
The ComFoRT Reasoning Framework

Sagar Chaki, James Ivers, Natasha Sharygina, and Kurt Wallnau

Software Engineering Institute, Carnegie Mellon University

1 Introduction

Model checking is a promising technology for verifying critical behavior of soft-
ware. However, software model checking is hamstrung by scalability issues and
is difficult for software engineers to use directly. The second challenge arises
from the gap between model checking concepts and notations, and those used
by engineers to develop large-scale systems. ComFoRT [15] addresses both of
these challenges. It provides a model checker, Copper, that implements a suite
of complementary complexity management techniques to address state space
explosion. But ComFoRT is more than a model checker. The ComFoRT rea-
soning framework includes additional support for building systems in a particular
component-based idiom. This addresses transition issues.

2 The Containerized Component Idiom

In the containerized component idiom, custom software is deployed into prefab-
ricated containers. A component is a container and its custom code. Containers
restrict visibility of custom code to its external environment (other components
and a standard runtime environment), and vice versa. Components exhibit re-
active behavior, characterized by how stimuli received through the container
interface lead to responses emitted via the container interface. A runtime en-
vironment provides component coordination mechanisms (or “connectors”) and
implements other resource management policies (scheduling, synchronization,
etc.). We define a component technology as an implementation of this design
idiom [17], and many such implementations are possible [19]. Our approach has
much in common with [12], although we give full behavioral models for compo-
nents (UML statecharts and action language) and, subsequently, can generate
full implementations of components and assemblies.

We formalize this idiom in the construction and composition language (CCL)
[18]. The structural aspects of CCL (e.g., interfaces, hierarchy, topology) are sim-
ilar to those found in a typical architecture description language [1]. The behav-
ioral aspects of CCL use a subset of UML statecharts. Our formalization retains
the statechart semantics already familiar to software engineers while refining
it to precisely define those semantics intentionally left open in the standard.
In formalizing both aspects of CCL, we exploit our connection with a specific
component technology, which we use as the oracle for our choice of semantics.

K. Etessami and S.K. Rajamani (Eds.): CAV 2005, LNCS 3576, pp. 164–169, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



The ComFoRT Reasoning Framework 165

ComFoRT exploits this design idiom and its formalization in several ways.
Threading information in CCL specifications is exploited to generate concurrent
state machines that more closely approximate actual concurrency than might
otherwise be the case if threading were not considered [16]. The factoring of
component-based systems into custom code and prefabricated containers and
connectors presents opportunities for exploiting compositional reasoning. Mod-
els of containers and connectors can also be pre-fabricated; therefore, develop-
ers need only model their custom code to use the model checker. Moreover, as
explained in Section 3, verification properties are specified using a formalism
adapted to easily describe patterns of interaction among stateful components.

Because CCL is a design language, model checking can be used to verify
early design decisions. However, model checking of software implementations
is also possible because the model checker also processes a restricted form of
ANSI-C source code (even though it is unsound with respect to pointers). The
cumulative result is to make model checking more accessible to the practicing
software engineer by using familiar notations, supporting verification throughout
the development process, and providing automation to hide complexity.

3 Overview of the Model Checking Engine

Combined State Space Reduction. The ComFoRT model checker, Cop-
per, is built on the top of the MAGIC tool [14]. Copper implements a number
of state space reduction techniques, including 1) automated predicate abstrac-
tion, 2) counterexample-guided abstraction refinement (also known as a CEGAR
loop), and 3) compositional reasoning. These techniques are widely used by the
majority of software model checking tools (such as SLAM [2], BLAST [13],
CBMC [9]). The advantage of Copper is that it combines all three of them in
a complementary way to combat the state space explosion of software verifica-
tion. For example, it enables compositional abstraction/refinement loop where
each step of the CEGAR loop can be performed one concurrent unit at a time.
Moreover, Copper integrates a number of complementary state space reduction
techniques. An example is a two-level abstraction approach [3] where predicate
abstraction for data is augmented by action-guided abstraction for events. An-
other key feature of the Copper approach is that if a property can be proved to
hold or not based on a given finite set of predicates P , the predicate refinement
procedure used in Copper automatically detects a minimal subset of P that
is sufficient for the proof. This, along with the explicit use of compositionality,
delays the onset of state-space explosion for as long as possible.

State/Event-based Verification. The Copper model checker provides for-
mal models for software verification that leverage the distinction between data
(states) and communication structures (events). Most formal models are either
state-based (e.g., the Kripke structures used in model checking) or event-based
(e.g., process algebras), but Copper provides models that incorporate both
[7]. Semantically, this does not increase expressive power, since one can encode



166 S. Chaki et al.

states as events or events as state changes, but providing both directly in the
model fits more natural to software modeling and property specification. It is,
indeed, essential in supporting the containerized component idiom. As impor-
tantly, it allows more efficient verification [7]. Copper models such systems as
Labeled Kripke Structures and provides both state/event-LTL [7] and ACTL for-
malisms [5]. Both versions of temporal logic are sufficiently expressive, yet allow a
tractable implementation for model checking. The Copper model checking algo-
rithms support verification of both safety and liveness properties of state/event
systems. Another feature of the state/event-based framework is a compositional
deadlock detection technique [6] that not only efficiently detects deadlocks but
also acts as an additional space reduction procedure.

Verification of Evolving Systems. The Copper model checker also provides
features that enable it to automatically verify evolving software. These features
simplify verification throughout the development process—and through the ex-
tended life-cycle of a software system—by reducing the cost of re-verification
when changes are made. We define verification of evolving systems as a compo-
nent substitutability problem: (i) previously established properties must remain
valid for the new version of a system, and (ii) the updated portion of the system
must continue to provide all (and possibly more) services offered by its earlier
counterpart. Copper uses a completely automated procedure based on learning
techniques for regular sets to solve the substitutability problem in the context
of verifying individual component upgrades [4]. Furthermore, Copper also sup-
ports analysis of component substitutability in the presence of simultaneous
upgrades of multiple components [8]. Copper uses dynamic assume-guarantee
reasoning, where previously generated assumptions are reused and altered on-
the-fly to prove or disprove the global safety properties on the updated system.

4 Tool Support

ComFoRT consists of two sets of tools: those for generating the state machines
to be verified and those that perform the actual model checking. The first set
deals with the topics discussed in Section 2, parsing and performing seman-
tic analysis of design specifications (in CCL) and the generation of the state
machines in the input language of Copper. Copper, as discussed in Section
3, is the model checker at the core of ComFoRT. Copper was built on top
of MAGIC, portions of which we developed together with collaborators from
Carnegie Mellon’s School of Computer Science specifically to support Com-
FoRT1. Copper has since evolved beyond the MAGIC v.1.0 code base, and
a brief overview of some of the key features of Copper and their lineage in
terms of various tool releases is found in Figure 1. ComFoRT is available at
http://www.sei.cmu.edu/pacc/comfort.html.

1 The reader, therefore, should not be confused by the fact that results of this collab-
oration have been presented in the contexts of both projects.



The ComFoRT Reasoning Framework 167

− Magic v.1.0
− component substitutability analysis

* Copper model checker

− Component and connector 
specification style
− UML statecharts with
imperative actions
− precise concurrency modeling

ComFoRT

− SATABS (in progress) 
− automated assume/guarantee 

SEI, SCS & SEI

* Component interpretation

Magic v.1.0
* state/event models

* compositional deadlock 

SATABS
* SAT−based predicate 

SEI & SCS

detection

abstraction

Magic pre−v.1.0

* predicate minimization
* CEGAR

* component technology
* composition language

framework

PACC

* performance reasoning

CMU/SCS

CMU/SEI

* two−level abstraction 
refinement

and state/event temporal logics

* predicate abstraction 
(non SAT−based)

Fig. 1. Evolution of the MAGIC and ComFoRT projects

5 Results

We have used ComFoRT to analyze several industrial benchmarks. Our first
benchmark was derived from the OpenSSL-0.9.6c implementation of SSL. Specif-
ically, we verified the implementation of the handshake between a client (2500
LOC) and a server (2500 LOC) attempting to establish a secure connection
with respect to several properties derived from the SSL specification. Figure 2
shows verification results of two properties, each of which was expressed using
only states (ss suffix) and both states and events (se suffix). Note that the
models depend on the property - and hence are different for the pure-state and
state/event versions, even though they are constructed from the same source
code. As shown in Figure 2, verification of the state/event properties outper-
forms the corresponding pure-state properties.

Name St(B) Tr(B) St(Mdl) T(BA) T(Mdl) T(Ver) T(Total) Mem

ssl-1-ss 25 47 25119360 1187 69969 * * 324

ssl-1-se 20 45 13839168 848 37681 113704 153356 165

ssl-2-ss 25 47 33199244 1199 67419 3545288 3615016 216

ssl-2-se 18 40 16246624 814 38080 298601 338601 172

Fig. 2. St(B) and Tr(B) = number of Büchi states and transitions; St(Mdl) = num-
ber of model states; T(Mdl) = model construction time; T(BA) = Büchi construction
time; T(Ver) = model checking time; T(Total) = total verification time. Times are
in milliseconds. Mem = memory in MB. A * ≡ model checking aborted after 2 hours

Two other benchmarks we have used are Micro-C OS and the interprocess-
communication library of an industrial robot controller. With Micro-C OS, ver-
ification of source code revealed a locking protocol violation. With the commu-
nication library, verification of CCL models derived from the implementation



168 S. Chaki et al.

revealed a problem wherein messages could be misrouted. In both cases, the re-
spective developers informed us that the problems had been detected and fixed;
in the latter case, the problem was undetected during seven years of testing.

6 Future Work

We are currently working on a number of additions to ComFoRT. One is the
incorporation into Copper a SAT-based predicate abstraction technique [10]
that eliminates the exponential number of theorem prover calls of the current
abstraction procedure. Another is the use of a simpler language for expressing
verification properties, such as a pattern language [11]. A third is a technique
for confirming that design-level (i.e., CCL designs) verification results are satis-
fied by eventual component implementations by proving a conformance relation
between the model and its implementation.

References

1. F. Achermann, M. Lumpe, J. Schneider, and O. Nierstrasz. Piccola – a Small
Composition Language. In Formal Methods for Distributed Processing–A Survey
of Object-Oriented Approaches. 2002.

2. T. Ball and S. Rajamani. Boolean programs: A model and process for software
analysis. Technical Report 2000-14, Microsoft Research, February 2000.

3. S. Chaki, E. Clarke, A. Groce, J. Ouaknine, O. Strichman, and K. Yorav. Efficient
verification of sequential and concurrent C programs. FMSD, 25(2), 2004.

4. S. Chaki, N. Sharygina, and N. Sinha. Verification of evolving software. In
SAVCBS’04: Worksh. on Specification and Verification of Component-based Sys-
tems, 2004.

5. E. Clarke, S. Chaki, O. Grumberg, T. Touili, J. Ouaknine, N. Sharygina, and
H. Veith. An expressive verification framework for state/event systems. Technical
Report CS-2004-145, CMU, 2004.

6. E. Clarke, S. Chaki, J. Ouaknine, and N. Sharygina. Automated, compositional
and iterative deadlock detection. In 2nd ACM-IEEE MEMOCODE 04, 2004.

7. E. Clarke, S. Chaki, J. Ouaknine, N. Sharygina, and N. Sinha. State/event-based
software model checking. In IFM 04: Integrated Formal Methods, LNCS 2999, 2004.

8. E. Clarke, S. Chaki, N. Sharygina, and N. Sinha. Dynamic component substi-
tutability analysis. In FM 2005: Formal Methods, to appear. LNCS, 2005.

9. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
TACAS, volume 2988 of LNCS, pages 168–176. Springer, 2004.

10. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of
ANSI-C programs using SAT. Formal Methods in System Design, 25(2), 2004.

11. M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for
finite-state verification. In Proceedings of the 21st ICSE, 1999.

12. J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P. Ranganath. Cadena: An in-
tegrated development, analysis, and verification environment for component-based
systems. In ICSE, pages 160–173, 2003.

13. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Principles of Programming Languages 02.



The ComFoRT Reasoning Framework 169

14. http://www.cs.cmu.edu/chaki/magic. Magic tool.
15. J. Ivers and N. Sharygina. Overview of ComFoRT: A Model Checking Reasoning

Framework. Technical Report CMU/SEI-2004-TN-018, SEI, CMU, 2004.
16. J. Ivers and K. Wallnau. Preserving real concurrency. In Correctness of model-based

software composition Workshop, July 2003.
17. K. Wallnau. Vol III: A Technology for Predictable Assembly from Certifiable

Components (PACC). Technical Report CMU/SEI-2003-TR-009, SEI,CMU, 2003.
18. K. Wallnau and J. Ivers. Snapshot of CCL: A Language for Predictable Assembly.

Technical Report CMU/SEI-2002-TR-031, SEI, CMU, 2002.
19. N. Ward-Dutton. Containers: A sign components are growing up. Application

Development Trends, pages 41–44,46, January 2000.


