
Curriculum Module
SEI-CM-23

Technical Writing for Software
Engineers

Linda Levine
Linda H. Pesante

Susan B. Dunkle

 November 1991

ABSTRACT — continued from page one, block 19

13a. TYPE OF REPORT

Final

UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

19. ABSTRACT (continue on reverse if necessary and identify by block number)

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

FIELD SUB. GR.GROUP

22c. OFFICE SYMBOL

ESC/ENS (SEI)
22b. TELEPHONE NUMBER (include area code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

SEI

ESC/ENS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

63756E N/A N/A N/A

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

(please turn over)

SEI-CM-23

Technical Writing for Software Engineers {Insert title line 2} {Insert title line 3} {Insert title line 4}

November 1991 75

This module, which was written specifically for software engineers, discusses writing in the context
of software engineering. Its focus is on the basic problem-solving activities that underlie effective writ-
ing, many of which are similar to those underlying software development. The module draws on
related work in a number of disciplines, including rhetorical theory, discourse analysis, linguistics, and
document design. It suggests techniques for becoming an effective writer and offers criteria for eval-
uating writing.

Linda Levine Linda H. Pesante Susan B. Dunkle

Technical Writing for Software Engineers SEI-CM-23
76

SEI-CM-23 Technical Writing for Software Engineers
75

Young70

Young, Richard E., Becker, Alton L., and Pike, Kenneth L. Rhetoric:
Discovery and Change. New York: Harcourt, Brace, 1970.

This unusual text reflects the interests of its authors, who come from
three disciplines: rhetoric, anthropology, and linguistics. The
discussions on inquiry (problem solving) and interpretation (shared
expectations) reinforce the cognitive and cultural elements of language
use. The book is known especially for its “tagmemic grid,” a heuristic
based on viewing experiences as particles, waves, and fields.

Young80

Young, Richard E. “Arts, Crafts, Gifts, and Knacks: Some
Disharmonies in the New Rhetoric.” Visible Language 14, 4 (1980),
341-350.

This paper also appears in Reinventing the Rhetorical Tradition, ed. A.
Freedman and I. Pringle, L&S Books for the Canadian Council of
Teachers of English, 1980. A version is available as “Concepts of Art
and the Teaching of Writing” in The Rhetorical Tradition and Modern
Writing, ed. J. J. Murphy, New York: Modern Language Association of
America, 1982.

Young addresses the limitations, especially pedagogical, that come
from seeing writing as mechanical/grammatical or magical. This is an
interesting article to read with Hoare’s “Programming: Sorcery or
Science?” [Hoare84]. Both Hoare and Young discuss the craftlike,
magical, and scientific properties of these two activities—programming
and writing.

>>>>>>>>>>>>>>>>DO NOT DELETE THIS
LINE<<<<<<<<<<<<<<<

Technical Writing for Software Engineers SEI-CM-23
74

Williams89

Williams, Joseph M. Style: Ten Lessons in Clarity and Grace. Glenview,
Illinois: Scott, Foresman and Company, 1989.

This sophisticated but understandable style guide is recommended
reading for teachers and students alike; it is practical and provides
good examples. And Williams does more than provide guidelines; he
explains the underlying principles and gives advice about when to
follow and when to ignore a rule. The book ends with a section called
“Reasonable Punctuation.”

Wright83

Wright, Patricia. “Manual Dexterity: A User-Oriented Approach To
Creating Computer Documentation.” Human Factors in Computing
Systems, CHI ‘83 Conference Proceedings, Dec. 1983, 12-15.

Abstract: This paper will not advocate a list of firm recommendations
about document design because it is recognized that design decisions
will vary with many factors. Instead, the present discussion will
emphasize that when making these decisions it is necessary for
designers to take account of how readers will use the information
provided. In order to help them do this, a simple framework is proposed
which outlines the rudiments of how people interact with technical
documents. The advantages of this framework will be illustrated by
using it to motivate design decisions at two decision levels. At a “macro”
level the document designer must make broad decisions about the
contents and format of the manual. At a “micro” level the designer must
select particular combinations of linguistic, graphic and typographic
options which will help readers locate, understand, and implement the
information given in the manual.

Wright identifies three common reader activities—searching,
understanding, and applying—and considers the implications of these
activities for document design. For example, she discusses how the
reader’s deliberate choice not to read or the reader’s practice of leafing
through a document should prompt document designers to appreciate
the “search component” and provide better “access structures.” An
excellent article on the connections between testing, usability, and
design. The bibliography provides follow-on readings. Essential for
instructor and students.

Also published as a special issue of the Special Interest Group on
Computer and Human Interaction (SIGCHI) Bulletin, ACM, 1983.

SEI-CM-23 Technical Writing for Software Engineers
73

and the modeling of reader behavior are valuable. The authors’
discussion of the Warnier-Orr diagram as an effective and hierarchical
substitute for the traditional outline is interesting and also worth
juxtaposing with issue trees [Flower89].

Watzman87

Watzman, Suzanne. “Visual Literacy and Document Productivity.”
Proceedings of the 34th International Technical Communication
Conference, May 1987, ATA48-49.

Abstract: The power of electronic publishing has put its users, the
producers of communications materials, in grave danger of overlooking
quality. And those who receive this material are in even greater
danger—of missing the message. Being sensitive to quality ensures that
electronic publishing technology is an asset to you or your organization.
In an environment overloaded with a vast quantity of information,
increasing information quality becomes crucial. The new technological
tools we have access to are valuable only if applied appropriately.
Effective communications materials require a unique combination of
technological tools, content, and design to meet their objectives.
Information design supplies the essentials for you to help readers get
more out of your communications.

This article emphasizes simplicity and suggests “visual structuring
techniques” that make information easily accessible to the reader.

Weizenbaum88

Weizenbaum, Joseph. “The Computer is a Mythconstrued Machine.”
Technology Review 91, 8 (Nov. 1988), 2-4.

A short but philosophical piece which, on several occasions, raises the
issue of literacy by way of considering myths about computers. Of
interest is the discussion on the computer as merely a tool since writing
is frequently perceived in the same neutral manner. This article should
prompt discussion on tools, ethics, and what Weizenbaum calls the
“principal end use” of work.

White86

White, K. B. and Leifer, R. “Information Systems Development
Success: Perspectives from Project Team Participants,” MIS Quarterly
10, 3 (Sept. 1986), 219-225.

This article provides more support for the fact that software developers
need strong communication skills in addition to their technical skills.

Technical Writing for Software Engineers SEI-CM-23
72

Tufte83

Tufte, Edward R. The Visual Display of Quantitative Information.
Cheshire, Conn.: Graphics Press, 1983.

Tufte provides comprehensive coverage of visual display, with an
emphasis on graphs and charts. He stresses the need to select the most
appropriate form for communicating data, a form that is complete and
clear, and is not misleading. Design principles are presented in this
context.

vande Kopple82

vande Kopple, William J. “Functional Sentence Perspective,
Composing, and Reading.” College Composition and Communication
33 (Feb. 1982).

This article provides good background information for the instructor; it
is not appropriate for students.

Walton87

Walton, Richard E., and Balestri, Diane. “Writing as a Design
Discipline: Exploring the Relationship Between Composition and
Programming.” Machine Mediated Learning 2, 1, 2 (1987), 47-65.

Abstract: Many of the difficulties college freshmen encounter as they
write stem from their misconceptions about the nature of writing. In this
paper we suggest that linking instruction in computer programming
and composition offers students a new way to understand and to
practice writing as a design discipline. The process of structured
computer programming is much like the process of writing purposive
prose. Both are processes of design: of determining purpose and
audience, of problem-solving, structuring, refining and drafting. We
describe the ways in which this insight was applied with positive results
to the teaching of writing at two different institutions, the University of
Montana and Bryn Mawr College. The computer is a powerful tool for
interdisciplinary learning and practice of design, but it is not an
effective tool unless used in the context of good instruction.

The authors’ insights on writing and programming as problem-solving
activities are valuable but, we believe, somewhat limited. By
concentrating on the analogy between writing (a document) and
writing a program, Walton and Balestri miss out on larger
correspondences between document and software development. For
example, in their shared design process (Requirements, Design, Draft,
Execute) there is no mention of testing or verification, a crucial
procedure, for example, in writing manuals. Even in writing expository
prose (the subject matter of this article), the (informal) review process

SEI-CM-23 Technical Writing for Software Engineers
71

concludes that a multifaceted approach to rapid prototyping techniques
is needed if we are to address a broad range of applications
successfully—no single technical approach suffices for all potentially
desirable applications.

Although the authors are concerned with the rapid development of
initial versions of a system, rapid prototyping is a useful method for
developing initial versions of a document. Supplementary reading.

TechComm91

Society for Technical Communication. Technical Communication 38, 4
(1991). Special Issue: Collaborative Writing.

This special issue contains 10 articles on collaboration. Topics include
collaborative writing in the workplace, collaboration of writers and
their readers, and collaboration between the business and academic
communities to provide writing instruction.

TechComm88

Society for Technical Communication. Technical Communication 35, 3
(1988).

This issue features three articles on manuals: Gillihan and Herrin’s
“Evaluating Product Manuals for Increased Usability,” Huston and
Southard’s “Organization: The Essential Element in Producing Usable
Software Manuals,” and Southard’s “Practical Considerations in
Formatting Manuals.” Each article is an introduction to the topic, and
the three together are useful for the reader trying to gain a general
understanding of issues related to writing manuals. The level of detail
is not sufficient for one to directly apply this information to a particular
document, but the references are useful pointers to more specific
discussion.

Tichy88

Tichy, Henrietta J. Effective Writing For Engineers, Managers,
Scientists. New York: John Wiley, 1988.

This excellent book is more a series of articles than a textbook. Tichy
provides common-sense advice that is appropriate reading for students
and teachers. The book also contains sections on usage that can be used
as a handbook. Tichy is a pragmatist who attends to stylistic issues
without holding to rules at all costs.

Technical Writing for Software Engineers SEI-CM-23
70

Her results challenge prevalent assumptions about writing for multiple
audiences.

This article is supplementary reading for the instructor and its level of
detail may make it most appropriate for those who teach technical
writers, not software engineers. Nonetheless, it is an excellent
treatment of writing to multiple audiences. Spilka’s challenges to
commonly held assumptions about audience are most interesting. She
discovers, for example, that successful corporate engineers try not to
write sections of a document for any one segment of the audience. They
also focus on more (not less) knowledgeable readers, adjust their
audience analysis throughout, and try not to analyze their audience
and choose matching strategies on the sole basis of organizational
roles.

Strunk79

Strunk, William, Jr., and White, E. B. The Elements of Style. New York:
Macmillan, 1979.

This handbook includes rules of usage and principles of
communication. One drawback of this book is that the rules of usage
are presented in a way that suggests there is clear right and wrong.
The principles of communication are more useful, and examples are
provided. (See [Williams89] for a distinction between the rules that
must be followed and those that are flexible, and [Miller80] for a
general discussion of the concept of rules.)

Sullivan88

Sullivan, Sarah L. “How Much Time Do Software Professionals Spend
Communicating?” Computer Personnel 11, 4 (Sept. 1988), 2-5.

This article can be useful for convincing students that software
engineers do not work in isolation, that they need communication
skills. Sullivan’s focus, however, is primarily on oral communication.

Taylor82

Taylor, Tamara, and Standish, Thomas A. “Initial Thoughts on Rapid
Prototyping Techniques.” ACM SIGSOFT Software Engineering Notes
7, 5 (Dec. 1982), 160-166.

Abstract: This paper sets some context, raises issues, and provides our
initial thinking on the characteristics of effective rapid prototyping
techniques. After discussing the role rapid prototyping techniques can
play in the software lifecycle, the paper looks at possible technical
approaches including: heavily parameterized models, reusable
software, rapid prototyping languages, prefabrication techniques for
system generation, and reconfigurable test harnesses. This paper

SEI-CM-23 Technical Writing for Software Engineers
69

Diagram and the Project Task Flow are remarkably analogous to
models of the writing process.” The article is both informative and easy
to read. Essential reading for the instructor and recommended for
students.

Shore85

Shore, John. The Sachertorte Algorithm and Other Antidotes to
Computer Anxiety. New York: Viking Press, 1985.

This entertaining book looks at programming as a literary activity, as
mathematics, and as architecture. Shore addresses a wide audience,
including technical writers, computer novices who need a gentle
introduction, and experts who have forgotten home truths.

Simon81

Simon, Herbert A. The Sciences of the Artificial. Cambridge, Mass.:
MIT Press, 1981.

Simon’s discussion of the science of design is relevant to computer
science, software engineering, and communication. “Design,” Simon
argues, “is concerned with how things ought to be, with devising
artifacts to attain goals.” In addition, the chapter on “The Psychology
of Thinking” shows how the relation between linguistic theories and
information-processing theories of thinking continues to grow closer.

Sommers80

Sommers, Nancy. “Revision Strategies of Student Writers and
Experienced Adult Writers.” College Composition and Communication
31 (Dec. 1980), 378-388.

In this article, Sommers argues that revision has not received its due
and is inadequately represented in linear models of the writing
process; the possibility of revision “distinguishes written text from
speech.” In her study of student and adult writers, Sommers notes that
students focus on words or phrases. They lack “heuristics to help them
reorder lines of reasoning or ask questions about their purposes and
readers.” Experienced writers revise at a number of levels to discover
and shape meaning. Recommended for the instructor.

Spilka88

Spilka, Rachel. “Studying Writer-Reader Interactions in the
Workplace.” The Technical Writing Teacher 13, 3 (Fall 1988), 208-221.

Abstract: Current models of audience analysis fail to account for writer-
reader interactions in the workplace. Spilka builds a case for studying
in-depth such interactions, and she describes her use of methodological
triangulation in a study of corporate engineers’ composing processes.

Technical Writing for Software Engineers SEI-CM-23
68

Rose80

Rose, M. “Rigid Rules, Inflexible Plans, and the Stifling of Language: A
Cognivist’s Analysis of Writer’s Block.” College Composition and
Communication 31, 4 (Dec. 1980), 389-401.

Rose’s research on the process of composing reveals that writer’s block
is not so mysterious. It often occurs when writers impose premature
restrictions on their use of language.

Roundy85

Roundy, Nancy, and Mair, David. Strategies for Technical
Communication. Boston, Mass.: Little, Brown, 1985.

This undergraduate textbook takes an especially comprehensive
approach to audience analysis; the authors chart positions within (or
outside of) the organization, and positions based on “cluster of interest”
and egocentrism. There are useful outlines and matrices for analyzing
audience characteristics. Writing models are also provided to
demonstrate key points.

Schutte83

Schutte, William M., and Steinberg, Erwin R. Communication in
Business and Industry. New York: Holt, Rinehart and Winston, 1983.

The authors provide standard handbook information and more,
including coverage of communication theory, the “climate of business,”
and special problems in technical and professional writing. This text is
less an undergraduate text than most, and is also geared to people in
business, industry and government. It contains information about oral
communication as well as writing. Although the book is no longer in
print, it may be available in libraries, particularly university libraries.

Selzer83

Selzer, Jack. “The Composing Process of an Engineer.” College
Composition and Communication 34, 2 (May 1983), 178-187.

This classic article considers how Kenneth Nelson, (transportation)
engineer, generally writes the kinds of documents that are part of an
engineering project: qualifications statement, proposal, presentation,
progress reports, technical memos, and final report. Nelson’s
comparatively linear process of composing and his efficient reuse of
documentation is of interest. Selzer was not primarily concerned with
correspondences between engineering and composing, yet he
comments on the level of detail in both Nelson’s outlines and his
engineering plans. He speculates that planning for documentation
comes “naturally to professionals who must plan and coordinate
complicated engineering tasks.” He also notes that “The Critical Path

SEI-CM-23 Technical Writing for Software Engineers
67

Rehe81

Rehe, Rolf F. Typography: how to make it most legible. Carmel, Ind.:
Design Research International, 1981.

Rehe provides a solid introduction to the printed word. He briefly
describes research findings and makes recommendations that are
appropriate for novices and experts alike. The book is short and easy to
read.

Rice84

Rice, Patricia Brisotti, and Dorchak, Susan Fife. “A Course in
Documentation and Technical Communication.” ACM SIGCSE
Bulletin 16, 4 (Dec. 1984), 7-8.

Abstract: The Computer Science program at the C. W. Post Campus of
Long Island University, which has approximately four-hundred
undergraduate majors, is predominantly software oriented. A course in
communication is required and taken at the sophomore level. The
concepts covered include information gathering, user-friendly
programming, system and program documentation, written and verbal
presentations. This course also prepares the students for the
Management Engineering Master’s degree offered at C. W. Post.

The skeletal description touches on the goals, objectives, and content of
this class. In fact, one might see this description as an annotated
syllabus. The course’s commitment to integrating system design and
documentation is ambitious; the sections on internal and external
documentation are especially interesting and unusual.

Rogers81

Rogers, Everett M. and Kincaid, D. Lawrence. Communication
Networks. New York: The Free Press [A Division of Macmillan
Publishing Co., Inc.], 1981.

In this excellent text, Rogers and Kincaid offer a “new paradigm for
research” based on their convergence model of communication and
network analysis. Readers particularly interested in the role of
communication in technology transfer should also consult Rogers’
Diffusion of Innovations published by The Free Press in 1983.

Rohman65

Rohman, D. Gordon. “Pre-Writing: The State of Discovery in the
Writing Process.” College Composition and Communication 16 (May
1965), 106-112.

Rohman views writing as a linear process. His discussion of good
writing, bad writing, and creativity is interesting.

Technical Writing for Software Engineers SEI-CM-23
66

cycle and the writing process. She discusses how approaches
such as prototyping and iterative development apply to
writing, and describes how to analyze a writing task. She also
notes how awareness of individual work styles can be used to
the writer’s advantage. By applying their software skills to
writing, engineers can get results.

This videotape can be used to introduce writing instruction and to
convince students that they need such instruction. Students from the
Master of Software Engineering program at Carnegie Mellon reinforce
key points and comment on the importance of writing. The tape, which
can be purchased from the SEI, is 17 minutes, 51 seconds long.

Redish89

Redish, Janice C. “Writing in Organizations.” in Myra Kogen, Ed.
Writing in the Business Professions. Urbana, Ill.: National Council of
Teachers of English, 1989, 97-124.

This chapter describes the Document Design Center’s process model,
which is interesting to consider alongside the waterfall model of the
software life cycle. Clearly, both models share phases even though
these phases are discussed in different terms. Although the DDC model
specifies activities, such as analyzing audience and evaluating, at
prescribed stages, Redish notes that “...all the boxes should be
connected with arrows. The process of writing is iterative, not linear.”

Redish also reports studies that show the importance of writing for
people who hold professional, technical, or managerial jobs. Two
studies found that these professionals spend about 20 percent of their
time writing; in another study, 96 percent of 245 “engineers of
distinction” said that good writing skills had helped them advance.

Other topics include features that make information accessible to
readers and the reason readability formulas don’t work. Highly
recommended reading for instructors; recommended reading for
students.

Redish87

Redish, Janice C. “Integrating Art and Text.” Proceedings of the 34th
ITCC, May 1987, VC4-7.

Abstract: Art can make a print manual or online tutorial or help screen
more interesting. Art can also help readers understanding the message
in the text. In this paper, I explore different ways in which art can help
readers.

The focus of this article is user documentation, and the advice is basic
and concrete.

SEI-CM-23 Technical Writing for Software Engineers
65

Perlman89

Perlman, Gary. User Interface Development. Curriculum Module SEI-
CM-17; DTIC: ADA235699, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., November 1989.

Capsule Description: This module covers the issues, information
sources, and methods used in the design, implementation, and
evaluation of user interfaces, the parts of software systems designed to
interact with people. User interface design draws on the experiences of
designers, current trends in input/output technology, cognitive
psychology, human factors (ergonomics) research, guidelines and
standards, and on the feedback from evaluating working systems. User
interface implementation applies modern software development
techniques to building user interfaces. User interface evaluation can be
based on empirical evaluation of working systems or on the predictive
evaluation of system design specifications.

Because of the emphasis on users, there are many parallels between
the development of user interfaces and the development of documents.

Pesante91

Pesante, Linda Hutz. “Integrating Writing into Computer Science
Courses,” SIGCSE Bulletin 23, 1 (March 1991), 205-209.

Abstract: Writing can and should be an integral part of computer
science and software engineering courses. This paper describes an
approach to teaching writing that can be used by instructors of technical
courses; it suggests both content and teaching techniques. The paper
also discusses how to enlist the aid of technical writers and technical
writing teachers.

Written as a “how to” paper, this is a succinct guide to teaching writing.
It includes a description of strengths that instructors of technical
courses and writing experts each bring to the classroom.

Pesante92

Pesante, Linda Hutz. Applying Software Engineering Skills to Writing.
Videotape TECH-LP-01-01, Technology Series, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pa., 1991.

Description: Software engineers spend significant time
communicating technical information, yet many find writing
difficult. Although writing is hard, even for good writers, it is
not a mysterious art. Software engineers can become more
effective writers by approaching writing as an engineering
task. In Applying Software Engineering Skills to Writing,
Linda Pesante draws the similarity between the software life

Technical Writing for Software Engineers SEI-CM-23
64

provide valuable guidance for software authors, designers, and
publishers.

The results of this survey are generally informative but clearly should
not be used to replace audience and task analyses and testing for
particular software documentation. Self-reporting is sometimes an
inaccurate indicator of how individuals use documentation. The article
also addresses the subject of emerging standards for software
documentation; it provides the set of 12 sections for comprising a
document from the IEEE Working Draft, Standard for Software User
Documentation. The bibliography includes references to guides and
handbooks on software documentation.

Perl80

Perl, Sondra. “Understanding Composing.” College Composition and
Communication 31, 4 (Dec. 1980), 363-369.

Perl uses the terms retrospective and projective structuring to capture
the backward and forward nature of composing, “the move from sense
to words and from words to sense, from inner experience to outer
judgment and from judgment back to experience.” She describes the
writer’s process as recursive in the rereading of bits of texts, going back
to interpret the topic and the “felt sense” that surrounds that topic.
Perl’s understanding of the writing process as recursive is somewhat
different from Flower and Hayes’ who, in addition, stress how routines
and subroutines are embedded within the phases of composing
[Flower81]. This article is a significant and unusual blend of practical
and philosophical research. Secondary reading for instructors.

Perlman86

Perlman, Gary. Multilingual Programming: Coordinating Programs,
User Interfaces, OnLine Help, and Documentation. TR8605, Wang
Institute Graduate Studies, 1986.

Perlman points out that to separate documentation from issues of
programming, user interfaces, or online help is wasteful; to have
different people, programmers and writers, spending “their time
expressing the same idea in different languages” is unnecessary effort.
Following in Knuth’s tradition of literate programming, multilingual
programming extends the process to coordinate program
implementation with “the use of parameterized information for
domains outside programming, like documentation and user
interfaces.”

SEI-CM-23 Technical Writing for Software Engineers
63

Olsen91

Olsen, Leslie A., and Huckin, Thomas N. Technical Writing and
Professional Communication. New York: McGrawHill, 1991.

This textbook addresses business, scientific, and technical writing.
Two versions are available: for native and for non-native speakers of
English. The first chapter, “Why Study Technical Communication,”
contains convincing information drawn from studies by the American
Society for Engineering Education. A section on readability provides
concrete advice based on psycholinguistic principles. The authors also
present strategies for generating ideas, constructing arguments,
stating problems, and testing documents. There are two chapters on
visual elements and one each on oral presentations, meetings, and
computer documentation. The book contains a list of references and
additional reading for each chapter, realistic examples and exercises,
and a punctuation guide. Additional information about the language is
in the version for non-native speakers. If a single textbook is to be used,
this is the one. It is essential reading for instructors and students.

Ong82

Ong, Walter J. Orality and Literacy: The Technologizing of the Word.
London: Methuen, 1982.

Two chapters in this fascinating book are the most relevant: “Writing
restructures consciousness” and “Print, space and closure.” Ong points
out that many current objections and fears about the inhumanity of
computers parallel Plato’s objections about writing: that it is artificial,
unresponsive, and weakens the mind by destroying memory. Ong’s
discussion on post-typography and its consequences is also interesting.
He explains how “electronic transformation of verbal expression has
both deepened the commitment of the word to space initiated by
writing and intensified by print and has bought consciousness to a new
age of secondary orality.” Secondary reading for instructors.

Penrose88

Penrose, John M., and Seiford, Lawrence M. “Microcomputer Users’
Preferences For Software Documentation: An Analysis.” J. Technical
Writing and Communication 18, 4 (1988), 355-366.

Abstract: Fundamental requirements for good user documentation
have not changed over the years. Manuals must be complete, accurate,
clear, readable, and available on time. What has changed are tolerances
and standards. Today’s users—typically business professionals and
even expert technicians and engineers—will no longer accept
unreadable and inaccessible publications. The days of documentation
with poor aesthetics have passed. This article analyses users’ opinions
and preferences for microcomputer software documentation. The results

Technical Writing for Software Engineers SEI-CM-23
62

communication.

This is a thoughtful article that places “the source of authority for rules
in those who use them, not in some impersonal or absolute authority.”
Miller’s discussion on context as a hierarchy is particularly interesting,
as are the distinctions she makes between constitutive and regulative
rules. Constitutive rules cover all permissible game moves while
regulative rules govern efficient play.

Mingione83

Mingione, Al. “Iteration, Key to Useful Documentation.” Journal of
Systems Management 34 (Jan. 1983), 23-25.

Mingione claims that since iteration is “a principal concept within the
development,” it is a more “natural” and “easier way to document.” We
agree with Mingione’s approach but find that he skirts the issue of how
one produces iterative documentation. It is unrealistic to maintain that
through “iteration these drafts will evolve to a communication
understood by all” without attending to guidelines, goals, constraints,
and planning and outlining techniques, etc. In Mingione’s limited
sense, iteration means drafts, and perhaps not necessarily improved
drafts. His understanding of technical writers is also reactionary—they
are largely editors/stylists who don’t take part in the development
process, but who may “make others interact effectively through
documentation.” Mingione supports the iterative approach, or writing
within the development process, but ironically, not for writers.
Essential reading for the instructor and students.

Odell85

Odell, Lee, and Goswami, Dixie. Writing in Nonacademic Settings.
New York: The Guilford Press, 1985.

This is secondary reading for the instructor. Of special interest are:
Colomb and Williams’ treatment of form in “Perceiving Structure in
Professional Prose” and Miller and Selzer’s article, “Special Topics of
Argument in [Transportation] Engineering Reports.” Two articles
addressing the influence of new technologies on composing, Halpern’s
“An Electronic Odyssey” and Murray’s “Composition as Conversation:
The Computer Terminal as Medium of Communication,” offer insights.
The latter articles are already somewhat dated in terms of
technologies, but the observations on electronic discourse in general
are still relevant. Finally, issues of context are addressed in two
articles representing the social approach to technical writing: Faigley’s
“Nonacademic Writing: The Social Perspective” and Odell’s “Beyond
the Text: Relations Between Writing and Social Context.”

SEI-CM-23 Technical Writing for Software Engineers
61

Meyer82

Meyer, Bonnie J. F. “Reading Research and the Composition Teacher:
The Importance of Plans.” College Composition and Communication
33, 1 (Feb. 1982), 37-49.

Meyer summarizes research related to planning and discusses three
functions of writing plans. The topical function helps the writer
generate and organize main ideas; the highlighting function helps the
writer show priorities and important relations between ideas. The
informing function helps writers decide “how to present new knowledge
while keeping readers aware of the old.” Meyer presents empirical
evidence for five basic writing plans that have an impact on readers’
comprehension. These plans are: antecedent/consequent, comparison,
description, response, and time order. Recommended reading for
instructors.

Miller79

Miller, Carolyn. “A Humanistic Rationale for Technical Writing.”
College English 40, 6 (Feb. 1979), 610-617.

Miller considers problematic and lingering assumptions about
language and technical writing as the result of a pervasive positivist
view of science. While one might be tempted to consider this
philosophical piece as secondary reading, it is a concise and thought-
provoking critique of “what has been called ‘the windowpane theory of
language’: the notion that language provides a view out onto the real
world, a view which may be clear or obfuscated.” Miller also considers
new directions in the philosophy of science and corresponding new
relations between rhetoric and science.

Miller80

Miller, Carolyn. “Rules, Context and Technical Communication.”
Journal of Technical Writing and Communication 10, 2 (1980), 149-180.

Abstract: The concept of “rule” derived from linguistics and anthropology,
provides a way of understanding the relationship between context, purpose,
and message production and interpretation. “Rules” are shared
expectations which structure situations and guide individual action. This
paper shows some of the concepts that have come out of rules theory in
communication research and suggests their particular relevance and
utility to understanding the problems and situations in technical

Technical Writing for Software Engineers SEI-CM-23
60

Mattes76

Mathes, J. C., and Stevenson, D. W. Designing Technical Reports:
Writing for Audiences and Organizations. New York: Bobbs-Merrill
Educational Publishing, 1976.

This textbook offers a good treatment of purpose/problem statements
in an organizational setting. It ties the issues of complex audience and
component structure together, emphasizing that particular readers
read particular parts of reports. Writers, therefore, should think about
reports in terms of opening and discussion components. (For contrary
findings, see [Spilka88].) They should also design reports that move
from general to particular between the two components, and make the
components self-sufficient. Note: the matrix for audience analysis may
be too complex for easy use.

McLeod88

McLeod, Susan H. “The Portfolio Method For Teaching Technical
Communication.” Technical Communication 35, 3 (1988), 238-239.

Two pages of good, concrete, teaching strategies in the portfolio
method. McLeod provides smart, efficient suggestions on spot-grading
and the excellent instruction sheet that she gives her students.

Meinke87

Meinke, John G. “Augmenting a Software Engineering Projects Course
with Oral and Written Communications.” ACM SIGCSE Bulletin 19, 1
(Feb. 1987), 238-243.

This paper describes a “Senior Projects” course and provides
information about the two oral presentations and seven formal written
reports that are required. Writing assignments include: extended
abstract, justification report, milestones, requirements, system
documentation, user manual, and final system report. The article
concentrates on content requirements as opposed to teaching method
(i.e., what approach is taken to technical communication in the
classroom? and how have the students benefited from that approach?),
but it is a useful example of the integration of technical communication
and software engineering in the classroom. Recommended for
instructors.

SEI-CM-23 Technical Writing for Software Engineers
59

WYSIWIS (what you see is what I see) for presentation of images of
shared information for all participants, public (shared) and private (not
shared) windows on the workstations, and applications such as a group
method of preparing outlines of ideas and associated text and a group
method of evaluating plans and programs that have already been
developed.” The method of outlining resembles ThinkTank but
includes collaboration capabilities. Another GDSS, The Group
Network, focuses on “interactive computer support for small groups in
geographically dispersed but nearby locations such as offices within a
building.” Participants are able to create, edit, or simply exchange
graphics, text, or numbers although only one person at a time can do so.

Lehman86

Lehman, John A., “Program Design and Rhetoric.” IEEE Software
(May 1986), 71-73.

Lehman argues that programmers and managers who have looked to
engineering and mathematics as disciplinary guides for the
development of program design have neglected to consider another
very relevant discipline—rhetoric. “From an information processing
point of view, the problems faced in rhetoric are very similar to those
faced in programming, and the rhetorical solutions to these problems
resemble the major tenets of structured programming and structured
design.” We agree with Lehman but find that his emphasis on
“structure” limits his definition of rhetoric to arrangement and style. In
doing so, he fails to account for “invention” or problem definition and
analysis in rhetoric and writing. Essential reading for the instructor,
and recommended for students.

Levine91

Levine, Linda, Pesante, Linda H., and Dunkle, Susan B.
“Implementing the Writing Plan: Heuristics from Software
Development,” The Technical Writing Teacher 28, 2 (Spring 1991), 116-
125.

Abstract: In considering approaches to software development and
software life cycle models, we have gained insight into the problems of
writers and the teaching of technical communication. In particular, this
article focuses on analogies between the two processes and domains and
suggests concrete ways for writers to proceed beyond analysis. The field
of software engineering has proven to be a rich source of strategies for
implementing the plan—for navigating the crucial area between
planning and revising that is conventionally and generically called
writing.

In addition to elaborating on some of the information provided in this
curriculum module, the article describes students’ experiences with
writing in Carnegie Mellon’s Master of Software Engineering program.

Technical Writing for Software Engineers SEI-CM-23
58

Knuth84

Knuth, Donald E. “Literate Programming.” The Computer Journal 27,
2 (1984), 97-111.

Abstract: The author and his associates have been experimenting for the
past several years with a programming language and documentation
system called Web. This paper presents Web by example, and discusses
why the new system appears to be an improvement over previous ones.
See [Bentley86].

Knuth88

Knuth, D. E., Larrabee, T., and Roberts, P. M. Mathematical Writing.
STANCS881193, Stanford University, 1988.

A portion of this report is a minicourse on technical writing. Its value
lies in the example Knuth sets in providing writing instruction in a
content area.

Kraemer88

Kraemer, Kenneth L., and King, John Leslie. “Computer-Based
Systems for Cooperative Work and Group Decision Making.” ACM
Computing Surveys 20, 2 (June 1988), 115-146.

Abstract: Applications of computer and communications technology to
cooperative work and group decision making has grown out of three
traditions: computer-based communications, computer-based
information service provision, and computer-based decision support.
This paper reviews the group decision support systems (GDSSs) that
have been configured to meet the needs of groups at work, and evaluates
the experience to date with such systems. Progress with GDSSs has
proved to be slower than originally anticipated because of shortcomings
with available technology, poor integration of the various components of
the computing “package,” and incomplete understanding of the nature
of group decision making. Nevertheless, the field shows considerable
promise with respect to the creation of tools to aid in group decision
making and the development of sophisticated means of studying the
dynamics of decision making in groups.

This article discusses GDSSs (group decision support systems) and new
variants which aid group collaboration on common tasks such as:
“setting meetings, sharing information, outlining ideas, and evaluating
proposals.” Many of these capabilities currently exist for individuals
but have not yet been adapted for group activity. Specifically of interest
is The Collaboration Laboratory, which “focuses on writing and
argumentation and involves verbal models and qualitative techniques
through the manipulation of text-oriented data and graphical images.”
Includes text-oriented tools: a “common human-machine interface,

SEI-CM-23 Technical Writing for Software Engineers
57

Kernighan74

Kernighan, Brian, and Plauger, P. J. The Elements of Programming
Style. New York: McGrawHill, 1974.

The authors note that the form and approach of their book has been
strongly influenced by The Elements of Style by Strunk and White (see
[Strunk79]). While we have reservations about the latter’s
concentration on rules and principles of correctness, we recognize
Kernighan and Plauger’s contribution in drawing on the similarities
between programming and writing.

Kinneavy71

Kinneavy, James L. A Theory of Discourse: The Aims of Discourse.
Engle wood Cliffs, N. J.: Prentice-Hall, 1971.

A comprehensive text that includes classical and contemporary
approaches to teaching writing and speech. The opening chapter
provides information on models and theories of communication.
Section 3 (on the nature, logic, organization, and style of reference
discourse) will be most relevant to software engineers. For the
instructor.

Kirkman70

Kirkman, A. J. “The Communication of Technical Thought.” The
Engineer and Society, E. G. Semier, ed. London: Institute of
Mechanical Engineers, 1970, 180-185.

Abstract: There is much concern among employers about the poor
command of English shown by engineering and science graduates; this
is a serious matter when it results in failure to communicate technical
information. The Department of English and Liberal Studies in the
Welsh College of Advanced Technology has launched an investigation
into the problems of scientific communication. Preliminary results show
that the faults are by no means all on one side and that schoolteachers
must take much of the blame; but barriers to communication are often
raised artificially by the scientists themselves.

The author provides a very good introduction to long-standing
problems in technical communication; the discussion on sequential and
associative types of mind is interesting. Kirkman also details, and
dispenses with, a number of “excuses” that are often made for
inarticulate scientific writing, including the notion that English
grammar is too rigid and the idea that “scientists are not practiced in
slowing down their thinking to a rate appropriate to the writing
process.”

Technical Writing for Software Engineers SEI-CM-23
56

improved education.

In hypothetical terms, Hoare considers three present-day roles of
computer programmers. They are: craftsmen who serve
apprenticeships and develop skills by experience, high priests who are
served by a devoted team of acolytes yet held in awe and fear by the
public, and modern engineering professionals. These views of
programming as craft, magic, and science can be neatly juxtaposed to
Young’s treatment of writing as art, craft, gift, and knack in [Young80].

Houp92

Houp, Kenneth W. and Pearsall, Thomas E. Reporting Technical
Information, 7th Edition. New York: Macmillan Publishing Co. 1992.

This textbook has several strengths: three excellent chapters on
document design, a long chapter on oral presentations, and a section on
collaboration. In addition, it provides a clear, if basic, discussion of the
writing process, checklists for writers, and a helpful set of references.
Appropriate for both teachers and students.

Jones88

Jones, Patricia L., and Doyle, Kelly M. “Modularizing Software
Documentation.” Proceedings of the 35th ITCC, May 1988, WE49-50.

Abstract: One of the most frequently faced challenges for technical
writers is keeping the manuals current when software changes. This can
be compounded by the need to produce different manual versions to
accommodate different hardware and operating systems. Carnegie
Group Inc. took a major step towards solving this problem by organizing
the documentation using the modularity principles developed by
software engineers. The documentation was redesigned so that
modifications required for different computing environments were
greatly reduced, and in some cases automated. The strategy involved
reorganizing the content by isolating conceptual information from
machine-dependent procedural information, and using conditional
facilities of our text formatter to produce different manuals for different
environments. The resulting structure and methodology can now be
used across all product documentation to make porting and
maintenance tasks easier and less time-consuming.

The authors describe in detail their procedures for planning and
maintaining a large set of documentation. They discuss topics such as
modularity and configuration management, as well as their rationale
for the choices they made.

SEI-CM-23 Technical Writing for Software Engineers
55

individual subtopics. Each of the major subprocesses in the revision
model (task definition, evaluation, problem detection, problem
diagnosis, and strategy selection) is treated in detail. The chapter
concludes with a useful summary of major findings.

Hester81

Hester, S. D., Parnas, D. L., and Utter, D. F. “Using Documentation as
a Software Design Medium.” The Bell System Technical Journal 60, 8
(Oct. 1981), 1941-1977.

Abstract: This article describes a software design method based on the
principles of separation of concerns and information hiding. The
principle of separation of concerns is used to structure the design
documentation, and information hiding is used to guide the internal
design of the software. Separation of concerns requires that design
information be divided into clearly distinct and relatively independent
documents. The design documents are the main products of the initial
design phase, and are carefully structured to (i) expose open issues, (ii)
express design decisions, and (iii) ensure that information is recorded in
a way that allows it to be readily retrieved later. Information hiding is
used to design software that is easy to change. We have applied many
elements of the design method to the development of the No. 2 Service
Evaluation System (SES), a multiprocessor data acquisition and
transaction system. Our experiences in applying the design method are
described, and some examples are included.

An excellent article. The authors treat the scope, use, and design
considerations for the software design associated with each step that
the document covers. They also provide sound principles to guide the
preparation of software documentation. The authors stress, in very
clear terms, the relationship between design and documentation:
“Since documentation is the main product of the design phases, it is
important and must be produced with the same discipline and care
with which code is produced.” While they are candid about the costs of
adhering to this discipline, they also “feel that the cost of neglecting it
is even higher.” Recommended for instructors and students.

Hoare84

Hoare, C. A. R. “Programming: Sorcery or Science?” IEEE Software 1,
2 (Apr. 1984), 6-16.

Abstract: Professional programming practice should be based on
underlying mathematical theories and follow the traditions of better
established engineering disciplines. Success will come through

Technical Writing for Software Engineers SEI-CM-23
54

are explored: (1) adapting methods of modern, high-level program
development (stepwise refinement and iterative enhancement) to
document preparation; (2) using a writing environment controlled by a
rule-based editor, in which structure is enforced and mistakes more
difficult to make.

On the topic of rules, this is an interesting article to juxtapose with
[Miller80]; for example, in considering writing environments controlled
by rule-based editors, one might want to argue that educating the
practitioner is preferable, in the long run, to controlling the method.
Hamlet makes strong and useful analogies between creating a
document and developing a program. He pairs, for example, formatting
programs with assemblers, and the current word processing situation,
with the “undisciplined” use of programming languages that preceded
“modern programming practice.” The brief discussions of stepwise
refinement and iterative enhancement are insightful and on target.
This is essential reading for instructors and is appropriate for students
too.

Hartman89

Hartman, Janet D. “Writing to Learn and Communicate in a Data
Structures Course.” ACM SIGCSE Bulletin 21, 1 (Feb. 1989), 32-36.

Hartman’s writing-across-the-curriculum experience has been
precisely applied to the data structures classroom, but her writing
activities can certainly be extended to fit in any computer science
course. She uses four types of microthemes (short essays on 5x8 index
cards): summary, support for a thesis, generating a thesis from
provided data, and quandary posing. Other assignments involve
varying the contexts for writing so that students deal with audience
issues by assuming roles such as expert or novice, or with issues of
genre, by writing in a number of formats—one paragraph response,
memo, report, etc. An excellent short article that provides concrete
ways of making cost effective changes in writing assignments and
handling evaluation. Essential for instructors.

Hayes87

Hayes, John R., Flower, L., Schriver, K., Stratman, J., and Carey, L.
“Cognitive Processes in Revision.” Advances in Applied
Psycholinguistics: Reading, Writing and Language Processing, Vol. 2,
S. Rosenberg, ed. Cambridge University Press, 1987, 176-240.

This is a comprehensive and lengthy treatment of revision which also
includes a short literature review, the [Flower81] process model of
composing, and even an introductory argument on the value of using
think-aloud protocols in theory building and testing. Readers should be
prepared to speed up and slow down depending on interest in the

SEI-CM-23 Technical Writing for Software Engineers
53

However, empirical research that examines the extent to which it is
important and/or identifies specific communication behaviors that
make an effective communicator is virtually nonexistent.

An empirical investigation was conducted in a field setting with 55
systems developers who had been related as demonstrating high or low
effectiveness by their supervisors. The investigation revealed that
while eliciting system requirements from a user, highly-rated
developers used specific communication behaviors more frequently
than their more lowly-rated counterparts. Moreover, the specified
communication behaviors provided substantial discrimination between
the two groups. The implications of these results are discussed and
future research directions outlined.

This paper focuses primarily on oral communication skills. However, it
contains some information on writing, along with a useful
bibliography.

Halloran78

Halloran, S. Michael. “Technical Writing and the Rhetoric of Science.”
Journal of Technical Writing and Communication 8, 2 (1978), 77-88.

Abstract: The traditional view of rhetoric and science as sharply
distinct has helped reduce the technical writing course to mere
vocational training. Current thinking in rhetorical theory and
philosophy of science supports the contrasting view that science is
rhetorical. Salient aspects of the rhetoric of science are illustrated by
Crick and Watson’s discovery of the structure of DNA, as recorded in
Watson’s “The Double Helix”[1]. Analysis of the rhetoric of science
suggests that the study of technical writing could be central to liberal
education for a technological society.

This is interesting supplementary reading for the instructor, but it is
not essential.

Hamlet86

Hamlet, Richard. “A Disciplined Text Environment.” Proceedings of the
International Conference University of Nottingham, Apr. 1986, 78-89.
This article also appears, under the same title, in Text Processing and
Document Manipulation, J. C. van Vliet, ed., Cambridge: Cambridge
University Press, 1986.

Abstract: Computer text processing is still in the assembly-language
era, to use an analogy to program development. The low-level tools
available have sufficient power, but control is lacking. The result is that
documents produced with computer assistance are often of lower quality
than those produced by hand: they look beautiful, but the content and
organization suffer. Two promising ideas for correcting this situation

Technical Writing for Software Engineers SEI-CM-23
52

Flower89

Flower, Linda. Problem-Solving Strategies for Writing. San Diego,
Calif.: Harcourt Brace Jovanovich, 1989.

Although this book is clearly geared to undergraduates, it contains a
great deal of useful information. Chapter headings include:
“Understanding Your Own Writing Process,” “Making Plans,” and
“Organizing Ideas.” There are two chapters on audience and two on
revising and editing. Instructors who have never taught writing should
read this book; small sections will be appropriate for even sophisticated
students.

Guillemette87

Guillemette, Ronald A. “Prototyping: An Alternate Method for
Developing Documentation.” Technical Communication 34, 3 (Aug.
1987), 135-141.

Abstract: Documentation can be developed more effectively with a
prototyping approach, says the author, who first explains the techniques
and benefits of system prototyping and then shows how the method can
be applied to documentation. [From the introduction.]

The author considers the limitations of the linear prespecification
approach and argues for attending to the iterative nature of the
document design process through reader evaluation and comments in
the revision cycle. This is an interesting article, but it stresses the
“what” more than the “how.” An engineer reading this might struggle
with the application of rapid prototyping to writing. Guillemette
doesn’t specify how needs analysis for software is like needs analysis
for documentation.

Guinan87

Guinan, Patricia J. and Bostrom, Robert P. Communication Behaviors
of Highly-Rated vs. Lowly-Rated System Developers: A Field
Experiment. IRMIS Working Paper #W707, Institute for Research on
the Management of Information Systems, Indiana University,
Bloomington/Indianapolis, Ind., May 1987.

Abstract: Communication is often touted as the solution for many
organizational problems, but there is little empirical evidence to back
this claim. This study was designed to demonstrate the importance of
specific communication behaviors to organizations that develop
computer-based information systems (CIS). The ability of CIS
developers to effectively communicate while eliciting system
requirements from CIS users is often cited as a critical factor for
successful CIS development. The importance of communication in the
developer-user relationship is clearly recognized and documented.

SEI-CM-23 Technical Writing for Software Engineers
51

Abstract: The growth of the computer field has been a major factor in
the growth of technical writing as a profession. Software developers are
beginning to recognize the need for technical writers at all stages of the
software life cycle from the development of requirements to the
implementation of the system. This paper explores the areas of
commonality between the technical writing process and software
development process and the special talents that technical writers bring
to a software development team.

This paper stresses the contributions that technical writers can make
throughout the software life cycle. It is recommended reading for
students. If they become aware of the range of skills technical writers
have, they will be able to work more productively with technical
writers.

Felker81

Felker, D., Pickering, Frances, Charrow, Veda R., Holland, V. Melissa,
and Redish, Janice C. Guidelines For Document Designers.
Washington, D.C.: American Institutes for Research, 1981.

This book presents guidelines for 25 principles concerning text
organization, writing sentences, typography, and graphics. With each
guideline are: explanations, examples, advice, and a short summary of
relevant research. The research cited on comprehension, recall, etc.,
provides reminders that principles are important in relation to the
activities that readers perform, not in and of themselves. The text can
serve as a desk reference if the reader first becomes familiar with the
contents.

Flower81

Flower, Linda, and Hayes, John R. “A Cognitive Process Theory of
Writing.” College Composition and Communication 32 (Dec. 1981),
365-387.

Based on their research with writers performing think-aloud protocols,
the authors introduce their cognitive process theory, which sees
composing as a goal-directed, hierarchical thinking process. This
article will provide the instructor with an understanding of the issues
that are fundamental to a cognitive approach to writing.

Technical Writing for Software Engineers SEI-CM-23
50

describes the reciprocal relationship between writing and the
organizational context. The study shows the following: (1) how the
organizational context influences (a) writers’ conceptions of their
rhetorical situations, and (b) their collaborative writing behavior; and
(2) how the rhetorical activities influence the structure of the
organization.

This article is interesting because of its subject matter and the scene it
describes. DohenyFarina focuses on a double interaction: how social
and organizational contexts affect the writing of a business plan and
how the writing of that plan affects the organization. He describes, for
example, how the writing situation prompts and exposes tension
between promotional visions and clear production plans. The detailed
introduction, outlining of theoretical assumptions, and procedures
section will be of interest to writing researchers; the body of the article
will be more relevant for software engineers. Recommended for the
instructor and students.

Duffy81

Duffy, Thomas M. “Organising and Utilizing Document Design
Options.” Information Design Journal, Ltd. 2 (1981), 256-266.

Abstract: In this discussion paper, the author concentrates on the
problems of modeling the design process as a means of closing the gap
between research and practice in information design. He proposes a new
document design model but notes that competing objectives, in
particular cost constraints, may prevent the implementation of good
design procedures in practice.

Duffy proposes a systems analysis model of document design. Although
he focuses on instructional text, much of his article is broadly
applicable; and the model provides a helpful checklist.

Duffy85

Duffy, Thomas M. Readability Formulas: What is the Use? CDC Tech.
Rep. 23, Carnegie Mellon University, Nov. 1985. Also appears as a
chapter in Duffy, T. M., and Waller, Robert. Designing Usable Text.
Orlando, Fla.: Academic Press, 1985.

Duffy identifies factors that must be taken into account when
determining the readability of a document. These include format,
graphics, and the reader’s subject matter knowledge and reading skill.

Dunkle88

Dunkle, Susan B., and Pesante, Linda Hutz. “The Role of the Writer on
the Software Team.” Proceedings of the 35th ITCC, May 1988, WE51-
53.

SEI-CM-23 Technical Writing for Software Engineers
49

Christensen78

Christensen, Francis, and Christensen, Bonniejean. Notes Toward a
New Rhetoric: Nine Essays for Teachers. New York: Harper & Row,
1978.

In the preface, the authors point out that there is no evidence for a
correlation between knowledge of grammar and writing ability.
Learning elements of style by reading great works is equally
problematic. The authors propose, instead, a “generative rhetoric” of
the sentence based on levels of structure where the student “adds
further levels to what he has already produced, so that structure itself
becomes an aid to discovery.” A generative rhetoric of the paragraph
applies the principles used in analyzing the sentences and sees the
paragraph as a macrosentence. The two chapters on sentence and
paragraph structure will be of most interest.

Curtis88

Curtis, B., Krasner, H., and Iscoe, N. “A Field Study of the Software
Design Process for Large Systems,” Communications of the ACM 31, 1
(Nov. 1988), 1268-1287.

Abstract: The problems of designing large software systems were
studied through interviewing personnel from 17 large projects. A
layered behavioral model is used to analyze how three of these
problems—the thin spread of application domain knowledge,
fluctuating and conflicting requirements, and communication
bottlenecks and breakdowns—affected software productivity and
quality through their impact on cognitive, social, and organizational
processes.

The study described in this article found that three characteristics set
exceptional software designers apart from their colleagues. One of
these characteristics was strong communication skills. The others were
familiarity with the application domain and becoming “consumed with
the performance of their projects.”

DohenyFarina86

DohenyFarina, Stephen. “Writing in an Emerging Organization: An
Ethnographic Study.” Written Communication 3, 2 (Apr. 1986), 158-
185.

Abstract: This study explored the collaborative writing processes of a
group of computer software company executives. In particular, the study
focused on the yearlong process that led to the writing of a vital company
document. Research methods used included participant/ observations,
open-ended interviews, and Discourse Based Interviews. A detailed
analysis of the executive collaborative process posits a model that

Technical Writing for Software Engineers SEI-CM-23
48

Brown83

Brown, Gillian, and Yule, George. Discourse Analysis. Cambridge:
Cambridge University Press, 1983.

This text provides information about linguistics and discourse analysis
that is useful for instructors but probably too advanced for students.
The topics of particular interest include: paragraphs, topic,
information structure, cohesion, and coherence.

Bruffee84

Bruffee, Kenneth A. “Collaborative Learning and the ‘Conversation of
Mankind.’” College English 46, 7 (Nov. 1984), 635-652.

In this article, Bruffee covers a rationale for collaborative learning, the
relationship of that rationale to classroom practice, and implications.
His discussion also centers on discourse communities; he sees
collaborative learning as providing for particular kinds of conversation,
social contexts for that conversation, and communities. His
preoccupation with conversation is relevant; he states that “writing
always has its roots deep in the acquired ability to carry on the social
symbiotic exchange we call conversation.” Supplementary reading.

Brusaw76

Brusaw, C. T., Alred, G. J., and Oliu, W. E. The Business Writer’s
Handbook. New York: St. Martin’s Press, 1976.

This style guide is a practical reference book that provides examples.
However, it has some of the limitations of Strunk and White. For
further information, see the annotations for [Strunk79] and
[Williams89].

Chicago82

The Chicago Manual of Style. Chicago: University of Chicago Press,
1982.

This manual is one of the most complete handbooks available. It
contains information appropriate for people who publish documents as
well as those who write and edit them.

SEI-CM-23 Technical Writing for Software Engineers
47

Bizzell82

Bizzell, Patricia. “Cognition, Convention, and Certainty: What We Need
To Know About Writing.” Pre/Text 3, 3 (1982), 213-243.

Bizzell discusses discourse communities in the context of critiquing
innerdirected (cognitive) theories of the composing process. She
criticizes the process theorists (represented by Flower and Hayes
[Flower81]) concerning their limited preoccupation with how people
write and not why they write as they do. Bizzell argues that we must
see writers as problem solvers “situated in discourse communities that
guide problem definition and the range of alternative solutions.” The
final one third of her article is fairly repetitive in its discussion of the
politics of the composition classroom. Supplementary reading for the
instructor.

Bond85

Bond, Sandra J. “Protocol-Aided Revision: A Tool for Making
Documents Usable.” Proceedings of the 1985 IBM Academic
Information Systems University AEP Conference, June 1985, 327-334.

Abstract: Participants will learn how to use Protocol-Aided Revision
(PAR) to analyze and improve documents for clarity and usability.

This paper was the basis for a workshop session on protocol-aided
revision. Topics include: “What is a protocol?” and “Why test?” Bond
provides step by step instructions for conducting a protocol, analyzing
the results, and applying those results to revision.

Brackett90

Brackett, John W. Software Requirements. Curriculum Module SEI-
CM-19; DTIC: ADA235642. Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pa., January 1990.

Capsule Description: This curriculum module is concerned with the
definition of software requirements—the software engineering process
of determining what is to be produced—and the products generated in
that definition. The process involves all of the following: (1)
requirements identification (2) requirements analysis (3) requirements
representation (4) requirements communication (5) development of
acceptance criteria and procedures. The outcome of requirements
definition is a precursor of software design.

Brackett clearly demonstrates the role of communication in
requirements engineering. He discusses the importance of
understanding the needs of the software developers and the users of
the software product.

Technical Writing for Software Engineers SEI-CM-23
46

Bentley86a

Bentley, Jon, and Knuth, Don. “Programming Pearls.” Communication
of the ACM 29, 5 (May 1986), 364-369.

The value of this article lies in the concept of literate programming.
Philosophically, literate programming emphasizes the place of literacy
in software development, making room for the intersection of natural
and computer languages. By highlighting the need for individuals to
“read” programs, Knuth introduces a new kind of learning in software
engineering education—one that stresses the importance of sharing
knowledge by publishing (model) programs for emulation and
enhancement. Finally, literate programming draws attention to the
issue of audience so that, as Bentley observes, Knuth’s work takes an
“important step towards programs fit for man and computing beast.”
For an example of a literate program by Knuth, see the next
“Programming Pearls” column (June 1986). For an additional reference
to literate programming, see [Knuth84].

Bentley86b

Bentley, Jon. “Programming Pearls.” Communications of the ACM 29,
9 (Sept. 1986), 832-839.

Bentley shares a few document design lessons on tables, figures, and
text. He notes that iteration, consistency, and minimalism are
“fundamental principles for producing better text, programs, or
documents.” A “catalog of pet peeves” is included in this brief, friendly
introduction.

Bitzer68

Bitzer, Lloyd. “The Rhetorical Situation.” Philosophy and Rhetoric 1, 1
(1968), 1-14.

Bitzer identifies three components that are essential to the rhetorical
situation: the speaker or writer’s exigence (or sense of an imperfection
that needs to be addressed), the audience, and the constraints.
Constraints include “artistic proofs,” aspects of writing that the writer
manages, and “inartistic proofs” such as contracts, agreements, laws,
etc. This theoretical article is dense at times but valuable in providing
a conceptual framework for understanding communication and
rhetorical discourse. For instructors only.

SEI-CM-23 Technical Writing for Software Engineers
45

Barker88

Barker, Thomas T. “Feedback in Hightech Writing.” Journal of
Technical Writing and Communication 18, 1 (1988), 35-54.

Abstract: This article is concerned with reviews, surveys, tests, and
other formal procedures used in writing for the computer industry that
are designed to provide authors and publications managers with
information about the quality and nature of documentation. The
literature in this area reveals a number of problems with feedback in
hightech writing, including the lack of a consistent definition of
feedback processes. The article investigates various types of reviews,
theoretical aspects of feedback, and elements of feedback specific to
hightech writing. This investigation yields three consistent perspectives
on feedback: management, style and rhetoric, and research.

This article treats feedback practically by looking at current methods
and theoretically through discussions of communication theory and
automation. Barker’s effort is mostly definition and survey; there’s no
“how to” here. But the article may be useful for comparisons between
technical reviews and testing documents; “another of the parallels
between hightech writing and software development is in the
teamwork characteristic of both.”

Barnum84

Barnum, Carol, and Fischer, Robert. “Engineering Technologists as
Writers: Results of a Survey.” Technical Communication 31, 2 (1984),
9-11.

Abstract: This article presents the results of a 1982 survey to learn the
importance of communication skills to engineering technologists on
their jobs. Similar surveys have assessed the importance of
communication skills for engineers and for technicians, but none has
polled engineering technologists. Knowing the attitude of students—
”Why do we have to take so many English courses?”—the authors
wanted to know whether that attitude changes after these students begin
working. It does, they say.

The authors report on the 20% return from a sample of 1500 Southern
Tech graduates representing “technology degrees in the civil, electrical,
mechanical, industrial, architectural, textile, and apparel fields.”
These results should alert students to the importance of good
communication skills; for example: 91% felt that their writing was
either “important” or “very important” to their work; 73% noted that
advancement involved an increase in their own time spent writing; and
75% rated organization of ideas as the “most important” skill needed on
the job. Additional survey results on technical communication can be
found in [Olsen83].

Technical Writing for Software Engineers SEI-CM-23
44

Atlas81

Atlas, Marshall A. “The User Edit: Making Manuals Easier to Use.”
IEEE Transactions on Professional Communication PC24, 1 (Mar.
1981), 28-29.

Abstract: Possibly the simplest way to make a technical manual easier
to use is a “user edit”—that is, having an inexperienced user try to work
with a machine, using only its manual as a guide. His errors and
hesitations should tell you where the weak points are. This report
describes how to set up such tests, what to be careful of, and some of the
benefits you can expect.

A short, succinct, and useful article on informal and formal testing
with the user edit. Students writing technical manuals should
understand that this testing is necessary, and not ideal, practice.

Baecker88

Baecker, Ronald. “Enhancing Program Readability and
Comprehensibility with Tools for Program Visualization.” Proceedings
of the 10th International Conference on Software Engineering, 1988,
356-366.

Abstract: In order to make computer programs more comprehensible,
the presentation of program source text, program documentation, and
program execution needs to be enhanced over its conventional
treatment. The paper describes a number of new techniques and tools
developed to achieve these ends. One of these is a novel design for the
effective presentation of source text in the C programming language
using high-quality digital typography, and a processor which
implements the design. Some experimental evidence is summarized to
demonstrate that the resulting source text presentation is significantly
more readable and comprehensible than the presentation
conventionally used today. Brief descriptions are also given of two other
techniques, the development of a novel system of structured program
documentation incorporating both texts and graphics, and the portrayal
of program execution with coloured computer animation.

Baecker’s hypothesis “that a program’s appearance dramatically
affects its comprehensibility and usability” is empirically confirmed;
subjects’ performance, as measured on a comprehension test, increased
by 25%. There is brief but good coverage of the design principles that
have guided the experimentation and the recommended framework
that applies these principles. Baecker also touches on the issue of
programs as publications, noting that this work “represents another
step toward Knuth’s goal of literate programming.”

SEI-CM-23 Technical Writing for Software Engineers
43

Bibliography

Anderson83

Anderson, Paul V., Brockman, R. John, and Miller, Carolyn R., eds.
New Essays in Technical and Scientific Communication: Research,
Theory, Practice. Farmington, N. Y.: Baywood Publishing Co., 1983.
Baywood Technical Communication Series, Vol. 2.

The editors rightly maintain that these twelve essays represent the
best of current scholarship. The volume is divided into five parts: (1)
Empirical Research, (2) Reassessing Readability, (3) Approaches from
Rhetoric, Discourse Theory, and Sociology, (4) Historical Perspectives,
and (5) Redefinition. Parts 2 and 3 will be the most useful background
reading for the instructor, especially the following: Flower, Hayes, and
Swarts’ “Revising Functional Documents: The Scenario Principle,”
Huckin’s “A Cognitive Approach to Readability,” Winkler’s “The Role of
Models in Technical and Scientific Writing,” Zappen’s “A Rhetoric for
Research in Sciences and Technologies,” and Selzer’s “What
Constitutes a ‘Readable’ Technical Style?” “What’s Technical About
Technical Writing?” is a fine conclusion that raises thoughtful
distinctions between technical writing and writing technically.

Andrews82a

Andrews, Deborah C., and Blickle, Margaret D. Technical Writing:
Principles and Forms. New York: Macmillan Publishing Co., Inc., 1982.

This was one of the first textbooks to take a process approach (define,
describe, and so on). It has good examples but is more appropriate for
younger students.

Andrews82b

Andrews, William D., and Andrews, Deborah C. Write for Results.
Boston, Mass.: Little, Brown, 1982.

The authors provide a number of charts and graphs to explain aspects
of the writing process. They raise questions about what audience
analysis really means and consider the implications and applications of
such an analysis. The book also presents the connection between
audience and purpose through an example of the same subject matter
written for five different sets of readers.

Technical Writing for Software Engineers SEI-CM-23
42

Part V, “Readability,” is a good source of reading assignments and
exercises. Software engineering students will also benefit from the
exercises in Chapter 17, “Instructions, Procedures, and Computer
Documentation.”

[Tichy88]
Tichy’s advice and examples can be selected as supplementary
readings when specific topics arise. We particularly recommend
Part 3, “Style,” and Appendix A, “Fallacies to Forget.” The book
also addresses levels of edit (Ch. 2), outlining (Ch. 4), and
standards of correctness (Ch. 6-9).

[Williams89]
Williams provides a good introduction to some basic principles.
However, most of the exercises focus on local issues. Exercises can
be selected based on the problems that are evident in students’
writing.

[Flower89]
The self-exam (pp. 46-48) and the checklists for structure and
diagnosing problems (pp. 131 and 257) provide the basis for several
exercises.

Examples of think-aloud protocols appear in Chapter 2.

Issue trees can be found in Chapters 1 and 7.

Other material that students might find helpful are the descriptive
models of the writing process (p. 52) and information about cues for
the reader (p. 256).

[Pesante92]
The SEI Technology Series contains a videotape that introduces
many of the concepts presented in this curriculum module.
Because it features statements by software engineering students,
the tape can be used as motivational tool as well as an introduction
to writing.

SEI-CM-23 Technical Writing for Software Engineers
41

Below are two approaches to grading documents: wholistic grading and
detail grading. Each has a place in evaluation, and both are valid.

In wholistic grading, the instructor reads each paper quickly and
assigns a grade without going back to diagnose specific problems. The
wholistic grader usually writes a comment on the end of the paper.
Wholistic grading saves time and allows the teacher to respond to
overall quality and global issues such as logic, organization, coherence,
and tone. However, low-level errors such as grammar and spelling
errors may be overlooked; and only extremely awkward sentences may
be noticed.

In detail grading, the instructor reads each paper carefully, identifying
strengths and weaknesses along the way. The detail grader usually
writes many comments in the margins of the paper and circles (or
corrects) problems and errors. Sometimes a marginal notation can be
tagged to a fuller comment at the end of a paper, and sometimes
students are referred to a specific section in the textbook. Detail
grading, though it takes more time, provides the student with concrete
feedback. However, this approach often leads instructors to focus on
local issues and neglect global ones.

A compromise would be to assign a wholistic grade to a document and
read it a second time for a particular set of details. Other approaches are
to use wholistic grading at one time and detail grading at another, or to
give two grades on a single assignment.

Section 5.1.1 of the annotated outline provides information about global
issues, and Section 5.1.2 addresses local issues. The technical writing
textbooks we have recommended are good sources of information about
both.

Documents that students typically write for software engineering
courses should be the basis for writing instruction. The following are
presented for instructors who wish to include supplementary exercises
and material.

[Olsen91]
Chapter 1, “Why Study Technical Communication,” contains
excellent support material for motivating students who don’t
believe engineers need to be good writers.

Exercises
and
Support
Materials

Technical Writing for Software Engineers SEI-CM-23
40

Evaluating the process
Students should be required to submit drafts and notes from peer
reviews or user tests when they submit the final document. Since
students need to receive feedback throughout the writing process, not
just at the end, they should be rewarded for using this feedback to
improve their work. They should also be rewarded for providing
constructive feedback to others, and for being able to evaluate their own
work and make improvements.

Other factors in the grade for writing might include: credit for providing
peer reviews for other students, conducting tests, and participating in
classroom activities. This credit can take the form of checkmarks or
points rather than letter grades. The chart below illustrates two
systems used by the authors of this module. We convert the
accumulated checks or points to a percentage of the final grade.

Evaluating the product
Evaluating writing is not a matter of determining right and wrong so
much as it is a matter of noting what works—and what works best out
of a number of options. Often, evaluators know instinctively that one
paper is clearer and easier to read than another. Linguistic principles
provide good criteria for identifying why a document “works.” The areas
of document design, discourse analysis, and rhetoric also provide
criteria for giving feedback on drafts and awarding a final grade on the
finished document. Although students should be evaluated primarily on
the effectiveness of their writing, they should also be graded on
correctness—spelling, punctuation, and grammar. (See Sections 1, 4, 5,
and 6.2 of the annotated outline.)

Another consideration in determining a grade is whether the final
product is better than the earlier drafts. Two-stage grading is one way
to recognize the values of drafts and final versions. Both are graded, but
the final effort is worth twice as much as the draft. The grade for the
draft recognizes and encourages a good start; the grade for the final
version recognizes and encourages improvement.

Quality Checkmarks Points

exceptional ✓ ✚ 3

acceptable ✓ 2

poor (or incomplete) ✓ – 1

not done no credit -1

SEI-CM-23 Technical Writing for Software Engineers
39

Students can also gain valuable feedback when another student
“reverse engineers” a draft, for example by creating an outline or issue
tree from the document (Section 4.2.1 discusses issue trees). Problems
with organization and hierarchy often come to light through this
technique. For some documents, it may be appropriate to ask students
to have a member of their intended audience do a think-aloud protocol
or perform a task on the basis of their written instructions.

Other activities:

• Ask students to write a problem or purpose statement for the
paper they are reviewing or to infer the characteristics of the
intended reader.

• Have students do a series of quick reviews of the same draft.
They might read once looking for extraneous information and
gaps in information, once for ambiguity, once for sentences
that are awkward or that violate linguistic principles (see
Section 5 of the annotated outline), and once for errors in
grammar and punctuation.

• When an assignment is complete, students can benefit from
one another’s experience by receiving feedback en masse. After
you have graded the final document, duplicate examples of
typical problems (with students’ names removed) and ask the
class to diagnose problems and suggest improvements. It’s
also instructive to provide samples of effective writing; ask the
students to explain why particular samples are effective—and
ask them to suggest further improvements.

Practice
Practice is valuable even when teachers don’t grade, or even read, every
piece of writing. In addition to relying in part on peer reviews, you can
have students keep portfolios of their writing and use spot grading (in
the sense of spot checking) to encourage practice. See [McLeod88] for a
description of this technique.

Writing should account for a percentage of the grade on every technical
document that students write, and it should account for a percentage of
the final course grade. Moreover, instructors should take into account
their students’ activities during the writing process (see Section 4) as
well as grading the written products (see Section 5).

Evaluating
Writing

Technical Writing for Software Engineers SEI-CM-23
38

two from students’ drafts and revise using an overhead projector and
transparencies. For pedagogical and other reasons, choose examples
that contain a typical problem, not one that is peculiar to an individual
student.

Demonstrate the writing process by creating and working with a short
piece of text (about 100 words). In 20 or 30 minutes, the class should be
able to produce a draft and evaluate and revise it several times.

Bring examples of your best writing to class and discuss what you have
done. In his mathematical writing class, Knuth regularly discussed his
writing with his students [Knuth88]. We have used this technique in
our own teaching: each week, students received a new draft of the
instructors’ work, along with a five-minute description of how the paper
had changed and why. Before long, the students could identify many
intervening activities: refining the task definition, learning more about
the audience, generating new ideas, changing the schedule, responding
to reviewers’ comments, overcoming writer’s block, etc.

Provide outside examples of how people write and how they read.
Flower provides two small samples [Flower89]. Faculty in the
psychology department, English department, or education program of
your school might also be able to provide samples or information about
other sources. Also consider making your own “think-aloud” tape the
next time you plan, write, or revise a paper; it is sure to hold your
students’ attention. If you don’t care to tape your own process, perhaps
some of your colleagues or members of your writing faculty would be
willing. Tapes of collaborators are particularly interesting.

Student involvement
Self-evaluation precedes peer review, but students can critique and
teach each other. Working in pairs or in small groups, they can provide
feedback on every activity in the writing process (peer conferencing) and
evaluate each other’s drafts (peer review). Students who are new to
these activities may need clear structure—a peer review form with
specific questions, for example. A few students may need to be reminded
to be sensitive to the writer’s feelings when offering feedback; and it
should be clear to all students that the purpose of these activities is
constructive—to provide information that will help them improve their
documents.

SEI-CM-23 Technical Writing for Software Engineers
37

It can’t be denied that teaching writing involves substantially more
work than not teaching it. To become effective writers, students need to
write drafts and get feedback on those drafts; they need to revise their
work based on analysis and evaluation. They also need to receive credit
for these activities, not simply a grade on the final product. Fortunately,
many of the techniques for teaching writing effectively also help control
the workload.

Team teaching
Team teach with a member of the English department who is familiar
with the material in this module; that is, one who can draw on the
analogies between the domains and provide process-based instruction.
Knuth, among others cited in the bibliography, taught a course with a
technical writing instructor; he describes in detail the logistics of that
arrangement and the roles each instructor played [Knuth88]. Team
teaching has also been used in Carnegie Mellon’s Master of Software
Engineering program—a computer science professor and one of the
module authors recently co-taught a software development seminar.

In a modified version of team teaching, arrange for an English teacher
to provide feedback on drafts and grade the final product. The technique
is particularly effective if this teacher speaks to the class about writing
issues related to the feedback they receive.

Another technique is to seek advice from a technical writer or a teacher
of technical writing. At Carnegie Mellon, an instructor worked with one
author of this module to structure writing assignments, determine the
focus of each, and select ways of providing feedback. A few hours of
consultation (in this case, less than six hours for the semester) can be a
great help. See [Pesante91] for suggestions on getting help with writing
instruction.

Demonstrations
Through demonstrations, you show your students how to be effective
communicators. Demonstrations can take many forms, such as the
following:

When you give a writing assignment, start it for the students either
with a handout or on the board. It’s not unusual for a writing
assignment to provide a problem definition or identify the audience and
some of the constraints. You might choose to use a portion of the
assignment for an in-class exercise that must be completed later. Select
an item from the analysis or planning sections of this module (Sections
4.1 and 4.2) as the focus for the exercise. Or, later, select a paragraph or

Specific
Teaching
Techniques

Technical Writing for Software Engineers SEI-CM-23
36

Selecting topics
It is not possible for instructors to address every writing issue in every
assignment. An exception might be a document written over a longer
period of time; for example, a user’s guide that is assigned early in a
course and is due at the end of the course. Regardless, it is more feasible
to ask students to pay attention to different aspects of writing at
different points in the course.

Students must write drafts of their documents, so the same document
can be used to address a number of writing issues. For example,
students might concentrate on purpose statement and organization in
one draft of a document, appropriateness for audience and purpose in
another, and style in another. The goal should be to bring more and
more skills to bear on the writing process.

Similarly, it is not likely—or necessary—that instructors give the same
amount of attention to each writing topic in all courses. For example, a
teacher might stress task definition and audience analysis in a course
on requirements or specifications and only mention techniques for
generating text.

More examples
Other examples of incorporating writing instruction into regular
assignments:

• Require a written product plan for one document students
normally write for the course, or develop the plan in class
before students begin writing.

• Discuss strategies for generating text. This can be done in one
block of time or by introducing one strategy at each of several
class meetings. Ask students to identify which strategies they
have used, effectively or ineffectively, either in your class or in
another.

• Provide several examples of a document students will write
and ask them which ones are good, and why. You can address
both content and writing issues this way. Following
[Knuth88], provide examples of programs—they’re
documents, too—and do the same thing.

SEI-CM-23 Technical Writing for Software Engineers
35

If you ask students to provide written information about themselves on
the first day of class, you could begin your instruction there. The
document involves a writer (the student), a reader (you), subject matter
(the information you request), and a signal (written English language).
It’s up to you to explain the purpose since you have made the request.
Teaching by this example doesn’t take much class time, but it is very
effective. Students who are consistently exposed to the same kind of
instruction and concerns will gradually gain an understanding of
rhetorical situations and skill in applying that understanding when
they write.

Defining the term document
Keep in mind that document is a very broad term. All of the following
are documents. They are written for readers and to achieve a purpose.

• The information sheet you request on the first day of class,
even if you merely ask for name and user-id on an index card.

• A bulleted list identifying the requirements for a software
system.

• The minutes of a planning meeting.

• The written results of a technical review.

• A summary of a journal article.

• A progress report.

When students become aware that everything they write is a document,
they have taken the first step beyond thinking about writing only in
terms of formal papers or graded work.

Instructors should be aware, too, that every piece of writing they give to
their class is a document and that the standards they set (or do not set)
are primary examples for the students. Instructors must demonstrate
that they mean what they say about quality writing. Good quality is
essential for documents such as:

• Course outlines.

• Course descriptions in the catalogue.

• Homework assignment statements.

• Long-term project requirements.

• Software/document requirements.

• Administrative memos.

Technical Writing for Software Engineers SEI-CM-23
34

We believe that students should learn to write by working on the same
types of documents they will write as software professionals. In
software engineering courses that already include these documents,
instructors do not need to assign special papers. Rather, instruction will
be most effective when the material in this module is tied to the content,
writing activities, and assignments that are ordinarily part of the
technical courses. For example, if students are asked to write a
requirements document or a project plan, that document should be the
basis for the writing instruction. (For a discussion of skill transfer, see
the Philosophy section in the preface of this module.) Criteria for
grading students’ work should address both the technical content and
the quality of the writing.

We advise against teaching writing in a separate course. If students do
receive instruction in a separate course, the material must be reinforced
in the students’ technical courses. Only this kind of continued effort will
address the problems of ineffective communication.

The following sections contain suggestions on how to incorporate
writing into software engineering courses and how to evaluate student
work. We offer these suggestions as a place to begin. Additional advice
and examples from our experience appear in [Pesante91, Levine91]. For
examples of other teachers’ activities, see [Hartman89, Rice84,
Meinke87].

We encourage you to exploit your knowledge of software development in
order to place the material in this module into context for your students
and to develop additional analogies and examples.

Providing instruction
Ongoing attention to writing issues is more effective than direct
instruction with little or no follow-up. Here is one example of what we
mean by ongoing attention: In every course students should be
introduced to or reminded of the communication triangle (see Section 1
of the annotated outline). Since the communication triangle does not
explicitly address purpose, students should also be reminded that every
document has a purpose and that someone will read it. Even class notes
are read by the person who wrote them—and many students will have
had the experience of rereading and not understanding their own notes.
This introduction may take five or ten minutes of one class period. Then,
when students must write a document, they should be asked to identify
the reader, subject matter, and purpose of the document. You may ask
them to write this down, or you could ask the question and get their
answers when you explain the assignment.

Incorporating
Writing into
the Software
Engineering
Curriculum

SEI-CM-23 Technical Writing for Software Engineers
33

Primary Texts
If students are to use only one book, we suggest [Olsen91]. It contains
material on a substantial number of the topics addressed in this
module. See the bibliography for further information about this text.

If students are to purchase more than one book, we recommend
[Tichy88] and [Williams89]. Tichy is down-to-earth and thorough, but
she doesn’t provide practice exercises. Williams is equally sensible and
a bit more sophisticated; his book contains exercises but is not as
complete. All three books could be used throughout an academic degree
program and as references on the job. Inexperienced writers may find
[Flower89] helpful, but they may be offended by the simplistic language
and examples that are geared to freshmen.

Supplementary Material
In addition to the recommended textbooks, we suggest that the
following books be put on reserve in the library or excerpts distributed
to students: [Felker81, Mattes76, Tufte83, Anderson83, Odell85]. These
selections contain good supplementary material for both students and
teachers. [Felker81] provides guidelines for writing and document
design, along with a brief description of the research on which each
guideline is based. The strength of [Mattes76] is in the way it ties
problem statements and audience analysis to organizational settings.
We highly recommend [Tufte83] for its information on how to present
scientific and technical data in charts, tables, and graphs. [Anderson83]
and [Odell85] are considered classics in the technical writing field. They
include essays and reports on research.

Another source of material is the Society for Technical Communication
(STC). The proceedings of their annual International Technical
Communication Conference (ITCC) contains a wealth of information on
subjects such as technology and visual arts as well as writing, editing,
and teaching. Although the quality of the contributions varies, there is
more consistency among the academic sources. The STC also publishes
a journal, Technical Communication.

Members of ACM SIGCSE (the Association for Computing Machinery -
Special Interest Group on Computer Science Education) occasionally
present their experiences with teaching writing in technical courses.
The group holds an annual conference and publishes SIGCSE Bulletin.

Other sources include the following journals: Journal of Technical
Writing and Communication, Technical Communication Quarterly
(formerly The Technical Writing Teacher), Journal of Business and
Technical Communication, and College Composition and
Communication.

Resources

Technical Writing for Software Engineers SEI-CM-23
32

• Plan a document and revise that plan when necessary.

• Create an architecture for a document (that is, an overall
design) and revise that structure when necessary.

• Write and revise a document, beginning with a problem
definition.

• Use linguistic principles to analyze and evaluate a draft.

• Participate effectively in a peer review.

Metacognitive
The following goals have been labeled metacognitive because they
identify the ways in which students should be able to think about their
own writing process.

Students will gain self-awareness about their own writing process; they
will be able to:

• Identify the planning techniques they use and informally
evaluate the efficiency of those techniques.

• Identify the organizational (architectural) techniques they are
using and informally evaluate their effectiveness.

• Identify their strategies for structuring a document and
generating text, and informally evaluate the effectiveness of
those strategies.

• Explain their rationale for revision.

For teachers: The module and the references it cites provide sufficient
information for a software engineering instructor to incorporate writing
into a technical course. Although no prerequisite knowledge is required,
teachers will need varying amounts of time to prepare to teach writing.
Familiarity with areas such as rhetoric, linguistics, and cognitive
psychology will decrease the amount of preparation that will be
necessary. It is helpful—and recommended—but not essential to seek
advice from experienced teachers of writing.

For students: No prerequisites are required, but we assume that
students have some familiarity with software development. A previous
writing course is helpful, especially a technical writing course. Courses
that focus on the process of writing would be most helpful.

Prerequisite
Knowledge

SEI-CM-23 Technical Writing for Software Engineers
31

Affective
All students should achieve the following objectives after receiving
instruction based on the material in this module:

• Realize that writing and software development are problem-
solving activities and that skills used during software
development resemble those used in writing.

• Appreciate the importance of writing in the software
development process and, especially, understand the problems
that result from seeing documentation as an add-on function
rather than an integral part of the software life cycle.

• Appreciate the importance within the writing process of
analysis, planning, testing, and revision.

• Realize that technical communication is rhetorical (i.e., that
writing is done in a context that affects writers’ choices) and
that simply following a formula will not guarantee a good
document.

• Become aware of the difficulty, complexity, and effort involved
in writing a precise and readable document.

Cognitive: Knowledge/Comprehension/Application
The objectives in this section represent the foundation for achieving the
goals listed in the next section, Analysis/Synthesis/Evaluation.
Students will be able to:

• Define or describe components of the rhetorical situation and
the communication triangle.

• Identify the components of their rhetorical (writing) situation:
Who is the primary audience? Who are the other audiences?
What are the constraints on the document, writer, audience?
What are the goals for the document, writer, audience?

• Apply their understanding of discourse communities to
identify some of the characteristics of the software engineering
discourse community.

Cognitive: Analysis/Synthesis/Evaluation
Students who achieve the following objectives are likely to become
effective writers in the workplace. They will be able to do the following:

• Analyze the rhetorical situation before writing a document;
evaluate the appropriateness of a draft for an identified
rhetorical situation.

Technical Writing for Software Engineers SEI-CM-23
30

Teachers should encourage students to explore the analogies whether or
not they assign readings from the section. By making connections
between their technical field and the field of writing, students will learn
more efficiently, perhaps in both domains. They will more easily
transfer software skills to writing tasks, and they are more likely to
view writing as relevant part of their professional development.

Section 4. The Writing Process – teachers and students
While the analogies section provides the stimulus for learning, this
section provides the substance. Because the material is about doing
rather than knowing a hands-on, workshop approach is essential.
Students will benefit most from short lectures, much practice, and much
feedback.

Section 5. The Written Product – teachers and students
Readers often know instinctively whether a document is good or bad,
effective or ineffective. The material introduced in this section enables
a reader, especially the teacher, to diagnose writing problems and find
solutions. The section introduces functional principles and a vocabulary
for discussing why a document isn’t good and explaining how it can be
better.

By the time students complete their program of study, they should have
a firm understanding of the material in Sections 1 and 5 and should
have mastered most of the material in Section 4. (One exception is the
material in Section 4.4 Testing— students need to be aware of the need
for testing and know that formal tests exist, but few instructors will
have the time to teach students how to perform these tests.)

Instruction based on the material in this module should address the
objectives listed below. It is difficult to set priorities on these objectives.
In teaching writing, it’s not so much a matter concentrating on some
objectives and leaving others to be achieved in other courses; all the
objectives must be addressed at some level. Students who gain only
content knowledge will not necessarily have learned how to write
effectively. Rather, as they learn more about writing—and receive
feedback on the writing they do—students will achieve each objective to
a greater degree.

Objectives

SEI-CM-23 Technical Writing for Software Engineers
29

Teaching
Considerations

This module outlines a body of knowledge about writing. Although the
order of topics gives the instructor an understanding of the field, it isn’t
the optimum order for teaching. The list below identifies the intended
audience of each section of the annotated outline and gives a brief
explanation of its content. Sections 1, 4, and 5 contain the material that
will help students learn to write effectively; Sections 2 and 3 are
primarily background for the instructor. Grading criteria can be drawn
from Sections 4 and 5.

Section 1. Rhetorical Situation – teachers and students
This section discusses the larger contexts within which the writing
process takes place. Writers who don’t take context into consideration
are unlikely to be effective communicators.

Section 2. Views of Writing – teachers
This material, which gives a broad picture of the field, is background for
teachers. It has two purposes: to help them identify how our material
fits into the field in general and to provide a framework for
understanding the relationships among the references we cite.

Section 3. Analogies – teachers (primary), students
(secondary)
The section is, essentially, a bibliographic essay—an introduction to
what has been written on the similarities between software
development and writing. We present the information as a starting
place; we intend for teachers to extend these analogies and, most likely,
develop new ones. The analogies provide a perspective on the writing
process that will allow teachers to tailor instruction to software
engineering students.

Using the
Annotated
Outline for
Teaching
Writing

Technical Writing for Software Engineers SEI-CM-23
28

SEI-CM-23 Technical Writing for Software Engineers
27

characteristics of the audience) into consideration; the persuasive
use of language.

satisfice
in general, to accept an adequate but less than perfect solution to a
problem; in writing, to accept a less than perfect expression or form
and continue with the writing process; to determine that a solution
or expression is good enough for a given situation.

writing across the curriculum
educational position that supports the teaching of writing in courses
offered by many academic departments; the integration of writing
instruction into content courses on many topics, not only
composition courses.

Technical Writing for Software Engineers SEI-CM-23
26

discourse
verbal expression in speech or writing.

discourse analysis
the study of expression in speech or writing. Discourse analysis
focuses on language in use, not formal properties of language
independent of purpose or function. The term often covers research
in intersecting disciplines, including sociolinguistics and
psycholinguistics (see linguistics).

document design
a term that refers to both the verbal and visual aspects of a
document and the ways they work together. Document designers are
concerned with creating documents that communicate clearly and
are easy to use. Guidelines for document design, which are primarily
based on principles of cognitive psychology, take into consideration
factors such as readers’ comprehension and the usability of the
document.

heuristic
a guideline, not a rule, used in solving a problem or carrying out a
process.

lexical cohesion
meaningful relationships between words and/or smaller word units
(morphemes); these relationships connect sentences, paragraphs,
and larger units of text in ways that tie the text together.

linguistics
the study of the nature and structure of language. Psycholinguistics
is primarily concerned with language comprehension.
Sociolinguistics places stress on social context and the social
interactions that are a part of language use.

positivism
the theory that knowledge is based on natural phenomena as
verified by empirical science.

protocol
the results of a research procedure in which individuals are tape
recorded as they think aloud while they are performing a reading or
writing task.

rhetoric
the study of the elements (including invention, arrangement, and
style) used in writing and speaking; effective expression, created by
a communicator who has taken context (including purpose and the

Glossary

SEI-CM-23 Technical Writing for Software Engineers
25

each contributing expertise during all the activities of the
writing process described in Section 4 [Dunkle88].

For more on collaboration, see [TechComm91, Houp92, Bruffee84,
DohenyFarina86, Kraemer88].

6.2 Document Design

Document design is an “umbrella term” that covers the verbal and
visual aspects of written documents and the ways they work
together.

Document design issues can be divided into three categories,
though there is particular overlap between the last two. The
following list contains a sample of the topics in each category and
pointers to appropriate references.

1. Visual aspects of written language: Topics include
typography; appearance on the page (margins, columns,
length); and physical arrangement of verbal cues
(headings, lists, etc.).
[Houp92, Felker81, Olsen91, Rehe81, Redish89,
Brusaw76, Duffy81]

2. Graphic representation of information: In technical
writing, the most common are graphs, tables, and
diagrams.
[Tufte83, Olsen91, Brusaw76]

3. Combining words and graphics: Topics include graphic
cues (bars, symbols, etc.), page layout and formatting;
deciding when to use words and when to use graphics;
understanding how written text and graphics work
together, and how people read and use them.
[Tufte83, Watzman87, Redish87]

Several authors discuss software issues specifically [Bentley86a,
Bentley86b, Baecker88].

Technical Writing for Software Engineers SEI-CM-23
24

Grammar and punctuation. Issues of punctuation and grammar
are covered in many texts and handbooks [Tichy88, Williams89,
Olsen91, Chicago82]. Good writing should be correct. Error
undermines the writer’s credibility, and some readers simply
will not read text that is riddled with error. However, a
document can be error-free and still not achieve its purpose.
Tichy points out, “Avoidance of error does not of itself constitute
good writing.”

When consulting handbooks, writers will find that the rules of
usage change over time, and, more confusing, authorities do not
always agree on what the rules are at any given time. Williams
gives advice on dealing with this problem [Williams89].

Spelling. Spelling is an issue that can be handled in part by spell
checkers on word processors. However, writers should
understand the limitations of the technology; for example, a
word misspelled to be another word will not be caught (it/its;
garage/garbage). Use of a spell checker does not eliminate the
need to proofread.

6 Other Considerations

The following sections note two areas of concern that are highly relevant
to technical writing but move beyond the fundamentals—collaborative
writing and document design. These sections are a starting point for
instructors who wish to extend their writing instruction to address
these topics.

6.1 Collaborative Writing

Collaborative writing is becoming increasingly common, especially
in projects that involve large teams; and the subject is receiving
new attention in writing research. Collaboration takes a number of
forms; the following are examples:

• Text is generated in “chunks” by individuals, then spliced
together later, with one person designated as editor.

• Two or three people work on a single piece of text; one also acts
as a recorder of ideas. They produce a prototype document;
each contributor reads and comments; and each edits the later
drafts, performing the level of edit appropriate to his or her
strengths—from the technical expert who verifies content to
the language expert who checks grammar and punctuation.

• A software practitioner or group works with a technical writer,

SEI-CM-23 Technical Writing for Software Engineers
23

Hierarchy is important for highlighting information.
Christensen provides concrete information about effective
sentence and paragraph structure [Christensen78]. When
material is arranged in a hierarchy that is clear to the reader,
readers’ comprehension, as well as their speed of comprehension,
is greater. One reason is that top-level content is more
prominent and receives more attention from the reader
[Meyer82]. Readers call top-level information to mind frequently
as they tie in details.

Writers identify hierarchy when they are planning a document.
As they write, test, and revise, the ways they communicate the
hierarchy may change and sometimes the hierarchy itself may
need to change. Outlines and issue trees are tools for both
planning and evaluating hierarchy. Writers can derive (or have
test subjects derive) an outline or issue tree from a text to
determine its completeness and the effectiveness of its
arrangement [Flower89, Olsen91]. See Section 4.2.1 for a
discussion of product plans, including outlines and issue trees.

Although there are other ways to highlight information, such as
lists and typography, they have not been specifically addressed
in this module. For more information, see Huckin’s paper in
[Anderson83] and the references listed in Section 6.2.

5.1.2 Local concerns
Writing sentences. Linguists refer to the meaning of a sentence
as its deep structure and call the grammar of a sentence its
surface structure. The deep structure is the idea in the writer’s
mind, and the surface structure is the written sentence. Writers
transform deep structures into various surface forms, choosing
one that effectively communicates their meaning to their
readers. For information on effective sentence development, see
[Tichy88, Williams89, Andrews82a].

Functional sentence perspective (FSP) is a way to approach
sentences in terms of their larger context—it provides heuristics
for revising on the sentence level while keeping the more global
issues in mind. It is another source of cohesion (see Section
5.1.1). Good coverage of functional sentence perspective can be
found in [vande Kopple82, Olsen91]. vande Kopple provides
guidelines for revision, and Olsen offers many examples and
some exercises. Williams embeds similar information in several
of his lessons [Williams89].

Technical Writing for Software Engineers SEI-CM-23
22

Effective writers consciously or unconsciously apply principles of
linguistics and discourse analysis when they write. Writers use
these principles to generate, evaluate, and revise their text. For
teachers, these principles provide a basis for evaluating student
work and enable them to provide constructive feedback and assign
grades.

Principles of linguistics and discourse analysis differ from
traditional handbook rules of usage, grammar, and punctuation.
Handbook rules tell a writer how to avoid being wrong according to
the current conventions. (Williams has a useful and realistic
discussion of rules, nonrules, optional rules, and betes noires
[Williams89].) In contrast, principles of linguistics and discourse
analysis help writers make choices that enable them to
communicate effectively with their readers. These principles are
based on research on how readers process information. They are
applicable even when the writer must follow a template or use a
formal standard (see Section 1.4.2.1).

General references for Section 5.1.1 and Section 5.1.2 are [Olsen91,
Brown83], which contain nearly all the information an instructor
is likely to need. Additional sources, when necessary, are cited
within individual subsections.

5.1.1 Global concerns
Cohesion is the way elements of the text (units of thought,
sentences, paragraphs) are tied together. These explicit ties,
which are part of the surface structure of the text (see Section
5.1.2) help readers to understand the connections between ideas
and between parts of the document. Some ways of achieving
cohesion include hierarchical structure, parallelism, and word
choice.

Coherence, which moves beyond issues of cohesion, involves the
underlying semantic unity of the text. Coherence, in a sense,
deals with the ties between the text and the reader. In Lessons
2 and 3, Williams describes how writers can effectively convey
meaning; that is, how they can make their sentences work
together throughout the whole document by revealing to the
reader bit by bit, in a logical sequence, the meaning that the
writer would like to convey. Williams’ recommendations, which
include using tightly linked sentences and paragraphs, explain
how writers can increase the likelihood of readers understanding
and decrease their chances of misunderstanding [Williams89].

SEI-CM-23 Technical Writing for Software Engineers
21

ways to combine pieces of information, or identify information that
should be added or excluded. In addition to relying on their own
judgment, writers use feedback from reviewers and formal test
results as the basis for their decisions.

In later drafts, levels of edit become the focus. When using levels of
edit, the writer makes multiple “passes” through a document for
maximum efficiency. For example, one pass might focus on
whether the tone is appropriate for the audience. During other
passes, the writer addresses other high-level issues such as
organization, logic, or cohesion. Later, the focus might be sentence
structure or word choice, and so on, down to grammar and
punctuation. Olsen provides several chapters on editing and one on
proofreading [Olsen91]. Tichy gives editing advice and provides a
section standards of correctness [Tichy88]. For a discussion of the
differences between experienced and inexperienced writers, see
[Sommers80].

4.6 Maintaining

Many documents produced in software organizations are organic,
i.e., they are not truly finished when they are released but must
change over time to reflect changes in the software or the operation
of the system. Sometimes change pages are released to indicate
local changes in the document; other times, the entire document is
rewritten and re-released to reflect major changes, describe
enhancements, or correct mistakes. If a document requires major
redesign, maintenance might become a salvage operation to gather
bits of usable text.

Technical writers are developing strategies for writing documents
for ease of maintenance while keeping in mind problems of version
control and configuration management. Reuse and modular
construction are popular approaches. (See [Jones88] for an
example.)

5 The Written Product

5.1 Principles of Linguistics and Discourse Analysis

This section is an introduction to the vocabulary needed to talk
about the features of well-written documents and to explain
problems in documents that are not well written.

Technical Writing for Software Engineers SEI-CM-23
20

4.4.2 Formal testing
In addition to ongoing evaluation by the writer and others, more
formal tests should be performed. For documents written for the
public, writers perform formal tests on the alpha and beta
versions of the document, if time and budget permit. Formal
testing is also appropriate for critical internal documents.

Subjective tests include structured interviews (in which readers
are asked focused questions), paraphrase tests, and protocols.
Verbal protocols require the subject to think aloud while reading
the document; motor protocols (user edits) require the subject to
think aloud while performing a task described in the text. A
formal technical review by subject matter experts is another
form of subjective test.

Commonly used objective tests include readability formulas,
style programs, and performance tests (speed and accuracy in
performing specific tasks based on the reader’s comprehension of
the text). Duffy [Duffy85] and Selzer [paper in Anderson83],
among others, caution against relying too heavily on readability
formulas.

Because writers are so familiar with their subject matter, they
risk making incorrect assumptions about the audience. It is
difficult, for example, to determine what an inexpert audience
knows about a technical subject. Therefore, tests performed by
the end user of a document provide writers with particularly
valuable information. These tests help writers to verify that the
document meets the readers’ needs, identify weaknesses in the
document, and determine how to improve it [, Bond85, Bond85,
Olsen91, Wright83].

4.5 Revising

Revision is an ongoing part of the writing process. Just as writers
continue to analyze and evaluate as they write, they continue to
revise. And they may revise their plans as well as their document.
In some cases (for example, when requirements have changed or
testing has uncovered serious problems) a revision may require a
thorough redesign.

During revision, a document may go through a series of focused
iterations (see Section 4.3.2). For example, in the early drafts,
writers might concentrate on determining whether the
information is complete and accurate, and whether the level of
detail and level of difficulty are appropriate. They may look for

SEI-CM-23 Technical Writing for Software Engineers
19

Introductory and background materials often are the portions
that can be moved from one document to another. Reuse also
relates to the development of templates, which provide the
framework of a document without constraining the linguistic
choices and without entirely limiting the content choices.
Standards are one type of template.

4.4 Testing

4.4.1 Informal testing
Because evaluation is an integral part of writing, good writers
test as they go. They check their work against their plan and
evaluate, for example, whether the document addresses the
problem and whether the problem has changed. Writers also
repeatedly ask questions such as: Does the document meet the
audience’s needs? Is the organization appropriate for the
audience? Is the text cohesive? Is the tone appropriate?

Writers also give unfinished versions to others for their response
on specific aspects of the document. The test-as-you-go technique
significantly reduces the time needed for formal testing. It also
improves quality because drafts can be reviewed a number of
times as they are refined, and the writer can select a diverse
group of evaluators. An evaluator is likely to recognize gaps
between chunks of information, lack of logical consistency,
ambiguity that can result in misunderstanding, and areas of
unneeded redundancy that writers, with their conceptual
closeness to the text, often miss.

Evaluation is done on the macro level and micro level. Macro
issues are global issues that address how the document works.
They include the following: Is the problem/purpose clear? Is the
document appropriate for its audience (content, level of detail,
tone)? Are there gaps in logic? Is there missing or inaccurate
information? Is the document explicit enough? Is the style easy
to read? Is the level of formality appropriate? Do the
organization and layout suit the way the document will be used?

Micro issues are local issues that have to do with fixing the
product: Is the vocabulary appropriate? Is the word choice all
right? Are any of the sentences or paragraphs unclear or
awkward? Are there any errors in grammar or punctuation?

Technical Writing for Software Engineers SEI-CM-23
18

customers. Thus, writers can match the level of quality and
amount of time invested to the document’s audience and purpose
and to the constraints of the rhetorical situation [Bitzer68,
Hamlet86, Mingione83].

4.3.3 Risk-driven approach
Following the spiral model, some writers take a risk-driven
approach to generating text, writing the hardest or most risky
parts first. By doing so, they can identify the most difficult
problems with the document. If the problems are too great, the
project can be reevaluated and changed before significant time
and money are invested.

Risk analysis is one aspect of task definition (see Section 4.1.2).
The analysis can expose unrealistic goals and clarify constraints;
and it plays a part in process planning, identifying possible
scheduling and budget problems or potential problems with
information gathering and verification.

Many writing texts advise writing the easy parts of the
document first. This, they claim, will give the writer a sense of
accomplishment early in the project. Although this is often good
advice, it sometimes gives the writer a false sense of
accomplishment and may cost the organization time and money
when it is later discovered that the writing task was not well
defined, resulting in the whole document being discarded and
the task redefined.

4.3.4 Reuse
The notion of reusable components applies to writing as well as
to software. Writers reuse parts of documents they have written
before. However, wholesale reuse of text is appropriate only if
the text suits the new context, audience, and purpose. More
often, writers adapt portions of an existing document to suit the
new situation [Selzer83].

Teaching Consideration: Students should be warned of the perils
of a too liberal use of cut and paste. It is useful to give them
experience in selecting text and adapting it to a new audience or
purpose. They should also be aware of the rules involving reuse
of other writers’ text.

Another aspect of reuse is the development of documents with a
modular structure containing units that can be reused.
Examples are modules used in a multivolume set of
documentation or those that can move from a requirements
document to a specification or design document. Modules may
consist of one sentence, a paragraph, or entire sections of text.

SEI-CM-23 Technical Writing for Software Engineers
17

essential elements of the target product, but it is not fully
developed. The prototype is the skeleton of the document
without all the elements fleshed out; it is developed without
attention to the finer details.

Writers construct an early version of a document that users or
peers can evaluate both informally and through formal review.
Writers, thus, gain feedback early in the writing process, before
investing too much time [Guillemette87, Taylor82]. The draft, or
prototype, may be used once as a concept piece and thrown away
or may be the basis for evolutionary development. In either case,
prototyping allows writers to learn more about the requirements
for the document and to better meet the needs of the readers.

4.3.2 Stepwise refinement and iterative enhancement
Stepwise refinement and iterative enhancement involve
developing a document through ongoing drafts or iterations.
Stepwise refinement is analogous to providing body text for a
portion of an outline that was empty. It may also involve the
creation of additional subsections. Iterative enhancement
involves both adding text and improving the existing text. Each
iteration is a successive approximation which comes closer to the
final product.

This means the writer refines the document in steps, focusing on
different goals at each step and moving from large issues to more
local concerns as the document comes closer to its final version
(final is defined by whatever criteria are appropriate for that
particular document). Writers remain aware of choices they will
make later while selecting certain issues to resolve in the
present “pass” through the document. By making deliberate
choices about what to attend to at each step, writers can solve big
problems before investing time on smaller matters. (See Section
4.5 for further discussion.)

The above techniques allow for levels of completion. The writer
has a complete version—of increasingly higher quality—at each
step of the way. If organizational priorities shift or deadlines
approach, the writer has the option of stopping at any time. The
writer satisfices [Simon81, Flower89]: accepts text that is good
enough, not because the writer prefers less to more but because
there is no choice. Similarly, if the document will be used for a
brief time by a few in-house people, the text need not be as
polished as a document that will be widely distributed to

Technical Writing for Software Engineers SEI-CM-23
16

4.3 Generating text

Writers typically follow the nonlinear models described in Section
2.2. As they write, they continually check their work against their
original product and process plans. They examine their problem
definition and purpose statement. They further analyze the
elements in the rhetorical situation; they reconsider the
communication triangle and the interactions it reminds them of.
These activities are not necessarily formally planned or explicit;
they are cognitive activities that writers perform as they write.

Occasionally, a writer might work in a linear manner, following an
ordered sequence of activities—analyze, design, generate,
evaluate, revise, edit. The writer makes transitions from one phase
to the next, working straight through the document using a
detailed plan (whether or not it has been put into writing). Selzer
provides an example of one engineer’s linear composing process
and notes that it is unusual [Selzer83].

Some writers, when they begin to generate text, experience a
difficulty commonly known as writer’s block. Rose notes how rigid
rules and inflexible plans may prevent a writer from generating
text [Rose80]. On many occasions, writers are unable to generate
text because they become concerned with local issues, such as
sentence structure, sentence order, or word choice, too early in
document development. Strategies for avoiding writer’s block
include setting manageable subtasks and scheduling them to be
accomplished in a realistic period of time. Writers also need to
recognize that first drafts do not need to be well written or properly
formatted and that it is appropriate to satisfice, that is, to accept a
less than perfect expression and form, and get on with writing.
Practical advice about getting started appears in [Olsen91,
Tichy88, Flower89]. For more on the notion of satisficing, see
[Flower89, Simon81].

The following strategies for generating text have been adapted
from the software community (see [Levine91] for additional
discussion). The choice of strategy may rest on individual
preference, but it is also likely to be based on the writer’s analysis
of the particular writing task. The strategy can be matched to the
goals and constraints of the writing project, and choice of strategy
affects both the product and process plans.

4.3.1 Rapid prototyping
In software engineering, prototyping is a technique for providing
a reduced functionality version of a software system early in its
development. In writing, a prototype is a whole document with
what can be called reduced functionality: it contains all the

SEI-CM-23 Technical Writing for Software Engineers
15

4.2 Planning

Based on their analyses, writers can develop two kinds of plans:
product plans and process plans. Because writing is not a linear
activity, writers are likely to do further analysis during the writing
process, making it necessary for them to revise their plans at later
points in development [Flower89, Flower81, Meyer82].

4.2.1 Product plan
A product plan is, essentially, a working sketch of the document;
it describes how the document will look. In it, the writer
identifies high-level content and organization. The writer also
designs the appropriate format for the audience and purpose. (In
one sense, standards provide part of the product plan.) The
product plan is the plan the writer makes for explaining content
to the reader; it shows how the writer will communicate the
information, including hierarchy and emphasis.

Writing experts have recommended many types of diagrams and
charts to help writers translate their ideas into product plans,
including traditional outlines and issue trees (or idea diagrams).
Issue trees [Flower89, Olsen91] resemble Warnier-Orr
diagrams. Since different forms work equally well, depending on
the type of document and the writer’s needs, writers should use
the simplest form that will still handle the complexity of the
information. For documents requiring extensive reviews during
development or for documents written collaboratively, the type
of plan may depend on what the reviewers or other writers can
easily relate to.

4.2.2 Process plan
The process plan is the plan for the writer—the work plan or
project plan. It contains procedures for completing the document
and for implementing version control. In the plan, the writer
determines how to achieve the goals, overcome the constraints,
and resolve conflicts in the rhetorical situation (see Section 1). It
also includes such information as schedules and a list of required
reviews. For a short document, the process plan might not be
written down. More formal plans become necessary when large,
complex documents are involved and when writing is done
collaboratively. Sometimes writers use project management
tools, such as PERT and Gantt charts.

Technical Writing for Software Engineers SEI-CM-23
14

In addition, the writer and reader each brings previous
knowledge, which affects the writer’s content choices and the
reader’s ability to assimilate the new information that is
presented. Writers need to identify the conventions and
assumptions that are common, though perhaps unarticulated,
between themselves and their readers. Certain conventions are
appropriate—and expected—for various types of documents and
discourse (see Section 1.3). These conventions affect content,
organization, word choice, level of formality, and format. For
example, a journal article does not look like a memo; a user’s
manual does not look like a requirements document. (See also
Section 1.4.2.)

If the document is one of a set, the writer has another concern:
How does the current document relate to the others in the family
of documents? Writers also need to identify criteria for
evaluating whether they succeed at their task. These criteria can
then be applied during evaluation and testing. For more on
testing, see Section 4.4.

4.1.3 Audience analysis
Writers begin analyzing audience by identifying their primary
reader(s) and determining what other readers might use the
document. They need to analyze the readers’ purpose for reading
and to identify the context in which the document will be used.

When writers create a document for their peers (the other
members of their project team, for example), their audience
analysis is likely to be quite accurate, particularly since ongoing
interaction enables writers to refine their understanding of their
audience. However, it is more difficult to identify the
characteristics and needs of a less familiar audience, or multiple
(mixed) audiences. Useful information about audience analysis
appears in [Olsen91, Schutte83, Roundy85]. Spilka specifically
addresses strategies for analyzing multiple audiences
[Spilka88].

Teaching Consideration: Beware of texts that present elaborate
audience analysis guidelines with detailed checklists. This type
of analysis consumes a lot of time and doesn’t tell the writer how
to apply the results when writing. Analyses that tell the writer
how to apply the results are more desirable; these are often the
simpler methods of analysis (see [Andrews82b, Olsen91]).

SEI-CM-23 Technical Writing for Software Engineers
13

4.1 Analyzing

4.1.1 Problem definition
Problem definition involves identifying the problem the
document will address or the need it will fulfill. For example, in
analyzing the problem addressed in a technology transition plan,
the writer describes how a specific piece of new technology will
be moved into commercial development, how it will solve a
particular problem, and how it will fulfill the needs of a
particular organization. In order to design an effective transition
plan, or any other document, writers must identify the need for
the document and explain how the document meets that need for
both themselves and their readers.

In a document, the problem definition sometimes takes the form
of a traditional problem statement; at other times, it takes the
form of a simpler purpose statement [Young70, Mattes76,
Olsen91]. A formal problem statement is most often used when
the writer determines that the reader must understand the
larger, organizational context as well as the technical issue
being addressed. This statement usually includes the following:
description of the problem, questions arising out of the problem,
and what the document is designed to do in response to the
problem. In contrast, a purpose statement simply lets the reader
know the purpose of document, without the elaborate context; for
example, “this manual describes how to . . . ,” “this memo
authorizes. . . .”

Both types of statements frequently appear at the beginning of
documents because readers need to know up front what the
document is designed to do and why the writer has written it.
Readers should not have to infer what the writer intends to
accomplish; if the writer is explicit, readers can more easily
process the information and are less likely to misunderstand.
The circumstances of use will affect content decisions as well as
design and production decisions, including the size of pages and
type of binding.

4.1.2 Task definition
Writers begin defining their task by identifying their goals and
the constraints under which they will be working. Goals, which
are incorporated into the plan (see Section 4.2), include
identifying what must happen before writing can begin and
during the writing process as well as what the writer wants to
achieve with the finished text. Constraints include special
characteristics of the audience (see below), time, budget, the
technology, or the requirement to write to a standard.

Technical Writing for Software Engineers SEI-CM-23
12

implementation/revision cycles, in the prototyping
approach: (1) completion of needs analysis and
development of baseline documentation required for
discussion and iteration, (2) development of working
documentation, (3) release of baseline documentation for
testing, (4) revision based on reader/user feedback. Steps
3 and 4 are repeated until requirements are established
[Guillemette87]. In addition, user feedback may indicate
flaws in the needs analysis of Step 1. Rapid prototyping
techniques are “techniques for constructing working
models of systems rapidly and cheaply.” Taylor and
Standish see this as an appropriate learning method
when the ends or the means of system requirements are
unclear, or when there are changing requirements. The
rapid development of initial versions of a system is a
useful analogy (and strategy) for developing initial
versions of a document [Taylor82].

3.3.2.3 Separation of concerns

In [Hester81], the authors identify separation of concerns
and information hiding as key principles in their design
and documentation method. Both principles describe the
same essential idea from two perspectives—what the
authors call encapsulating all elements of each aspect
and, hence, hiding the information about each aspect.
“The principle of separation of concerns is used to
structure the design documentation, and information
hiding is used to guide the internal design of the
software.” The authors discuss the design considerations
associated with each step that the document covers. They
also provide guidelines for the preparation of these
documents.

4 The Writing Process

The following sections outline major activities in the writing process.
Although the outline must present these activities in a linear way,
writers rarely perform them linearly.

SEI-CM-23 Technical Writing for Software Engineers
11

between the writer’s outline and the programmer’s Warnier-Orr
diagram [Walton87]. The hierarchical, top-down nature of issue
trees, a modification of the traditional outline, has a still stronger
resemblance to the Warnier-Or r design tool [Flower89].

Product-based analogies relate to process issues when, for
example, emphasis is placed on the outlining technique, not the
outline. Likewise, software life cycle models and document
design models are products that reveal similarities about how
researchers (either prescriptively or descriptively) represent the
processes of development. Hamlet’s discussion of analogies
between formatting programs and assemblers is another fine
example of product/process relations. He discusses users’
inability to regulate word processing capabilities and the
resulting problems in local format details and document content
[Hamlet86].

3.3.2 Processes
Of the software development methods adaptable to document
development, stepwise refinement and iterative enhancement
and prototyping have received the most attention. Separation of
concerns and information hiding have also been discussed. (See
also Section 4.3 and [Levine91].)

3.3.2.1 Stepwise refinement and iterative
enhancement

Mingione notes that “documentation must be iterative to
serve as systems communications within the development
process.” In his view, iteration is an easier way to
document because it is a “natural” fundamental concept
in development [Mingione83]. Hamlet suggests that
“techniques and tools valuable in controlling software
development be investigated for improving document
preparation.” He considers top-down iterative
enhancement and stepwise refinement, and environments
controlled by rule-based editors, as the most promising.
Iterative enhancement and stepwise refinement are
complementary methods that guide modifications of, and
additions to, the hierarchy used for the prototype
[Hamlet86].

3.3.2.2 Prototyping

Guillemette’s comprehensive discussion of prototyping as
a method for developing documentation also notes the
place of iterative design within in the process. He
identifies four steps, and a finite series of

Technical Writing for Software Engineers SEI-CM-23
10

processing point of view, problems in rhetoric are similar to
problems in programming: “[R]hetorical solutions to these
problems resemble the major tenets of structured programming
and structured design” [Lehman86].

Other critics discuss analogies in terms of approach, method, and
style. For example, in The Elements of Programming Style,
Kernighan and Plauger note that the form and approach of their
book has been strongly influenced by The Elements of Style by
Strunk and White [Kernighan74, Strunk79]. Donald Knuth
develops the term literate programming to stress the connections
between natural and computer languages and the need for
individuals to be able to read programs [Knuth84, Bentley86a].
Gary Perlman extends this metaphor through multilingual
programming, a process to coordinate program implementation
with “the use of parameterized information for domains outside
programming, like documentation and user interfaces”
[Perlman86].

Software engineering and writing share the debate about their
status as art or science (and the discussions about genius or
wizardry growing out of this debate), related methods or processes,
and surrounding popular fears. In Orality and Literacy: The
Technologizing of the Word, Walter Ong notes that reservations
about the inhumanity of computers match Plato’s objections to
writing: that it is artificial, unresponsive, and weakens the mind
by destroying memory. Ong also notes that with literacy, the word
became increasingly a visual unit and less an auditory sound
[Ong82]. Hamlet observes a similar and related danger and
extends the argument: “documents produced with computer
assistance are often of lower quality than those produced by hand:
they look beautiful, but the content and organization suffer.” To
correct these problems, he proposes a “disciplined text
environment” through the use of stepwise refinement and iterative
enhancement methods and rule-based editors [Hamlet86].

3.3 Specific Analogies: Products and Processes

3.3.1 Products
Specific analogies between software engineering and writing
usually concern the processes of development. However, in some
instances, analogies can also be made between products. For
example, Walton and Balestri observe the structural similarities

SEI-CM-23 Technical Writing for Software Engineers
9

3 Analogies: Software Development and Composing

This section discusses analogies that have been made between software
engineering and writing. It is an introduction to a growing body of
literature that explores the similarities between the two domains. The
first subsection describes a dialogue common to both fields, one that
considers these disciplines as art, science, and design. The second notes
general correspondences between the fields of software engineering and
writing; and the final subsection discusses specific analogies.

This presentation of analogies is not exhaustive. It aims, rather, to
highlight key concerns that have been most frequently addressed in the
literature. Readers will find additional similarities between software
development and composing in these and other sources.

3.1 Art/Science/Design

Ongoing discussions about whether software engineering and
writing are arts or sciences support the consideration of both fields
as design disciplines. The concept of design accounts for artistic
performance, giftedness (or wizardry), as well as the use of
scientific methods to investigate and explain writing and
programming. Walton and Balestri point out the advantages of
using Herbert Simon’s sense of design as problem solving
[Walton87]. Simon notes that engineers, like designers, are
“concerned with how things ought to be—how they ought to be in
order to attain goals, and to function.” According to Simon,
“natural science is primarily descriptive, considering things as
they are; the sciences of the artificial (the man-made) are
normative, concerned with how things should be” [Simon81].

3.2 General Correspondences Between the Disciplines

While the discussion about the art and science of software
engineering and of writing can be mediated through the concepts
of design and problem solving, disagreements about the issues are
common to both disciplines [Hoare84, Weizenbaum88, Young80].
Frequently, the disciplines are also compared with one another.
Shore describes programming as a literary activity, as
mathematics, and as architecture [Shore85]. Walton and Balestri
consider both composition and programming as design disciplines
and discuss how the process of structured programming resembles
the top-down and goal-directed process for writing purposeful
prose for a target audience [Walton87]. Lehman compares program
design and rhetoric and maintains that from an information

Technical Writing for Software Engineers SEI-CM-23
8

More recently, Rogers and Kincaid have developed the convergence
model of communication and network analysis. This nonlinear model
emphasizes the processes of expression and interpretation: participants
are not seen as encoders or decoders; they assume the roles of both
transmitter and receiver—as transceivers. “Communication is defined
as a process in which the participants create and share information
with one another in order to reach a mutual understanding”
[Rogers81].

2.2.2 Writing models
Prescriptive: These models of the writing process resemble the
waterfall phase model and show how writing proceeds through
an orderly sequence of stages. Linear models (sometimes called
stage models) show prewriting first, then writing, and then
revision. The model in [Rohman65], which identifies these three
stages, is a typical example.

Descriptive: The document design model prepared by the
American Institutes for Research (AIR) is a more descriptive
model, treating the general process for all document production
[Schutte83, Redish89]. However, some critics have noted that
the model seems prescriptive in its linear presentation of
predesign, design, and postdesign steps.

Flower and Hayes present a model of composing that describes
the processes and subprocesses that writers engage in
[Flower81]. Based on their research with individuals performing
think-aloud protocols while writing, the authors distinguish
three main components: the writer’s long-term memory, the task
environment, and writing processes. The authors identify
subareas and subprocesses within these main components. They
see writing as a recursive process because “this particular kind
of embedding, in which an entire process is embedded within a
larger instance of itself, is known technically in linguistics as
recursion.” In another paper [Hayes87], the authors develop a
model to represent cognitive processes in revision. Major
subprocesses in this model are: task definition, evaluation,
problem detection, problem diagnosis, and strategy selection.

Currently, researchers in rhetorical studies are trying to develop
models that account for, and describe, the social and cognitive
dimensions of the composing process [Bizzell82, Bruffee84].

SEI-CM-23 Technical Writing for Software Engineers
7

Guidebooks on grammar and punctuation are useful, but they
neglect writing activities (analysis, planning, and others; see
Section 4) that must occur before the product can be examined at
the level of these mechanical details. Similarly, models provide
helpful information about how certain documents should look (see
Section 1.4.2), but they do not take rhetorical situations into
account. Williams offers advice on rules: why they exist, when to
follow them, and when not to [Williams89]. Miller has an
interesting discussion of rules and their source of authority
[Miller80].

Process-based: This approach focuses on how individuals compose,
and it draws on related studies in cognitive psychology, especially
problem solving. Researchers have used think-aloud protocols of
individuals performing writing tasks in order to describe the
subprocesses writers engage in. Using information from the
protocols, researchers identify strategies used by expert and novice
writers. These strategies are adapted for use as learning tools in
writing classes. This approach assumes that writers can become
more effective by monitoring their writing processes, and
extending and remaining aware of their options [Flower89, Perl80,
Selzer83, Sommers80]. For further discussion of the writing
process as a design activity, see Section 3.1 and Section 3.2.

Each approach has limitations, and each makes a contribution to
understanding writing. Recently, critics have looked at how an
approach that addresses the social and cognitive aspects of
composing would mediate between product- and process-based
methods [Bizzell82, Bruffee84].

2.2 Models

The models identified below are only a small sample. The
communication triangle, a model that takes a broad view of the
factors involved in communication, is described in Section 1.2.
Other models are discussed in the source texts cited in this section.

2.2.1 Communication models
Communication models apply to all forms of communication, not
just the written form. Standard communication models show a
linear progression from one phase to the next. The Shannon-
Weaver model illustrates how information moves from a source
through a transmitter and a receiver to a destination. At
midpoint, the model accounts for “noise” or distortion. The
Lasswell model handles acts of communication by posing
questions: Who? Says what? In which channel? To whom? With
what effect? Both models appear in [Schutte83, Kinneavy71].

Technical Writing for Software Engineers SEI-CM-23
6

1.4.2.1 Standards

The requirement to write to standards, such as IEEE
standards or military standards, is an excellent example
of a discourse convention that imposes constraints.
Although standards constrain writing and should be
considered during analysis (Section 4.1), they do not
eliminate rhetorical choices or decisions. By paying
attention to audience, purpose, and functional principles
of linguistics (Section 5), a writer can write to standards
and write for readers. Two documents with roughly the
same content may be written to a standard, yet one may
be more readable than the other [Penrose88].

1.4.2.2 Plain English

One movement that has grown up in response to
problematic discourse conventions is the Plain English
movement. This movement (which gained momentum
when Plain English laws were passed during the Carter
administration) originally focused on rewriting consumer
documents such as insurance policies, loan agreements,
government publications, and instructions for using
products. The influence of the movement has spread to
technical writing, where stress is being placed on
simplicity, clarity, and judicious use of jargon. This stress
is evident in most technical writing books, including
[Olsen91, Tichy88, Williams89].

2 Views of Writing

2.1 Product-Based and Process-Based Views

Two common approaches to writing are based on products and
processes.

Product-based: This approach focuses on grammar and style and is
still a stronghold in writing education. The perspective is rule-
based, relying on formulas and model texts for the writer to
imitate. Product-based views assume that there are clear right and
wrong answers in language usage, that if a writer imitates an
effective sample document, the imitation will be as good as the
sample.

SEI-CM-23 Technical Writing for Software Engineers
5

world. Documents that support the software life cycle are
forms of referential discourse.

In scientific writing, comprehensiveness is seen to be the chief characteristic,
as in records of scientific research. In technical writing, factuality is
considered the primary concern; writers select information to meet the needs
of the audience.

1.4 Disciplinary Context

Knowledge of a discipline and discourse communities are primary issues in
communication. The ways people communicate and their effectiveness are
influenced by these issues.

1.4.1 Disciplinary knowledge
The issue of what constitutes disciplinary knowledge is a new area
of research in rhetorical studies. This effort represents a need to
understand the inner workings of different disciplines or fields of
study. The goal is to make the theories, methods, and practices of
those fields explicit; once they are explicit, they can be disseminated.
For discussions of the rhetoric of science and technical writing, see
[Halloran78, Miller79].

1.4.2 Discourse communities and conventions
Those who take a social, outer-directed, approach to composing
emphasize discourse (or interpretive) communities. This
approach focuses on how members of professional and academic
groups share patterns of reasoning and language use [Bizzell82,
Bruffee84, Odell85]. The term used to describe these shared and
accepted practices is discourse conventions.

Discourse conventions bind and guide members’ interactions in
professional and academic communities. Such conventions
include: research methods of inquiry and investigation, modes of
proof, commonly held assumptions, conference and publication
codes, and standards. It is these conventions that novices adopt
when joining a discourse community, for example, when
students learn to think and behave like software engineers.
Doheny-Farina focuses on an interesting double interaction
between convention and community: he studies how “social” and
organizational contexts affect the writing of a business plan and
how the writing of that plan affects the organization
[DohenyFarina86].

Technical Writing for Software Engineers SEI-CM-23
4

The encoder (writer or speaker), the decoder (reader or listener), and world
(subject matter and environment) each lie at a tip of the triangle. In the center
is the language or other signal (mode of communication). The writer and
reader interact with each other and with the subject matter; the language
touches all the other elements in the triangle. These elements and their
interactions play a part in any communication, oral or written. See Section
2.2 and Section 4.1 for further discussion.

Teaching Consideration: It is important to note that the communication
triangle does not explicitly recognize the place of purpose in language use—
purpose of the writer and the reader. This is the reason we present
information about the rhetorical situation as well as the communication
triangle. If students use the communication triangle as a model, you might
need to remind them to consider their purpose for writing and their readers’
purpose for reading.

1.3 The Aims of Discourse

Kinneavy categorizes forms of discourse and the purposes for
writing each type by considering which element in the
communication triangle dominates. These categories are not
exclusive because all the elements are involved in each type of
discourse; nor are purposes as well defined as the following list
may suggest. For example, poetry calls attention to the language,
but the poet may also want to achieve originality and persuade the
reader of a particular point of view—poetry is literary discourse,
but it contains elements of expressive and persuasive discourse.
Similarly, a proposal must be persuasive, but it also contains
technical data; a technical report contains factual information, but
it reflects the choices and assumptions of the writer [Kinneavy71].

• Literary discourse: language is the main concern, as in poetry.
The main purpose is to induce contemplation and enjoyment
and to call attention to language itself.

• Expressive discourse: the writer is the main focus, as in diaries
and journals. The main purpose is to achieve originality or to
make the writer’s thoughts or feelings accessible to himself or
herself.

• Persuasive discourse: the reader is the main focus, as in
proposals and essays. The main purpose for writing is to
persuade, that is, to modify the attitudes or behavior of the
reader.

• Referential discourse: the subject matter is the main focus, as
in scientific and technical writing and news reporting. The
main purpose is to provide information about aspects of the

SEI-CM-23 Technical Writing for Software Engineers
3

1 The Context for Writing

1.1 Rhetorical Situation

Writing does not take place in isolation but in specific contexts;
moreover, writers and readers of a document are often in different
circumstances, with different goals, constraints, and conflicts. The
context in which communication takes place is called the rhetorical
situation, which includes writers, readers, and their purposes for
writing and for reading [Young70]. Other elements include the
discourse community being addressed (see Section 1.4.2) and the
conventions for the kind of document being written. Writers base
their decisions about content and language on their understanding
of the rhetorical situation. Those who do not take the rhetorical
situation into consideration are unlikely to be effective
communicators.

For a more detailed, theoretical discussion of the rhetorical situation, see
[Bitzer68]. Bitzer identifies three components that are essential to the
rhetorical situation: the writer’s exigence (or sense of an imperfection or
problem that needs to be addressed), the audience, and the constraints.
Constraints include what are called artistic proofs that the writer can
manage (e.g., lines of reasoning, word choice, organization) and inartistic
proofs (e.g., contracts, agreements, standards) that the writer cannot control.

Teaching Consideration: Technical topics that provide a good
opportunity to discuss the rhetorical situation include requirements
engineering and user interface development. SEI curriculum modules on
these topics explicitly discuss issues of audience [Brackett90, Perlman89].

1.2 Communication Triangle

The communication triangle, or rhetorical triangle, presents the essential
elements in communication [Kinneavy71].

Annotated
Outline

world

decoderencoder

signal

Technical Writing for Software Engineers SEI-CM-23
2

4 The Writing Process

4.1 Analyzing

4.1.1 Problem definition

4.1.2 Task definition

4.1.3 Audience analysis

4.2 Planning

4.2.1 Product plan

4.2.2 Process plan

4.3 Generating text

4.3.1 Rapid prototyping

4.3.2 Stepwise refinement and iterative enhancement

4.3.3 Risk-driven approach

4.3.4 Reuse

4.4 Testing

4.4.1 Informal testing

4.4.2 Formal testing

4.5 Revising

4.6 Maintaining

5 The Written Product

5.1 Principles of Linguistics and Discourse Analysis

5.1.1 Global concerns

5.1.2 Local concerns

6 Other Considerations

6.1 Collaborative Writing

6.2 Document Design

SEI-CM-23 Technical Writing for Software Engineers
1

Technical Writing
for Software
Engineers

1 The Context for Writing

1.1 Rhetorical Situation

1.2 Communication Triangle

1.3 The Aims of Discourse

1.4 Disciplinary Context

1.4.1 Disciplinary knowledge

1.4.2 Discourse communities and conventions

2 Views of Writing

2.1 Product-Based and Process-Based Views

2.2 Models

2.2.1 Communication models

2.2.2 Writing models

3 Analogies: Software Development and Composing

3.1 Art/Science/Design

3.2 General Correspondences Between the Disciplines

3.3 Specific Analogies: Products and Processes

3.3.1 Products

3.3.2 Processes

Outline

Technical Writing for Software Engineers SEI-CM-23
vi

SEI-CM-23 Technical Writing for Software Engineers
v

The authors would like to thank the members of the SEI Education
Program, the technical writers of SEI Information Management, and
the SEI librarians for their assistance. In addition, we thank Michael
Rissman and Daniel Klein for providing technical perspective. We are
especially grateful to our reviewers for their insights and valuable
suggestions: Thomas Huckin, Granville “Pete” Jones, Patricia Lawlis,
Richard Rasala, and Rachel Spilka.

Comments on this module are solicited, and may be sent to the SEI
Software Engineering Curriculum Project or to the authors:

Linda Hutz Pesante Susan B. Dunkle
Software Engineering Institute 401 Warner Hall
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213 Pittsburgh, PA 15213

Acknowledge-
ments

Technical Writing for Software Engineers SEI-CM-23
iv

Our approach to writing is not art, not science, not craft, but more in the
tradition of design (see Section 3 of the annotated outline). Writing is an
analytical activity. We believe that writing skills will help individuals
to be better engineers, and engineering skills will help individuals to
write better. Both writing and software development are problem-
solving processes requiring practitioners to perform similar tasks;
therefore, in this module, we look at the similarities between these
processes. Teaching by analogy allows us to efficiently exploit the
correspondences between the processes of writing and software
development. Learning by analogy provides our students with a
powerful mechanism for applying the skills they already have as
computer scientists and software engineers. Although there is not a
dovetail fit between the two, it is useful to exploit the strong parallels.

Our focus on process, rather than on specific types of documents or on
rules, also facilitates the transfer that we see as so important. With an
understanding of the writing process, of the cognitive components that
are a part of that process, and of rhetorical situations, software
engineers will be able to communicate effectively in the wide variety of
documents that software development projects require.

While our approach is meant for application in the software community,
the growing number of writing-across-the-curriculum projects also
lends support for our position. The interest in these projects
demonstrates that poor communication, especially ineffective writing,
is being recognized as a shared concern that involves all departments,
not just the English department. All instructors teach communications
skills whether or not they are aware of it. All instructors can and should
evaluate their students’ writing—both their written products and their
processes. Those who don’t are doing their students a real-world
disservice. These students will soon be accountable to employers (not
English instructors) who will evaluate their ability both to perform and
to communicate.

SEI-CM-23 Technical Writing for Software Engineers
iii

Two myths concerning the written product are especially prevalent in
technical communication. First is the myth that technical writing is
transparent, objective, and fact-based writing. (Carolyn Miller’s
treatment of this “windowpane theory of language” as a legacy of
positivism is worth noting [Miller79].) Technical documents are
designed to report information clearly and persuasively, and an
objective tone should not be confused with objectivity. Finally, there is
the widespread belief that following rules and/or formulas will
guarantee a good product. However, a piece of writing can be error-free
and still not communicate effectively. Tichy, Kirkman, and Young all
discuss these myths about writing in greater detail, while Hoare and
Weizenbaum consider related myths about computers and
programming [Tichy88, Kirkman70, Young80, Hoare84,
Weizenbaum88].

There are no algorithms for writing. Writing is rhetorical, requiring the
writer to take into consideration many factors that change from one
situation to the next. Because writing is not rule-driven, this module
provides strategies or heuristics—not rules—that will help software
engineers become more effective, more self-aware writers. These
heuristics are based on research from a number of disciplines, including
psychology, rhetoric, linguistics, discourse analysis, and document
design.

Our approach to writing
We believe that writing should be taught within software engineering
content courses, not in a separate, single course. If a separate technical
communication course is offered as a foundation, it must be tailored to
meet the writing objectives and needs of software engineers; for
example, it should be taught in conjunction with a software project for
another course. Students should write the kind of documents they will
write as software professionals.

Research tells us that students have difficulty applying writing skills
learned in the composition or technical writing classroom to writing in
different domains. If skills learned in the writing classroom aren’t
applied in the software engineering classroom, it is unlikely that the
new engineer will draw on those skills in the workplace. Moreover,
effective writing is not something that can be covered once and
mastered. To address these problems, we stress the need to integrate
writing into the curriculum, making it a part of each course that
students take.

Technical Writing for Software Engineers SEI-CM-23
ii

Because we concentrate on the basics, the material in this module
applies to many types of documents, and some of the material can be
applied to oral presentations as well. The module thus provides the
foundation for studying other communication topics and building
further skills.

Need for communication skills in engineering
Communication skills are important in every engineering discipline.
Surveys by organizations such as the American Society for Engineering
Education indicate just how critical these skills are [Olsen91,
Barnum84]. Those who are not convinced should consult the 20
references provided at the end of Chapter 1 in [Olsen91]. These
references discuss the place of writing in engineering. For specific
information on software engineers’ need for communication skills, see
[Sullivan88, White86, Curtis88, Guinan87].

Assumptions about writing
Ineffective writers—engineers included—often feel that writing should
be easy even though that has rarely been their experience. They may
justify their difficulty in a number of ways; for instance, unskilled
writers suspect that their teachers were inadequate, or they blame
themselves for just not having “the gift,” or both. But gifts, muses, and
favorite pencils aside, conceptions of writing are finally changing. After
decades of instruction in writing and centuries of instruction in its
precursor, rhetoric, researchers are beginning to tell us about the social
and cognitive complexity of the writing process.

This research has also revealed problematic and lingering assumptions
and “myths” about writing. Two assumptions about the writing process
are especially significant. The first views writing as an “art” and carries
important consequences for educators, who then sustain the mystique
of that art and see themselves as facilitators more than teachers. This
approach, which assumes that writing is a gift that can’t be taught,
often translates into a view of writing as discovery of one’s own inner
voice [Young80]. A second assumption about the writing process sees
thinking and writing as separate activities. Here, thinking is accorded
the prestige of an art or a science, and writing is seen as the “craftlike”
translation of these ideas into words. Related to this notion of writing
as translation is a view of writing as editing. The most limited definition
calls writing the simple polishing of words, or “wordsmithing.”

Philosophy

SEI-CM-23 Technical Writing for Software Engineers
i

Preface

This module, which was written specifically for software engi-
neers, discusses writing in the context of software engineering. Its
focus is on the basic problem-solving activities that underlie effec-
tive writing, many of which are similar to those underlying
software development. The module draws on related work in a
number of disciplines, including rhetorical theory, discourse
analysis, linguistics, and document design. It suggests tech-
niques for becoming an effective writer and offers criteria for
evaluating writing.

In defining the scope of this module, we had to make choices
within the broad—and growing—field of technical
communication. Although we recognize that subjects such as
oral communication and group dynamics are important for
software engineers, we have set our priority on written
communication. Even then, the topic is a large one and difficult
to treat in depth. Thus, we have limited the scope of the module
to the fundamentals of the writing process.

The module does not include material on business writing
(memos, proposals, etc.), oral presentations, group dynamics, or
project management. Although technology (from basic word
processors to hypertext and desktop publishing systems)
certainly has great impact on how people write, we cannot do
justice to the subject within the limits of this module. Nor do we
devote space to the characteristics of specific types of documents
and other information, such as grammar rules, that can easily be
found in other sources. References to these sources appear in the
bibliography.

Capsule
Description

Scope

This report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position. It is pub-
lished in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

John S. Herman, Capt, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1992 by Carnegie Mellon University

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.

Phone: 1-800-685-6510. FAX: (412) 321-2994.

This document is available through Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213.

Phone: 1-800-685-6510. FAX: (412) 682-6530.

Copies of this document are available through the National Technical Information Service. For information on ordering,

please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA

22161.

This document is also available through the Defense Technical Information Center. DTIC provides access to and transfer of

scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Govern-

ment agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information

Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

C U R R I C U L U M M O D U L E SEI-CM-23

Carnegie Mellon University

Software Engineering Institute

Technical
Writing for
Software
Engineers

 ■ ■ ■ ■ ■ ■ ■ ■ ■

Linda Levine
Linda H. Pesante
Susan B. Dunkle
Carnegie Mellon University

November 1991

Approved for public release.
Distribution unlimited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

