
Software Requirements

SEI Curriculum Module SEI-CM-19-1.2

January 1990

John W. Brackett
Boston University

Software Engineering Institute
Carnegie Mellon University

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include model curricula, textbooks, educational software, and a variety of reports and proceedings.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Comments on SEI educational publications, reports concerning their use, and requests for additional information should
be addressed to the Director of Education, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213.

Comments on this curriculum module may also be directed to the module author.

John W. Brackett
Department of Electrical, Computer

and System Engineering
Boston University
44 Cummington St.
Boston, MA 02215

Copyright  1990 by Carnegie Mellon University

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position.
It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

191211090

Software Requirements

Acknowledgements Contents

Dieter Rombach, of the University of Maryland, played an Capsule Description 1
invaluable role in helping me organize this curriculum Philosophy 1
module. He reviewed many drafts. Lionel Deimel, of the

Objectives 4SEI, was of great assistance in clarifying my initial drafts.
Douglas T. Ross, one of the true pioneers in software Prerequisite Knowledge 4
engineering, taught me much of what I know about soft- Module Content 5
ware requirements definition.

Outline 5

Annotated Outline 5

Teaching Considerations 15

Suggested Course Types 15

Teaching Experience 15

Suggested Reading Lists 15

Bibliography 17

SEI-CM-19-1.2 iii

Software Requirements

Module Revision History

Version 1.2 (January 1990) Minor revisions and corrections
Version 1.1 (December 1989) Revised and expanded bibliography; other minor changes

Approved for publication
Version 1.0 (December 1988) Draft for public review

iv SEI-CM-19-1.2

Software Requirements

pendent of the specific techniques used. The mate-Capsule Description
rial presented here should be considered prerequisite
to the study of specific requirements methodologiesThis curriculum module is concerned with the defi-
and representation techniques.nition of software requirements—the software engi-

neering process of determining what is to be pro- Software Requirements has been developed in con-
duced—and the products generated in that defini- junction with Software Specification: A Framework
tion. The process involves all of the following: [Rombach90] and uses the conceptual framework

and terminology presented in that module. This ter-• requirements identification
minology is summarized in Figure 1. Both modules• requirements analysis
identify two products of the software requirements

• requirements representation process: customer/user-oriented software require-
ments (“C-requirements”) and developer-oriented• requirements communication
software requirements (“D-requirements”). The• development of acceptance criteria and
principal objective of these documents is theprocedures
achievement of agreement on what is to be pro-

The outcome of requirements definition is a precur- duced. Their form, however, is largely determined
sor of software design. by the communication needs of the diverse partic-

ipants in the requirements process. The develop-
ment of the D-requirements refines and augments
the C-requirements, in order to provide the informa-

Philosophy tion required to support software design and subse-
quent validation of the developed software against
the requirements.The subject of software requirements is often given

far less attention in software engineering education Because of the dependence of this module on
than software design, even though its importance is Software Specification: A Framework, that curricu-
widely recognized. For example, Brooks [Brooks87] lum module should be read before studying this one.
has written:

This module reflects two strong opinions of the au-The hardest single part of building a software
thor:system is deciding precisely what to build. No

other part of the conceptual work is as difficult • The software requirements definition
as establishing the detailed technical require- process is highly dependent upon the
ments, including all the interfaces to people, to previous steps in the system develop-
machines, and to other software systems. No ment process.
part of the work so cripples the resulting system

• The prime objective of the requirementsif done wrong. No other part is more difficult
definition process is to achieve agree-to rectify later.
ment on what is to be produced.

The purpose of this module is to provide a compre-
Where the overall system requirements have beenhensive view of the field of software requirements in
determined and the decision has been made that cer-order that the subject area can be more widely
tain system functions are to be performed by soft-taught. The module provides the material needed to
ware, the software requirements process is highlyunderstand the requirements definition process and
constrained by previous systems engineering work.the products produced by it. It emphasizes what
In this situation, requirements are obtained largelymust be done during requirements definition, inde-

SEI-CM-19-1.2 1

Software Requirements

Existing
Life-cycle

Terminology

Terminology
Used in this Module

Market Analysis
Systems Analysis
Business Planning
Systems Engineering

Context Analysis

Market Needs
Business Needs
Demands
System Requirements

Needs Product

Requirements Analysis
Requirements Definition
System Specification

C(ustomer/User-oriented)-
Requirements Process

Requirements
Requirements Definition
Requirements Document
Requirements Specification
Functional Specification

C - Requirements Product

Specification D(eveloper-oriented)-
Requirements Process

Behavioral Specification
System Specification
Functional Specification
Specification Document
Requirements Specification

D - Requirements Product

Software Needs

Customer/User
Oriented Software

Requirements

Developer
Oriented Software

Requirements

Design Design Process

LEGEND

Processes Products

Figure 1. Life-cycle terminology used in this module.

2 SEI-CM-19-1.2

Software Requirements

Environment
for the
Software
Requirements
Definition
Process

Unconstrained

Highly
Constrained

Decision
Support
System

Corporate
Accounting
System

Manufacturers
Operating
System

Enhancements to
Corporate Accounting
System

Airliner Flight
Control
System

Missile
Guidance
System

% of Requirements Gathered from People

Figure 2. Sources of requirements.

by analyzing documents. (A typical example is the Requirements products have three, sometimes com-
requirements definition for software to control a spe- peting, objectives:
cific hardware device.) 1. To achieve agreement regarding the re-

quirements between system developers,Where there are few constraints imposed by the en-
customers, and end-users.vironment in which the software will operate and

there may be many opinions on desired software 2. To provide the basis for software design.
functionality, requirements definition primarily in- 3. To support verification and validation.
volves eliciting requirements from people. (A typi-

During C-requirements development, the first objec-cal example is the requirements definition needed to
tive is paramount. Later in the life cycle, the otherbuild decision support software for use by a group of
two objectives increase in importance.managers.)

Figure 2 suggests how the fraction of requirements
elicited from people increases as constraints on the
software requirements process decrease.

The fact that the prime objective of the requirements
definition process is to achieve agreement on what is
to be produced makes it mandatory that the products
of the process serve to communicate effectively with
the diverse participants.

SEI-CM-19-1.2 3

Software Requirements

Objectives

The following is a list of possible objectives for in-
struction based upon this module. The objectives for
any particular unit of instruction may include all of
these or consist of some subset of this list, depend-
ing upon the nature of the unit and the backgrounds
of the students.

Comprehension
• The student will be able to describe the

products produced by requirements defi-
nition, the type of information each
should contain, and the process used to
produce the products.

Synthesis
• The student will be able to develop a

plan for conducting a requirements defi-
nition project requiring a small team of
analysts.

• The student will be able to perform re-
quirements definition as part of a team
working with a small group of end-users.

Evaluation
• The student will be able to evaluate criti-

cally the completeness and utility, for a
particular audience, of requirements doc-
uments upon which software design is to
be based.

Prerequisite Knowledge

Familiarity with the terms and concepts of the soft-
ware engineering life cycle.

4 SEI-CM-19-1.2

Software Requirements

Module Content

c. Key contentsOutline
4. Developer-oriented software requirements

I. Introduction to Software Requirements a. Objectives
1. What are requirements? b. Relative importance of specification

attributes2. The requirements definition process
c. Key contents3. Process participants and their roles

IV. Techniques and Tools for Performing Software4. The products of requirements definition
Requirements DefinitionII. The Software Requirements Definition Process
1. Techniques for eliciting requirements from1. Requirements identification

people
a. Software needs as input to requirements

2. Modeling techniquesdefinition
3. Representative requirements definition methodsb. Elicitation from people

a. Structured Analysis and SADTc. Deriving software requirements from system
b. DSSDrequirements
c. SREM/DCDSd. Task analysis to develop user interface

requirements d. NRL/SCR
2. Identification of software development 4. Computer support tools for model development

constraints a. Method-specific tools
3. Requirements analysis b. Non–method-specific tools

a. Assessment of potential problems
5. Computer support tools for prototyping

b. Classification of requirements

c. Evaluation of feasibility and risks

4. Requirements representation
Annotated Outlinea. Use of models

b. Roles for prototyping
I. Introduction to Software Requirements

5. Requirements communication 1. What are requirements?
6. Preparation for validation of software

There are many definitions of requirements, whichrequirements
differ in their emphasis. The IEEE software engi-

7. Managing the requirements definition process neering glossary [IEEE83] defines requirement as:
III. Software Requirements Products (1) A condition or capability needed by a user to

solve a problem or achieve an objective. (2) A1. Results of requirements definition
condition or capability that must be met or pos-

a. Functional requirements sessed by a system or system component to sat-
isfy a contract, standard, specification, or otherb. Non-functional requirements
formally imposed document. The set of all re-

c. Inverse requirements (what the software shall quirements forms the basis for subsequent de-
not do) velopment of the system or system component.

d. Design and implementation constraints Abbott [Abbott86] defines requirement as:
2. Standards for requirements documents any function, constraint, or other property that

must be provided, met, or satisfied to fill the3. Customer/user-oriented software requirements
needs of the system’s intended user(s).

a. Objectives
For projects in which the software development is

b. Relative importance of specification highly constrained by prior system engineering
attributes work, the second IEEE definition is most applicable.

SEI-CM-19-1.2 5

Software Requirements

In less constrained environments, the first IEEE de- engineers, who evolve the C-requirements product
finition or Abbott’s definition is appropriate. into the D-requirements product; managers; and ver-

ification and validation (V&V) personnel.
Requirements cover not only the desired function-
ality of a system or software product, but also ad- Requirements analysts act as catalysts in identifying
dress non-functional issues (e.g., performance, inter- requirements from the information gathered from
face, and reliability requirements), constraints on the many sources, in structuring the information (per-
design (e.g., operating in conjunction with existing haps by building models), and in communicating
hardware or software), and constraints on the imple- draft requirements to different audiences. Since
mentation (e.g., cost, must be programmed in Ada). there is a variety of participants involved in the re-
The process of determining requirements for a sys- quirements definition process, requirements must be
tem is referred to as requirements definition. presented in alternative, but consistent, forms that

are understandable to different audiences.
Our concern in this module is with software

4. The products of requirements definitionrequirements, those requirements specifically related
to software systems or to the software components

The outcome of requirements definition is the for-of larger systems. Where software is a component
mulation of functional requirements, non-functionalof another system, software requirements can be dis-
requirements, and design and implementation con-tinguished from the system requirements of the
straints. These requirements and constraints must belarger artifact.
represented in a manner fulfilling the information
needs of different audiences.Software Specification: A Framework [Rombach90]

describes several different software evolution (life-
The following are the principal objectives of re-cycle) models and notes that the commonalities
quirements products:among these models are the types of products they

• To achieve agreement on the require-eventually produce. The products shown in Figure 1
ments. Requirements definition, the proc-are assumed to be produced on a project, irrespec-
ess culminating in the production of re-tive of how the products get built. Although the
quirements products, is a communications-requirements on a small project may be defined in-
intensive one that involves the iterativeformally and briefly, a definition of what the soft-
elicitation and refinement of informationware development process will produce is required
from a variety of sources, usually includ-in all life-cycle models.
ing end-users with divergent perceptions

2. The requirements definition process of what is needed. Frequent review of the
evolving requirements by persons with aThe requirements definition process comprises these
variety of backgrounds is essential to thesteps:
convergence of this iterative process. Re-

• Requirements identification quirements documents must facilitate com-
munication with end-users and customers,• Identification of software development
as well as with software designers and per-constraints
sonnel who will test the software when de-• Requirements analysis
veloped.

• Requirements representation
• To provide a basis for software design.

• Requirements communication Requirements documents must provide
• Preparation for validation of software re- precise input to software developers who

quirements are not experts in the application domain.
However, the precision required for this

These steps, which are not necessarily performed in purpose is frequently at odds with the need
a strictly sequential fashion, are described and dis- for requirements documents to facilitate
cussed in Section II. communication with other people.

3. Process participants and their roles • To provide a reference point for soft-
ware validation. Requirements docu-

[Rombach90] describes classes of project partici- ments are used to perform software valida-
pants and their responsibilities. Rombach distin- tion, i.e., to determine if the developed
guishes between customers, who contract for the software satisfies the requirements from
software project, and end-users, who will install, which it was developed. Requirements
operate, use, and maintain the system incorporating must be stated in a measurable form, so
the software. Customers are assumed to be respon- tests can be developed to show un-
sible for acceptance of the software. Other par- ambiguously whether each requirement
ticipants he defines are: requirements analysts, who has been satisfied [Boehm84a].
develop the C-requirements product; specification

6 SEI-CM-19-1.2

Software Requirements

In formulating requirements, it is important for the e.g., where software is embedded in a larger
analyst to maintain his role as analyst and avoid be- hardware system (an embedded system), system-
coming a designer. Of two requirements purporting level documentation frequently provides the con-
to represent the same need, the better one is that text for software requirements definition. This
which allows the designer greater latitude. This ad- documentation, which serves as software needs,
vice is difficult to heed, both because users and cus- typically covers system requirements, the alloca-
tomers often state particular design solutions as tion of system functions to software, and the de-
“needs” and because it is usually easier to postulate scription of interfaces between hardware and soft-
a solution in lieu of understanding what is really ware.
needed by users or customers. The analyst’s objec-

When a software product is being developed for ative should always be to maximize the options avail-
heterogeneous audience (e.g., a database managerable to the designer. This objective can be well-
or a spreadsheet package), software needs willillustrated by a simple example from another
typically contain the results of a market analysisdomain. The statement “the customer requires an
and a list of important product features. Sinceautomobile” provides the problem-solver with fewer
information provided in software needs differs sooptions than “the customer needs a means to get to
widely, requirements definition must usually in-Cleveland.”
clude an understanding of the environment in

II. The Software Requirements Definition Process which the software will operate and how the soft-
ware will interact with that environment.

The steps in software requirements definition and the
management of the process are discussed below. b. Elicitation from people

1. Requirements identification An essential step in most requirements definition
projects is elicitation of requirements-related in-

Requirements identification is the step of require- formation from end-users, subject-matter experts,
ments definition during which software require- and customers. Elicitation is the process per-
ments are elicited from people or derived from sys- formed by analysts for gathering and understand-
tem requirements [Davis82, Martin88, Powers84]. ing information [Leite87]. Elicitation involves
An important precursor to requirements definition is fact-finding, validating one’s understanding of the
the context analysis process, which precedes re- information gathered, and communicating open
quirements definition. (See Figure 1.) issues for resolution.

a. Software needs as input to requirements Fact-finding uses mechanisms such as interviews,
definition questionnaires, and observation of the operational

environment of which the software will become aContext analysis [Ross77b] documents why soft-
part.ware is to be created and why certain technical,

operational, and economic feasibilities establish Validation involves creating a representation of
boundary conditions for the software develop- the elicitation results in a form that will focus
ment process. According to Ross, context anal- attention on open issues and that can be reviewed
ysis should answer the following questions: with those who provided information. Possible

• Why is the software to be created? representations include summary documents,
usage scenarios, prototype software [Boehm84b],• What is the environment of the software
and models.to be created?

• What are the technical, operational, and Some type of explicit approval to proceed with
economic boundary conditions that an requirements definition completes the elicitation
acceptable software implementation process. The audiences who must approve the
must satisfy? requirements should agree that all relevant infor-

mation sources have been contacted.Context analysis for software to be developed for
internal company use is frequently called business

c. Deriving software requirements from systemplanning or systems analysis. In any case, we
requirementswill refer to the product of context analysis as

software needs. Requirements are created for embedded software
based upon the system requirements for the sys-Software needs can take significantly different
tem or system component in which the software isforms depending upon the context of system de-
embedded. Traceability techniques are used tovelopment. In many situations, software needs
communicate how the software requirements re-will be very informal and will provide little de-
late to the system requirements, since the cus-tailed information for beginning requirements de-
tomer is usually more familiar with the systemfinition. For a highly constrained environment,

SEI-CM-19-1.2 7

Software Requirements

requirements. Because functions are allocated to It is frequently useful also to assess requirements
software and hardware before software require- regarding stability; a stable requirement addresses
ments definition begins, most of the functions the a need that is not expected to change during the
software is to perform will not be derived through life of the software. Knowing that a requirement
requirements elicitation from end-users or cus- may change facilitates developing a software de-
tomers. sign that isolates the potential impact of the

change.
d. Task analysis to develop user interface

c. Evaluation of feasibility and risksrequirements

Assessment of feasibility involves technical feasi-User Interface Development [Perlman88] de-
bility (i.e, can the requirements be met with cur-scribes methods for user interface evaluation that
rent technology?), operational feasibility (i.e, canalso apply to determining software requirements
the software be used by the existing staff in itsconcerned with human interaction. Analyzing the
planned environment?), and economic feasibilitytasks the user must perform should result in a de-
(i.e., are the costs of system implementation andtailed understanding of how a person is supposed
use acceptable to the customer?) [Ross77b].to use the proposed software.

4. Requirements representation2. Identification of software development
constraints Requirements representation is the step of require-

ments definition during which the results of require-During this step, constraints on the software devel-
ments identification are portrayed. Requirementsopment process are identified. Typical constraints
have traditionally been represented in a purely tex-include cost, the characteristics of the hardware to
tual form. Increasingly, however, techniques suchwhich the software must interface, existing software
as model building and prototyping, which demandwith which the new software must operate, fault tol-
more precision in their description, are being used.erance objectives, and portability requirements.

Only software solutions satisfying the requirements a. Use of modelsand implemented within the restrictions imposed by
the constraints are acceptable. Models are built during requirements definition to

define specific characteristics of the software (i.e.,3. Requirements analysis the functions it will perform and the interfaces to
its environment) in a form that can be more easilyRequirements are generally gathered from diverse
understood and analyzed than a textual descrip-sources, and much analysis (requirements analysis)
tion. A good model:is usually needed before the results of requirements

definition are adequate for the customer to commit • Reduces the amount of complexity that
to proceeding with further software development. must be comprehended at one time.
“Adequate,” in this context, means there is per- • Is inexpensive to build and modify
ceived to be an acceptable level of risk regarding compared to the real thing.
technical and cost feasibility and an acceptable level

• Facilitates the description of complexof risk regarding the completeness, correctness, and
aspects of the real thing.lack of ambiguity in the results.

Most requirements methods include the develop-
The principal steps in requirements analysis, which ment of models of some type to portray the results
are frequently iterated until all issues are resolved, of requirements elicitation and to facilitate the re-
are: quirements analysis process. An important moti-

vation for building models during requirementsa. Assessment of potential problems
definition is the belief that the model notation—
and computer support tools supporting the nota-This is the process step during which require-
tion—help the analyst identify potential problemsments are assessed for feasibility and for prob-
early in the requirements definition process.lems such as ambiguity, incompleteness, and in-

consistency. Software requirements for em-
b. Roles for prototypingbedded software must be verified to ensure they

are consistent with the system requirements. Prototyping is frequently used to provide early
feedback to customers and end-users and to im-b. Classification of requirements
prove communication of requirements between
users and system developers. Many users find itRequirements should be classified into priority
difficult to visualize how software will perform incategories such as mandatory, desirable, and in-
their environment if they have only a non-essential. “Mandatory” means that the software
executable description of requirements. A proto-will not be acceptable to the customer unless

these requirements are met in an agreed manner.

8 SEI-CM-19-1.2

Software Requirements

type can be an effective mechanism to convey a proposed acceptance criteria and the techniques to
sense of how the system will work. Hands-on use be used during the software validation process, such
of a prototype is particularly valuable if a system as execution of a test plan to determine that the crite-
has to be used by a wide variety of users, not all ria have been met [Collofello88a].
of whom have participated in the requirements

7. Managing the requirements definition processdefinition process. Although a prototype is not a
substitute for a thorough written specification, it Requirements definition can present a major project
allows representation of the effect of require- management challenge. Nearly all cost and schedule
ments—certain kinds of requirements, at any rate estimating approaches assume that the requirements
—with an immediacy not matched by its more are defined and can be used to estimate roughly the
static counterpart. Of course, not all elements of size of the project. The effort for a requirements
a system can be captured in a prototype at a project is related to the total development man-
reasonable cost. months, and the effort rises in proportion to the

number of divergent sources from which require-In many situations, users do not understand the
ments information must be gathered and reconciled.required functionality well enough to completely
For example, an application that must support fivearticulate their needs to analysts. A prototype
different classes of users with significantly differentbased on the information obtained during require-
expectations about the capabilities to be providedments elicitation is often very useful in refining
could easily involve a requirements definition proc-the required functionality [Gomaa81]. Models de-
ess that is five times more difficult than the cor-veloped after requirements elicitation can be use-
responding process for a homogeneous group offul in deciding what functionality to include in
users.such a prototype.

The complexity of requirements definition rises as aBoehm [Boehm86] describes possible roles of
function of project duration. The longer a projectprototyping to minimize development risks due to
goes on, the more likely it is that the software envi-incomplete requirements. Clapp [Clapp87] de-
ronment, customers, and end-users will change. Ascribes the uses of prototypes during requirements
large application, whose total development will re-definition to assess technology risks and to assess
quire several people working for a number of years,whether a user interface can be developed that
will involve a complex requirements definition proc-will allow the designated personnel to operate the
ess that does not terminate when design and imple-system effectively. Modeling methods are of lit-
mentation begin. Requirements changes will be re-tle help in determining the requirements for user
quested throughout the development cycle and mustinterfaces. Development of prototypes of alter-
be evaluated for their cost and schedule impact onnative user interfaces is usually required to obtain
the work already performed or underway.meaningful feedback from customers and users.

If the technical feasibility of meeting essential re- It is difficult to identify the optimum effort to devote
quirements is in question, developing prototypes to requirements definition before undertaking soft-
incorporating key algorithms can provide results ware design. Determining this effort involves an
that are not otherwise available. assessment of the risk involved in assuming that the

requirements are defined adequately to proceed.5. Requirements communication
There will be a negative impact on the cost and

Requirements communication is the step in which schedule of subsequent life-cycle phases if all the
results of requirements definition are presented to requirements have not been identified or if they have
diverse audiences for review and approval. The fact not been stated with adequate precision.
that users and analysts are frequently expert in their

III. Software Requirements Productsown areas but inexperienced in each other’s domains
1. Results of requirements definitionmakes effective communication particularly diffi-

cult. The result of requirements communication is
The format in which the results of the requirementsfrequently a further iteration through the require-
definition process should be presented depends uponments definition process in order to achieve agree-
the information needs of different audiences. End-ment on a precise statement of requirements.
users prefer a presentation that uses an application-
oriented vocabulary, while software designers re-6. Preparation for validation of software
quire more detail and a precise definition ofrequirements
application-specific terminology. However, require-

During this step, the criteria and techniques are es- ments, no matter how presented, fall into four
tablished for ensuring that the software, when pro- classes [Ross77b]:
duced, meets the requirements. The customer and • Functional requirementssoftware developers must reach agreement on the

• Non-functional requirements

SEI-CM-19-1.2 9

Software Requirements

2. Standards for requirements documents• Inverse requirements

• Design and implementation constraints The two most widely referenced standards relevant
to producing requirements documents area. Functional requirements
U. S. Department of Defense Standard 2167A,
Military Standard for Defense System SoftwareA functional requirement specifies a function that
Development [DoD88] and IEEE Standard 830, IEEEa system or system component (i.e., software)
Guide to Software Requirements Specificationsmust be capable of performing.
[IEEE84]. The IEEE standard describes the neces-

Functional requirements can be stated from either sary content and qualities of a good requirements
a static or dynamic perspective. The dynamic document and presents a recommended outline.
perspective describes the behavior of a system or Section 2 of the outline can be considered a template
system component in terms of the results pro- for customer/user-oriented requirements and section
duced by executing the system under specified 3 a template for developer-oriented requirements.
circumstances. Functional requirements stated Even if a company standard for documentation for-
from an external, dynamic perspective are fre- mat is to be used, the IEEE standard provides a good
quently written in terms of externally observable checklist of the items that should be included.
states; for example, the functions capable of being

3. Customer/user-oriented software requirementsperformed by an automobile cruise control system
are different when the system is turned on from

This section describes important characteristics ofwhen it is disabled. Functional requirements
C-requirements products.stated from a static perspective describe the func-

tions performed by each entity and the way each a. Objectives
interacts with other entities and the environment.

C-requirements provide to the customer, who
b. Non-functional requirements contracts for the software project and must accept

the resulting software, a description of the func-Non-functional requirements are those relating to
tional requirements, non-functional requirements,performance, reliability, security, maintainability,
inverse requirements, and design constraints ade-availability, accuracy, error-handling, capacity,
quate to commit to software development.ability to be used by specific class of users, an-
“Adequate” means there is an acceptable level ofticipated changes to be accommodated, accepta-
risk regarding technical and cost feasibility and anble level of training or support, or the like. They
acceptable level of risk regarding the complete-state characteristics of the system to be achieved
ness, correctness, and lack of ambiguity in thethat are not related to functionality. In a real-time
C-requirements. Acceptance criteria are usuallysystem, performance requirements may be of cri-
developed in parallel with C-requirements.tical importance, and functional requirements

may need to be sacrificed in order to achieve min- b. Relative importance of specification
imally acceptable performance. attributes

c. Inverse requirements (what the software shall Rombach describes the desirable attributes of
not do) specification products in general; the relative im-

portance of these attributes depends upon theInverse requirements describe the constraints on
specification product. C-requirements must beallowable behavior. In many cases, it is easier to
understandable to the customer—and hence bystate that certain behavior must never occur than
end-users, who typically review the requirementsto state requirements guaranteeing acceptable be-
before they are approved by the customer. Theyhavior in all circumstances. Software safety and
must therefore be written using the applicationsecurity requirements are frequently stated in this
vocabulary. Although understandability is themanner [Leveson86, Leveson87].
most important attribute of the C-requirements,
there must be adequate precision for complete-d. Design and implementation constraints
ness, correctness, consistency, and freedom from

Design constraints and implementation con- ambiguity to be evaluated by analysts, users, and
straints are boundary conditions on how the re- customers.
quired software is to be constructed and imple-

c. Key contentsmented. They are givens of the development
within which the designer must work. Examples

The critical components of C-requirements areof design constraints include the fact that the soft-
described below.ware must run using a certain database system or

that the software must fit into the memory of a
512Kbyte machine.

10 SEI-CM-19-1.2

Software Requirements

formation for the purposes of software(i) Software functionality
development. Acceptance tests are usually devel-

Functionality and overall behavior of the soft- oped in parallel with D-requirements.
ware to be developed must be presented from a
customer/user viewpoint. C-requirements can C-requirements and D-requirements for em-
use a language other than natural English that bedded software are frequently combined into one
allows the use of the application vocabulary. A document that is reviewed by technical represen-
prototype illustrating proposed software func- tatives of the customer who have the expertise to
tionality may accompany C-requirements, but review material whose principal audience is
the conclusions drawn from the evaluation by designers and implementors and who can verify
customers and end-users should be stated ex- the consistency of the C- with the D-
plicitly. requirements. The customer is usually much

more concerned with the C-requirements for the
(ii) Information definition and relationships total system. In cases where the requirements

risks the customer will accept are very low—in aThe information to be processed and stored,
software system for airliner flight control, for ex-and the relationships between different types of
ample—a separate verification and validationinformation, must be defined. Entity-Relation-
contractor may be employed by the customer toship diagrams [Flavin81, Shlaer88] are fre-
verify, independently of the project team, that thequently used for this purpose.
D-requirements are consistent with the system re-

(iii) Critical non-functional requirements quirements and are adequate to allow the team to
proceed with software implementation.(iv) Critical design constraints

b. Relative importance of specification(v) Acceptance criteria
attributes4. Developer-oriented software requirements
D-requirements must be usable by designers andD-requirements are usually produced by refining and
implementors without an in-depth knowledge ofaugmenting the C-requirements. As an example,
the application vocabulary and without directconsider the description of the requirements for a
contact with customers and end-users. Therefore,scientific computation. The C-requirements might
many aspects of the requirements must be morecontain the equation to be solved and the numerical
detailed than in the C-requirements, wherein thetolerance required, whereas the D-requirements
application vocabulary is expected to provide awould also contain the algorithm for solving the
common foundation of understanding among theequation within the stated tolerance. During design,
customer and end-users. Application-specific in-implementation of the specific algorithm would be
formation is frequently assumed by those whochosen.
produce C-requirements, since it is inherent in un-
derstanding the terminology used. Precision inIn many cases, an updated version of the C-
the D-requirements is essential, and less use ofrequirements is developed during the creation of the
the application vocabulary—even at the cost ofD-requirements, as issues are resolved and more in-
reduced understandability by application area ex-formation is obtained from the customer, end-users,
perts—is usually required in order to achieve it.and “experts” in the application field. D-

requirements products may exist at various levels of
c. Key contentsthe software refinements process for the entire sys-

tem, subsystem, or modules. The critical components of D-requirements are
described below.

For a highly constrained system, where there is little
requirements elicitation from people, only D- (i) Software functionality
requirements are usually produced.

Functionality must be presented from the view-
Important characteristics of D-requirements products point of the software developer and must be
are described below. sufficient in precision and detail for software

design.
a. Objectives

(ii) Information in C-requirements
D-requirements provide to the developer a de-
scription of the functional requirements, non- No significant information appearing in the C-
functional requirements, inverse requirements, requirements may be omitted in preparing the
and design constraints adequate to design and im- D-requirements.
plement the software. “Adequate” means there is

(iii) Interfaces to hardware/external systemsan acceptable level of risk regarding the com-
pleteness, consistency, and correctness of the in- (iv) Critical non-functional requirements

SEI-CM-19-1.2 11

Software Requirements

ods are intended to be useful in a variety of appli-(v) Critical design constraints
cation areas and are referred to here as “system(vi) Acceptance criteria and acceptance tests
modeling methods.” For example, SADT [Ross85]

IV. Techniques and Tools for Performing Software has been applied to understanding how functions are
Requirements Definition performed manually in an organization and to build-

ing models showing the functions of a combined
The objective of this section is to introduce some of the hardware/software system. However, there is also a
techniques and computer support tools most likely to role for other types of models in requirements defi-
be used during requirements definition, but it is not nition, such as physical models (the layout of an
intended to be a comprehensive description. assembly line to be automated) and simulation

models (the actions proposed to take place on an1. Techniques for eliciting requirements from
automated assembly line).people
Specification languages that are not graphicallyTechniques used in a variety of fields for gathering
oriented have been proposed as an alternative to theinformation from people with different opinions
graphically-oriented modeling languages widely(such as questionnaires and interviews) are relevant
used during requirements definition. None, how-to defining software requirements. Davis [Davis83]
ever, has received significant usage for producingand Powers [Powers84] cover most of the relevant
customer/user-oriented requirements and few havemethods.
been used by other than their developers to produce

In order to facilitate the elicitation of requirements, a developer-oriented requirements. One exception is
variety of techniques have been developed that in- the NRL/SCR requirements method [Heninger80],
volve the participation of analysts, end-users, and which is not graphically oriented and which has
customers in intensive working sessions over a been applied to major projects.
period of several days. The objective is to speed up

Unfortunately, the developers of system modelingthe negotiations between users with divergent
methods have used inconsistent terminology to de-opinions, to provide analysts with an in-depth under-
scribe their modeling approaches. It is usually diffi-standing of software needs, and to complete a draft
cult to understand what information can beof the most important requirements. The analysts
represented easily using the modeling method and tomay develop models or prototypes during these ses-
what class of problems the approach is most ap-sions for review with the users. The best known of
plicable. White [White87] has done a thorough com-these techniques is Joint Application Development
parison of what can be represented using the mostTechnique (JAD), developed by IBM.
common model-building techniques. Pressman

Frequent review of the work of analysts by cus- [Pressman87] surveys the following modeling meth-
tomers and users facilitates agreement on require- ods and tools, which are among those described be-
ments. An incremental process for reviewing low: Structured Analysis, Real-Time Structured
models and accelerating the convergence of the re- Analysis, Data Structured Systems Development,
quirements elicitation process has been formalized SADT, SREM/DCDS, and PSL/PSA. Davis
in the Reader-Author Cycle of the SADT method- [Davis88] surveys techniques for specifying the ex-
ology [Marca88]. The SADT approach is applicable ternal behavior of systems and compares alternative
to any model-building technique. approaches, including two formal specification lan-

guages.
Walk-throughs [Freedman82] can be used to help
determine the consistency and completeness of A majority of modeling methods support describing
evolving requirements and to ensure that there is a a system in terms of several of the following charac-
common understanding among analysts, users, and teristics:
customers of the implications of requirements. • Interfaces to external entities. Since any
Yourdon [Yourdon89b] describes how to conduct model can describe only a well-defined
walk-throughs using models built during require- subject area, the model-building notation
ments definition. Technical reviews [Collofello88b] must allow a precise description of what is
can be utilized to assess the status of the require- to be included in the system of interest and
ments definition process. how that system interfaces to external en-

tities. In the case of a software system, the2. Modeling techniques
external entities typically are hardware,

Nearly all requirements definition techniques devel- other software, and people. The ability to
op some type of model to structure the information describe precisely the model interfaces is
gathered during requirements elicitation and to de- particularly important in requirements de-
scribe the functionality and behavior of software to finition, since there may be divergent
meet the requirements. Most of the modeling meth- opinions among customers and users

12 SEI-CM-19-1.2

Software Requirements

regarding the scope of the software to be depiction of data transformations and functional
developed in response to the requirements. decomposition. It incorporates the concept of a

context diagram, which shows the external en-• Functions to be performed. All model-
tities that provide information to the system oring methods widely used in requirements
receive information from the system.definition support the description of sys-

tem functions, but they differ in how they Structured Analysis is probably the most widely
describe the conditions under which func- used graphically-oriented requirements definition
tions are performed. For software that technique. It is described in a number of books,
must react to external events (i.e., real- including DeMarco [DeMarco79], Gane and Sar-
time software), one must be able to de- son [Gane79], and McMenamins and Palmer
scribe precisely the events that cause a [McMenamins84]. The emphasis of the method is
function to be performed. primarily on producing customer/user-oriented re-

• Data Transformations. Modeling meth- quirements.
ods that emphasize functions performing

SADT (Structured Analysis and Designdata transformations, such as Structured
Technique) [Ross85, Wallace87, Marca88] is a su-Analysis, are widely used in requirements
perset of Structured Analysis and was the firstdefinition for business data processing ap-
graphically-oriented method developed for use inplications.
performing requirements definition. Among its• Structure of input/output data. The features are the use of interrelated multiplestructure of input and output data is models to represent a system from the viewpointsmodeled in requirements definition tech- of different participants in the requirements defi-niques that are designed to deal with com- nition process [Leite88] and the ability to describeplex information, such as Data Structured the states of data [Marca82]. A subset similar toSystems Development (the Warnier-Orr Structured Analysis is known by the name IDEF.methodology) [Orr81]. Typically, the Also part of the method are procedures for con-structure of the information is assumed to ducting reviews of evolving models and team-be hierarchical. Such a model assists the oriented techniques for performing analysis andanalyst in understanding what items of in- design. The emphasis of the method is primarilyformation must be generated to produce a on producing customer/user-oriented require-required report or screen display. ments.

• Relationships among information. If the
In Real-Time Structured Analysis, a state-requirements indicate the software is to
diagrammatic representation is used to extendhandle a significant number of items of in-
Structured Analysis to facilitate the description offormation that are associated through com-
system behavior. Alternative notations have beenplex relationships, information models can
proposed by Hatley [Hatley87] and by Ward andbe used to show graphically the relation-
Mellor [Ward85]. A consolidation of these twoships between data objects. The most
notations into a new notation called the Extendedwidely used information modeling tech-
Systems Modeling Language has been proposedniques [Flavin81] are Entity-Relationship
[Bruyn88]. An alternative notation for describing(E-R) models and logical data models
the states of a real-time system, Statecharts, hasusing the Curtice and Jones notation
been developed by Harel [Harel88a].[Curtice82].

• System behavior. To model behavior as a b. DSSD
system reacts to a sequence of externally-

DSSD (Data Structured Software Development)generated events requires representing the
(the Warnier-Ross Methodology) [Orr81] devel-time sequence of inputs. Behavioral
ops software requirements by focusing on themodels are essential to the development of
structure of input and output data. It assists therequirements for real-time systems.
analyst in identifying key information objects and

3. Representative requirements definition methods operations on those objects. The principal appli-
cation of this graphically-oriented approach hasThe following four groups of methods are the most
been in the area of data processing systems.frequently used in the United States. Each involves

the production of a model for requirements represen- c. SREM/DCDS
tation. In Europe, the Jackson System Development

SREM (Software Engineering Requirementsmethod [Sutcliffe88] is also frequently used.
Methodology) [Alford77] was originally developed

a. Structured Analysis and SADT for performing requirements definition for very
large embedded systems having stringent perfor-This group of methods emphasizes the graphic

SEI-CM-19-1.2 13

Software Requirements

mance requirements. With the addition of exten- prototyping on personal computers, widely used
sions to support distributed concurrent systems, tools are Hypercard on the Apple Macintosh and
the name has been changed to the Distributed Dan Bricklin’s Demo II Program on the IBM PC.
Computer Design System [Alford85]. The em- Statemate [Harel88b] supports the development on a
phasis of SREM/DCDS is primarily on producing workstation of a combined user interface prototype
developer-oriented requirements. and an essential functionality prototype through the

use of an executable model that describes the func-
d. NRL/SCR tionality and behavior of the system

The NRL/SCR (Naval Research Laboratory Soft-
ware Cost Reduction) requirements method
[Heninger80] is oriented toward embedded sys-
tems and produces developer-oriented require-
ments. It differs from the methods listed above
by being a “black box” requirements method, in
which requirements are stated in terms of input
and output data items and externally visible char-
acteristics of the system state. The method is in-
tended to separate clearly design issues from re-
quirements issues, and it is sufficiently different
in its assumptions from the other methods that it
is worthy of detailed study. The work of Mills
[Mills86] is based on similar assumptions.

4. Computer support tools for model development

Tools for use on personal computers and worksta-
tions to support the most widely used modeling
methods are evolving rapidly, and published infor-
mation on available tools is outdated within a few
months of publication. The best sources of current
information are the exhibitions associated with
major conferences such as the International Con-
ference on Software Engineering and CASExpo.

a. Method-specific tools

Computer support tools designed for notations
used by specific methods are commercially avail-
able for all the modeling methods listed above
except SREM/DCDS and NRL/SCR. Tools are
also available to support the development of in-
formation models using both the ERA notation
and the Curtice and Jones notation.

b. Non–method-specific tools

Tools that are not specific to the notation of a
particular modeling method fall into two categor-
ies: tools that can be user-customized to represent
the notation, objects, and relationships specific to
a given modeling method; and tools that require a
translation between the notation of the modeling
method and the notation required by the tool.
PSL/PSA (Problem Statement Language/Problem
Statement Analyzer) [Teichroew77], which was
the first widely available computer tool to support
requirements analysis, is in the second category.

5. Computer support tools for prototyping

Available computer tools to support prototyping are
rapidly increasing in capability. For user interface

14 SEI-CM-19-1.2

Software Requirements

Teaching Considerations

Because most students have no experience in dealingSuggested Course Types
with customer and end-user issues, they learn most
by producing C-requirements.The material presented in this module is intended to

be used in one of three ways: The author’s software system design course uses
IEEE Guide for Software Requirement Specifica-1. As background material for teachers pre-
tions [IEEE84] to define the outline and content ofparing software engineering courses.
the C-requirements document. Techniques for re-2. As material for a course containing a
quirements definition must be taught in enough de-series of lectures on software require-
tail for students to apply them. In practice, thisments.
means emphasizing one technique for each step of

3. As material for a teacher planning a soft- the process, even though it would desirable to ex-
ware requirements definition project pose the student to a wide variety of techniques.
course. The author currently teaches the details of

The author is currently using the module material to • Information modeling using the Curtice
teach a course, Software System Design, in the soft- and Jones notation [Curtice82].
ware engineering master’s degree program at Boston • Real-Time Structured Analysis [Hatley-
University. Of the 26 lectures, 10 are on system and 87].
software requirements, and 16 are on architectural

• Support tools associated with the above.design.
Since producing models is not the principal objec-While on the faculty of the Wang Institute, the au-
tive of requirements definition, emphasis in thethor supervised project courses in which teams of
course and in the instructor’s review of the project4-5 students performed requirements definition proj-
documents must be given to non-functional require-ects for external customers [Brackett88].
ments, the handling of unexpected events, and de-
sign constraints.

The following projects have been used in teaching
Software System Design:Teaching Experience

• The requirements for the first automatic
In the author’s experience, it is difficult, if not im- teller machine (assuming the project was
possible, to convey adequately the principal con- conducted in 1977).
cepts in this module without having the students un- • The requirements for the software to
dertake some type of requirements definition project. control 5 elevators in a 50-story building.
Nearly all students, even those with 3-5 years of in-

As the major assignment in the course, each hasdustrial experience, lack any experience in perform-
been adequately done to the C-requirements level bying requirements definition. Therefore, survey
teams of three to four students in about four weeks.courses are likely only to introduce the student to the
To continue to the D-requirements level would re-need to specify software requirements and to some
quire about an additional four weeks.of the modeling and prototyping techniques fre-

quently used.

A requirements definition project requires adequate
calendar time for the student to produce a C- Suggested Reading Lists
requirements document, the teacher to provide de-
tailed feedback on it, and the student to prepare a

The following lists categorize items in the bibliog-second (or third!) iteration. Each iteration should
raphy by applicability.define the requirements more completely and

precisely, while reducing the number of design solu- Instructor Essential: This is a small set of readings
tions the students identify as requirements. Follow- intended to provide, in conjunction with this module,
ing the completion of C-requirements, D- the basic information an instructor needs to prepare a
requirements should be developed, if time permits. series of lectures on software requirements.

SEI-CM-19-1.2 15

Software Requirements

Instructor Recommended: These readings provide * Those readings marked with “*” are suitable for
the instructor with additional material and, if time use by students in a graduate-level course including
permits, should be reviewed in conjunction with the a series of lectures on software requirements.
Instructor Essential items. † Possible textbooks are indicated with “†”.
Detailed: These readings have been included to pro- No single book suitable both for an information-vide access to the literature on specific topics or to systems–oriented course and a real-time–orientedmaterials that are secondary sources to those listed course can be recommended.under the Instructor Essential or Instructor
Recommended categories.

Paper Categories

Instructor Essential Detailed Detailed (cont.)

Davis88 Abbott86 IEEE83
IEEE84* Alford77 Kowall88*†

Alford85 Leite87Martin88*one of {Powers84*† Boehm84b* Leite88
Pressman87*† Boehm86* Leveson86*one of {Sommerville89*† Brackett88 Leveson87

Bruyn88 Marca82
Collofello88a Marca88*
Collofello88b McMenamins84*Instructor Recommended
Curtice82* Mills86

Boehm84a* Davis82* Orr81
Brooks87* Davis83*† Perlman88
Clapp87* DeMarco79* Ross85
Flavin81* DoD88 Shlaer88

Hatley87*†one of Freedman82 Sutcliffe88{Ward85*†
Gane79* Teichroew77*

Heninger80
Gause89 Wallace87

Rombach90
Gomaa81* Ward89

Ross77b*
Gomaa89* White87

Yourdon89a
Harel88a Yourdon89b
Harel88b*

16 SEI-CM-19-1.2

Software Requirements

Bibliography

Abbott86 Alford85
Abbott, R. J. An Integrated Approach to Software Alford, M. “SREM at the Age of Eight: The Distri-
Development. New York: John Wiley, 1986. buted Computing Design System.” Computer 18, 4

(April 1985), 36-46.
Table of Contents
1 Introduction SREM/DCDS has been used primarily on very large

government contracts, but the supporting tools
PART 1: REQUIREMENTS make it unsuitable for use in an academic course.
2 Requirements Discussion They are difficult to learn and somewhat difficult to
3 Requirements Document Outline install.

PART 2: SYSTEM SPECIFICATION Boehm84a4 Discussion
Boehm, B. W. “Verifying and Validating Software5 Behavioral Specification Outline
Requirements and Design Specifications.” IEEE6 Procedures Manual
Software 1, 1 (Jan. 1984), 75-88.7 Administrative Manual

An excellent survey article, which is understandablePART 3: DESIGN
by students.8 Design Discussion

9 System Design Documentation
Boehm84b10 Component Documentation: Specification and

Design Boehm, B. W., T. E. Gray, and T. Seewaldt.
“Prototyping vs. Specifying: A Multi-Project Exper-

Appendix: Abstraction and Specification iment.” Proc. 7th Intl. Conf. Software Eng. New
References York: IEEE, 1984, 473-484.
Index

Abstract: In this experiment, seven software teams
This is a general software engineering text, organ- developed versions of the same small-size (2000-
ized as a collection of annotated outlines for tech- 4000 source instruction) application software prod-
nical documents important to the development and uct. Four teams used the Specifying approach.
maintenance of software. The outline of Abbott’s Three teams used the Prototyping approach.
requirements document differs from [IEEE84], and

The main results of the experiment were:the instructor may find it useful to compare the dif-
Prototyping yielded products with roughlyferences. The process of requirements definition is
equivalent performance, but with about 40%not explained in detail, so this book is not an ade-
less code and 45% less effort.quate stand-alone text for a series of lectures on

software requirements. The prototyped products rated somewhat
lower on functionality and robustness, but
higher on ease of use and ease of learning.Alford77

Alford, M. “A Requirements Engineering Method- Specifying produced more coherent designs
and software that was easier to integrate.ology for Real-Time Processing Requirements.”

IEEE Trans. Software Eng. SE-3, 1 (Jan. 1977), The paper presents the experimental data support-
ing these and a number of additional conclusions.60-69.

Abstract: This paper describes a methodology for
Boehm86the generation of software requirements for large,
Boehm, B.W. “A Spiral Model of Software Devel-real-time unmanned weapons systems. It describes
opment and Enhancement.” ACM Software Engi-what needs to be done, how to evaluate the interme-

diate products, and how to use automated aids to neering Notes 11, 4 (Aug. 1986), 14-24.
improve the quality of the product. An example is

This paper, reprinted from the proceedings of theprovided to illustrate the methodology steps and
March 1985 International Workshop on the Soft-their products and the benefits. The results of some
ware Process and Software Environments, presentsexperimental applications are summarized.
Boehm’s spiral model. The author’s description

This paper should be read in conjunction with from the introduction:
[Alford85] and [Davis88].

SEI-CM-19-1.2 17

Software Requirements

The spiral model of software development and en- 13-1.1, Software Engineering Institute, Carnegie
hancement presented here provides a new Mellon University, Pittsburgh, Pa., Dec. 1988.
framework for guiding the software process. Its
major distinguishing feature is that it creates a risk- Capsule Description: Software verification and
driven approach to the software process, rather validation techniques are introduced and their ap-
than a strictly specification-driven or prototype- plicability discussed. Approaches to integrating
driven process. It incorporates many of the these techniques into comprehensive verification
strengths of other models, while resolving many of and validation plans are also addressed. This cur-
their difficulties. riculum module provides an overview needed to un-

derstand in-depth curriculum modules in the verifi-
Brackett88 cation and validation area.
Brackett, J. W. “Performing Requirements Analysis
Project Courses for External Customers.” In Issues Collofello88b
in Software Engineering Education, R. Fairley and Collofello, J. S. The Software Technical Review
P. Freeman, eds. New York: Springer-Verlag, 1988, Process. Curriculum Module SEI-CM-3-1.5, Soft-
56-63. ware Engineering Institute, Carnegie Mellon Univer-

sity, Pittsburgh, Pa., June 1988.
Brooks87

Capsule Description: This module consists of a
Brooks, F. “No Silver Bullet: Essence and Accidents comprehensive examination of the technical review
of Software Engineering.” Computer 20, 4 (April process in the software development and mainte-
1987), 10-19. nance life cycle. Formal review methodologies are

analyzed in detail from the perspective of the review
participants, project management and softwareBruyn88
quality assurance. Sample review agendas are alsoBruyn, W., R. Jensen, D. Keskar, and P. T. Ward.
presented for common types of reviews. The objec-“ESML: An Extended Systems Modeling Language
tive of the module is to provide the student with theBased on the Data Flow Diagram.” ACM Software
information necessary to plan and execute highly

Engineering Notes 13, 1 (Jan. 1988), 58-67. efficient and cost effective technical reviews.
Abstract: ESML (Extended Systems Modeling
Language) is a new system modeling language Curtice82
based on the Ward-Mellor and Boeing structured Curtice, R. and P. Jones. Logical Data Base Design.
methods techniques, both of which have proposed New York: Van Nostrand Reinhold, 1982.
certain extensions of the DeMarco data flow
diagram notation to capture control and timing in- This book introduces a data modeling notation that
formation. The combined notation has a broad is easily taught to students and that facilitates
range of mechanisms for describing both com- decomposing a large data model into smaller sub-
binatorial and sequential control logic. models. However, the text is not oriented toward

using data models during requirements definition.
This paper should be read in conjunction with
[Ward89].

Davis82
Davis, G. B. “Strategies for Information Require-Clapp87
ments Determination.” IBM Systems J. 21, 1 (1982),Clapp, J. “Rapid Prototyping for Risk Management.”
4-30.Proc. COMPSAC 87. Washington, D. C.: IEEE

Computer Society Press, 1987, 17-22. Abstract: Correct and complete information re-
quirements are key ingredients in planning or-

Abstract: Rapid prototyping is useful for control- ganizational information systems and in implement-
ling risks in the development and upgrade of deci- ing information system applications. Yet, there has
sion support systems. These risks derive from un- been relatively little research on information re-
certainty about what the system should do, how its quirements determination, and there are relatively
capabilities should be achieved, how much it will few practical, well-formulated procedures for ob-
cost, and how long it will take to complete. This taining complete, correct information requirements.
paper describes uses of rapid prototyping for risk Methods for obtaining and documenting informa-
management and summarizes lessons learned from tion requirements are proposed, but they tend to be
their use. . . . presented as general solutions rather than alter-

native methods for implementing a chosen strategy
Collofello88a of requirements determination. This paper identi-

fies two major levels of requirements: the organiza-Collofello, J. S. Introduction to Software Verifica-
tional information requirements reflected in ation and Validation. Curriculum Module SEI-CM-

18 SEI-CM-19-1.2

Software Requirements

planned portfolio of applications and the detailed Module N: Forms Design and Report Design
information requirements to be implemented in a Module O: Decision Tables and Decision Trees
specific application. The constraints on humans as

A text for a first undergraduate course in analysisinformation processors are described in order to
and design, based on three case studies. Each of theexplain why “asking” users for information re-
case studies is taken through the steps of problemquirements may not yield a complete, correct set.
definition, feasibility study, analysis, system design,Various strategies for obtaining information re-
detailed design. The main emphasis of the book isquirements are explained. Examples are given of
on analysis rather than design. The book is orientedmethods that fit each strategy. A contingency ap-
toward business applications and primarily makesproach is then presented for selecting an informa-
use of Structured Analysis and Structured Design.tion requirements determination strategy. The con-
The case studies may provide a useful basis fortingency approach is explained both for defining or-
class discussions.ganizational information requirements and for de-

fining specific, detailed requirements in the devel-
opment of an application. Davis88

Davis, A. “A Comparison of Techniques for the
Davis83 Specification of External System Behavior.” Comm.

ACM 31, 9 (Sept. 1988), 1098-1115.Davis, W. S. Systems Analysis and Design. Read-
ing, Mass.: Addison-Wesley, 1983. This paper compares finite state techniques, deci-

sion tables, program design language, Real-TimeTable of Contents
Structured Analysis, statecharts, REVS/SREM,I. THE SYSTEMDEVELOPMENT PROCESS
Petri nets, and three languages: SDL (Specification1 Structured Systems Analysis and Design
and Description Language), RLP (Requirements2 Case A: Problem Definition
Language Processor), and PAISLey. It is the best3 Case A: The Feasibility Study
survey paper in the area of notation and tools sup-4 Case A: Analysis
porting requirements definition, and it includes an5 Case A: System Design
extensive bibliography.6 Case A: Detailed Design

7 Case A: Implementation and Maintenance

DeMarco79
II. A SMALL BUSINESS SYSTEM DeMarco, T. Structured Analysis and System8 Case B: Problem Definition

Specification. Englewood Cliffs, N. J.: Yourdon9 Case B: The Feasibility Study
Press, 1979. Also published by Prentice-Hall, 1979.10 Case B: Analysis

11 Case B: System Design A very readable book on Structured Analysis and
12 Case B: Detailed Design system specification that covers data flow diagrams,
13 Case B: Implementation and Maintenance data dictionaries, and process specification. How-

ever, Structured Analysis has evolved greatly since
III. AN ON-LINE SYSTEM 1979, and [Yourdon89a] is a more up-to-date refer-
14 Case C: Problem Definition ence.
15 Case C: The Feasibility Study
16 Case C: Analysis

DoD8817 Case C: System Design
DoD. Military Standard for Defense System Soft-18 Case C: Detailed Design

19 Case C: Implementation and Maintenance ware Development. DOD-STD-2167A, U. S. De-
partment of Defense, Washington, D.C., 29 February

IV. THE ANALYST ’S TOOLS 1988.
Module A: Inspections and Walkthroughs
Module B: Interviewing Flavin81Module C: The Feasibility Study

Flavin, M. Fundamental Concepts of InformationModule D: Data Flow Diagrams
Modeling. Englewood Cliffs, N. J.: Yourdon Press,Module E: Data Dictionaries
1981.Module F: System Flowcharts

Module G: Cost/Benefit Analysis
A well-written book that is a good introduction toModule H: HIPO with Structured English
information (data) modeling for the instructor.Module I: Pseudocode
Flavin describes this short work in the preface, partModule J: Program Logic Flowcharts
of which is reproduced here:Module K: Warnier/Orr Diagrams

Information modeling is a modern form of systemModule L: PERT and CPM
analysis that identifies the objects, relationships,Module M: File Design and Space Estimates
and operations composing some real-world system.

SEI-CM-19-1.2 19

Software Requirements

It is used for database design and business system Gomaa81
analysis and planning. Gomaa, H. and D. B. H. Scott. “Prototyping as a
As an analytical procedure, it is composed of two Tool in the Specification of User Requirements.”
major parts: an analytical “front end,” and a Proc. 5th Intl. Conf. Software Eng. New York:
representational “back-end.” The analytical front- IEEE, 1981, 333-339.
end is a coherent set of procedures for finding,
identifying, and defining objects; relationships; Abstract: One of the major problems in developing
operations that modify the objects and relation- new computer applications is specifying the user’s
ships; and data elements that describe objects and requirements such that the requirements specifica-
relationships. The representational back-end is a tion is correct, complete, and unambiguous. Al-
set of procedures for mapping the semantic compo- though prototyping is often considered too expen-
nents of the model onto data structures that repre-

sive, correcting ambiguities and misunderstandingssent and describe each component. Information
at the specification stage is significantly cheapermodeling is a marriage of the art of system analysis
than correcting a system after it has gone into pro-with the science of data representation.
duction. This paper describes how a prototype was

This monograph is intended to make the system used to help specify the requirements of a computer
analysis component less artistic and a bit more system to manage and control a semiconductor
scientific, and to lay out a proper conceptual foun- processing facility. The cost of developing and run-
dation for the construction of an Entity- ning the prototype was less than 10% of the totalRelationship (E-R) model of some real-world sys-

software development cost.tem.

This is an excellent case study that is suitable for
study by students.Freedman82

Freedman, D. P., and G. M. Weinberg. Handbook of
Walkthroughs, Inspections, and Technical Reviews: Gomaa89
Evaluating Programs, Projects, and Products, 3rd Gomaa, H. Software Design Methods for Real-Time
Ed. Boston: Little, Brown, 1982. Systems. Curriculum Module SEI-CM-22-1.0, Soft-

ware Engineering Institute, Carnegie Mellon Univer-This book is a secondary source to [Yourdon89b].
sity, Pittsburgh, Pa., Dec. 1989.

Capsule Description: This module describes theGane79
concepts and methods used in the software design ofGane, C., and T. Sarson. Structured Systems Anal-
real-time systems. It outlines the characteristics ofysis: Tools and Techniques. Englewood Cliffs,
real-time systems, describes the role of software de-N. J.: Prentice-Hall, 1979.
sign in real-time system development, surveys and
compares some software design methods for real-One of the more widely used books on Structured
time systems, and outlines techniques for the verifi-Analysis. The book discusses some of the problems
cation and validation of real-time designs. Forin analysis, reviews graphical tools, and shows how
each design method treated, its emphasis, conceptsthe graphical tools fit together to make a logical
on which it is based, steps used in its application,model. Although this book is very readable, Struc-
and an assessment of the method are provided.tured Analysis has evolved greatly since 1979, and

[Yourdon89a] is a more up-to-date reference.
Harel88a

Gause89 Harel, D. “On Visual Formalisms.” Comm. ACM 31,
5 (May 1988), 514-530.Gause, D. C., and G. M. Weinberg. Exploring Re-

quirements: Quality Before Design. New York: An elegant and clearly written paper which dis-
Dorset House, 1989. cusses a number of important issues about model

representation. While the first part of the paper isFrom the publisher:
concerned with general issues, the latter part pro-

The authors focus on three critical but neglected
vides an interesting exposition of statecharts, andhuman aspects of the requirements process: devel-
includes a detailed example in the form of a de-oping a consistent understanding of requirements
scription of a digital watch. The paper will be ofamong all participants, encouraging the desire to
particular interest to instructors concerned with thework as a team on the project, and creating the
imprecision of the graphic notations frequently usednecessary skills and tools for working effectively

as a team to define requirements. Topics include to describe software requirements. It should be read
ambiguity and ambiguity metrics; techniques for in conjunction with [Ward89] and [Davis88].
generating ideas; right-brain methods; choosing
project names; conflict resolution; attributes, func-
tions, and constraints; expectations; reaching
agreements; and user satisfaction tests.

20 SEI-CM-19-1.2

Software Requirements

16 Managing the DictionaryHarel88b
Harel, D., et al. “STATEMATE: A Working Envi-

PART IV: THE ARCHITECTURE MODELronment for the Development of Complex Reactive
17 OverviewSystems.” Proc. 10th Intl. Conf. on Software Eng.
18 Architecture Diagrams

Washington, D. C.: IEEE Computer Society Press, 19 Architecture Dictionary and Module Specifica-
1988, 396-406. tions

20 Completing the Architecture ModelAbstract: This paper provides a brief overview of
the STATEMATE system, constructed over the past

PART V: BUILDING THE ARCHITECTUREthree years by i-Logix Inc., and Ad Cad Ltd.
MODELSTATEMATE is a graphical working environment,

21 Overviewintended for the specification, analysis, design and
22 Enhancing the Requirements Modeldocumentation of large and complex reactive sys-
23 Creating the System Architecture Modeltems, such as real-time embedded systems, control
24 Creating the Hardware and Software Architec-and communication systems, and interactive soft-

ture Modelsware. It enables a user to prepare, analyze and
25 Architecture Development Summarydebug diagrammatic, yet precise, descriptions of the

system under development from three inter-related
PART VI: EXAMPLESpoints of view, capturing structure, functionality
26 Automobile Management Systemand behavior. These views are represented by three
27 Home Heating Systemgraphical languages, the most intricate of which is
28 Vending Machinethe language of statecharts used to depict reactive

behavior over time. In addition to the use of
Appendix A: Standard Symbols and Definitionsstatecharts, the main novelty of STATEMATE is in
Appendix B: Making the Models into Documentsthe fact that it ‘understands’ the entire descriptions
Appendix C: Information Modeling—The Third Per-perfectly, to the point of being able to analyze them

spectivefor crucial dynamic properties, to carry out rigor-
ous animated executions and simulations of the de- This is a well-written text on Real-Time Structured
scribed system, and to create runing code automat- Analysis. This book should be read in conjunction
ically. These features are invaluable when it comes with [Ward89] in order better to understand the ca-
to the quality and reliability of the final outcome. pabilities of the notation. This text and [Ward85]

are alternative texts; the choice of a text for teach-
Hatley87 ing Real-Time Structured Analysis may depend

upon whether the computer tools to be used supportHatley, D. J., and I. A. Pirbhai. Strategies for Real-
only the Hatley notation or only the Ward notation.Time System Specification. New York: Dorset

House, 1987.
Heninger80

Table of Contents
Heninger, K. L. “Specifying Software RequirementsPART I: THE OVERALL STRATEGY
for Complex Systems: New Techniques and Their1 Overview
Applications.” IEEE Trans. Software Eng. SE-6, 12 The Role of the Methods
(Jan. 1980), 2-13.

PART II: THE REQUIREMENTS MODEL
Abstract: This paper concerns new techniques for3 Overview
making requirements specifications precise, con-4 The Process Model
cise, unambiguous, and easy to check for complete-5 The Control Model
ness and consistency. The techniques are well-6 Finite State Machines
suited for complex real-time software systems; they7 Timing Requirements
were developed to document the requirements of ex-8 Requirements Dictionary
isting flight software for the Navy’s A-7 aircraft.9 Requirements Model Interpretation and Sum-
The paper outlines the information that belongs in amary
requirements document and discusses the objectives
behind the techniques. Each technique is describedPART III: BUILDING THE REQUIREMENTS
and illustrated with examples from the A-7 docu-MODEL
ment. The purpose of the paper is to introduce the10 Overview
A-7 document as a model of a disciplined approach11 Getting Started
to requirements specification; the document is12 Developing the Model’s Structure
available to anyone who wishes to see a fully13 Preparing Process Specifications
worked out example of the approach.14 Preparing Control Specifications

15 Defining Timing This paper shows how software requirements can be

SEI-CM-19-1.2 21

Software Requirements

defined using a description of external system be- the 50-page car rental system example, will be of
havior. The technique is part of the requirements interest to the instructor even if the book is not used
and design methodology developed at the Naval Re- as a text.
search Laboratory by Parnas, Clements and Weiss
[Gomaa89]. The approach should be reviewed by Leite87
the instructor, since it does not use a graphic model Leite, J. A Survey on Requirements Analysis. RTP
of system functionality; it is based upon different 071, University of California, Irvine, June 1987.assumptions about how to best describe software
requirements. This report contains an excellent annotated bibliog-

raphy.
IEEE83
IEEE. IEEE Standard Glossary of Software Engi- Leite88
neering Terminology. New York: IEEE, 1983. Leite, J. Viewpoint Resolution in Requirements
ANSI/IEEE Std 729-1983. Elicitation. Ph.D. Th., University of California, Ir-

vine, 1988. Available from University MicrofilmsThis standard provides definitions for many of the
International, Ann Arbor, Michigan.terms used in software engineering.

A valuable thesis to anyone working seriously in
developing requirements definition methods.IEEE84

IEEE. IEEE Guide to Software Requirements
Specifications. New York: IEEE, 1984. Leveson86
ANSI/IEEE Std 830-1984. Leveson, N. G. “Software Safety: Why, What, and

How.” ACM Computing Surveys 18, 2 (June 1986),An excellent description of the contents of a soft-
125-163.ware requirements document.

Software safety requirements analysis is described
in detail here. This survey contains a very longKowall88
bibliography at the end to aid in finding further in-Kowall, J. Analyzing Systems. Englewood Cliffs,
formation.N. J.: Prentice-Hall, 1988.

Table of Contents Leveson87
PART I: PHYSICAL SPECIFICATIONS

Leveson, N. G. Software Safety. Curriculum Mod-1 Introduction
ule SEI-CM-6-1.0, Software Engineering Institute,2 Data Flow Diagrams
Carnegie Mellon University, Pittsburgh, Pa., April3 Data Dictionary
1987.4 Mini-Specifications

5 Physical Models Capsule Description: Software safety involves en-
suring that software will execute within a systemPART II: LOGICAL SPECIFICATIONS
context without resulting in unacceptable risk.6 Logical Analysis
Building safety-critical software requires special7 Object Analysis
procedures to be used in all phases of the software8 Event Analysis
development process. This module introduces the9 Logical Models
problems involved in building such software along
with the procedures that can be used to enhance thePART III: REAL-TIME MODELS AND SYSTEM
safety of the resulting software product.ARCHITECTURE

10 Real-Time Systems Specifications
Marca8211 Convenient Auto Rental System

12 Systems Architecture Marca, D. A., and C. L. McGowan. “Static and
Dynamic Data Modeling for Information System

Glossary Design.” Proc. 6th Intl. Conf. on Software Eng.
References New York: IEEE, 1982, 137-146.
Index

This paper shows how Entity-Relationship models
This well-written book is a potential text for a and SADT data models can both be used during
course in which a substantial amount of time is requirements definition.
devoted to requirements analysis. It includes Struc-
tured Analysis, including an introduction to the real-
time extensions, and information modeling. The
chapters on event analysis and object analysis, plus

22 SEI-CM-19-1.2

Software Requirements

Structured Analysis. Orr’s work is worthy of studyMarca88
by the instructor, since it enjoys significant indus-Marca, D. A., and C. L. McGowan. SADT: Struc-
trial usage.tured Analysis and Design Technique. New York:

McGraw-Hill, 1988.
Perlman88

A detailed description of SADT, the predecessor to Perlman, G. User Interface Development. Curricu-
Structured Analysis. The book makes use of a gen- lum Module SEI-CM-17-1.0, Software Engineeringerous supply of illustrations and examples, as well

Institute, Carnegie Mellon University, Pittsburgh,as providing a number of case studies taken from
Pa., April 1988.different application domains. The large-size for-

mat used for the book makes the examples partic- Capsule Description: This module covers the is-
ularly clear and readable. sues, information sources, and methods used in the

design, implementation, and evaluation of userThe level of detail provided makes this particularly
interfaces, the parts of software systems designed tosuitable for use as a source of material for the in-
interact with people. User interface design drawsstructor. It should be read in conjunction with
on the experiences of designers, current trends in[Ross85].
input/output technology, cognitive psychology,
human factors (ergonomics) research, guidelines

Martin88 and standards, and on the feedback from evaluating
Martin, C. User-Centered Requirements Analysis. working systems. User interface implementation
Englewood Cliffs, N.J.: Prentice-Hall, 1988. applies modern software development techniques to

building user interfaces. User interface evaluation
A well-written book emphasizing the process of re- can be based on empirical evaluation of working
quirements definition for information systems, for systems or on the predictive evaluation of system
which a majority of requirements are gathered from design specifications.
people. The chapters on performance requirements
and on “objectives analysis,” which covers the con-

Powers84text analysis process, are of particular interest.
Powers, M., D. Adams, and H. Mills. Computer In-
formation Systems Development: Analysis andMcMenamins84
Design. Cincinnati: South-Western, 1984.McMenamins, S. M, and J. F. Palmer. Essential Sys-

tems Analysis. New York: Yourdon Press, 1984. Table of Contents
I. OVERVIEW

One of the best books on the process of performing 1 The Systems Development Environment
requirements definition using Structured Analysis. 2 The Systems Development Life Cycle

Mills86 II. THE INVESTIGATION PHASE
3 Initial InvestigationMills, H. D., C. Linger, and A. R. Hevner.
4 Information GatheringPrinciples of Information Systems Analysis and
5 Feasibility StudyDesign. Orlando, Fla.: Academic Press, 1986.
6 The Process and Products of Analysis

This book describes an approach to requirements 7 Cost/Benefit Analysis
definition for information systems that emphasizes 8 Communication
the use of models showing external system be-
havior. Black-box and state-machine models are III. ANALYSIS AND GENERAL DESIGN PHASE
used; these are similar in concept to the form of 9 Existing System Review
representation described in [Heninger80]. 10 System Modeling Tools

11 New System Requirements
12 Output DesignOrr81
13 Input DesignOrr, K. Structured Requirements Definition.
14 Logical Data Analysis

Topeka, Kan.: Ken Orr and Associates, 1981. 15 New System Design
Available from Optima, Inc., Schaumburg, Ill. 16 File Design

17 Control and Reliability DesignThis book describes a methodology and notation for
18 Implementation and Installation Planningperforming requirements definition for information

systems. The technique is a data-structured ap-
IV. IMPLEMENTATION, INSTALLATION, AND RE-proach that focuses on the data that the system will

VIEW PHASEStransform into information. The approach is con-
19 Detailed Design and Implementation Phasesiderably different in its strategic approach from
20 Installation

SEI-CM-19-1.2 23

Software Requirements

21 Review describes how products of some type should look or
22 Project Management how processes of some type should be performed.

The framework includes:
Appendix A: Systems Analysis Project • A reference software life-cycle model and
Appendix B: A Case Scenario terminology
Glossary

• A characterization scheme for softwareIndex
product and process specifications

A possible text for teaching requirements definition • Guidelines for using the characterization
for information systems to undergraduates. The scheme to identify clearly certain life-cycle
section “The Investigation Phase” covers require- phases
ments identification and requirements analysis in • Guidelines for using the characterizationdetail.

scheme to select and evaluate specification
techniques

Pressman87
Pressman, R. S. Software Engineering: A Practi- Ross77a
tioner’s Approach, 2nd Ed. New York: McGraw- Special Collection on Requirements Analysis. Ross,
Hill, 1987. D. T., ed. IEEE Trans. Software Eng. SE-3, 1 (Jan.

1977).Table of Contents
1 Software and Software Engineering

This special journal issue contains [Ross77b],2 Computer System Engineering
[Teichroew77], and [Alford77], plus other papers on3 Software Project Planning
requirements methods.4 Requirements Analysis Fundamentals

5 Requirements Analysis Methods
Ross77b6 Software Design Fundamentals

7 Data Flow-Oriented Design Ross, D. T., and K. E. Schoman, Jr. “Structured
8 Data Structure-Oriented Design Analysis for Requirements Definition.” IEEE Trans.
9 Object-Oriented Design Software Eng. SE-3, 1 (Jan. 1977), 6-15.
10 Real-Time Design

Abstract: Requirements definition encompasses all11 Programming Languages and Coding
aspects of system development prior to actual sys-12 Software Quality Assurance
tem design. We see the lack of an adequate ap-13 Software Testing Techniques
proach to requirements definition as the source of14 Software Testing Strategies
major difficulties in current systems work. This15 Software Maintenance and Configuration Man-
paper examines the needs for requirements defini-agement
tion, and proposes meeting those objectives with
three interrelated subjects: context analysis, func-Epilogue
tional specification, and design constraints. Re-Index
quirements definition replaces the widely used, but

A suitable text for a graduate-level course in soft- never well-defined, term “requirements analysis.”
ware engineering.

The purpose of this paper is to present, in a com-
prehensive manner, concepts that apply throughout

Rombach90 requirements definition (and, by implication, to all
Rombach, H. D. Software Specification: A of system development). The paper discusses the
Framework. Curriculum Module SEI-CM-11-2.1, functional architecture of systems, the characteris-
Software Engineering Institute, Carnegie Mellon tics of good requirements documentation, the per-

sonnel involved in the process of analysis, and man-University, Pittsburgh, Pa., Jan. 1990.
agement guidelines that are effective even in com-

Capsule Description: This curriculum module plex environments.
presents a framework for understanding software

The paper then outlines a systematic methodologyproduct and process specifications. An unusual ap-
that incorporates, in both notation and technique,proach has been chosen in order to address all as-
the concepts previously introduced. Reference ispects related to “specification” without confusing
made to actual requirements definition experiencethe many existing uses of the term. In this module,
and to practicable automated support tools thatthe term specification refers to any plan (or
may be used with the methodology.standard) according to which products of some type

are constructed or processes of some type are per- This paper was the first publication on SADT
formed, not to the products or processes themselves. [Marca88, Ross85], but its principal value is its de-
In this sense, a specification is itself a product that scription of the requirements definition process.

24 SEI-CM-19-1.2

Software Requirements

communicating processes, is transformedRoss85
into a sequential design by the techniqueRoss, D. T. “Applications and Extensions of
of scheduling. This is followed by fur-

SADT.” Computer 18, 4 (April 1985), 25-34. ther detailed design and coding. . . .
JSD begins by analysing the major system struc-

Rzepka85 tures which are important to create a model of the
system problem, the entities. Then these structuresSpecial Issue on Requirements Engineering Environ-
are connected together to create a network modelments. W. Rzepka and Y. Ohno, eds. Computer 18,
of the system, while at the same time the design is4 (April 1985). elaborated by addition of other processes to create
output, and to handle input messages and user in-This journal issue contains [Ross85] and [Alford85],
teraction. The essence . . . is to create a systemplus other papers on requirements methods for real-
model of reality first and then to add the function-time applications.
ality.

JSD is usually not considered to support require-Shlaer88 ments definition, but Jackson’s emphasis on model-
Shlaer, S., and S. J. Mellor. Object-Oriented Systems ing the problem domain makes it a viable alter-
Analysis: Modeling the World in Data. Englewood native, for information systems, to functional, top-
Cliffs, N. J.: Yourdon Press, 1988. down approaches such as Structured Analysis. This

book is unique in showing how JSD relates to more
widely used software requirements and design tech-Sommerville89
niques. [Ward89] also shows how its notation re-Sommerville, I. Software Engineering, 3rd Ed.
lates to more widely used requirements notations.Wokingham, England: Addison-Wesley, 1989.

This latest edition of Sommerville’s text expands Teichroew77
upon the excellent chapter on requirements defini- Teichrow, D., and E. A. Hershey, III. “PSL/PSA: A
tion in the 2nd edition. Topics include system Computer-Aided Technique for Structured Docu-(including data) modeling, non-functional require-

mentation and Analysis of Information Processingments definition, and requirements validation.
Systems.” IEEE Trans. Software Eng. SE-3, 1 (Jan.
1977), 41-48.Sutcliffe88

Abstract: PSL/PSA is a computer-aided structuredSutcliffe, A. Jackson System Development. New
documentation and analysis technique that was de-York: Prentice-Hall, 1988.
veloped for, and is being used for, analysis and doc-

From the introductory chapter: umentation of requirements and preparation of
functional specifications for information processing[Jackson System Development (JSD)] is organized
systems. The present status of requirements defini-in three separate stages which guide the analyst

through the systems development process. Each tion is outlined as the basis for describing the prob-
stage has a set of activities with clear start and end lem which PSL/PSA is intended to solve. The basic
points (this helps the analyst using the method) and concepts of the Problem Statement Language are
facilitates project control as deliverables can be introduced and the content and use of a number of
defined for each stage. The three stages can be standard reports that can be produced by the Prob-
outlined briefly as follows. lem Statement Analyzer are briefly described.

(a) Modelling stage. A description is made
The experience to date indicates that computer-of the real world problem and the impor-
aided methods can be used to aid system develop-tant actions within the system are identi-
ment during the requirements definition stage andfied. This is followed by analysis of the

major structures within the system, called that the main factors holding back such use are not
entities in JSD. . . . so much related to the particular characteristics

and capabilities of PSL/PSA as they are to or-(b) Network stage. The system is developed
ganizational considerations involved in any changeas a series of subsystems. First the major

structures are taken from the modelling in methodology and procedure.
stage and input and outputs are added;

PSL/PSA was the first widely used computer tool tothis is followed by the analysis of the
support requirements definition. Although its use isoutput subsystem which provides infor-
declining, its objectives are relevant to the design ofmation, and then of the input subsystem

which handles the user interface and vali- newer CASE tools.
dation. . . .

(c) Implementation stage. In this stage the Wallace87
logical system specification, which is Wallace, R., R. Stockenburg, and R. Charette. Aviewed as a network of concurrently

Unified Methodology for Developing Systems. New
York: McGraw-Hill, 1987.

SEI-CM-19-1.2 25

Software Requirements

tools, graphics-based software modeling languagesThis book combines SADT with the Parnas/NRL
have the potential to play a much more central roledesign methodology [Gomaa89].
in the development process. Although some com-
parisons among these languages have been made,Ward85
no systematic classification based on the underlyingWard, P. T., and S. J. Mellor. Structured Develop- abstractions has been attempted. As a contribution

ment for Real-Time Systems. New York: Yourdon to such a classification, a class of languages desig-
Press, 1985-1986. nated Embedded Behavior Pattern (EBP) languages

is described and its members are compared andTable of Contents
contrasted. The EBP languages include the
Ward/Mellor and Boeing/Hatley Structured Analy-Volume 1
sis extensions, the Jackson System DevelopmentSECTION 1: INTRODUCTION
notation, and Harel’s StateChart-Activity Chart1 Historical Perspective
notation. These notations are relevant to the build-2 Characterization of Real-Time Systems
ing of specification models because they display3 Real-Time Modeling Issues
clear one-to-one correspondences between elements4 Modeling Heuristics
of the model and elements of the application5 The Modeling Process
domain. These notations are also amenable to a
style of model partitioning that is related to object-SECTION 2: TOOLS
oriented development.6 Modeling Transformations

7 Specifying Control Transformations This paper is a detailed comparison of the notations
8 Specifying Data Transformations described in [Harel88a], [Hatley87], and [Ward85].
9 Executing the Transformation Schema It will be particularly useful to instructors selecting
10 Modeling Stored Data real-time–oriented CASE tools to support require-
11 Specifying Data ments definition.
12 Organizing the Model
13 Integrating the Model Components

White87
White, S. A Pragmatic Formal Method for Comput-Index
er System Definition. Ph.D. Th., Polytechnic Insti-

Volume 2 tute of New York, Brooklyn, N. Y., June 1987.
1 Essential Modeling Heuristics Available from University Microfilms International,
2 Defining System Context Ann Arbor, Michigan.
3 Modeling External Events

This thesis compares in more detail than any other4 Deriving the Behavioral Model
publication the representational capabilities of sev-5 Completing the Essential Model—The Upper
eral real-time requirements and design methods, in-Levels
cluding those described in [Alford85], [Ross85],6 Completing the Essential Model—The Lower
[Heninger80], [Ward85], and [Harel88a]. White pro-Levels
poses a method that is claimed to combine the best7 Essential Model Traceability
characteristics of each of the evaluated methods.
This thesis is recommended reading for researchersAppendix A: Cruise Control System
in requirements definition methods and anyone do-Appendix B: Bottle-Filling System

Appendix C: SILLY (Science and Industry Little ing an in-depth comparison of real-time methods.
Logic Yzer)

Appendix D: Defect Inspection System Yourdon89a
Yourdon, E. Modern Structured Analysis.The three volumes in this series are Introduction
Englewood Cliffs, N. J.: Yourdon Press, 1989.and Tools, Essential Modeling Techniques, and

Implementation Modeling Techniques. The first
Probably the most comprehensive and up-to-datetwo volumes are applicable to software require-
book on the popular Structured Analysis method.ments. Volume 3 covers software design.
Includes material on the real-time extensions to
Structured Analysis and Entity-Relationship model-

Ward89 ing. There are also two detailed case studies. If
Ward, P. T. “Embedded Behavior Pattern Lan- you need one book on Structured Analysis, this is
guages: A Contribution to a Taxonomy of CASE probably the one to get.
Languages.” J. Syst. and Software 9, 2 (Feb. 1989),
109-128.

Abstract: With the increasing availability of CASE

26 SEI-CM-19-1.2

Software Requirements

Yourdon89b
Yourdon, E. Structured Walkthroughs, 4th Ed.
Englewood Cliffs, N. J.: Yourdon Press, 1985.
Also published by Prentice-Hall, 1989.

This book is the most comprehensive available on
walkthroughs. The appendix “Guidelines for Anal-
ysis Walkthroughs” is particularly relevant.

SEI-CM-19-1.2 27

	Software Requirements
	Acknowledgements
	Capsule Description
	Contents
	Philosophy
	Objectives
	Prerequisite Knowledge

	Module Content
	Outline
	Annotated Outline

	Teaching Considerations
	Suggested Course Types
	Paper Categories
	Teaching Experience

	Bibliography

