurement is necessary for this
software development process to be successful. The recent movement
toward object-oriented technology has added another level of complexity
to the software engineering discipline. Attempts to measure both software
products and the software development process have produced what are
currently called 'metrics.' Many such 'metrics' have been proposed; most
of these have been defined and then tested in an artificial or restricted
environment. No set of standards for accessing these 'metrics' has been
developed and been universally accepted. As can be seen in the annotated
outline (starting on page two), the term ‘measure’ is preferred to the term
metric for the software product measures that have been proposed so far.

When measuring object-oriented software products, there are two key
issues that need to be addressed: (1) measuring and the resultant
measure, and (2) the object-oriented paradigm. Neither of these issues
has been satisfactorily resolved in the software engineering and computer
science literature.

Exactly what constitutes a measure is still an issue of contention; and
complexity, which on the surface appears to be a simple property, has
spawned a variety of interpretations. As a result, the same measure has
been used to describe different interpretations of the same property in a
software product. This module addresses the need to establish properties
of a measure and discusses attempts to set a minimal set of requirements
for a measure.

Capsule
Description

Scope

ii Measuring Object-Oriented Software Products SEI-CM-28

Many approaches to developing object-oriented software have been
presented in the literature and each approach has introduced different
terminology. A list of terms for the object-oriented paradigm is
introduced in the annotated outline to provide a common arena for
presenting the object-oriented paradigm.

As stated in the section above, measuring object-oriented software
products has a multitude of problems. This module addresses these
problems by:

• indicating the state of the practice of object-oriented measures

• suggesting a set of terminology for the object-oriented paradigm

• suggesting a minimal set of measurable features of object-oriented
software products

• indicating the present diversity of measures that have been proposed
for object-oriented software products

• giving examples of the design and coding of several problems and give
a suite of measures for each example.

Establishing a common vocabulary for the object-oriented paradigm and a
minimal set of standards for a software measure will aid the development
of future measures and the refinement of standards. It is to this end that
this module is written.

The author would like to acknowledge Jorge Díaz-Herrera and Gary Ford
at the SEI for their technical assistance and advice; Nancy Mead, Linda
Northrop, and Carol Sledge at the SEI for their valuable reviews of this
paper; Jack Hilbing for his support; and Rachel Haas for her invaluable
editorial assistance.

Comments on this module are solicited, and may be sent to the SEI
Software Engineering Institute Community Sector or to the author:

Clark B. Archer
Department of Computer Science
Winthrop University
Rock Hill, SC 29733
Internet: archerc@winthrop.edu

Philosophy

Acknowledg-
ments

Author’s
Address

SEI-CM-28 Measuring Object-Oriented Software Products iii

Table of Contents

Outline 1
Measurement - An Overview 3
The Object-Oriented Paradigm 9
Features of Object-Oriented Software Products 20
Examples of Object-Oriented Software Product Measures 26

Teaching Considerations 43
Prerequisites 43
Recommended Module Uses 43

In a Software Engineering Lecture Course 43
In a Software Metrics Lecture Course 45

Project Suggestions 46

Bibliography: Index by Author 47

Bibliography 49
Articles Related to Object-Oriented Measures 49
Early Seminal (Much Quoted) Works on Measures 58
Textbooks and Papers on Measurement and Topics Closely 9

 Related to Measurement 59
Textbooks on the Object-Oriented Approach 65
Texts on Mathematics and Statistics Relating to Measures 68

iv Measuring Object-Oriented Software Products SEI-CM-28

SEI-CM-28 Measuring Object-Oriented Software Products v

List of Tables

Table 3-1: Measures by Taxon 25

Table 4-1: Representative Measures 26

vi Measuring Object-Oriented Software Products SEI-CM-28

SEI-CM-28 Measuring Object-Oriented Software Products vii

List of Figures

Figure 2-1: Specialization (Coad-Yourdon) 12

Figure 2-2: Assembly (Coad-Yourdon) 13

Figure 2-3: Object History and Communication
 (Coad-Yourdon) 14

Figure 2-4: Specialization (Booch) 15

Figure 2-5: Assembly (Booch) 15

Figure 2-6: Specialization (Firesmith) 16

Figure 2-7: Assembly (Firesmith) 16

Figure 2-8: Specialization (Rumbaugh) 17

Figure 2-9: Assembly (Rumbaugh) 17

Figure 2-10: Specialization (Henderson-Sellers) 18

Figure 2-11: Assembly (Henderson-Sellers) 18

Figure 2-12: Specialization (Coleman) 19

Figure 2-13: Assembly (Coleman) 19

Figure 4-1: C++ Example Class Inheritance Tree 27

Figure 4-2: C++ Example Class Diagram 33

Figure 4-3: Ada95 Example Class Hierarchy Chart 36

Figure 4-4: Ada95 Example Class Diagram 40

viii Measuring Object-Oriented Software Products SEI-CM-28

SEI-CM-28 Measuring Object-Oriented Software Products 1

Measuring Object-
Oriented Software
Products
1. Measurement - An Overview

1.1 Measure Versus Metric
1.2. Standards For Measures
 1.2.1. Weyuker’s Measure Properties
 1.2.2. A Critical Analysis of Weyuker's Properties
1.3. What Can Be Measured
 1.3.1 Process
 1.3.2 Product

2. The Object-Oriented Paradigm
2.1. Origins of the Paradigm
2.2. Features of Object-Oriented Products That Are Different from

Conventional (Procedure-Oriented) Products
2.3. Suggested Common Terminology for Object-Oriented Approaches
2.4. Overview of Object-Oriented Design Methods

3. Features of Object-Oriented Software Products
3.1. A Suggested Taxonomy for Features
3.2. Existing Measures by Taxon
 3.2.1. System Measures
 3.2.2. Coupling and Uses Measures
 3.2.3. Inheritance Measures
 3.2.4. Class Measures
 3.2.5. Method Measures
3.3 Summary of Existing Measures for Each Taxon

4. Examples of Object-Oriented Software Product Measures
4.1 Selection of Measures Suite
4.2. C++ Example (Computer Performance)
 4.2.1 Computation of Measures for C++ Example
4.3. Ada95 Example (Car Dashboard Instrumentation)
 4.3.1 Computation of Measures for Ada95 Example

Outline

2 Measuring Object-Oriented Software Products SEI-CM-28

SEI-CM-28 Measuring Object-Oriented Software Products 3

1. Measurement - An Overview
It is quite clear that measurement is necessary for the software development
process to be successful. In addition, the path to controlling and improving the
software design process may lie in the use of an object-oriented design approach.
The recent movement toward object-oriented technology must also include the
processes that control object-oriented development, namely software measures.
Tom DeMarco summarizes the essence of these sentiments by stating, “You
cannot control what you cannot measure” [DeMarco 87]. Measurement
encompasses many aspects of the software life cycle. The emphasis of this
document is on the design and implementation phases of an object-oriented
approach.

Viewing measurement from a higher level, software measurement activities
must have specific objectives. After these objectives are identified, the concepts,
terminology, and measures presented in this module can be used to construct a
framework applicable to the environment under consideration. One such
objective-oriented approach is the Goal-Question-Metric (GQM) paradigm
proposed by Victor Basili and H. Dieter Rombach [Basili 88]. The basic premise
of the GQM paradigm is that any software measurement activity is preceded by a
goal. This goal leads to questions which generally involve quantification of the
goal. Quantification issues lead to measures. This module will assist the
practitioner and instructor in deciding which measures are appropriate answers
to which questions.

1.1. Measure Versus Metric
Many people are reluctant to use the term metric in reference to software.
The American Heritage Dictionary (Mifflin, 1991) defines a metric as:

 1. designating, pertaining to the metric system, or

 2. a standard of measurement.

Mathematicians define a metric more rigorously; they use the term to apply
to a real-valued set function that measures the distance (as defined by the
metric) between two objects in the set. In his text on topology, Mansfield
[Mansfield 63] defines a metric as follows:

Let A be a set of objects, let R be the set of real numbers, and let ρ be a one-
to-one function such that ρ:Α Α∅ R, where denotes the Cartesian product
of A with A. Then, ρ is a metric for A if and only if

 ρ(α,β) ε 0 ∀α,β Α,

 ρ(α,β) = 0 α=β ,

 ρ(α,β) = ρ(β,α) ∀ α,β Α, and

 ρ(α,γ) ≤ ρ(α,β) + ρ(β,γ) ∀ α,β,γ Α.

For the purposes of this document, the term software metrics will mean
measurements made on a software artifact. There are two important
components of the software artifact that are measured for our purposes: the
artifact's design specification document and its coded implementation.

The concept of a metric measuring the distance between two objects in a set
A has very little meaning in the world of software. Why would we want to
measure the distance between two software products or two software
specifications? It does, however, make sense to measure software product X

Annotated
Outline

4 Measuring Object-Oriented Software Products SEI-CM-28

and software product Y, and then, to compare the two measures. We also
note that there is no standard of measurement for software artifacts that is
universally accepted. Based on both the dictionary and mathematical
definitions of metric, we see that the term software metric is not appropriate.
The preferred term is software measure.

1.2. Standards for Measures

1.2.1. Weyuker's Measure Properties
Many issues arise as to what constitutes, and what are the acceptable
properties of, a software measure. Elaine Weyuker has brought together
nine properties that a software product measure should have [Weyuker
88]. Many authors have used these properties as a standard against
which to evaluate their own measures.

 “All the measures considered depend only on the syntactic
features of the program” [Weyuker 88].

 Let P, Q, and R be programs.

 P + Q means that P and Q halt on the same input.

 P;Q means that P is augmented by Q. (An appending of Q to P)

 The measure of P is denoted by | P |.

 Nine properties of measures:

 1. (∃ P) (∃ Q) (| P | | Q |).

 2. Let c be a nonnegative number. Then there are only finitely
 many programs of measure c.

 3. There are distinct programs P and Q such that | P | = | Q |.

 4. (∃ P) (∃ Q) (P + Q and | P | | Q |).

 5. (∀ P) (∀ Q) (|P| ≤ | P; Q |) and (|Q| ≤ | P; Q |).

 6. (∃ P) (∃ Q) (∃ R) (| P | = | Q |) & (| P ; R | | Q ; R |)
 and (∃ P) (∃ Q) (∃ R) (| P | = | Q |) & (| R ; P | | R ; Q |).

 7. There are program bodies P and Q such that Q is formed by
 permuting the order of the statements of P; and | P | ≠ | Q |.

 8. If P is a renaming of Q, then | P | = | Q |.

 9. (∃ P) (∃ Q) (| P | + | Q | < | P ; Q |).

1.2.2. A Critical Analysis of Weyuker's Properties
Property number one [(∃ P) (∃ Q) (|P| |Q|)] reflects the idea that a
measure that assigns all programs the same value is not a measure.
Property number two (for a nonnegative number c there are only finitely
many programs of measure c) is the non-coarseness property: it places a
constraint on property one by stating that only a finite number of
programs can be assigned the same measure. Property number three
[there are distinct programs P and Q such that |P| = |Q|] is often
called the non-uniqueness property: two different products can have the

SEI-CM-28 Measuring Object-Oriented Software Products 5

same measure value. Property number four [(∃ P) (∃ Q) (P + Q and
|P| |Q|)] states that two software products can possess the same
functionality but not have equal measure values. Property number five
[(∀ P) (∀ Q) (|P| ≤ |P; Q|) and (|Q| ≤ |P; Q|)] is a monotonicity
requirement: a combination (concatenation) of two products can never
have a measure value less than either of the products taken individually.
Property number six [(∃ P) (∃ Q) (∃ R) (|P| = |Q|) & (|P ; R |

 |Q;R|) and (∃ P) (∃ Q) (∃ R) (|P| = |Q|) & (|R ; P| |R ; Q|)] states
that there exist products whose measure values are the same, but the
augmentation of either product by a third product can produce measure
values that are not the same. Property number seven [there are
program bodies P and Q such that Q is formed by permuting the order of
the statements of P; and |P| ≠ |Q|] states that there are software
products whose measure value can be affected by a permutation in the
order of program statements. Property number eight [if P is a renaming
of Q, then |P| = |Q|] is the “carbon copy” property indicating that the
measure value is not affected by any isomorphic transformation of the
original product. Property number nine [(∃P) (∃Q) (|P| + |Q| < |P;
Q|)] is the most controversial of the nine properties. This property
states that augmentation increases the measure value for some software
products.

Weyuker's properties are concerned with computer programs. What
features of computer programs do these properties encompass? The
answer to this question is unclear. Consider property number five which
states “for all programs P and Q the measure of program P augmented by
program Q is greater than or equal to both programs P and Q alone.”
This property is reasonable if the feature of concern is program size and
the measure is the number of lines of executable source code. However,
for the same feature program size and the same measure number of lines
of executable source code, property number five is in conflict with
property number six. Property six states, “there exist programs P, Q, and
R such that programs P and Q can have the same measure and the
measure of P augmented by R is different from Q augmented by R.” This
property is not true for lines of code that are used as the measure and, in
fact, is not true for most size measures, suggesting that Weyuker's
properties encompass some feature other than program size.

Since the title of Weyuker's article is “Evaluating Software Complexity
Measures,” the properties must also involve complexity. McCabe
introduced a measure called the cyclomatic complexity metric v = π + 1,
where π is the number of predicates in a program [McCabe 76]. A
predicate in a program is a Boolean expression having one of the forms:

 B1 = B2, B1 ≠ B2, B1 < B2, B1 > B2, B1 ≤ B2, or B1 ≥ B2,

where B1 is an identifier and B2 is either a constant or an identifier. To
use the predicate count approach to compute McCabe's metric, all
statements involving compound Boolean expressions are reduced to a
sequence of statements with only predicates in them. Careful calculation
indicates that Weyuker's property five is satisfied and property six is not
satisfied. Thus, Weyuker's properties do not encompass McCabe's view of
complexity.

Halstead, however, introduced a measure that does satisfy property six.
The measure (called an effort measure) measures the effort involved in

6 Measuring Object-Oriented Software Products SEI-CM-28

producing an algorithm [Halstead 77], but the measure is difficult to
compute; it involves the counts of the total occurrence of operators and
operands and the counts of unique operators used and unique operands.
Halstead's effort measure is implementation-dependent. Furthermore,
Weyuker proves algebraically that the Halstead effort measure does not
satisfy her property number five, but does satisfy her property number
six.

Which features, then, of software products are encompassed by
Weyuker's properties? Fenton resolves this issue by stating, “Properties
five and six are relevant for very different (and incompatible) views of
complexity. Hence it is impossible to define a set of axioms for a
completely general view of 'complexity' [Fenton 91].” This suggests that
software products have features that can be identified and grouped into
categories that include features, measures, and axioms for these
measures.

Weyuker's set of properties is a seminal effort in establishing a basis for
evaluating software measures. Some of the properties should apply to all
software measures; some apply to a chosen few features that we may
wish to measure. Property number two, for example, is a property that
all measures should satisfy. Simply stated, this property requires that a
measure not be “too coarse.” Yet, property number two is not satisfied by
McCabe's cyclomatic complexity measure, in which too many programs
would be assigned the same measure.

That software products have features that have conflicting properties is
evidenced by established and accepted measures that do not satisfy some
set of Weyuker's properties. Once a design and implementation
paradigm is chosen, the features of concern of the software products to be
produced should be isolated and grouped into categories. Measures can
be selected for each category, and lists of properties can be developed for
these measures. Weyuker's properties can be used as a basis for
selecting these properties. This also suggests that a collection of
measures may be appropriate for the application as opposed to a single
measure.

1.3. What Can Be Measured
In Lecture Notes on Engineering Measurement, in the section titled Software
Engineering Measures, Gary Ford comprehensively answers the question,
“What can be measured?” [Ford 93]. The properties or attributes of software
that are directly measurable are size, effort, schedule, and quality. These
four attributes are often called the SEI core measures [Carleton 92]. Ford
also observes that there are a few other software properties that are
generally believed to be important, but it is not yet known how to measure
them very well. Reliability, reuse, and complexity are among these
properties.

In this module, the term software measure refers to the measurement of the
software product and the process which produces this product. The software
product can be thought of as an abstraction that evolves from a specification
document into a finished software system. Specifically, a software product is
considered as both the programming language source code and the design
document(s). Both components of the product are seen as being measurable.

SEI-CM-28 Measuring Object-Oriented Software Products 7

In addition, the environment in which the software product is produced
influences the acceptance of the measure by the experimental community.

8 Measuring Object-Oriented Software Products SEI-CM-28

Measurement research has taken place in two rather distinct environments,
each of which has its own unique characteristics. The result is two distinct
types of experiments from which experimenters have drawn conclusions,
proposed measures, and proposed models. These are large-scale and small-
scale experiments. Conte, Dunsmore, and Shen were the first researchers to
document these two experimental environments [Conte 86]. Accordingly, a
large-scale experiment is an experiment that captures the characteristics of a
large-scale system. These characteristics are:

 A large, organized team of people, including specialists, is required to
design, implement, and maintain the system.

 The system is large, employing hundreds of thousands of lines of source
code, hundreds of modules, and many functions to be performed.

 The system reflects a variety of abilities and techniques, and is difficult for
any one person to understand fully.

 There are strong dependencies among system components (as opposed to a
collection of independent modules).

 The system's users typically did not design or write the system, yet must
rely on it for accurate information.

 The system must be updated often and, perhaps, several versions must be
maintained simultaneously.

In contrast, a small-scale experiment is one involving a few subjects, usually
working alone on a relatively simple task that can be completed in a matter
of a few hours. A micro-model is a relationship among factors generally
supported by small-scale experiments, and a macro-model is a relationship
among factors generally supported by large-scale experiments. Conte and his
co-authors contend, “Success in the development of micro-models may not
lead to success in macro-models. However, failure in the development of
micro-models can be detrimental to our confidence in macro-models” [Conte
86]. Both types of experiments and models have been reported in the
literature, and both the student and instructor of software measurement
should be aware of these differences and able to judge the reported finds
accordingly.

1.3.1 Process
The process that takes place involving people, time, environment, tools,
and management to generate the software product is measurable. Many
process measures and models have been proposed in the literature.
Everald Mills in his SEI document covers process measures and models
[Mills 88]. Conte in his text covers process measures and models both
from a micro-model viewpoint and a macro-model viewpoint [Conte 86].
Putnam covers process models from a macro-model viewpoint [Putnam
92].

The reader is reminded that process measures are not covered in this
module and is referred to the three sources referenced in the paragraph
above for further detail. Incidentally, (referring to the four SEI core
features to be measured), effort and schedule are both directly associated
with process.

SEI-CM-28 Measuring Object-Oriented Software Products 9

1.3.2 Product
The software product is measurable. The attributes of the software
product that are most commonly measured are size and quality. Product
size is usually measured by lines of source code with stringent counting
rules imposed. Product quality is usually measured by observed defects
found and defects found per thousand lines of source code. A defect is the
manifestation of a software fault. A software fault is the result of a
programming error or an error in specification of the intended product. A
programming error could be the result of a design error, a
misinterpretation of a design specification, or simply a programming
mistake. No one can guarantee the absence of faults. Some faults can be
detected through design reviews, code reviews, walkthroughs, and
various types of testing.

The two standard measures of defects are the count of the number of
defects at some specific point in time and the number of defects per
thousand lines of source code. The second measure is a ratio and is more
useful to software developers; however, this ratio has a denominator,
lines of source code, whose value is prone to error and inconsistent
measurement. Robert Park has proposed a complete set of guidelines for
counting lines of source code [Park 92]. Lawrence Putnam has collected
data from large organizations and large-scale applications, and reports
that defect data follow a Raleigh model [Putnam 92]. The Raleigh model
stated by Putnam is

 Em =
6Er

td
2

⎛

⎝
⎜ ⎞

⎠
⎟ t e−3t 2 / td

2

where

 Er = total number of errors over the life of the project

 Em = errors per time period

 t = time in time periods

 td = time to develop product in time periods

 NOTE: Er is obtained from past data and adjusted
 proportionally for the current project.

The Raleigh model is a theoretical model whose practical use is to track
the actual defect rate against the expected defect rate from the model.
Excessive deviation of actual rates from expected rates at any point in
time during the project is an indication of an anomaly somewhere. A
significant deviation may indicate poor error detection or the presence of
too many errors; both situations warrant action.

In addition to simply counting defects, additional information and insight
into the source of the errors causing the defects can be gained from
recording where the fault is located, when it was detected, and when it
was injected. Norman Fenton devotes an entire chapter (Chapter 8) to
fault-related issues in his text [Fenton 91]. Conte and his co-authors
explore the financial impact of faults and, in addition, provide a
mathematical derivation of the mean time to failure (MTTF) for a
software component [Conte 86, pp. 93-106]. Other measures of a software

10 Measuring Object-Oriented Software Products SEI-CM-28

product include measures made on the design. These measures will be
discussed in Section 4.

2. The Object-Oriented Paradigm
A new paradigm became popular in the mid 1980s that began to affect the way
software developers viewed software analysis and design. This paradigm, the
object-oriented paradigm, has compounded the study of software measures
because of the multiplicity of interrelated elements. Are software products
produced under object-oriented techniques measurable by existing software
measures, or does a new body of measures need to be invented? What is the
current state of the discipline relative to object-oriented measures?

2.1. Origins of the Paradigm
Ole-Johan Dahl and Kristen Nygaard of Norway created the seminal work on
an object-oriented language with their introduction of Simula67 in 1967. As
the name implies, Simula67 was generally used for simulation modeling and
proved to be a significant influence on later object-oriented languages.
Smalltalk, developed at XEROX in Palo Alto in the 1970s, was the next major
development of an object-oriented language. Smalltalk was followed by a
number of languages that either were object-oriented from inception, such as
Eiffel, or revamped a previous language to include object-oriented
capabilities, such as C++, Object Pascal, and Ada95.

An excellent treatment of the evolution of the object-oriented paradigm can
be found in Grady Booch's text (Chapter 2) [Booch 94, pp. 27-72].

2.2. Features of Object-Oriented Products That Are Different from
Conventional (Procedure-Oriented) Products

One feature that makes objected-oriented software products different from
earlier or conventional software products is the use of procedures and
subprograms. Today, the conventional technique of structured programming
is procedure-oriented, but is supported by programming languages that
support separate compilation of modules, data abstraction, strong data
typing, and data encapsulation. That structured programming is still
procedure-oriented indicates an early emphasis on implementation in the life
cycle. Today and in the past, a major portion of the life cycle is spent on
implementing the design.

In contrast, object-oriented programming places greater emphasis on the
design phase of the software life cycle. The essence of the object-oriented
design is that it decomposes the system into object classes, the basic building
blocks of the object-oriented approach; gathers together the data and the
functions to be performed on the data; and encapsulates the data and
functions (methods) within the class.

Another feature that makes object-oriented software products different from
the conventional procedure-oriented software products is the object class
itself. Features of the object class (or simply class) that become measurable
are the number of attributes the class contains, the number of methods the
class has, the number of methods called from other classes, the number of
methods outside the class that are called, and the placement of the particular

SEI-CM-28 Measuring Object-Oriented Software Products 11

class in the class inheritance tree. Classes are complex entities and should be
considered as more than a collection of methods and attributes. Classes
spawn objects by a process called instantiation, and the class can no longer
be thought of in a two-dimensional sense.

Emphasizing shared features of object-oriented products, abstract data types
exist in conventional procedure-oriented programming languages, and
classes can be implemented as abstract data types in most of the existing
object-oriented languages. However, one of the key differences between the
procedure-oriented implementation and the object-oriented implementation
is the concept of inheritance. Inheritance is a relationship among classes in
which a class shares (inherits) the attributes and methods of another class.

The methods of a class are similar to the functions, programs, or
subprograms that are used in conventional programming. Functionality in
classes is gained through message passing both within classes and between
classes. A class's methods are measurable. Methods can be measured by the
earlier, more conventional measures. Examples of such measures are lines of
code, Halstead's software science metrics, McCabe's cyclomatic complexity
metric, and Albrecht's function points.

Unique features of object-oriented programming and design impose added
complexities on the measuring process. These features—message passing,
inheritance, and polymorphism—require a suite of measures designed to
handle them.

2.3. Suggested Common Terminology for Object-Oriented Approaches
In this report, we treat the term object as a primitive term. Objects have
attributes, methods, and an identity (a name). The following terminology is a
partial adaptation of Booch's set of terms [Booch 94, pp.511-520]. The author
provides these definitions so that the terminology used to describe object-
oriented software products in this module is as uniform as possible.

Abstraction. The essential characteristics of an object that distinguish
it from all other kinds of objects, and thus provide, from the viewer's
perspective, crisply-defined conceptual boundaries; the process of
focusing upon the essential characteristics of an object.

Aggregate object (aggregation). An object composed of two or more
other objects. An object that is part of two or more other objects.

Attribute. A variable or parameter that is encapsulated into an object.

Class. A set of objects that share a common data structure (called
attributes) and a common behavior manifested by a set of methods; the
set serves as a template from which objects can be created.1

Cohesion. The degree to which the methods within a class are related to
one another.2

Collaborating classes. If a class sends a message to another class, the
classes are said to be collaborating.

Coupling. Class X is coupled to class Y if and only if X sends a message
to Y.

1 There are other interpretations of class 2 Here,
cohesion is limited to cohesion within a class.

12 Measuring Object-Oriented Software Products SEI-CM-28

Depth. The depth of a class is the length of the longest path from the
root of the inheritance tree to the class in question.

Encapsulation. The process of bundling together the elements of an
abstraction that constitute its structure and behavior.

Information hiding. The process of hiding the structure of an a class
and the implementation details of its methods. A class has a public
interface and a private representation; these two elements are kept
distinct.

Inheritance. A relationship among classes, wherein one class shares
the structure or methods defined in one other class (for single
inheritance) or in more than one other class (for multiple inheritance).

Inheritance Tree. A directed graph in which the nodes represent
classes and the edges represent base-class/derived-class dependencies.
The graph may not be a tree if multiple inheritance is permitted.

Instance. An object with specific structure, specific methods, and an
identity.

Instantiation. The process of filling in the template of a class to
produce a class from which one can create instances.

Message. A request made of one class to another, to perform an
operation.

Method. An operation upon an class, defined as part of the declaration
of a class.

Polymorphism. The ability of two or more objects to interpret a
message differently at execution, depending upon the superclass of the
calling object.

Superclass. The class from which another subclass inherits its
attributes and methods.

Uses. If class X is coupled to class Y and class Y is coupled to class Z,
then class X uses class Z.

It has been a common goal of many researchers to agree upon a common set
of terminology that encompasses the object-oriented analysis and design
methods used in the object-oriented community. Neville Churcher and
Martin Sheppard recently introduced a set of terminology to achieve this
goal. Two of their terms are incorporated into the set above—depth and
inheritance tree [Churcher 95].
2.4. Overview of Object-Oriented Design Methods
Roger Pressman in his software engineering text summarizes object-oriented
design methods by stating, “At their current stage of evolution, object-
oriented design methods combine elements of all three design categories:
data design, architectural design, and procedural design. By identifying
classes and objects, data abstractions are created. By coupling operations to
data, modules are specified and a structure for the software is established.
By developing a mechanism for using the objects (e.g. generating messages),
interfaces are described” [Pressman 92, p.403].

SEI-CM-28 Measuring Object-Oriented Software Products 13

Ed Yourdon in his recent text views object-oriented design from a more
general viewpoint than Pressman. Yourdon states, “So what is design—and
in particular, what is object-oriented design? Fundamentally it consists of
three things:

• Notation — so we can communicate our ideas about the design to other
members of the project team, and to interested outsiders

• Strategies — so we don't always begin each project as if this is the first
time the human race has ever considered tackling a problem of this kind,
and so the designs for common domains of problems will begin to fall into
familiar 'patterns' of solutions

• Goodness criteria — so we can have an objective way of evaluating a
design to see if it should be accepted, rejected, or revised” [Yourdon 94, p.
250].

The primary purpose of the design is to create a framework or architecture
from which the implementation will eventually evolve. The framework may
take a variety of forms—graphical, narrative, or a combination of both
graphics and narrative. Researchers and practitioners have developed a
variety of methods, some with exotic acronyms, to produce a design
framework. A few of these methods are presented here so that the reader
may be aware of these approaches and the various notations that are used.
Coad-Yourdon Method.

Coad and Yourdon use the same notation for design as they do for analysis
[Coad 91]. The design framework they develop is language-independent and
uses numerous graphical representations. Figure 2-1 portrays a diagram for
a superclass A with two subclasses (specializations); this is also known as a
is-a hierarchy.

Class A

Class A1 Class A2

Superclass

Subclass

 Figure 2-1: Specialization (Coad-Yourdon)

14 Measuring Object-Oriented Software Products SEI-CM-28

Figure 2-2 represents a whole-part (assembly) relationship; this is also
known as a has-a relationship. Note that the notation includes bounds on the
relationship. If M denotes the number of instances of PartA, then WHOLE
consists of M instances of PartA where n1 ≤ M ≤ n2. If N denotes the number
of instances of class WHOLE, then PartA may be a component of N instances
of WHOLE where n3 ≤ N ≤ n4.

WHOLE

PartA PartB

n1,n2 n5,n6

n3,n4 n7,n8

 Figure 2-2: Assembly (Coad-Yourdon)

SEI-CM-28 Measuring Object-Oriented Software Products 15

Coad and Yourdon also use object file history (usually called state-transition)
diagrams and object communication diagrams (similar to the data flow
diagram) to describe the behavior of object classes as they
collaborate/communicate with other object classes. Figure 2-3 portrays a
combination of these two diagrammatic tools. The object file history diagram
for object class B suggests that the object class has three states that are in a
specific order. State 1 consists of awaiting the arrival of the value of attribute
X, which the object must have to produce V. State 2 consists of awaiting the
arrival of the value of attribute Y, which the object must have to produce U.
The final state for object class B is that of having sent both values for
attributes V and U.

Class A Class B

Class C

X

Y
U V

Class D

(Final state)

State 1

State 2

State 3

X received
send V

Y received
send U

 Figure 2-3: Object History and Communication (Coad-Yourdon)

16 Measuring Object-Oriented Software Products SEI-CM-28

Booch Method

The Booch method is rich in notation that encompasses all his design issues
in some diagrammatic manor [Booch 94]. The is-a and has-a relationships
are portrayed in Figures 2-4 and 2-5, respectively. Note that the class icon
that Booch uses is cloud shaped.

Class A

Class A1 Class A2

Superclass
 Figure 2-4: Specialization (Booch)

WHOLE

PartA

PartB

n5,n6

n7,n8

n1,n2

n3,n4

 Figure 2-5: Assembly (Booch)

The numbers n1 through n8 serve the same role as in Figure 2-2.

SEI-CM-28 Measuring Object-Oriented Software Products 17

The Firesmith Method

The Firesmith Advanced Software Technology Specialists Development
Method 3 (ADM3) uses a specification and design language called OOSDL to
document the design of the system. Firesmith states, “ADM3 is a third-
generation, object-oriented software development method for use on large,
complex, real-time projects... It has a very rich, consistent set of models and
diagram classes, which can be used to model all aspects of almost all
applications” [Firesmith 93, pp.231-321]. OOSDL is strongly typed, is quasi-
formal, uses standard English, and is based on the Ada programming
language. Figures 2-6 and 2-7 portray the is-a and has-a relationships.

has superclass has superclass

Class A1 Class A2

Class A

 Figure 2-6: Specialization (Firesmith)

Both Firesmith and Booch use notation in which the superclass A is depicted
at the bottom of the diagram, indicating the relationship as going from
specialization to generalization. Firesmith uses a parallelogram to represent
concurrent classes and a rectangle to represent sequential classes.

WHOLE

PartA PartB

n1..n2

has components

Generic
parameters
Specification

Body

 Figure 2-7: Assembly (Firesmith)
Rumbaugh and Co-Authors Method

18 Measuring Object-Oriented Software Products SEI-CM-28

Rumbaugh and his co-authors use the same notation for both analysis and
design. According to the Rumbaugh group, “Object-oriented design is
primarily a process of refinement or adding detail” [Rumbaugh 91, p.228].
One of the co-authors has written a program, Object Modeling Tool (OMTool),
that is a graphic editor for constructing object diagrams. The method of
Rumbaugh and co-authors uses the three analysis phase models—object,
dynamic, and functional models—as a basis for attaching methods to the
classes and completing the design. Chapter 10 of their text provides
guidelines for designing objects and choosing algorithms. Figures 2-8 and 2-9
portray the notation for the is-a hierarchy (specialization) and the has-a
relationship (assembly), which Rumbaugh calls aggregate.

Class A

Class A1 Class A2

Superclass

 Figure 2-8: Specialization (Rumbaugh)

Rumbaugh recently joined Grady Booch’s company, Rational, in 1994; so this
notation and approach may change.

WHOLE

PartA PartB PartC

0 or 11+

 Figure 2-9: Assembly (Rumbaugh)

SEI-CM-28 Measuring Object-Oriented Software Products 19

The Henderson-Sellers and Edwards Method

Brian Henderson-Sellers and Julian Edwards have proposed a method for
object-oriented analysis and design, called MOSES (Methodology of Object
oriented Software Engineering of Systems), which, in addition to design and
documentation, provides a framework for project management, quality
assurance, and metrics. The diagrams for specialization and assembly at the
design stage are portrayed in Figures 2-10 and 2-11, respectively.

Class A
Superclass

Class A2Class A1

 Figure 2-10: Specialization (Henderson-Sellers)

The authors use the rectangle insert in the object class icon to represent the
public portion of the class at the second level of the object class diagram
[Henderson-Sellers 94, pp.46-67].

WHOLE

PartA

Private

PartB

Public

 Figure 2-11: Assembly (Henderson-Sellers)
Coleman’s Fusion Method

20 Measuring Object-Oriented Software Products SEI-CM-28

Derek Coleman and his co-authors have proposed Fusion, a method they
consider to be a second-generation object-oriented software development
method. According to the authors, Fusion “builds on the successful parts of
earlier object-oriented methods and addresses their weaknesses. It has three
phases—analysis, design and implementation” [Coleman 94, pp.11,19-22].
The notation of the method is simple and captures the essential features of
the analysis and design. The diagrams for specialization and assembly are
portrayed in Figures 2-12 and 2-13, respectively.

Class A

Class A1 Class A2

Superclass

Solid triangle if
disjoint classes

 Figure 2-12: Specialization (Coleman)

For the assembly (aggregate class) Coleman denotes cardinality constraints
of classes by either a single number, n1..n2 for a range, “∗” for zero or more,
or “+” for one or more.

WHOLE (Aggregate Class)

n1..n2 PartB+Part A

 Figure 2-13: Assembly (Coleman)

The Fusion method also provides for a data dictionary to serve as a central
repository of definitions of terms and concepts.

SEI-CM-28 Measuring Object-Oriented Software Products 21

Other Methods

There are several other design methods that have also been proposed in the
literature. These include the methods of Martin and Odell; Shlaer and
Mellor; Wirfs-Brock, Wilkerson, and Wiener; and Ivar Jacobson and his co-
authors. Of the four approaches, the text by Martin and Odell is more
analysis-oriented than design-oriented, as evidenced by the fact that three of
the 29 chapters specifically deal with design [Martin 92].

Shlaer and Mellor introduce a graphical diagramming notation called
OODLE (Object-Oriented Design LanguagE) that uses four diagram types
that are different from their analysis diagrams. OODLE is elaborate, and
encompasses four key issues of design—class diagram, class structure chart,
dependence diagram, and inheritance diagram [Shlaer 92, pp.201-204].

Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener have proposed
yet another approach to object-oriented analysis and design. Their approach
is best summarized by a quote from the preface of their book: “In this book
we offer basic design principles, and a specific design process, that can be
applied to any software programming effort, even those not using object-
oriented languages or environments. We provide a coherent model for the
design process: responsibility-driven design. We also provide tools, such as
the hierarchy graph and the collaboration graph, to help the designer every
step of the way.” The authors have presented, possibly, the simplest icons for
the object class and the various relationships—the icon for an object class is a
rectangle. Their text has a solid chapter on advice for implementing a design
[Wirfs-Brock 90, pp.177-190].

Ivar Jacobson and his co-authors propose Objectory (the Object Factory for
Software Development) as a development technique, which has the
properties that it must support the iterative development of a system over
the entire life cycle, it should view each iteration as a change to an existing
system, and it must support the entire chain from changed requirements to
the functioning system [Jacobson 92, pp.39-40]. The nucleus of Objectory is
the “use case,” which is a scenario that some part of the system must
perform. This technique has been used successfully in Sweden by the
telecommunications industry.

3. Features of Object-Oriented Software Products
3.1. A Suggested Taxonomy for Features
The object-oriented design approach gives rise to a natural taxonomy that
incorporates the salient features and properties of an object-oriented
software product. Archer and Stinson have proposed such a taxonomy
[Archer 95, p 13]. This taxonomy captures these properties hierarchically. It
begins with the high-level characteristics of an object-oriented system and
moves down to the low-level characteristics.

System. The system and its components are at the highest level. Although
a system can be subdivided into components, these components also act as a
system. Also, the characteristics of a good component are those of a good
system and vice versa. The measurable characteristics of a system might
include the number of classes in the system or the number of edges in the
inheritance tree(s) for the system.

22 Measuring Object-Oriented Software Products SEI-CM-28

Coupling and Uses. Classes often interact with other classes to form a
subsystem. Characteristics of this interaction may indicate a complexity
resulting from too much coupling, or from using objects derived from objects
that have been obtained from yet another object. Such complexity can
complicate the programming process. Uses and coupling are related issues;
uses is defined in terms of coupling. The role of uses and coupling in the
interaction of classes makes them a single taxon: both capture the interaction
of classes.

Inheritance. Classes are found in a class structure diagram, often called an
inheritance tree or class hierarchy graph (the graph may not be a tree if
multiple inheritance is permitted). Visible in the graph are the inheritance
relationships between classes and their parents—the properties shared by
both. Such relationships may indicate to a designer where changes would
improve the development. The inheritance tree itself contains interesting
characteristics, such as the depth and breadth of the tree.

Class. The class is the main building block of an object-oriented design.
Classes allow us to describe in one central location the state and the generic
behavior of a set of objects, and instantiate objects that exhibit this behavior
whenever we need them. Classes have many characteristics that are
measurable and may have characteristics that make them excellent
candidates for inclusion in a library for reuse. Classes, most certainly,
deserve to be a separate taxon.

Method. Attributes and methods occur at the finest level of detail in the
class. Methods are usually implemented much like procedures are in
structured programming. However, in object-oriented products methods have
the additional complexity of message passing. Messages can be passed to
objects in the same class or to objects in different classes. Message passing
involves accessing features of other objects that are visible (public) and some
that are invisible (private) to the object. Such accesses should be measured or
recorded.

This taxonomy attempts to encompass all the characteristics of object-
oriented software products and to capture the features of the design from the
system level down to the class level. These taxa also provide insight into
potential areas of concern, such as depth of inheritance, cohesion, coupling,
size of classes, and system structure.

Other taxonomies have been proposed. Fernando Abreu and Rogério
Carapuça provide a taxonomy for measures of both object-oriented products
and processes. This taxonomy, TAPROOT, deals with both product and
process measures. The author's taxonomy is based on a Cartesian product of
the two vectors: (design, size, complexity, reuse, productivity, quality) and
(method, class, system). This produces 18 possible cells into which a metric
can reside. Class and system quality measures that the authors suggest are
based on counts of observed defects, failures, and time between failures.
TAPROOT is presented as a starting point from which further refinement
and verification can follow [Abreu 94].

SEI-CM-28 Measuring Object-Oriented Software Products 23

3.2 Existing Measures by Taxon

3.2.1 System Measures
•SC1 - System Complexity (total length of inheritance chain) [Abreu 94]
•SR1 - System Reuse (% reused “as is” classes) [Abreu 94]
•SR2 - System Reuse (% reused classes with adaptation) [Abreu 94]
•SR3 - System Reuse (library quality factor) [Abreu 94]
•OC - Object Counts (count of object instances in the system) [Banker

91]
•OP - Object Points (count of the weighted instances of an object)

[Banker 91]
•RL - Reuse Leverage (ratio of total of objects in the system to the

number of unique objects built for the system) [Banker 91]
•Size - Size of Object-Oriented system (a statistical estimate based on a

model developed by the author) [Laranjeira 90]
•HC - Hierarchy Complexity of system [Lee 93, p.306]
•PC - Program Complexity (defined as the sum of the complexity of the

main program and the complexity of the class hierarchies in the
system) [Lee 93 p.307]

•CBC - Count of Base Classes [Williams 93]
•CSC - Count of Standalone Classes [Williams 93]

3.2.2 Coupling and Uses Measures
Coupling has been defined loosely by some authors and appears to be a
source of confusion to others. One definition that appears in the
literature defines coupling as “a measure of interconnection among
modules in a software structure” [Pressman 92, p.336]. But coupling is
not a measure; coupling is a property or attribute of a pair of software
modules. Coupling can be characterized as a binary relation defined on
pairs of software modules. If this relation is denoted by R, then (x,y) R if
and only if some property involving x and y is satisfied. Clearly, (x,y) ≠
(y,x) for a general relation; that is, 'x is coupled to y' is not the same as 'y
is coupled to x.' The more reasonable approach to coupling is to treat it
as a binary relation on pairs of software modules (objects). The degree of
coupling can be assigned a measure as some of the authors below have
done.
•OCM - Operation Coupling Metric (a count of the number of operations

that access other classes, are accessed by other classes, and cooperate
with other classes) [Chen 93, p.234]

•CCM - Class Coupling Metric (counts accesses between classes; author
explains difference between OCM and CCM by example) [Chen 93]

•CBO - Coupling Between Object classes (count of coupling, where
coupling is considered as bi-directional) [Chidamber 94, p.486]

•MPC - Message Passing Coupling (number of send statements in a
class) [Li 93]

•GSDM - Graph of Source and Destination of Messages (no measure
given, author proposes a diagram) [Moreau 90a]

24 Measuring Object-Oriented Software Products SEI-CM-28

•NOT - Number Of Tramps (count of extraneous parameters that are
not involved in any message passing) [Sharble 93]

•VOD - Violations Of the law of Demeter (see Lieberherr [Lieberherr 89]
to understand the concept) [Sharble 93]

•COU - Count Of Uses [Williams 93]
•CCR - Count of number of Contains Relationships (This is not

explained in the article; inheritance is probably the relationship
measured.) [Williams 93]

3.2.3 Inheritance Measures
•AID - Average Inheritance Depth [Yap 93a]
•CHM - Class Hierarchy Metric (This is defined by Chen as the

summation of a specific class in the inheritance tree, the number of
subclasses of the class, the number of 'direct' superclasses of the
class, and the number of local or inherited operations available to the
class [Chen 93]. Chen gives an incomplete example of this measure
in his paper. This measure could also be classified as a class
measure.)

•DIT - Depth of Inheritance Tree [Chidamber 94]
•NOC - Number Of Children [Chidamber 94]
•IL - Inheritance Lattice (stated as being measurable, but no measure

was given) [Moreau 90ab]

3.2.4 Class Measures
•CC2 - Class Complexity (progeny count) [Abreu 94]
•CC3 - Class Complexity (parent count) [Abreu 94]
•CR1 - Class Reuse (% of inherited methods that are overloaded) [Abreu

94]
•CR2 - Class Reuse (number of times class is reused “as is”) [Abreu 94]
•CR3 - Class Reuse (number of times class is reused with adaptation)

[Abreu 94]
•RFC1 - Raw Function Counts (represents a simple count of the five

function types from function points analysis) [Banker 91]
•OXM - Operation Complexity Metric (within a class) [Chen 93]
•OACM - Operation Argument Complexity Metric [Chen 93]
•ACM - Attribute Complexity Metric [Chen 93]
•RFC2 - Response For a Class (the cardinality of the set of all methods

that can potentially be executed in response to a message received by
an object of the class being measured) [Chidamber 94]

•LCOM - Lack of Cohesion Of Methods [Chidamber 94]
•WMC - Weighted Methods per Class (this is simply the sum of the

complexities of the methods in a class) [Chidamber 94, p.481]
•CC - Class Complexity (Lee considers a class as a collection of methods

and, thus, the complexity of a class is the sum of the individual
method complexities.) [Lee 93, p.305]

•DAC - Data Abstraction Coupling (number of abstract data types) [Li
93]

SEI-CM-28 Measuring Object-Oriented Software Products 25

•NOM - Number Of local Methods (count of number of methods in a
class) [Li 93]

•Size2 - number of attributes + number of local methods [Li 93]
•WAC - Weighted Attributes per Class [Sharble 93]

3.2.5 Method Measures
Neville Churcher and Martin Shepperd suggest that, in modeling the
object-oriented architecture, it is appropriate to use a traditional model
such as the entity-relationship model. They also state, “The relational
model is sufficiently standard that, despite its limitations, it provides a
sound platform for development of portable models and tools” [Churcher
95]. Churcher and Shepperd also provide a table that isolates some
object-oriented software product features that are important to represent;
these are: class, method, variable, and message. These one-dimensional
features have been captured in the proposed taxonomy above and are
also represented in the various measures that have been proposed.
However, some of the binary (two-dimensional) relationships between the
features are not represented by any of the measures proposed as of yet.
The practitioner and instructor need to examine the Churcher and
Shepperd viewpoint and evaluate these issues in terms of their own
environment and needs.
•FP - Function Points [Albrecht 79]. Function points have received

much attention concerning their applicability to object-oriented
software products. Banker and his co-authors have shown that
function points do not apply to CASE-generated code [Banker 91];
Charles Symons reinforces the weaknesses of FP counts and proposes
an improvement [Symons 88]; Capers Jones has shown a positive
relationship between LOC and FP count and suggests that FP can
replace LOC in the traditional cost estimation models. [Jones 86].

•SSM - Software Science Metrics [Halstead 77]. There are several
excellent sources that cover the software science measures; these are
[Fenton 91, pp.52-54], [Conte 86, pp.37-42], and [Mills 88, p. 9].

•MCC - McCabe's Cyclomatic Complexity metric [McCabe 76]. This
measure has also received much attention and is covered in the
following sources: [Fenton 91, pp.181, 219-221], [Conte 86, pp.66-70],
and [Mills 88, p.8].

•MC - Method Complexity. Lee has a complicated formula for computing
the complexity. It involves length of method, number of arguments,
coupling to other methods, etc. [Lee 93. p.304]

•Size1 - number of semi-colons in a class [Li 93]
•LOC - Lines Of executable source Code. There are many

interpretations of this measure. Park is one of the best sources of
guidelines for collecting this data [Park 92].

3.3 Summary of Measures for Each Taxon
Table 3-1 provides a summary of the measures given for the five taxa. The
table contains the taxa names by column and the authors by row. (This table
contains all the measures proposed in the literature known to me at the time
this module went to publication.) Ten method measures are cited in the
column; however, only six of these measures (FP, SSM, MCC, MC, Size1, and
LOC) are unique (this explains the column total being written as 10{6}).

26 Measuring Object-Oriented Software Products SEI-CM-28

 Table 3-1: Measures by Taxon

Author System Coupling
& Uses

Inheri-
tance

Class Method

Abreu 94 SC1 SR1
SR2
SR3

 CC2 CR1
CC3 CR2
CR3

Banker 91 OC OP
RL

 RFC1 FP

Chen 93 CCM
OCM

CHM OXM RM
OACM
ACM CM

Chidamber 94 CBO DIT

NOC

WMC
RFC2
LOCM

Coppick 92 SSM MCC

Laranjeira 90 Size

Lee 93 HC PC CC MC

Li 93 MPC DAC Size2
NOM

Size1

Moreau 90ab GSDM IL SSM MCC

Sharble 93 NOT VOD WAC

Tegarden 92 SSM MCC
LOC

Williams 93 CBC CSC CCR COU

Yap 93a AID

Total
Measures

12 9 5 19 10 {6}

SEI-CM-28 Measuring Object-Oriented Software Products 27

4. Examples of Object-Oriented Software Product Measures
4.1 Selection of Measures Suite
As indicated in Section 3, many measures have been presented in the
literature on object-oriented software product measures. As an example of a
measures suite, I have chosen a suite of six measures, one representing each
of the taxa presented in Section 3.1, plus one more measure from the method
taxon. These measures are listed in Table 4-1 below.

Table 4-1: Representative Measures

Taxon Measure
Chosen
for Taxon

 Description of Measure Reference

Method MCC McCabe's Cyclomatic Complexity
metric

[Tegarden 92]
& [McCabe
76]

 LOC Lines Of Code [Park 92]

Class Size2 Total number of attributes and
methods for a class

[Li 93]

Inheritance DIT The depth of the inheritance tree [Chidamber
94]

Coupling
and Uses

CCM The summation of the number of
accesses to other classes, the
accesses by other classes, and the
number of 'co-operating' classes.

[Chen 93]

System SC1 The total number of edges in the
hierarchy graph for the system.

[Abreu 94]

28 Measuring Object-Oriented Software Products SEI-CM-28

4.2. C++ Example (Computer Performance)

This example is based on the sample application program taken from the
Johnsonbaugh and Kalin text on object-oriented programming in C++
Johnsonbaugh, (Richard & Kalin, Martin. Object-Oriented Programming in
C++. Englewood Cliffs, NJ: Prentice-Hall, 1995).

The C++ implementation code for the methods is omitted, some
documentation has been added, and the #include statements are not
included. This example is not intended to be executable, but to emphasize
the computation of the various measures that apply to an object-oriented
software product.

This example, shown in Figure 4-1, is the design and top-level
implementation of a software artifact to simulate the measurement of
computer performance. The design consists of creating two base classes,
BenchMark and Computer. Class BenchMark has JobA, JobB, and JobC as
derived classes. Class Computer has DeskTop and Mainframe as derived
classes, and DeskTop has WS (WorkStation) and PC (Personal Computer) as
derived classes. A program, TestIt, simulates a computer “running” a
benchmark and outputting the results of the test. The relationships between
the base classes and the derived classes are evident in Figure 4-1.

BenchMark

JobA JobB JobC

Computer

MainFrame DeskTop

WS PC

Figure 4-1: C++ Example Class Inheritance Tree

A partially coded implementation of the Computer Performance example
follows:

SEI-CM-28 Measuring Object-Oriented Software Products 29

const int MaxName = 100; const float Tolerance = 0.01;
class Test;
class BenchMark {
friend Test;
protected:
 // Computer instructions are broken down into
categories
 // percentage [expressed as a decimal, 50% = 0.50]
 float alP; // Arithmetic/logic instructions
 float mP; // Memory
 float cP; // Control instruction
 float ioP; // Input/output instruction
 float ic; // Executed instruction count
 char name[MaxName + 1];
public;
 BenchMark() // base class constructor
 {
 init();
 strcopy(name, "?????");
 }

 BenchMark(char* n)
 {
 init();
 if (strlen(n) < MaxName)
 strcpy(name, n);
 else
 strncpy(name, n, MaxName);
 } // MCC = 2, LOC = 8

 void report()
 {
 cout << "Benchmark "<< name << endl;
 cout << " Tot ins executed == "<< ic << endl;
 cout << " A/L == "<< alP << endl;
 cout << " Memory == "<< mP << endl;
 cout << " Control == "<< cP << endl;
 cout << " I/O == "<< ioP << endl;
 } // MCC = 1, LOC = 9

 int okay() // Checks to see if instruction %s sum
 // within tolerance to 1.0
 {
 return fabs(1.0 -(alP + mP + cP + ioP)) <=
Tolerance;
 } // MCC = 2, LOC = 4

 void init_error() // Print error message when invkd
 {
 // single cout statement
 } // MCC = 1, LOC = 4
private:
 void init() // Initialize percentages to 0.0
 {
 alP = cP = mP = ioP = ic = 0.0;
 }
}; // === end of class BenchMark ===

class JobA : public BenchMark {
// This instantiation emphasizes arithmetic/logic and
// control statements with moderate memory use and
// low I/O.
public:
 JobA() : BenchMark("Job A") // JobA constructor

30 Measuring Object-Oriented Software Products SEI-CM-28

 {
 alP = 0.50; cP = 0.20;
 mP = 0.20; ioP = 0.10;
 ic = (float) 4500301;
 if (!okay()) init_error;
 }
}; // === end of class JobA ===

class JobB : public BenchMark {
// This instantiation emphasizes arithmetic/logic and
// control statements with light memory use and
// no I/O.
public:
 JobB() : BenchMark("Job B") // JobB constructor
 {
 alP = 0.77; cP = 0.166;
 mP = 0.064; ioP = 0.0;
 ic = (float) 6700909;
 if (!okay()) init_error;
 }
}; // === end of class JobB ===
class JobC : public BenchMark {
// This instantiation emphasizes low arithmetic/logic
// andcontrol statements with heavy memory use &
// moderate I/O.
public:
 JobC() : BenchMark("Job C") // JobC constructor
 {
 alP = 0.153; cP = 0.0059;
 mP = 0.577; ioP = 0.26;
 ic = (float) 10400500;
 if (!okay()) init_error;
 }
}; // === end of class JobC ===

SEI-CM-28 Measuring Object-Oriented Software Products 31

class Computer {
friend TestIt;
protected:
 // cpi = cycles per instruction
 float alcpi; // Arithmetic/logic cpi
 float ccpi; // Control cpi
 float mcpi; // Memory cpi
 float iocpi; // Input/output cpi
 float ct; // Cycle time in nanoseconds
 char name [MaxName + 1];
 float costU; // Upper bound of cost range in dollars
 float costL; // Lower bound of cost range in dollars

protected:
 Computer(float al, float c, float m, float io,
 float t, char* n, float lbd, float ubd)
 {
 alcpi = al; ccpi = c; iocpi = io;
 mcpi = m; ct = t;
 if (strlen(n), MaxName)
 strcpy(name, n);
 else
 strncpy(name, n, MaxName);
 costU = ubd; costL = lbd;
 } // MCC = 2, LOC = 11

 void report ()
 {
 // cout statements to print cost range, time,
 // and cpi values
 } // MCC = 1, LOC = 4
}; // === end of class Computer ===

class Desktop: public Computer {
protected:
 Desktop(float al, // Arithmetic/logic
 float c, // Control
 float m, // Memory
 float io, // Input/output
 float t, // Cycle time in nanosec
 char* n, // Name
 float l, // Lower bd of cost range
 float u) // Upper bd of cost range
 : Computer(al, c, m, io, t, n, l, u) {}
}; // === end of class Desktop ===

32 Measuring Object-Oriented Software Products SEI-CM-28

class PC : public Desktop { // Personal Computer
public:
 PC (float al = 1.8, // Arithmetic/logic
 float c = 2.3, // Control
 float m = 5.6, // Memory
 float io = 9.2, // Input/output
 float t = 230.0, // Cycle time in nanosec
 char* n = "PC", // Name
 float l = 800.0, // Lower bd of cost range
 float u = 14500.0) // Upper bd of cost range
 : Desktop (al, c, m, io, t, n, l, u) {}
}; // === end of class PC ===

class WS : public Desktop { // Workstation
public:
 WS (float al = 1.3, // Arithmetic/logic
 float c = 1.7, // Control
 float m = 2.1, // Memory
 float io = 5.8, // Input/output
 float t = 90.0, // Cycle time in nanosec
 char* n = "WS", // Name
 float l = 4500.0, // Lower bd of cost range
 float u = 78900.0) // Upper bd of cost range
 : Desktop (al, c, m, io, t, n, l, u) {}
}; // === end of class WS ===

class Mainframe : public Computer { // Mainframe
public:
 Mainframe (float al = 1.2, // Arithmetic/logic
 float c = 1.5, // Control
 float m = 3.6, // Memory
 float io = 3.2, // Input/output
 float t = 50.0, // Cycle time in nanosec
 char* n = "$$$", // Name
 float l = 310000.0, // Lower bd cost range
 float u = 20000000.0) // Upper bd of cost
 // range
 : Computer(al, c, m, io, t, n, l, u) {}
};
 // === end of class Mainframe ===

SEI-CM-28 Measuring Object-Oriented Software Products 33

class TestIt {
 // Computes the response time in nanoseconds of
running benchmark b
 // on computer c, where
 // rt = response time,
 // ct = clock cycle time,
 // ic = instruction count, and
 // cpi = clock cycles per instruction.
 // The response time in nanoseconds is computed
 // as rt = ic * cpi * ct .
 float rt;
 void results (Computer c, BenchMark b);
public:
 TestIt (Computer c, BenchMark b);
};

int TestIt :: TestIT(Computer c, BenchMark b)
{
 float al_rt, c_rt, m_rt, io_rt;
 al_rt = b.alP * b.ic * c.alcpi * c.ct;
 c_rt = b.cP * b.ic * c.ccpi * c.ct;
 m_rt = b.mP * b.ic * c.mcpi * c.ct;
 io_rt = b.ioP * b.ic * c.iocpi * c.ct;
 rt = al_rt + c_rt + m_rt + io_rt;
 results (c, b);
}

void TestIt :: results (Computer c, BenchMark b)
{
 // cout statements denoting computer and benchmark
 b.report();
 c.report();
} // MCC = 1
// === End of Class TestIt ===
// ===== End of Example =====

34 Measuring Object-Oriented Software Products SEI-CM-28

4.2.1 Computation of Measures for C++ Example
The computer performance example in Figure 4-2 has two base classes,
BenchMark and Computer.

Computer

alcpi, ccpi, mcpi,
iocpi, ct, name,
costU, costL

report
Computer(---)

BenchMark

n, alP, mP, cP,
ioP, ic

report
init_error
okay
BenchMark(---)

JobA JobB JobC

alP, mP, cP,
ioP, ic

alP, mP, cP,
ioP, ic

alP, mP, cP,
ioP, ic

okay
init_error

okay
init_error

okay
init_error

MainFrame DeskTop

WS PC

al, c, m, io, t,
n, l, u

al, c, m, io, t,
n, l, u

Computer(--) Computer(--)

al, c, m, io, t,
n, l, u

al, c, m, io, t,
n, l, u

DeskTop(--) DeskTop(--)

Init

Figure 4-2: C++ Example Class Diagram

SEI-CM-28 Measuring Object-Oriented Software Products 35

For the taxon method, McCabe's cyclomatic complexity (MCC) and lines
of code are calculated for each method in each of the classes. The base
class BenchMark has five methods (four public and one private), which
are inherited by three objects formed from this base class; so we need
only consider these five methods for the base class BenchMark.
Similarly, base class Computer has two methods, which are inherited by
two objects formed from this base class; so we need only consider these
two methods for the base class Computer. TestIt is a program that
accesses the two classes to instantiate the objects. The results of the
calculation of MCC and LOC are summarized below. Note that MCC has
values of only 1 and 2, hence not providing much granularity. Choosing
both a complexity measure and a size measure for the taxon method is a
better choice. Careful examination of the measures show that the two
methods, okay and Computer, are 'more complex' methods and method
okay has a greater density of decision structures per lines of code than
does Computer.
 Class Method Measures

 BenchMark report MCC = 1, LOC = 8

 init_error MCC = 1, LOC = 9

 okay MCC = 2, LOC = 4

 Benchmark MCC = 1, LOC = 4

 Init MCC = 1, LOC = 4

 Computer report MCC = 1, LOC= 4

 Computer MCC = 2, LOC= 11

For the taxon class, the measure Size2 proposed by Li and Henry [Li 93]
is calculated for each class in the software system. Recall that Size2 is
the total number of attributes and methods for each class. The results of
the calculation of Size2 are summarized below.
 Class Measure

 BenchMark Size2 = 6+4 = 10

 Computer Size2 = 8+2 = 10

For the taxon inheritance, the measure is DIT (Depth of Inheritance
Tree) proposed by Chidamber and Kemerer [Chidamber 94]. The results
of the calculation of DIT are summarized below.
 Class Measure

 BenchMark DIT = 1

 Computer DIT = 2

36 Measuring Object-Oriented Software Products SEI-CM-28

For the taxon coupling and uses, the measure is CCM (total Count of the
number of accesses to other Classes, accesses by other classes and the
nuMber of cooperating classes) proposed by Chen [Chen 93]. The results
of the calculation of CCM are summarized below.

 JobA, JobB, & JobC access BenchMark
 count is 3

 DeskTop and Mainframe access Computer
 count is 2

 PC and WS access DeskTop
 count is 2

 Computer and BenchMark are accessed by TestIt
 count is 2

 CCM = 9

For the taxon system, the measure is SC1 (the total number of edges in
the hierarchy graph for the system) proposed by Abreu and Carapuça
[Abreu 94]. From Figure 4-2, the total number of edges in the hierarchy
graph for the system is seven. (Simply count the arrow heads.)

 SC1 = 7

SEI-CM-28 Measuring Object-Oriented Software Products 37

4.3. Ada95 Example (Car Dashboard Instrumentation)
This example is based on the sample application program provided by the
New York University GNU Ada Translator system (GNAT) [Schonberg 94].
The Ada95 implementation code for the methods is omitted, some
documentation has been added, and the with and use statements are not
included. This example is not intended to be executable, but to emphasize
the computation of the various measures that apply to an object-oriented
software product.

This example, the hierarchy of which is portrayed in Figure 4-3, is the design
and top-level implementation of a software artifact to simulate some of the
instruments on an automobile dashboard. The design consists of a base
class, Instrument; and derived classes, Speedometer, Gauge, and Clock.

Instrument

Speedometer Gauge Clock

Graf_Gauge Chronometer Accu_Clock

 Figure 4-3: Ada95 Example Class Hierarchy Chart

A partially coded implementation of the Car Dashboard Instrumentation
example follows:

38 Measuring Object-Oriented Software Products SEI-CM-28

package Instruments is

 -- Root Type ---

 type Instrument is tagged record
 Name : String (1..14) := " ";
 end record;
 procedure Set_Name (I: in out Instrument; S:
 String);
 procedure Display_Value (I: Instrument);

 -- Speedometer ---

 subtype Speed is Integer range 0..85; --mph
 type Speedometer is new Instrument with record
 Value : Speed;
 end record;
 procedure Display_Value (S : Speedometer);

 -- Gauges ---

 subtype Percent is Integer range 0..100;
 type Gauge is new Instrument with record;
 Value : Percent;
 end record;
 procedure Display_Value (G: Gauge);

 type Graf_Gauge is new Gauge with record
 Size : Integer := 20;
 Full : Character := '*';
 Empty: Character := '.';
 end record;
 procedure Display_Value (G: Graf_Gauge);

 -- Clocks ---

 subtype Sixty is Integer range 0..59;
 subtype Twenty_Four is Integer range 0..23;
 type Clock is new Instrument with record
 Seconds : Sixty := 0;
 Minutes : Sixty := 0;
 Hours : Twenty_Four := 0;
 end record;

SEI-CM-28 Measuring Object-Oriented Software Products 39

 procedure Display_Value (C: Clock):
 procedure Init (C: in out Clock;
 H: Twenty_Four := 0;
 M, S: Sixty := 0);
 procedure Increment (C:in out Clock;
 Inc:Integer :=1);

 type Chronometer is new Clock with null record;
 procedure Display_Value (C: Chronometer);

 subtype Thousand is Integer range 0..999;
 type Accu_Clock is new Clock with record
 MSecs : Thousand = 0;
 end record;
 procedure Display_Value (C: Acc_Clock);
end Instruments; -- End Class Instruments --

-- Program to test the Class Instrument --

 procedure Test_Instruments is
 type ACC is access all Instrument'Class;
 package DashBoard is new Gen_List(Acc); use
DashBoard;

 procedure Print_DashBoard (L: List) is
 L1 : List := L;
 A : Acc;
 begin
 while L1 /= Nil loop
 A := Element(L1);
 Display_Value(A.all);
 L1 := Tail(L1);
 end loop;
 New_Line;
 end Print_DashBoard;

40 Measuring Object-Oriented Software Products SEI-CM-28

 -- >>> Objects <<< --
 Speed : aliased Speedometer;
 Fuel : aliased Gauge;
 Oil, Water : aliased Graf_Gauge;
 Time : aliased Clock;
 Chrono : aliased Chronometer;
 DB : List := Nil;
 begin
 Set_Name (Speed, "Current speed");
 Set_Name (Fuel , "Fuel tank");
 Set_Name (Water, "Water ");
 Set_Name (Oil , "Oil ");
 Set_Name (Time, "Current time");
 Set_Name (Chrono, "Chronometer");
 Speed.Value := 45; --mph
 Fuel.Value := 60; --%
 Water.Value := 80; --%
 Oil.Value := 30; --%
 Init (Time, 12, 15, 00); --hrs, mins, sec
 Init (Chrono, 22, 12, 56);
 DB := Append (Speed'Access, Append
 (Fuel'Access, Append (Water'Access,
 Append (Oil'Access, Append
 (Time'Access, Chrono'Access)))));
 Print_DashBoard (DB);
 end Test_Instruments;

SEI-CM-28 Measuring Object-Oriented Software Products 41

4.3.1 Computation of Measures for Ada95 Example
This example, whose hierarchy chart is portrayed in Figure 4-4, has base
class Instrument having three derived classes. The program
Test_Instruments instantiates the objects to simulate the functions of the
instrument panel.

Instrument

Name
Tag

Set_Name
Display_Value

Gauge

Value

Display_value

Clock

Tag, H, M, S

Display_Value

Init

Increment

Accu_Clock

MSecs

Display_Value

Speedometer

Value

Display_Value

Chronometer

Display_Value

Graf_Gauge

Size, Full, Empty

Display_Value

Figure 4-4: Ada95 Example Class Diagram

42 Measuring Object-Oriented Software Products SEI-CM-28

For the taxon method, McCabe's cyclomatic complexity (MCC) and lines
of code (LOC) are calculated for each method in each of the classes. In
Figure 4-4, we observe that the base class Instrument has two methods
and the derived classes, Speedometer and Gauge, inherit these methods;
so we need only consider the two methods. The derived class Gauge has
a child class Graf_Gauge, which adds no new methods. Derived class
Clock inherits Display_Value and adds two new methods, Init and
Increment. Test_Instrument is a program which accesses the base
classes to instantiate the objects. The results of the calculation of MCC
and LOC are summarized below.
 Class Method Measure

 Instrument Set_Name MCC = 1, LOC=4

 Display_Value MCC = 1, LOC=6

 Clock Init MCC = 1, LOC=4

 Increment MCC = 1, LOC=4

For the taxon class, the measure Size2 proposed by Li and Henry [Li 93]
is calculated for each class in the software system. The results of the
calculation are summarized below.
 Class Measure

 Instrument Size2 = 2+2 = 4

 Speedometer Size2 = 1+1 = 2

 Gauge Size2 = 1+1 = 2

 Clock Size2 = 3+3 = 6

 Graf_Gauge Size2 = 3+1 = 4

 Chronometer Size2 = 0+1 = 1

 Accu_Clock Size2 = 1+1 = 2

SEI-CM-28 Measuring Object-Oriented Software Products 43

For the taxon inheritance, the measure is DIT (Depth of Inheritance
Tree) proposed by Chidamber and Kemerer [Chidamber 94]. The results
of the calculation are summarized below.
 Class Measure

 Instrument DIT = 2

 Gauge DIT = 1

 Clock DIT = 1

For the taxon coupling and uses, the measure is CCM (total Count of the
number of accesses to other Classes, accesses by other classes and the
number of cooperating classes) proposed by Chen [Chen 93]. The results
of the calculation of CCM are summarized below.

 Speedometer, Gauge and Clock access Instrument
 count is 3

 Graf_Gauge accesses Gauge
 count is 1

 Chronometer and Accu_Clock access Clock
 count is 2

 CCM = 6

For the taxon system, the measure is SC1 (total number of edges in the
hierarchy graph for the system), proposed by Abreu and Carapuça [Abreu
94]. From Figure 4-4, the total number of edges in the hierarchy graph
for the system is six. (Simply count the arrow heads.)

 SC1 = 6

44 Measuring Object-Oriented Software Products SEI-CM-28

Teaching
Considerations

Measuring object-oriented software products may be discussed in any
classroom setting in which the students have a basic background in a
high-level object-oriented programming language and some knowledge of
elementary descriptive statistics; this level of familiarity would normally
be found, for instance, in students who have had the CS1-CS2
programming courses plus an elementary statistics course. Of course, the
material will be more meaningful to students who have some experience
with object-oriented systems of greater size and complexity, either in
industry or in a course that has a system development project.

In a Software Engineering Lecture Course

Objectives and Content: In a typical software engineering course, some-
times as little as one class hour is devoted to measurement topics. In this
case the instructor can hope to do little more than make students aware
of the importance of the problems associated with measurement and will
not have time to discuss the various object-oriented methods. As an
overview of measurement concepts, one good starting point is the SEI
document by Gary Ford [Ford 93], which may be used by the instructor in
preparing lectures; or short segments may be copied and distributed to
the students for reading. For a one hour lecture, Chapter 1 of Fenton's
book provides a good background for preparing a lecture on the need for
measurement. If time permits, some of the more mathematical topics
from Chapter 2 can be injected into the lecture [Fenton 91, pp.1-22].

However, a deeper understanding of measurement and measuring object-
oriented software products, the importance of measurement in software
engineering, and the various object-oriented methods would seem to merit
a more extensive study than can be accomplished in a one-hour lecture. If
four to five class hours are available, the following topics could reasonably
be covered.

Prerequisites

Recommended
Module Uses

SEI-CM-28 Measuring Object-Oriented Software Products 45

Lecture 1 - Use the material in Section 1 of this module; cover the
material in Section 1.3.2 very lightly.

Lecture 2 - Use the material in Section 2 of this module, with good
coverage of one object-oriented design method and light coverage of
the other methods. The details of Section 2.1 can be omitted.
(Remember that students have seen objects and a method before.)

Lecture 3* - Use the material in Section 3 of this module. Carefully
cover the taxonomy of Section 3.1 and choose typical measures (two
or three) from each taxon to discuss in some detail. Point out to
students the problems with various interpretations of 'coupling.'

 * This lecture can be expanded to two hours very easily by more thoroughly
discussing the measures for the taxon method, which includes the classic
measures—Halstead's software science measures, McCabe's cyclomatic
complexity measure, lines of code, and function points.

Lecture 4 - Use the material in Section 4 of this module. Choose either
of the two examples and discuss the measures chosen.

At the end of the unit a student should:
• Know the importance of measurement in the life cycle and the

importance of planning with a goal (objective) in mind.
• Understand and be able to explain the GQM paradigm, use the

notation of at least one object-oriented method, and understand the
need to isolate the features of an object-oriented software product for
measurement.

• Know of the existence of measures for the five main features of object-
oriented software products and be able to select and combine some of
these into a measures suite for a specific goal and set of questions.

If more time is available, the content could be expanded in one of two
ways. First, more detail on the object-oriented methods could be
discussed, such as notation or software tools that are provided by some
vendors for a specific method. Second, any of the measures suggested in
Section 3 can be discussed in greater detail.

Resources: As an overview of measurement concepts a good starting point
is, again, the SEI document by Gary Ford [Ford 93], which may be used
by the instructor in preparing lectures. Ford’s material will also lead the
instructor to sources on the engineering issues of measurement. A second
good reference, other than Fenton's book, is the Putnam text whose first
chapter discusses various views of complexity [Putnam 92]. Although
Putnam's approach is aimed at process improvement, Chapter 1 of his
text helps motivate the need for measurement.

An exercise that may be interesting is to ask students to review one or
more tools, based on papers such as the ones in this module’s bibliography
or on product literature from commercial vendors. I have found that
students who have experienced the drudgery of graphic design of an
object-oriented system can easily appreciate the benefits of tool support;

46 Measuring Object-Oriented Software Products SEI-CM-28

for an inexperienced class, however, this sort of exercise may be less
useful.

In a Software Metrics Lecture Course

Objectives and Content: In a typical software metrics course, object-
oriented measures are not taught. The instructor usually makes students
aware of the importance of measurement and spends the remainder of the
course covering both process measures and the classic product measures.
I have taught such a 'classical' course twice in 1990 and 1991 using
Conte's text [Conte 86], supplemented with two lectures on non-
parametric statistics [Sachs 84]. The primary reason today for the
omission of object-oriented measures is that there are simply no texts that
include this topic. For a three-credit-hour lecture course on software
measures, Fenton's book provides a good foundation for measurement and
the classical process and product measures [Fenton 91]. The objective is to
modernize this course by injecting six lectures on object-oriented software
measures into the course at week three or four. These lectures can come
directly from this module, plus some supplemental readings from the
bibliography. The following material on object-oriented software measures
would be the best:

Lecture 1 - Use the material in Section 2 of this module with good
coverage of one object-oriented design method and light coverage of
the other methods. (Remember that students have seen objects and
an object-oriented method before.) The details of Section 2.1 can be
omitted. Duplicate the list of terminology and distribute it to the
class.

Lecture 2 - Use the material in Section 3 of this module. Carefully cover
the taxonomy of Section 3.1. Duplicate the taxonomy and distribute
it to the class. Choose typical measures (at least three) from each
taxon to discuss in some detail. Point out to students the problems
with various interpretations of 'coupling.' Save the taxon method to
discuss in Lecture 3.

Lectures 3 & 4 - This lecture covers the taxon method and can take two
hours very easily by more thoroughly discussing the measures for the
taxon method, which includes the classical measures—Halstead's
software science measures, McCabe's cyclomatic complexity measure,
lines of code, and function points. An interesting in-class exercise is to
display a program written in the firm's (or school’s) programming
language for all to see and have the students each compute
Halstead's effort measure [Conte 86, p.84]. (This involves some
subjective decision-making, possibly group consensus, and generates
many questions.)

Lectures 5 & 6 - Use the material in Section 4 of this module. The two
examples given in Section 4 are simple, and the Ada95 example is
missing some code for the base class methods. The missing code
consists of combinations of assignment statements and output

SEI-CM-28 Measuring Object-Oriented Software Products 47

statements, neither of which adds complexity to these methods.
Adding your own methods to any of the base classes can create an
example that may be more meaningful for your students. Choosing
other measures for any of the taxa can mold these examples to fit
your classroom needs.

At the end of this unit of lectures a student should:
• Know and understand the importance of measurement in the life

cycle and the wide applicability of measurement as it also relates to
object-oriented software products.

• Understand and be able to use the notation of at least one object-
oriented method, and understand that measuring the features of an
object-oriented software product encompasses more issues than
merely a software module.

• Know of the existence of measures for the five main features of object-
oriented software products, and be able to select and combine some of
these into a measures suite for a specific goal and set of questions.

If more time is available, the content could be expanded in one of two
ways. First, more detail on the object-oriented methods could be
discussed, such as notation or software tools that are provided by some
vendors for a specific method. Second, any of the measures suggested in
Section 3 can be discussed in greater detail.

Resources: As an overview of measurement concepts, one good starting
point is the SEI document by Gary Ford [Ford 93], which may be used by
the instructor in preparing lectures; or, short segments may be copied and
distributed to the students for reading. A second good reference, other
than Fenton's book, is the Zuse text which discusses various views of
complexity from a mathematical viewpoint [Zuse 90]. The Zuse text could
be used with great success in a graduate-level measurement course.

The specification and development of a code analyzer tool can be a
challenging and interesting project for a student team in a project course.
The possibilities are extensive and can range from quite easy projects to
systems of considerable difficulty.

Some possibilities are (in order of increasing difficulty):
• A program to count lines of code based on a set of guidelines

developed using the Park recommendations and instructor (or
student) specifications.

• A program to calculate McCabe's cyclomatic complexity measure for a
program (module).

• A program to count the number of coupling relationships in a large
software system.

Project
Suggestions

48 Measuring Object-Oriented Software Products SEI-CM-28

• A program to compute the Halstead effort measure for a program
(module).

SEI-CM-28 Measuring Object-Oriented Software Products 49

Bibliography: Index by Author

Abreu94 49 Laranjeira90 53
Aksit92 49 Lee92 53
Albrecht79 58 Li93 54
Archer95 50 Lieberherr89 54
Banker91 50 Mansfield63 68
Basili88 59 McCabe76 59
Booch94 65 Mills88 62
Byard94 51 Moreau90a 55
Card90 59 Moreau90b 55
Carleton92 60 Page-Jones92 56
Chen93 51 Park92 62
Chidamber91 51 Poulin94 56
Chidamber94 52 Putnam92 62
Churcher95 52 Rumbaugh91 67
Coad91 65 Sachs84 68
Coleman94 65 Sharble93 56
Conte86 60 Siegel88 68
Coppick92 52 Symons88 62
Fenton91 60 Taenzer89 57
Firesmith93 66 Tegarden91 57
Ford93 61 Waguespack87 63
Gowda94 53 Wang85 63
Halstead77 58 Weyuker88 64
Henderson-Sellers92 66 Williams93 57
Henderson-Sellers94 66 Wirfs-Brock91 67
Henry81 59 Yap93a 58
Humphrey90 61 Yap93b 58
Jacobson92 66 Yourdon94 67
Jones86 61 Zuse90 64

50 Measuring Object-Oriented Software Products SEI-CM-28

SEI-CM-28 Measuring Object-Oriented Software Products 51

Bibliography

This bibliography is organized into five sections for ease of reference.
These sections in order of occurrence are:
• Articles Related to Object-Oriented Measures
• Early Seminal (Much Quoted) Works on Measures
• Textbooks and Papers on Measurement and Topics Closely Related

to Measurement
• Textbooks on the Object-Oriented Approach
• Texts on Mathematics and Statistics Relating to Measures

Articles Related to Object-Oriented Measures

Abreu94
Abreu, Fernando B. & Carapuça, Rogério. “Candidate Metrics for
Object-Oriented Software within a Taxonomy Framework.” Journal of
Systems Software 26, 1 (July 1994): 87-96.

The authors provide a taxonomy for metrics of object-oriented products and
processes. This taxonomy, TAPROOT, deals with both product and process
metrics plus some “hybrid” metrics that measure both. The author's
taxonomy is based on a Cartesian product of the two vectors: (design, size,
complexity, reuse, productivity, quality) and (method, class, system). This
produces eighteen possible cells into which a metric can reside. TAPROOT is
presented as a starting point from which further refinement and verification
can follow.

Aksit92
Aksit, Mehmet & Bergmans, Lodewijk. “Obstacles in Object-Oriented
Software Development,” pp. 341-358. Proceedings: OOPSLA
Conference. Vancouver, B.C., October 18-22, 1992. New York, NY:
ACM Press; Reading, MA: Addison-Wesley, 1992.

Based on the results of some pilot studies, the authors have formed their own
viewpoint of object-oriented methods and have documented some obstacles.
The authors state that each phase in object-oriented software development
can be subdivided into three sub-components: preparatory work, structural

52 Measuring Object-Oriented Software Products SEI-CM-28

relations, and object interactions. A short summary of state-of-the-art object-
oriented methods follows the subdivision taxa.

Archer95
Archer, Clark B. & Stinson, Michael C. Object-Oriented Software
Measures: (CMU/SEI-95-TR-002). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1995.

This technical report presents guidelines for classifying object-oriented
software measures and reports the measures that are presented in the
literature relative to this classification scheme. The authors propose a
common terminology for the various object-oriented methods to reduce
misunderstandings in reporting future measures. This report also includes
an extensive annotated bibliography of current work on object-oriented
measures.

Banker91
Banker, Rajiv D.; Kauffman, Robert J.; & Kumar, Rachina. “An
Empirical Test of Object-based Output Measurement Metrics in a
CASE Environment.” Journal of Management Information Systems 8,
3 (Winter 1991): 127-150.

This 23-page article begins by reporting studies that indicate the use of
CASE without having measurement programs in place. The authors' main
thrust is the issue of output measurement in a CASE environment.

Their comments on function points (FP) are
 FP components do not follow naturally from an object-based CASE

 environment.
 Application of FP to CASE-generated code is subjective and

 inconsistent.
 Albrecht's original FP weights need to be re-calibrated for CASE

 tools.
 The usual Technology-Complexity-Factor (TCP) adjustment for FP may

 need revised for CASE since TCP is based on 3GL development.

The authors propose a short-form variation of FP called Raw-Function-
Counts and two new object-based output measures, Object-Counts and
Object-Points. The authors statistically validate the various metrics to
estimate effort, and their results are significant. These proposed measures
worked well in the CASE environment created by the ICE software. The
authors conclude, “Since objects were found to match project managers'
mental model of the functionality of software developed with object-based
CASE, information about objects would be useful to promote improved
software development process control.”

SEI-CM-28 Measuring Object-Oriented Software Products 53

Byard94
Byard, Cory. “Software beans: Class metrics and the mismeasure of
software.” Journal of Object-Oriented Programming 7, 5 (September
1994): 32-34.

This non-technical article discusses “why measure software,” “class metrics,”
and “mismeasurement.” The author comments, “class metrics do not
measure complexity, do not measure the size of an application, and do not
measure the quality of software.” Class metrics “are indicators of
programming style.” The author concludes, “The key is not measurement,
but process”; and, “developing new measures that analyze implementation
vocabulary complexity, module cohesion and coupling, and development
progress will help.”

Chen93
Chen, J-Y. & Lum, J-F. “A New Metric for Object-Oriented Design.”
Information of Software Technology 35, 4 (April 1993): 232-240.

The authors use Basili's Goal-Question-Metric model to develop metrics for
complexity for object-oriented design. The authors propose eight metrics that
are identifiable at the design stage:

 1. operation complexity metric 5. class coupling metric
 2. operation argument complexity metric 6. cohesion metric
 3. attribute complexity metric 7. class hierarchy metric
 4. operation complexity metric 8. reuse metric

Metrics 1 through 3 are subjective in nature; metrics 4 through 7 involve
counts of features; and metric 8 is a boolean (0 or 1) indicator metric. To
validate these metrics, the authors conduct an experiment involving six
“experts” whose subjective class scores are regressed against the eight
metrics. The resulting regression equation is used to score future object
classes. The paper does not report the original data, the complete SAS
output, or the criteria that the “experts” use to measure complexity.

Chidamber91
Chidamber, Shyam R. & Kemerer, Chris F. “Towards a Metrics Suite
For Object Oriented Design,” pp. 197-211. Proceedings: OOPSLA'91.
Phoenix, AZ, October 6-11, 1991. New York, NY: ACM SIGPLAN
Notices, 1991.

The authors propose six metrics that they evaluate relative to seven of
Weyuker's properties. The authors' objective is to propose metrics that are
not language specific. They introduce measures that capture some features
such as coupling, cohesion, complexity, scope, and methods (defined as
responses to possible messages).

54 Measuring Object-Oriented Software Products SEI-CM-28

Chidamber94
Chidamber, Shyam & Kemerer, Chris F. “A Metrics Suite for Object-
Oriented Design.” IEEE Transactions on Software Engineering 20, 6
(June 1994): 476-493.

The authors use the theoretical base for ontological principles proposed by
Bunge as a means of establishing a basis upon which to discuss the object-
oriented metrics suite. Much of the material in the first four pages is the
same as in their earlier paper in 1991. The authors define six metrics and
evaluate them with respect to six of Weyuker's nine properties. They propose
six metrics for object classes:

 1. Weighted Methods per Class (WMC).
 2. Depth of Inheritance Tree (DIT).
 3. Number Of Children (NOC), number of immediate subclasses

 subordinate to a class in the hierarchy.
 4. Coupling Between Object classes (CBO).
 5. Response For a Class (RFC), cardinality of the set of all methods that

 can be invoked by some method in the class.
 6. Lack of Cohesion Of Methods (LCOM), the number of method pairs

 whose similarity is zero minus the counts of the method pairs whose
 similarity is not zero.

These metrics are based on three assumptions: the inheritance tree is full,
two classes can have a finite number of identical methods, and certain counts
of features are random variables that are identically and independently
distributed.

Churcher95
Churcher, Neville & Sheppard, Martin J. “Towards a Conceptual
Framework for Object-Oriented Software Metrics.” Software
Engineering Notes 20, 4 (April 1995): 69-75.

The authors caution that software measures for object-oriented systems
present significantly greater challenges than their conventional
counterparts. They propose a set of terms to serve as a basis for comparison
of models of object-oriented systems. They emphasize the problems arising
from different interpretations of coupling and uses. They summarize by
stating “it seems premature to proceed with the speculative development of
specific metrics due to the absence of a satisfactory framework for their
validation.”

Coppick92
Coppick, Chris J. & Cheatham, Thomas J. “Software Metrics for
Object-Oriented Systems,” pp. 317-322. Proceedings: ACM CSC '92
Conference. Kansas City, MO, March 3-5, 1992. New York, NY: ACM
Press, 1992.

SEI-CM-28 Measuring Object-Oriented Software Products 55

The authors extend the Halstead metric and McCabe metric to object-
oriented software design. The authors' examples are in LISP Flavors. An
undefined tool (code not included) is applied to LISP source code, and the
usual software science metrics are computed. The authors count the number
of methods and observe that increased abstraction reduces programming
effort. Nothing concrete is done with McCabe's metric.

Gowda94
Gowda, Raghava G. & Winslow, Leon E. “An Approach for Deriving
Object-Oriented Metrics,” pp. 897-904. Proceedings: IEEE 1994
National Aerospace and Electronics Conference. Dayton, OH, May 23-
27, 1994. Los Alamitos, CA: IEEE Computer Society Press, 1994.

The authors comment, “The object-oriented metrics proposed so far seem to
concentrate on the design of a single class or the class structure and ignore
the overall design of the system and program.” They propose a classification
scheme for object-oriented metrics with the five categories of system metrics,
subsystem metrics, class metrics, object metrics, and reusability metrics.
They discuss and contrast each of the methodologies of Rumbaugh and Wirfs-
Brock. The authors claim to have a list of metrics that can be applied to
some of the phases of each methodology. Although the authors actually list
some features of the phase and methodology that can be measured, they do
not indicate how to measure the feature.

Laranjeira90
Laranjeira, Luiz. “Software Size Estimation of Object-Oriented
Systems.” IEEE Transactions on Software Engineering 16, 5 (May
1990): 510-522.

The author presents a size estimation model that takes advantage of the
characteristics of object-oriented systems and their specification. He also
provides a confidence interval for the expected system size. COCOMO is
applied in this setting to produce cost estimates.

Lee92
Lee, Yen-Sung; Liang, Bin-Shiang; & Wang, Feng-Jian. “Some
Complexity Metrics for Object-Oriented Programs Based on
Information Flow,” pp. 302-310. Proceedings: CompEuro. Paris-Ivry,
France, May 24-27, 1993. Los Alamitos, CA: IEEE Computer Society
Press, 1993.

The authors use Weyuker's nine properties as a basis of evaluation. They
define four metrics: method complexity (MC), class complexity (CC),
hierarchy complexity (HC), and program complexity (PC). These measures
are based on various forms of the basic model:

 size*(input coupling + output coupling)^2
 None of the proposed metrics satisfy Weyuker's seventh property.

56 Measuring Object-Oriented Software Products SEI-CM-28

Li93
Li, Wei & Henry, Salley. “Maintenance Metrics for the Object
Oriented Paradigm,” pp. 52-60. Proceedings: First International
Software Metrics Symposium. Baltimore, MD, May 21-22, 1993. Los
Alamitos, CA: IEEE Computer Society Press, 1993.

The authors state that metrics for the object-oriented paradigm have yet to
be studied. Since terminology varies among object-oriented programming
languages, the authors consider the basic components of the paradigm as
objects, classes, attributes, inheritance, method, and message passing. They
propose that each object-oriented basic concept implies a programming
behavior. They include six metrics from Chidamber [Chidamber 91]:

 Depth of Inheritance Tree (DIT) Coupling Between Objects (CBO)
 Number Of Children (NOC) Response For Class (RFC)
 Lack of Cohesion Of Class (LCOM) Weighted Method per Class(WMC)
 The authors construct a Classic-Ada metric analyzer to collect metrics from

Classic-Ada design and source code. They define five additional metrics to
complete the modeling:

 Data Abstraction Coupling (DAC) Number of Methods (NOM)
 # of semicolons per class (Size1) # of methods + # attributes (Size2)
 Message Passing Coupling (MPC)

A regression analysis is used with Change = number of lines changed in the
artifact's history (classes) as the dependent variable. The authors' analysis
of the results reveals that the metrics chosen (all 10) can predict the number
of changes. There is no individual breakdown of which of these metrics is
significant in the prediction.

Lieberherr89
Lieberherr, Karl J. & Holland, Ian M. “Assuring Good Style for
Object-Oriented Programs.” IEEE Software 6, 5 (September 1989):
38-48.

The authors put forward a simple law, the Law of Demeter, that encodes the
ideas of encapsulation and modularity in an easy-to-follow form for object-
oriented programmers. The law has two forms: class and object forms. The
class form comes in two versions: minimization and strict versions.

 Class minimization version - Minimize the number of acquaintance classes
 over all methods.

 Class strict version - All methods may have only preferred-supplier classes.
 Objects - All methods may have only preferred-supplier objects.

The motivation behind the Law of Demeter is to ensure that the software is
as modular as possible. The law effectively reduces the occurrences of nested
message sending and simplifies the methods.

SEI-CM-28 Measuring Object-Oriented Software Products 57

Moreau90a
Moreau, Dennis R. & Dominick, Wayne D. “A Programming
Environment Evaluation Methodology for Object-Oriented Systems:
Part I - The Methodology.” Journal of Object-Oriented Programming 3,
1 (May/June 1990): 38-52.

 The authors set forth three objectives for their research (paraphrased
below):

 1. Establish an evaluation methodology to measure impact of object-
oriented design on the software development process.

 2. Establish domain-specific problem decomposition and solution guidelines
to support comparisons of object-oriented approaches.

 3. Perform verification of object-oriented metrics.
 The principles of the proposed method are based on user activities, are

environment-independent, and are based on well-constructed
experiments. The authors claim that the method is extensible,
captures the structural object-oriented aspects of the software, and
provides for the automatic capturing of the metrics-related data.
The authors include Halstead's little n and big N metrics and
McCabe's cyclomatic complexity metrics, along with two measures
that are based on object-oriented features, a graph of the source and
destination of all messages, and an inheritance lattice. This paper
provides a clear overview of a method for measuring object-oriented
software.

Moreau90b
Moreau, Dennis R. & Dominick, Wayne D. “A Programming
Environment Evaluation Methodology for Object-Oriented Systems:
Part II - Test Case Application.” Journal of Object-Oriented
Programming 3, 3 (September/October 1990): 23-32.

In this companion article to their article above, Moreau and Dominick
discuss a refinement of the objectives set forth previously into theoretical,
methodological, developmental, and evaluative components. The methodology
is applied in an interactive graphics application domain. The test case was
completed in 11 phases:

 1- Identify applications domain {interactive graphics editor}
 2- Identify test development systems {C & C++}
 3- Identify development paradigms {GKS for C & object-oriented for C++}
 4- Identify metrics {those in Moreau [Moreau 1990a]}
 5- Identify and classify development activities {three separate tasks}
 6- Establish evaluative criteria {Basili's direct cost/quality criteria}
 7- Develop environment independent experiments
 8- Prepare environments {no functional differences}
 9- Develop environment-specific experiments {8 subjects, 4 in each

 experimental group}

58 Measuring Object-Oriented Software Products SEI-CM-28

 10- Perform experiments
 11- Analyze results {non-parametric Wilcoxon statistics P=0.07}

The authors state, “This research has formally established the primary
metric data definitions that completely characterize the unique aspects of
object-oriented software systems, including the inheritance lattice and
message graph.”

Page-Jones92
Page-Jones, Meilir. “Comparing Techniques by Means of
Encapsulation and Connascence.” Communications of the ACM 35, 9
(September 1992): 147-151.

The author contrasts structured design and object-oriented design, and
proposes that object-oriented designs can be measured by the new property,
connascence. Connascence is a generalization of coupling and cohesion, which
the author defines as “Two software elements A and B are connascent iff
there is at least one change that could be made to A that would necessitate a
change to B in order to preserve overall correctness.” Page-Jones claims this
concept is applicable to object-oriented design and advises, “Eliminate any
unnecessary connascence and then minimize connascence across
encapsulation boundaries by maximizing connascence within encapsulation
boundaries.”

Poulin94
Poulin, Jeffrey S. & Brown, David D. “Measurement-Driven Quality
Improvement in the MVS/ESA Operating System,” pp. 17-25.
Proceedings: Software Metrics Symposium. London, U.K., October 24-
26, 1994. Los Alamitos, CA: IEEE Computer Society Press, 1994.

This paper describes experiences, quality initiatives, models, and metrics
used to obtain quantifiable results in a large, complex software system.
Although no object-oriented metrics were actually developed or computed,
this paper shows that the introduction of object-oriented design and the
construction of high quality reusable frameworks played a critical role in
defect reduction.

Sharble93
Sharble, Robert C. & Cohen, Samuel S. “The Object-Oriented
Brewery: A Comparison of Two Object-Oriented Development
Methods.” SIGSOFT Software Engineering Notes 18, 4 (April 1993):
60-73.

This paper reports on research to compare the effectiveness of two methods
for the development of object-oriented software. The two methods compared
are responsibility-driven methods and data-driven methods. Each of the
methods was used to develop a model of the same system. The authors use a
suite of object-oriented metrics to collect measures of each model. The model
developed with the responsibility-driven method was found to be less
complex, to have less coupling between objects, and to have more cohesion

SEI-CM-28 Measuring Object-Oriented Software Products 59

within objects. The research produced three new metrics that can be useful
for measuring object-oriented designs.

 WAC - Weighted Attributes per Class.
 NOT - Number of Tramps (number of extraneous parameters in

 signatures of methods of a class.
 VOD - Violations of the Law of Demeter.

Taenzer89
Taenzer, David; Ganti, Murthy; & Podar, Sunil. “Object-Oriented
Reuse: The Yo-yo Problem.” Journal of Object Oriented Programming.
(September/October 1989): 30-35.

The authors review two basic approaches to software reuse, construction, and
inheritance, and present some basic problems and conflicts between
encapsulation and inheritance. They discuss the basic styles for reuse of
construction and subclassing. Based on their own experiences in reuse, the
authors give examples of message control trees. This discussion leads to the
definition of the “Yo-yo” problem, where resolutions of a message goes up and
down the message tree.

Tegarden91
Tegarden, David P.; Sheetz, Steven D.; & Monarchi, D.E.
“Effectiveness of Traditional Metrics for Object-Oriented Systems,” pp.
359-368. Proceedings 25th Hawaii International Conference on
System Sciences 4. Kauai, HI, January 7-10, 1992. Los Alamitos, CA:
IEEE Computer Society Press, 1991.

The authors begin by quoting Moreau: “traditional metrics are inappropriate
for object-oriented systems for several reasons...” [Moreau 90]. This paper
addresses two questions, ‘Can existing metrics developed for structured
systems be used as effective measures of object-oriented systems?’ and ‘Can
certain unique aspects of object-oriented systems be measured by traditional
metrics?’ They discuss the traditional SLOC, Halstead metrics, and the
cyclomatic metric and these metric's potential use in the object-oriented
setting. The authors conclude, “The use of the traditional metrics may be
appropriate for the measurement of the complexity of object-oriented
systems. Even though the order of magnitude of the traditional metrics may
be suspect, the directionality seems to be correct.”

Williams93
Williams, John D. “Metrics for Object Oriented Projects,” pp. 13-18.
Proceedings: Object Expo Euro Conference. London, U.K., July 12-16,
1993. New York, NY: ACM SIGS Publications, 1993.

The author poses the question, “Why metrics?” The answer, he says, is in
both project management metrics and software development metrics. He
proposes a “3db” curve for monitoring project progress. Neither the 3, the d,
nor the b is defined. For software development, the author suggests using
counts of “uses,” counts of the number of base classes (classes that represent
reused code), counts of stand-alone classes, and counts of the number of

60 Measuring Object-Oriented Software Products SEI-CM-28

“contains” relationships in a class. He comments, “depending on how deep a
class is in the inheritance tree, it may have many 'hidden' members and
methods.”

Yap93a
Yap, L.M. & Henderson-Sellers, Brian. “Consistency Considerations of
Object-Oriented Class Libraries.” (Research Report 93-3). Sydney,
Australia: University of New South Wales, 1993.

Yap93b
Yap, L.M. & Henderson-Sellers, Brian. “A Semantic Model for
Inheritance in Object-Oriented Systems.” pp. 28-35. Proceedings:
Senenth Australian Software Engineering Conference. Sydney,
Australia, September 27-October 1, 1993. Edgecliff, NSW: IREE
Australia Publications, 1993.

The authors examine the various forms of inheritance in object-oriented
software engineering. With the goal of organizational consistency, they
propose a semantic model in which object classes are divided between domain
classes and implementation classes.

Early Seminal (Much Quoted) Works on Measures

Albrecht79
Albrecht, A J. “Measuring application development productivity,” pp.
83-92. Proceedings: IBM Applications Development Joint
SHARE/GUIDE Symposium. Monterey, CA, October 14-17, October
1979. Chicago, IL: IBM, 1979.

This is the seminal work on function points. Albrecht's intent is to measure
the amount of functionality in a software product based on either the coded
product or a structured specification document. As stated by the author “The
general approach is to count the number of external user inputs, inquiries,
outputs, and master files delivered by the development project. These factors
are the outward manifestations of any application. They cover all the
functions in an application.” The weights that Albrecht originally assigned to
the four external attributes was four, five, four, and ten, respectively.

Halstead77
Halstead, M. H. Elements of Software Science. North-Holland, NY:
Elsevier Publishing, 1977.

This is the original early work on measuring coded software products based
on lexical issues of the product, such as numbers of operators, operands,
unique operators, and unique operands. The theory for both the length metric
and the volume metric is based on the lexical features of the program.
Halstead’s length measure is the total occurrences of operators and operands;

SEI-CM-28 Measuring Object-Oriented Software Products 61

while the volume measure is the product of the length measure and the
vocabulary measure (the sum of the number of unique operators and
operands). Halstead’s effort measure is based on the principles of cognitive
psychology and a subjectively determined constant called the Stroud
Number.

Henry81
Henry, Sallie & Kafura, Dennis. “Software Structure Metrics Based on
Information Flow” IEEE Transactions on Software Engineering 7, 5
(September 1981): 510-518.

The authors propose that controlling system structure improves external
quality, and propose a means of measuring information flow between system
components. They propose measures for procedure complexity, module
complexity, and module coupling. Their complexity measures are based on
fan-in and fan-out.

McCabe76
McCabe, T.J. “A Complexity Measure.” IEEE Transactions on
Software Engineering 2, 4 (April 1976): 308-320.

McCabe's cyclomatic complexity metric is the first of the attempts at
measuring complexity. The metric is based on the features of a directed
graph representation of the software product.

Textbooks and Papers on Measurement and Topics Related
to Measurement

Basili88
Basili, Victor & Rombach, H. Dieter. “The TAME Project: Towards
Improvement-oriented Software Environments.” IEEE Transactions
on Software Engineering 14, 6 (June 1988): 758-773.

The authors introduce a set of software engineering and measurement
principles based on twelve years of analyzing both software products and
software engineering processes. The Goal-Question-Metric paradigm is
proposed as a mechanism for formalizing the characterization, planning,
construction, analysis, learning, and feedback tasks for software projects.
They use this paradigm in the TAME (Tailoring A Measurement
Environment) project at the University of Maryland. This is a solid paper
that could be used as required reading in both measurement and software
engineering classes.

Card90
Card, David L. & Glass, Robert L. Measuring Software Design
Quality. Englewood Cliffs, NJ: Prentice-Hall, 1990. ISBN 0-135-
68593-1.

62 Measuring Object-Oriented Software Products SEI-CM-28

This short paperback text (104 pages plus appendices and references) is quite
readable. The book proposes a small set of measures (referred to as
“primitive design metrics”) that are centered around design quality. The
authors' intent is to provide the practitioner with criteria for improving
software designs to promote productivity, quality, and maintainability. Most
of the examples and data come from a structured design environment with
FORTRAN as the language.

Carleton92
Carleton, Anita; Park, Robert E.; Goethert, Wolfhart; Florac, William,;
Bailey, E.; & Pfleeger, Sally. Software Measurement for DOD Systems:
Recommendations for Initial Core Measures. (CMU/SEI-92-TR-19,
ADA258305). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1992.

This report presents the recommendations for a basic set of software
measures that DoD organizations can use to help and manage the
acquisition, development, and support of software systems. The concept is the
use of checklists to create and record measurement descriptions and
reporting specifications. These checklists provide a mechanism for obtaining
consistent measures from project to project and for communicating
unambiguous measurement results.

Conte86
Conte, S.D.; Dunsmore, H.E.; & Shen, V.Y. Software Engineering
Metrics and Models. Menlo Park, CA: Benjamin/Cummings, 1986.
ISBN 0-805-32162-4

This text presents the classical product measures, classical models of process,
and the product and process measures currently available in the late 1980s.
The authors include a chapter on experimental design and basic statistical
inference. They present a set of model evaluation criteria that practitioners
should find useful. They examine effort from two viewpoints, macro and
micro environments, and include the classical studies that are associated
with each of these environments. This text would serve well in a traditional
senior-level software measures class.

Fenton91
Fenton, Norman E. Software Metrics, A Rigorous Approach. London:
Chapman & Hall, 1991. ISBN 0-412-40440-0.

This text is solid and well written. Chapter 1 motivates the discipline.
Chapters 2 through 6 provide a coherent framework for the many diverse
activities that comprise software metrics. Among these are measurement
theory, design of experiments, and data collection. Chapters 8 through 13
cover process measures, product measures, and resource measures. The
author has provided an extensive, partially annotated bibliography.

SEI-CM-28 Measuring Object-Oriented Software Products 63

Ford93
Ford, Gary. Lecture Notes on Engineering Measurement for Software
Engineers. (CMU/SEI-93-EM-9, ADA266959). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 1993.

This material's goal is to facilitate teaching software engineering
measurement. Materials are provided to support three lectures: introduction
to engineering measurement, measurement theory, and software engineering
measures. These materials include lecture notes suitable for class handouts
and informational material for instructors. I recommend this as required
reading for measurement instructors.

Humphrey90
Humphrey, Watts. Managing the Software Process. Reading, MA:
Addison-Wesley, 1990. ISBN 0-201-18095-2.

This book is a byproduct of a project to provide guidance to the DoD for
selecting software contractors. The end result is the development of the
Software Engineering Institute's Capability Maturity Model (CMMSM).1 This
text discusses this model and provides guidance for the need to measure both
process and product.

Jones86
Jones, Capers. Programming Productivity. New York, NY: McGraw-
Hill, 1986.

The author summarizes the first 30 years of industrial and commercial
programming. The first two chapters of this four-chapter book are about the
science of measurement and serve as an introduction to the topic of
measurement. In the third chapter, the author isolates 20 factors, supported
by historical data, that have affected programming productivity.

 1. The language used 11. Maintenance
 2. Program size 12. Reuse (modules & design)
 3. Personnel experience 13. Code generators
 4. Requirements 14. 4GLs
 5. Complexity of program & data 15. Separation of dev. locales
 6. Use of structured methods 16. Defect detection & removal
 7. Program class 17. Documentation
 8. Program (application area) 18. Prototyping
 9. Tools & environment 19. Project teams & organization
 10. Enhancing existing systems 20. Morale & compensation of staff

Chapter 4 explores the intangible factors, which are not readily quantifiable,
that affect productivity. These factors include size of staff and enterprise,
stability during the project, training for staff and users, computing facilities,

 1 CMM is a service mark of Carnegie Mellon University.

64 Measuring Object-Oriented Software Products SEI-CM-28

legal issues, project measurement mechanisms, outsourcing, project
dynamics, and user participation among all of these. This is a good book for
the beginning software engineer. Jones has a second edition of this work in
publication.

Mills88
Mills, Everald E. Software Metrics. (SEI Curriculum Module SEI-CM-
12-1.1, ADA236140). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 1988.

This curriculum module introduces the most commonly used software metrics
and models as of 1988. Both process measures and models are covered along
with product measures. Mills closes the module with some recommendations
for the implementation of a metrics program. and current trends in software
metrics.

Park92
Park, Robert E. Software Size Measurement: A Framework for
Counting Source Statements (CMU/SEI-92-TR-20, ADA258304).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 1992.

This technical report presents guidelines for defining, recording, and
reporting two frequently used measures of software size: lines of code and
logical source statements. Park proposes a general framework for
constructing size definitions and uses it to derive operational methods for
reducing misunderstandings in measurement results.

Putnam92
Putnam, Lawrence H. & Myers, Ware. Measures for Excellence.
Englewood Cliffs, NJ: Yourdon Press, 1992. ISBN 0-13-567694-0.

This text is aimed at practitioners. The text is divided into two parts, the
first part dealing with software behavior and the second part, procedural in
nature, applying the patterns of behavior to real projects. The text includes a
wealth of accumulated real-world experience and relates some statistics
based on the data accumulated by Putnam's company, Quantitative Software
Management (QSM). This could serve as a text for a one-semester
measurement course.

Symons88
Symons, Charles. “Function Point Analysis: Difficulties and
Improvements.” IEEE Transactions on Software Engineering 14, 1
(January 1988): 2-11.

The author critically reviews Albrecht's function point analysis, proposes
ways of overcoming the weaknesses identified, and validates by
experimentation the proposed improvements. Some criticisms are that FPs
underweight systems that are complex internally and FPs are not

SEI-CM-28 Measuring Object-Oriented Software Products 65

“summable.” The author proposes the “Mark II” formula for information
processing component size in unadjusted function points which is:

 UFP = NI*WI + NE*WE + NO*WO
 where
 NI = number of input data elements
 WI = weight of an input data type
 NE = number of entity-type references
 WE = weight of an entity-type reference
 NO = number of output data element types
 WO = weight of output data element type

Symons determines a set of weights from 12 systems and recalibrates these
weights to match Albrecht's original UFP values for systems under 500 FPs.
He concludes that

 • Mark II involves an understanding of entity analysis, no
conventions yet.

 • Mark II has fewer variables to count, but more technical factors to
consider.

 • Albrecht's FP is not a technology-independent measure of system size
and neither is Mark II, since a change in technology involves recalibrating.

 • FP analysis works for business applications, but may not work well for
scientific or technical applications.

Waguespack87
Waguespack, Leslie J, Jr. & Badlani, Sunil. “Software Complexity
Assessment: An Introduction and Annotated Bibliography.” Software
Engineering Notes 12, 4 (October 1987): 52-71.

The authors provide an introduction to software complexity and provide an
exhaustive list of nineteen categories of complexity research. The works
listed in the article cover the years 1974-1987, plus one entry from 1967.
Some five hundred works are listed in the form [Lastname##] where ## is the
last two digits of the year, and a hundred of these were selected for the
annotated bibliography. The annotated bibliography contains the complete
reference citation and the original abstract (or an excerpt from the work
which portrays the author's intent) followed by the annotation.

Wang85
Wang, A.S. & Dunsmore, H.E. “Early Software Size Estimation: A
Critical Analysis of the Software Science Length Equation and a
Data-Structure-Oriented Size Estimation Approach,” pp. 211-222.
Proceedings: Third Symposium on Empirical Foundations of
Information and Software Science. Rosklide, Denmark, October 21-24,
1985. New York, NY: Plenum Publishing Co., 1985.

The authors address early size estimation by emphasizing the weaknesses of
the current size estimation metrics in 1985. They conjecture that program

66 Measuring Object-Oriented Software Products SEI-CM-28

size can be estimated as a function of some other measurable quantities
related to the program. Empirically, data from Pascal programs suggest
that the Halstead length equation is not suitable for predicting the size of
large Pascal programs. The authors found that the count of the VAR (the
number of unique variables) is an acceptable size estimation. Experimental
results yield:

 S = 102 + 5.31*VAR as an estimate with r=0.94 and mean MRE = 0.30

Based on these results, early estimation of program size can be improved at
the end of the design stage by using the VAR count. The authors caution
that these are “lab” results, and software that was produced in the lab was
not nearly as large as that produced in industry.

Weyuker88
Weyuker, Elaine. “Evaluating Software Complexity Measures.” IEEE
Transactions on Software Engineering 14, 9 (September 1988): 1357-
1365.

Weyuker establishes a standard for software measures in this seminal
article. She states the conditions for a measure as follows:

 “All the measures we consider depend only on the syntactic features
 of the program.”

 P + Q means that programs P and Q halt on the same input.
 P;Q means that P is augmented by Q (a concatenation).
 The measure of P is denoted by | P |.
 The nine properties of measures:
 1. (∃ P) (∃ Q) (| P | | Q |).
 2. Let c be a number ≥0. Then there are finitely many programs of

 complexity c.
 3. There are distinct programs P and Q such that | P | = | Q |.
 4. (∃ P) (∃ Q) (P + Q and | P | | Q |).
 5. (∀ P) (∀ Q) (| P | ≤ |P ; Q | and | Q | ≤ | P ; Q |).
 6. (∃ P) (∃ Q) (∃ R) (| P | = | Q |) & (| P ; R | | Q ; R |) and

(∃ P) (∃ Q) (∃ R) (| P | = | Q |) & (| R ; P | | R ; Q |).
 7. There are program bodies P and Q such that Q is formed by permuting

the order of the statements of P; and | P | ≠ | Q |.
 8. If P is a renaming of Q, then | P | = | Q |.
 9. (∃ P) (∃ Q) (| P | + | Q | < |P ; Q |).

Zuse90
Zuse, Horst. Software Complexity Measures and Methods. Berlin:
Walter de Gruyter & Co, 1990. ISBN 3-110-12226-X.

This is the most comprehensive coverage of software complexity measures
available in 1990. The text covers the issue of “metric versus measure,”

SEI-CM-28 Measuring Object-Oriented Software Products 67

discusses measurement, and discusses the various ways that data can be
classified. The author includes at least ninety measures that have appeared
in the literature (mostly European sources). The text is strongly
recommended as a reference for researchers and instructors.

Textbooks on the Object-Oriented Approach

Booch94
Booch, Grady. Object-Oriented Analysis and Design, Second Edition.
Redwood City, CA: Benjamin/Cummings, 1994. ISBN 0-805-35340-2.

This is a complete text for learning the essence of the object-oriented
approach. It covers the notation of the Booch method, discusses analysis and
design strategies, and contains an extensive bibliography. Grady summarizes
the text very well in the preface, “We first present a graphic notation for
object-oriented analysis and design, followed by its process. We also examine
the pragmatics of object-oriented development—in particular, its place in the
software development life cycle and its implications for project management.”
The text is a good reference book and a good text for an upper-level
undergraduate class.

Coad91
Coad, Peter & Yourdon, Edward. Object-Oriented Analysis, Second
Edition. Englewood Cliffs, NJ: Yourdon Press, 1991. ISBN 0-136-
29981-4.

The authors cover object-oriented analysis in a straight-forward manner and
introduce an object-oriented analysis (OOA) methodology consisting of five
steps: identifying classes and objects, identifying structures, identifying
subjects, defining attributes, and defining services. All of these items are
combined into an “object diagram,” which resembles a dataflow diagram
combined with an entity-relationship diagram. The book's strength is the
discussion of management issues that emerge from using object-oriented
techniques.

Coleman94
Coleman, Derek; Arnold, Patrick; Bodoff, Stephanie; Dollin, Chris;
Gilchrist, Helena; Hayes, Fiona; & Jeremaes, Paul. Object-Oriented
Development The Fusion Method. Englewood Cliffs, NJ: Prentice-Hall,
1994. ISBN 0-133-38823-9.

Bertrand Meyer summarizes this text: “This book could have been entitled
Putting it all together...The great merit of the method described here is that it
starts at the beginning of the software construction process and accompanies
the reader all the way to the end.” The text targets software engineers and
project managers with some knowledge of the object-oriented approach. The
authors propose the Fusion method, which integrates existing approaches to
provide a direct route from the requirements specification to the

68 Measuring Object-Oriented Software Products SEI-CM-28

implementation. The book also contains reference material on the Fusion
method.

SEI-CM-28 Measuring Object-Oriented Software Products 69

Firesmith93
Firesmith, Donald G. Object-Oriented Requirements Analysis and
Logical Design. New York, NY: John Wiley & Sons, 1993. ISBN 0-
471-57806-1.

The text's goal is to “provide the profession of software engineering with the
necessary concepts, models, notations, methods, and knowledge needed to
effectively develop large, complex software applications using a practical,
state-of-the-art, object-oriented method.” The author presents the ADM3
method to achieve this goal. This book could be used in advanced
undergraduate or graduate-level classes. Extensive references and a five-
section appendix (one section covers MIL-STD-2167A) are two of the book's
features.

Henderson-Sellers92
Henderson-Sellers, Brian. A Book of Object-Oriented Knowledge.
Englewood Cliffs, NJ: Prentice-Hall, 1992. ISBN 0-130-59445-8.

The author summarize this book in his preface, “What is this book about? I
have tailored it to be a basic introduction to the object-oriented approach to
software engineering, emphasizing analysis and design at the expense of the
syntax of object-oriented programming languages.” This paperback book
contains 169 full-page exhibits that can be blown up for presentations. Also,
the book contains a short annotated bibliography of books (18 of these) on the
object-oriented approach that were written in the years 1986-1991.

Henderson-Sellers94
Henderson-Sellers, Brian & Edwards, J.M. Book Two of Object-
Oriented Knowledge: The Working Object. Riverwood, NSW Australia:
Prentice-Hall Ligare Pty Ltd, 1994. ISBN 0-130-93980-3.

This text is the sequel to Henderson-Sellers’ 1992 book, and focuses on
analysis and design presenting the MOSES methodology as a means of
providing a “seamless transition” across the development life cycle. The
authors clearly state that the book is not a cookbook for MOSES, but the
methodology is described fully. In Chapter 7, Section 13, the authors include
a quality evaluation activity that incorporates software metrics, and Chapter
10 is devoted to object-oriented “metrics.” This text can be used for a one-
semester course on object-oriented technology.

Jacobson92
Jacobson, Ivar; Christerson, Magnus; Jonsoon, Patrik; & Overgaard,
Gunnar. Object-Oriented Software Engineering A Use Case Driven
Approach. Reading, MA: Addison-Wesley, 1992. ISBN 0-201-54435-0.

This text serves as a good introduction to the object-oriented technique. It
presents object-oriented software engineering (OOSE) as a new methodology
that emphasizes the interaction of the user with the system and emphasizes
the problem domain. The authors goal for the text is to present a coherent
picture of how to use object-orientation in system development so as to make

70 Measuring Object-Oriented Software Products SEI-CM-28

it accessible to both practitioners in the field and students with no previous
knowledge of system development. The text contains clear examples of the
object-oriented approach at all levels of software development and certainly
achieves the author’s goal.

Rumbaugh91
Rumbaugh, J. et al. Object-Oriented Modeling and Design.
Englewood Cliffs, NJ: Prentice-Hall, 1991. ISBN 0-136-29841-9.

This text is a popular, but older, coverage of the subject. The authors propose
a complete methodology, the object modeling technique (OMT), which covers
analysis, design, and implementation. The authors contrast their OMT with
structured analysis and design and with Jackson's structured development
method. For those of us who are familiar with the procedure-oriented
techniques, the text provides a smooth transition to object-oriented
techniques. This material has been updated but the update has not been
published as of May, 1995.

Wirfs-Brock91
Wirfs-Brock, Rebecca; Wilkerson, B; & Wiener, L. Designing Object-
Oriented Software. Englewood Cliffs, NJ: Prentice-Hall, 1991. ISBN
0-136-29825-7.

The authors define the object-oriented approach and provide a complete
coverage of object-oriented principles. They emphasize a responsibility-
driven viewpoint of analysis and design that emphasizes clients and servers.
They also suggest that quality of design can be measured by counts of the
number of classes, the number of subsystems, the number of contracts per
class, and the number of abstract classes. The diagrams are clear and
reinforce the material. This was one of the first books to focus on design.

Yourdon94
Yourdon, Ed. Object-Oriented System Design, An Integrated Approach.
Englewood Cliffs, NJ: Prentice-Hall, 1994. ISBN 0-136-36325-3.

This text is portrayed by the author as “a synopsis and an integration of
several popular object-oriented development methods, with particular
emphasis on object-oriented analysis and design.” The book is broken down
into six parts. Part 1 (Introduction) motivates object-orientation. Part 2
(Management Issues) covers reuse and management of object-oriented
projects. Parts 3 & 4 (Object-Orientation Analysis and Design) covers just
that. Part 5 (CASE for Object-Orientation) discusses CASE tools and their
vendors. Part 6 (How To Get Started) covers how to introduce the object-
oriented approach into the organization. This is a “practitioner-oriented”
text.

SEI-CM-28 Measuring Object-Oriented Software Products 71

Texts on Mathematics and Statistics Relating to Measures

Mansfield63
Mansfield, Maynard. Introduction to Topology. Princeton, NJ: Van
Nostrand, 1963.

This is a classic text on topology. This small book (116 pages) covers the
basics of point set topology at the undergraduate level, and is a source of
discussion for metrics and metric spaces.

Sachs84
Sachs, Lothar. Applied Statistics: A Handbook of Techniques, Second
Edition. New York, NY: Springer-Verlag, 1984. ISBN 0-387-16835-4.

This text is an excellent reference for statistical techniques and the concept
of measuring phenomena so that they can be evaluated statistically. The
text contains a wide range of tables of value to statisticians. It is also a good
source of non-parametric statistical procedures.

Siegel88
Siegel, Sidney & Castellan, N. John. Nonparametric Statistics for the
Behavioral Sciences, Second Edition. New York, NY: McGraw-Hill,
1988. ISBN 0-07-057357-3.

This is a welcome edition to Siegel’s earlier text of the same title, which was
written in 1956. The authors include an extensive discussion of measurement
scales in Chapter 3. Castellan has included 5 BASIC programs in Appendix
II to calculate some of the more difficult statistics. The text contains a wealth
of well-constructed examples to assist the reader in understanding non-
parametric statistical inference.

