
Software Design Methods
for Real-Time Systems

SEI Curriculum Module SEI-CM-22-1.0

December 1989

Hassan Gomaa
George Mason University

Software Engineering Institute
Carnegie Mellon University

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include model curricula, textbooks, educational software, and a variety of reports and proceedings.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Comments on SEI educational publications, reports concerning their use, and requests for additional information should
be addressed to the Director of Education, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213.

Comments on this curriculum module may also be directed to the module author.

Hassan Gomaa
Department of Information Systems
and Systems Engineering
George Mason University
4400 University Drive
Fairfax, VA 22030

Copyright © 1989 by Carnegie Mellon University

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position.
It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

221011990

Software Design Methods

for Real-Time Systems

Acknowledgements Contents

This module is an outgrowth of my experiences in teach- Capsule Description 1
ing the graduate course “Software Engineering Methods” Philosophy 1
at the Wang Institute of Graduate Studies and graduate

Objectives 2courses “Software Requirements Analysis, Prototyping,
and Design” and “Software Design Methods for Real- Prerequisite Knowledge 3
Time Systems” at George Mason University. I am in- Module Content 4
debted to my students for their enthusiasm and feedback,

Outline 4which helped me improve the courses substantially and
hence pave the way for this module. Annotated Outline 5

Glossary 23I would also like to gratefully acknowledge the many
stimulating discussions I have had with John Brackett, Bo Teaching Considerations 26
Sanden, and David Weiss that have contributed signifi-

Textbooks 26cantly to my understanding of the design methods de-
Suggested Course Types 26scribed in this module.

Suggested Schedules 26I am also indebted to Lionel Deimel for his considerable
assistance with all aspects of the production of this curric- Worked Examples 27
ulum module. Considerable effort was also expended by Exercises 27
Jim Rankin in constructing the bibliography.

Classification of References 28
Thanks are also due to John Brackett and David Budgen,

Bibliography 31
who helped in defining the scope of this module, and to
the following reviewers of an earlier draft of this module:
Lionel Deimel, Richard D’Ippolito, Gary Ford, Ken
Fowler, Frank Friedman, John Goodenough, Roger Van
Scoy, and David Wood.

SEI-CM-22-1.0 iii

Software Design Methods for Real-Time Systems

Module Revision History

Version 1.0 (December 1989) Initial release
Approved for publication

iv SEI-CM-22-1.0

Software Design Methods
for Real-Time Systems

Software Design. A software design strategy is anCapsule Description
overall plan and direction for performing design.
For example, functional decomposition is a softwareThis module describes the concepts and methods
design strategy.used in the software design of real-time systems. It

outlines the characteristics of real-time systems, de- A software design concept is a fundamental idea that
scribes the role of software design in real-time sys- can be applied to designing a system. Information
tem development, surveys and compares some soft- hiding is a software design concept.
ware design methods for real-time systems, and out-

A software design notation or representation is alines techniques for the verification and validation of
means of describing a software design. It may bereal-time designs. For each design method treated,
diagrammatic, symbolic, or textual. Structure chartsits emphasis, concepts on which it is based, steps
and pseudocode are software design notations.used in its application, and an assessment of the

method are provided. A software design method is a systematic approach
for carrying out design. It typically describes a se-
quence of steps for producing a design. A design
method is based on a set of design concepts,
employs a design strategy or strategies, and docu-Philosophy
ments the resulting design using one or more design
notations.Real-Time Systems. Real-time systems have wide-

spread use in industrial, commercial, and military A software design method does not provide a cook-
applications. These systems are often complex be- book approach to performing design. A designer
cause they have to deal with multiple independent must use his skill and judgement in applying the
streams of input events. These events have arrival method. It should be pointed out that when a meth-
rates that are often unpredictable, although they must od is deficient in a certain aspect, it is often the case
be responded to within predefined timing con- that experienced designers will compensate for this
straints. by developing an ad hoc solution.

Real-time systems are frequently classified as “hard Module Organization. This module builds on the
real-time systems” or “soft real-time systems.” A module Introduction to Software Design [Budgen89]
hard real-time system has time-critical deadlines that by focusing on the real-time system domain. It
must be met; otherwise a catastrophic system failure points out the differences between this domain and
can occur. In a soft real-time system, it is consid- other application domains. It describes design con-
ered undesirable, but not catastrophic, if deadlines cepts that are of particular importance to real-time
are occasionally missed. system design, such as concurrent tasks and finite

state machines. Life-cycle considerations specific toIn spite of the importance of timing constraints in
real-time systems are examined. Design represen-real-time systems, it is a characteristic (and a
tations for expressing real-time designs are outlined.limitation) of the current state of the art in software
This module references material in Introduction todesign methods for real-time systems that the meth-
Software Design, in particular, for those designods tend to emphasize structural and behavioral as-
topics that are of importance to the design of all soft-pects of real-time systems and generally pay signifi-
ware systems.cantly less attention to timing constraints.

SEI-CM-22-1.0 1

Software Design Methods for Real-Time Systems

This module surveys several software design meth- sign phase, and its outputs are the inputs
ods for real-time systems. The concepts on which to the design phase.
each method is based are described first to show • Introduction to Software Design [Bud-
what the method attempts to achieve. The steps in- gen89] introduces the principles and con-
volved in using the method are then outlined to give cepts involved in the design of large pro-
an appreciation of the method. This is followed by grams and systems. It may thus be
an assessment of the method. The methods are sub- viewed as a prerequisite to this module,
sequently compared to one another to point out the which focuses specifically on the design
similarities and differences among them. Since the of real-time systems.
methods are best understood by studying an ex-

This module is one of several proposed modules onample, the support materials provide an example of
real-time systems including:applying each design method to solve the same real-

time problem. • Fundamentals of Real-Time Systems,
which should introduce a range of topicsCriteria for Selecting Software Design Methods.
relevant to real-time systems, includingIn selecting the design methods to be included in this
characteristics of real-time systems, soft-survey, the following criteria for selection were
ware life cycle overview for real-timeused:
systems, and interfacing to hardware—

1. The method must be published in the interrupt handling, polling, and sensor/
literature and not be proprietary. This actuator interfaces. In the absence of this
excludes methods such as PAMELA module, the reader is referred to intro-
(Process Abstraction for Large Em- ductory books on real-time systems, such
bedded Applications) [Cherry86], whose as Allworth and Zobel [Allworth87] or
description is not widely available. Glass [Glass83].

2. The method must actually have been
used on a real-world real-time applica-
tion. This excludes some emerging
methods that have recently been Objectives
published, such as the Box Structured
Method [Mills87], ADARTS [Gomaa89b] A student who has mastered the material presented
and Entity Life Modeling [Sanden89]. in this module may be expected to be able to:

3. The method must not be oriented toward • Describe the differences between real-a specific language. This excludes meth- time systems and other kinds of softwareods such as that discussed in [Nielsen88], systems.which is oriented toward Ada.
• Discuss the design concepts of particular4. The method must be a design method importance to real-time systems.and not a design notation. A design
• Describe design representations for de-notation suggests a particular approach

scribing real-time designs.to performing a design, but does not pro-
vide a systematic approach of specific • State the principles behind and steps in-
steps for performing design. This ex- volved in several design methods for
cludes design notations such as real-time systems. Discuss the
Statecharts [Harel88b] and MASCOT similarities and differences between
(Modular Approach to Software Con- these methods.
struction and Test) [Simpson86]. • Apply one or more methods to solve

small real-time problems.Module Interface. Three other SEI curriculum
modules provide background for this one related to • Discuss how real-time designs may be
particular life-cycle phases: verified and validated.

• Software Specifications: A Framework
[Rombach89] introduces some of the ter-
minology used by this module.

• Software Requirements [Brackett89].
The requirements phase precedes the de-

2 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

Prerequisite Knowledge

Students should be familiar with the terms and con-
cepts of the software life cycle. They should under-
stand concurrent processing concepts, including
process synchronization and mutual exclusion. Stu-
dents should also have had an introduction to soft-
ware design.

SEI-CM-22-1.0 3

Software Design Methods for Real-Time Systems

Module Content

b. Design Methods Based on Concurrent TaskOutline
Structuring

c. Design Methods Based on InformationI. Characteristics of Real-Time Systems
Hiding Module Structuring1. Embedded Systems

d. Design Methods Based on Modeling the2. Interaction with External Environment
Problem Domain

3. Real-Time Constraints
III. Survey of Real-Time Software Design Methods

4. Real-Time Control
1. Structured Analysis and Design for Real-Time

5. Reactive Systems Systems
6. Concurrent Processing a. Overview

II. The Role of Software Design in Real-Time b. Basic Concepts
System Development

c. Steps in Method
1. The Design Process

d. Products of Design Process
2. Real-Time Design as a Software Life-Cycle

e. Assessment of MethodPhase
f. Extensions and/or Variationsa. Life-Cycle Considerations for Real-Time

Systems 2. Naval Research Lab Software Cost Reduction
Methodb. Requirements Definition
a. Overviewc. Architectural Design
b. Basic Conceptsd. Detailed Design
c. Steps in Methode. Implementation
d. Products of Design Process3. Real-Time System Design Concepts
e. Assessment of Methoda. General Design Concepts
f. Extensions and/or Variationsb. Real-Time–Specific Design Concepts

3. Object-Oriented Design4. Real-Time Design Representations
a. Overviewa. Data Flow/Control Flow Diagrams
b. Basic Conceptsb. Task Structure Diagrams
c. Steps in Methodc. MASCOT Diagrams
d. Products of Design Processd. Structure Graphs (Buhr Diagrams)
e. Assessment of Methode. Structure Charts
f. Extensions and/or Variationsf. Entity Structure Diagrams

4. Jackson System Development for Real-Timeg. JSD Network Diagrams
Systems

h. Object Diagrams
a. Overview

i. Class Structure Diagrams
b. Basic Concepts

j. State Transition Diagrams
c. Steps in Method

k. Statecharts
d. Products of Design Process

l. Petri Nets
e. Assessment of Method

5. Role of Software Design Methods
f. Extensions and/or Variations

6. Software Design Strategies for Real-Time
5. DARTS (Design Approach for Real-TimeSystems

Systems)
a. Design Methods Based on Functional

a. OverviewDecomposition

4 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

ternal environment. A computerized automobileb. Basic Concepts
cruise control system is embedded in the auto-c. Steps in Method
mobile.

d. Products of Design Process
2. Interaction with External Environment

e. Assessment of Method
A real-time system typically interacts with an exter-f. Extensions and/or Variations
nal environment, which is, to a large extent, non-

6. Other Real-Time Software Design Methods human. For example, the real-time system may be
controlling machines or a manufacturing processes,IV. Design Verification and Validation
or it may be monitoring chemical processes and re-1. Software Technical Reviews porting alarm conditions. This situation often neces-

2. Requirements Tracing sitates a sensory interface for receiving data from the
external environment and actuators for outputting3. Simulation
data to and controlling the external environment.

4. Prototyping
3. Real-Time Constraints5. Software Testing

Real-time systems have timing constraints, i.e., theya. Testing Concurrent Software
must process events within a given time frame.

b. System Testing These real-time constraints are specified in the soft-
V. Review of Real-Time Software Design Methods ware requirements. Whereas, in an interactive sys-

tem, a human may be inconvenienced if the system1. Comparison of Real-Time Software Design
response is delayed, in a real-time system, a delayMethods
may be catastrophic. For example, inadequate re-

a. Support for Finite State Machines sponse in an air traffic control system could result in
a midair collision of two aircraft. The required re-b. Support for Concurrent Tasks
sponse time will vary by application, ranging fromc. Support for Information Hiding milliseconds in some cases, to seconds, or even

d. Timing Constraints minutes, in others.

2. Trends in Real-Time Software Design Methods 4. Real-Time Control
a. “Eclectic” Design Methods

A real-time system often involves real-time control.
b. Domain Specification and Design Methods I.e., the real-time system makes control decisions

based on input data, without any human interven-c. Computer Support Tools and Software
tion. An automobile cruise control system, for ex-Development Environments
ample, has to adjust the throttle based on measure-

d. Executable Specifications and Designs ments of current speed to ensure that the desired
speed is maintained.e. Performance Analysis of Real-Time Designs

f. Application of Knowledge-Based Techniques A real-time software system may also have
non–real-time components. For example, real-timeg. Application of Formal Methods
data collection necessitates gathering the data under
real-time constraints, otherwise the data may be lost.
However, once collected, the data can be stored for
subsequent non–real-time analysis.

Annotated Outline
5. Reactive Systems

I. Characteristics of Real-Time Systems Many real-time systems are reactive systems
[Harel88a]. They are event-driven and must respondReal-time software systems have several characteristics
to external stimuli. It is usually the case in reactivethat distinguish them from other software systems:
systems that the response made by the system to an
input stimulus is state dependent, i.e., the response1. Embedded Systems
depends not only on the stimulus itself, but also on

A real-time system is often an embedded system, what has previously happened in the system.
i.e., the real-time software system is a component of

6. Concurrent Processinga larger hardware/software system. An example of
this is a robot controller that is a component of a

A feature of most real-time systems is concurrentrobot system consisting of one or more mechanical
processing, i.e., there are many events that need toarms, servo-mechanisms controlling axis motion,
be processed in parallel. Frequently, the order ofand sensors and actuators for interfacing to the ex-
incoming events is not predictable. Furthermore, the

SEI-CM-22-1.0 5

Software Design Methods for Real-Time Systems

input load may vary significantly and unpredictably achieved using a program design language (PDL)
with time. notation, also referred to as structured English or

pseudocode. In real-time systems, particular at-
II. The Role of Software Design in Real-Time tention needs to be paid to algorithms for resource

System Development sharing and deadlock avoidance, as well as inter-
facing to hardware I/O devices.1. The Design Process

e. ImplementationDesign is a highly creative activity that relies on
designer skill, experience, and judgement. Several

Since real-time systems are often embedded sys-factors need to be considered in the software design
tems, testing is often more complex than for otherprocess [Budgen89].
systems, possibly requiring the development of
environment simulators [Gomaa86a]. Further-2. Real-Time Design as a Software Life-Cycle
more, performance of the system needs to bePhase
tested against the requirements.a. Life-Cycle Considerations for Real-Time

Systems 3. Real-Time System Design Concepts
a. General Design ConceptsLike any software systems, real-time systems

should be developed using a life-cycle model. [Budgen89] discusses several important general
The “waterfall” model [Boehm76, Fairley85] is design concepts.
the most widely used life-cycle model, although,
more recently, other models have been used to b. Real-Time–Specific Design Concepts
overcome some of its limitations [Agresti86].

Design concepts of particular importance to real-These include the incremental development
time systems are:model (also referred to as evolutionary

prototyping) [Basili75, Gomaa86b] and the rapid (i) Finite State Machinesprototyping model [Agresti86].
Finite state machines may be used for model-b. Requirements Definition
ing the behavioral aspects of a system. Many
real-time systems, in particular real-time con-Since a real-time software system is often part of
trol systems, are highly state-dependent. Aa larger embedded system, it is likely that a sys-
finite state machine consists of a finite numbertem requirements definition phase precedes the
of states and transitions between them. It cansoftware requirements definition. In this case,
be in only one of a given number of states atsystem functional requirements are allocated to
any given time [Davis88]. In response to ansoftware and hardware before software require-
input event, the machine generates an outputments definition begins [Brackett89]. In this
event and may undergo a transition to a differ-highly constrained environment, the emphasis is
ent state. Two notations widely used to defineusually on producing developer-oriented require-
finite state machines are state transitionments (D-requirements) [Rombach89].
diagrams, a graphical representation, and state

c. Architectural Design transition matrices, a tabular representation.
Since large real-time systems typically haveDuring this phase, the system is structured into its
large numbers of states, state transitionconstituent components. An important factor that
diagrams or matrices can help substantially infrequently differentiates real-time systems from
providing an understanding of the complexityother systems is the need to address the issue of
of these systems.structuring a real-time system into concurrent

tasks (processes) [Buhr84]. Depending on the de- (ii) Concurrent Tasks (Processes)
sign method used and/or designer decisions, the

A real-time system typically has many activi-emphasis at this stage may be on decomposition
ties occurring in parallel. A task represents theinto tasks, modules, or both. Another important
execution of a sequential program or a sequen-factor is consideration of the behavioral aspects of
tial component of a concurrent program. Eacha real-time system, i.e., the sequences of events
task deals with one sequential thread of execu-and states that the system experiences. This pro-
tion. Overall system concurrency is obtainedvides considerable insights into understanding the
by having many tasks executing in parallel. Adynamic aspects of the system.
design emphasizing concurrent tasks is often

d. Detailed Design clearer and easier to understand, since it is a
more realistic model of the problem domainDuring detailed design, the algorithmic details of
than a sequential program. Concurrent proc-each system component are defined. This is often
esses are described in [BrinchHansen73],
[Dijkstra68], and [Hoare74].

6 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

[Page-Jones88, Yourdon79] to show how a pro-(iii) Information Hiding
gram is decomposed into modules, where a mod-

Information hiding is a fundamental software ule is typically a procedure or function.
design concept that is relevant to the design of
all classes of software systems, not just real- f. Entity Structure Diagrams
time systems. The information hiding princi-

Entity structure diagrams are used in Jackson Sys-ple was first proposed by Parnas [Parnas72] as
tem Development (JSD) to show the structure of aa criterion for decomposing a software system
real-world entity, in the form of the sequence ofinto modules. The principle states that each
events experienced by it [Jackson83, Cameron86,module should hide a design decision that is
Cameron89]. The graphical notation is similar toconsidered likely to change. Each changeable
that used in Jackson Structured Programmingdecision is called the “secret” of the module.
(JSP) structure diagrams [Jackson75].The reasons for applying information hiding

are to provide modules that are modifiable and g. JSD Network Diagrams
understandable, and hence maintainable. Be-

JSD network diagrams are used to show all thecause modules employing information hiding
processes in a JSD design and the interfaces be-are usually self-contained, they have a much
tween them. Interfaces are represented in thegreater potential for reuse than most procedural
form of data stream (message) communication ormodules.
state vector inspections [Jackson83, Cameron86,

4. Real-Time Design Representations Cameron89].
a. Data Flow/Control Flow Diagrams

h. Object Diagrams
Data flow/control flow diagrams are used in Real-

Object diagrams are used in object-oriented de-Time Structured Analysis [Ward85, Hatley88].
sign (OOD) to show the objects in the system andThey are an extension of data flow diagrams to
to identify the visibility of each object in relationinclude control flows and control transformations.
to other objects [Booch86].Control flows represent event signals that carry

no data. Control transformations control the ex- i. Class Structure Diagrams
ecution of data transformations and are specified

Class structure diagrams are used in OOD toby means of state transition diagrams or decision
show the relationships between classes of objectstables.
[Booch86].

b. Task Structure Diagrams
j. State Transition Diagrams

Task structure diagrams are used by the DARTS
State transition diagrams are a graphical represen-design method [Gomaa84] to show the decom-
tation of finite state machines (FSMs) in whichposition of a system into concurrent tasks and the
the nodes represent states and the arcs representinterfaces between them, in the form of messages,
state transitions [Allworth87]. They are used byevent signals, and information hiding modules.
the Real-Time Structured Analysis [Ward85,

c. MASCOT Diagrams Hatley88] and DARTS [Gomaa84] methods.

MASCOT diagrams [Allworth87, Simpson79, k. Statecharts
Simpson86] are used to show the decomposition

Statecharts are an extension of FSMs that provideof a system into subsystems consisting of concur-
a notation and approach for hierarchically struc-rent tasks. The interfaces between tasks are in the
turing FSMs and allowing concurrent FSMs thatform of channels (message queues) and pools
interact with each other [Harel88b]. The objective(information hiding modules).
is to provide a notation that it is clearer and more

d. Structure Graphs (Buhr Diagrams) structured than state transition diagrams.

Structure graphs are used to describe the structure l. Petri Nets
of a system in terms of concurrent tasks, packages

Petri nets [Peterson81] are a graphical represen-(information hiding modules), and procedures
tation for modeling concurrent systems. Two[Buhr84]. These graphs are oriented toward use
types of nodes are supported: places that are usedwith the Ada programming language, but they
to represent conditions and transitions that aremay also be used with languages such as
used to represent events. The execution of a PetriModula-2.
net is controlled by the position and movement of

e. Structure Charts markers called “tokens.” Tokens are moved by
the firing of the transitions of the net. A transi-Structure charts are used in Structured Design
tion is enabled to fire when all its input places

SEI-CM-22-1.0 7

Software Design Methods for Real-Time Systems

have tokens in them. When the transition fires, a III. Survey of Real-Time Software Design Methods
token is removed from each input place and a

Below is a survey of real-time structured design meth-token is placed on each output place. Timed Petri
ods. Each method treated is described and evaluated innets are an extension to Petri nets that allow finite
subsections under the following headings:times to be associated with the firing of transi-

a. Overviewtions.
b. Basic Concepts5. Role of Software Design Methods
c. Steps in Method

This material is covered in [Budgen89]. d. Products of Design Process
6. Software Design Strategies for Real-Time e. Assessment of Method

Systems f. Extensions and/or Variations

The various design methods described in this mod- 1. Structured Analysis and Design for Real-Time
ule use different strategies and emphasize different Systems
design concepts in decomposing the system into its

a. Overviewcomponents. A classification of them, based on the
strategy used, is given below. Real-Time Structured Analysis and Design

(RTSAD) is an extension of Structured Analysisa. Design Methods Based on Functional
and Structured Design to address the needs ofDecomposition
real-time systems. Real-Time Structured Anal-

This strategy is used by Real-Time Structured ysis (RTSA) is viewed by many of its users as
Analysis and Design [Ward85, Hatley88]. The primarily a specification method addressing the
system is decomposed into functions (called software requirements of the system being devel-
transformations or processes), and interfaces be- oped. Two variations of RTSA have been devel-
tween them are defined in the form of data flows oped—the Ward/Mellor [Ward85, Ward86] and
or control flows. Functions (i.e., data or control Boeing/Hatley [Hatley88] approaches. A third
transformations) are mapped onto processors, variation, ESML, the Extended System Modeling
tasks, and modules [Ward85]. Language [Bruyn88], is a recent attempt to merge

the Ward/Mellor and Boeing/Hatley methods for
b. Design Methods Based on Concurrent Task Real-Time Structured Analysis.

Structuring
The extensions to Structured Analysis are driven

This strategy is emphasized by DARTS by the desire to represent more precisely the be-
[Gomaa84]. Concurrent tasking is considered a havioral characteristics of the system being devel-
key aspect in real-time design. DARTS provides oped. This is achieved primarily through the use
a set of task-structuring criteria to assist the real- of state transition diagrams, control flows, and in-
time system designer in identifying the concurrent tegrating state transition diagrams with data flow
tasks in the system. DARTS also provides guide- diagrams through the use of control transfor-
lines for defining task interfaces. mations (specifications).

c. Design Methods Based on Information Structured Design [Myers78, Page-Jones88,
Hiding Module Structuring Yourdon79] is a program design method that uses

the criteria of module coupling and cohesion inThis strategy aims at providing software compo-
conjunction with the transform-centered andnents that are modifiable and maintainable, as
transaction-centered design strategies to develop awell as being potentially more reusable. This is
design, starting from a Structured Analysis speci-achieved through the use of information hiding in
fication.the design of components. This strategy is used

by the Naval Research Lab Software Cost Reduc- b. Basic Concepts
tion method [Parnas84] and the object-oriented

(i) Data and Control Flow Analysisdesign method [Booch86].

In RTSAD, the system is structured into func-d. Design Methods Based on Modeling the
tions (called transformations or processes), andProblem Domain the interfaces between them are defined in the
form of data flows or control flows. Transfor-This strategy is emphasized by the Jackson Sys-
mations may be data or control transfor-tem Development method [Jackson83,
mations. The system is structured as a hierar-Cameron86, Cameron89]. With this strategy, the
chical set of data flow/control flow diagramsobjective is to model entities in the problem
that may be checked for completeness and con-domain and then map them onto software proc-
sistency.esses.

8 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

(ii) Finite State Machines (i) Develop the System Context Diagram

Finite state machines, in the form of state tran- The system context diagram defines the bound-
sition diagrams, are used to define the be- ary between the system to be developed and
havioral characteristics of the system. The the external environment. The data flow and
major extension to Structured Analysis is the control flow interfaces between the system and
introduction of control considerations, through the external entities that the system has to in-
the use of state transition diagrams. A control terface to are defined.
transformation represents the execution of a

(ii) Perform Data Flow/Control Flowstate transition diagram. Input event flows
Decompositiontrigger state transitions, and output event flows

control the execution of data transformations A hierarchical data flow/control flow decom-
[Ward85]. position is performed, starting from the system

context diagram. The Boeing/Hatley approachIn the Boeing/Hatley and ESML methods, it is
emphasizes hierarchical decomposition of bothalso possible for a control transformation to be
function and data. The Ward/Mellor approachdescribed by means of a decision table. Proc-
starts with an event list, which is a list of inputess activation tables are also used in Boeing/
events, and then identifies the functions thatHatley to show when processes
operate on each input event. These functions(transformations) are activated.
are then aggregated to achieve a top-level data

(iii) Entity-Relationship Modeling flow diagram and decomposed to determine
lower-level functions.

Entity-relationship diagrams are used to show
the relationships between the data stores of the (iii) Develop Control Transformations
system [Yourdon89]. They are used for identi- (Ward/Mellor) or Control Specifications
fying the data stores (either internal data struc- (Boeing/Hatley)
tures or files) and for defining the contents

A control transformation is defined by means(attributes) of the stores. These are particularly
of a state transition diagram. A control specifi-useful in data-intensive systems.
cation may be defined by one or more of state

(iv) Module Cohesion transition diagrams (tables), decision tables,
and process activation tables. It is associatedModule cohesion is used in module decom-
with a data flow diagram at any level of theposition as a criterion for identifying the
hierarchy.strength or unity within a module [Myers78,

Page-Jones88, Yourdon79]. Functional and in- Each state transition diagram shows the differ-
formational cohesion are considered the ent states of the system or subsystem. It also
strongest (and best) form of cohesion. In the shows the input events (or conditions) that
early practice of Structured Design cause state transitions and actions resulting
[Yourdon79], functionally cohesive modules in from state transitions. In the Boeing/Hatley
the form of procedures were emphasized. The method, the process activation table shows the
informational cohesion criterion was added activation of processes (data transformations)
later by Myers [Myers78] to identify informa- resulting from the actions of the state transition
tion hiding modules. diagram.

(v) Module Coupling (iv) Define Mini-Specification (Process
Specification)Module coupling is used in module decomposi-

tion as a criterion for determining the connec- Each leaf node data transformation on a data
tivity between modules [Myers78, Page- flow diagram is defined by writing a mini-
Jones88, Yourdon79]. Data coupling is consid- specification, usually in structured English, al-
ered the lowest (and best) form of coupling, in though other approaches are considered accept-
which parameters are passed between modules. able as long as the specification is a precise and
Undesirable forms of coupling include com- understandable statement of requirements
mon coupling, where global data are used. [Yourdon89].

c. Steps in Method (v) Develop Data Dictionary
During the Real-Time Structured Analysis stage, A data dictionary is developed that defines all
the following activities take place. (It should be data flows, event flows, and data stores.
noted that steps (ii) - (v) are not necessarily se-
quential and that the steps are usually applied Following the RTSA phase, the Ward/Mellor
iteratively):

SEI-CM-22-1.0 9

Software Design Methods for Real-Time Systems

and Boeing/Hatley approaches diverge. The mation is described by a structured English
Boeing/Hatley approach uses system architec- mini-specification, while a control transfor-
ture diagrams [Hatley88]. The Ward/Mellor ap- mation (Ward/Mellor) is defined by means of a
proach continues as follows [Ward85]: state transition diagram.

(vi) Allocate Transformations to Processors A control specification (Boeing/Hatley) may be
defined by one or more of state transition

The RTSA transformations are allocated to the diagrams (tables), decision tables, and process
processors of the target system. If necessary, activation tables, and is associated with each
the data flow diagrams are redrawn for each data flow diagram.
processor.

(v) Program Structure Charts
(vii) Allocate Transformations to Tasks

For each program, there is a structure chart
The transformations for each processor are al- showing how it is decomposed into modules.
located to concurrent tasks. Each task Each module is defined by its external specifi-
represents a sequential program. cation, namely, input parameters, output

parameters, and function. The internals of the(viii) Structured Design
module are described by means of pseudocode.

Transformations allocated to a given task are
e. Assessment of Methodthen structured into modules using the Struc-

tured Design method. Structured Design uses (i) Strengths
the criteria of module coupling and cohesion in

• Structured Analysis and the real-timeconjunction with two design strategies, trans-
extensions have been used on a wideform analysis and transaction analysis, to de-
variety of projects, and there is muchvelop a program design starting from a Struc-
experience in applying the method.tured Analysis specification.

• There are a wide variety of CASE
Transform analysis is a strategy used for trans- tools to support RTSA.
forming a data flow diagram into a structure

• The use of data flow and control flowchart whose emphasis is on input-process-out-
diagrams can assist in understandingput flow [Myers78, Page-Jones88, Yourdon79].
and reviewing the system. For ex-Thus, the structure of the design is derived
ample, a good overview of the sys-from the functional structure of the specifica-
tem can be obtained.tion. The input branches, central transforms,

and output branches are identified on the data • Emphasizes the use of state transition
flow diagram and are structured as separate diagrams/matrices, which is particu-
branches on the structure chart. larly important in the design of real-

time control systems.
Transaction analysis is a strategy used for

• The Structured Design moduletransforming a data flow diagram into a struc-
decomposition criteria of cohesionture chart whose structure is based on identi-
and coupling help in assessing thefying the different transaction types [Myers78,
quality of a design.Page-Jones88, Yourdon79]. The processing

required for each transaction type is identified (ii) Weaknesses
from the data flow diagram, and the system is
structured such that there is one branch on the • There is not much guidance as to
structure chart for each transaction type. There how to perform a system decomposi-
is one controlling “transaction center” module. tion. Consequently, different devel-

opers could structure the system in
d. Products of Design Process substantially different ways.

For the RTSA specification, these consist of: • RTSA is usually considered a re-
quirements specification method.

(i) System Context Diagram However, unlike the NRL Require-
ments Specification method, which(ii) Hierarchical Set of Data Flow/Control
treats the system to be developed as aFlow Diagrams
black box, RTSA addresses system

(iii) Data Dictionary decomposition. Hence, there is a ten-
(iv) Mini-Specifications dency in many projects to make de-

sign decisions during this phase, par-
For each primitive transformation, i.e., one that ticularly if the specification gets de-
is not decomposed further, a data transfor-

10 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

tailed. This makes the boundary be- mation is used during the design phase in devel-
tween requirements and design fuzzy. oping the module structure).

• Although Structured Design can be The software structure of a system is considered
used for designing individual tasks, it as consisting of three orthogonal structures—the
is limited for designing concurrent module structure, the uses structure, and the proc-
systems, and hence real-time sys- ess (task) structure [Parnas74, Parnas84]. The
tems, because of its weaknesses in module structure is based on information hiding.
the areas of task structuring. Thus, Each module is a work assignment for a program-
Structured Design is a program de- mer or team of programmers. The uses structure
sign method leading primarily to determines the executable subsets of the software.
functional modules and does not ad- The process (task) structure is the decomposition
dress the issues of structuring a sys- of run-time activities of the system.
tem into concurrent tasks.

b. Basic Concepts• In its application of information
hiding, Structured Design lags behind (i) Information Hiding
the Naval Research Lab and object-

The NRL method applies the informationoriented design methods. This is dis-
hiding concept to the design of large scale sys-cussed in more detail in Section V.
tems [Parnas84]. The use of information

f. Extensions and/or Variations hiding emphasizes that each aspect of a system
that is considered likely to change, such as a

ESML, the Extended System Modeling Language system requirement, a hardware interface, or a
[Bruyn88], is a recent attempt to merge the software design decision, should be hidden in a
Ward/Mellor and Boeing/Hatley methods for separate module. The changeable aspect is
Real-Time Structured Analysis. As an example, called the “secret” of the module. Each mod-
consider the ESML approach to developing state ule has an abstract interface that provides the
transition diagrams. The Ward/Mellor approach external view of the module to its users.
supports events, but not conditions, whereas the
Boeing/Hatley approach supports conditions, but (ii) Information Hiding Module Hierarchy
not events. Each of these restrictions is overcome

To manage the complexity of handling largein ESML, which supports both events and con-
numbers of information hiding modules, theditions, in common with the NRL method
NRL method organizes these modules into a[Parnas86] and Statecharts [Harel88a, Harel88b].
tree-structured hierarchy and documents them

2. Naval Research Lab Software Cost Reduction in a module guide. Criteria are provided for
structuring the system into modules.Method

a. Overview (iii) Abstract Interface Specifications
The Naval Research Laboratory Software Cost An abstract interface specification defines the
Reduction method (NRL) originated to address visible part of an information hiding module,
the perceived growing gap between software en- that is all the information required by the user
gineering principles advocated in academia and of the module. It is a specification of the
the practice of software engineering in industry operations provided by the module. The ab-
and government [Parnas84]. These principles stract interface to a module is intended to
formed the basis of a design method that has been remain unchanged, even if the module’s secret
applied to the development of a complex real- changes.
time system, namely the onboard flight program
for the U.S. Navy’s A-7 aircraft. Several prin- (iv) Design for Extension and Contraction
ciples were refined as a result of experience in

Design for extension and contraction isapplying them in this project.
achieved by means of the uses hierarchy,
which is a hierarchy of operations (access pro-Applications of the design method is preceded by
cedures or functions) provided by the informa-a specification phase in which a black box re-
tion hiding modules. An operation A uses anquirements specification is produced
operation B if and only if A cannot meet its[Heninger80]. During the requirements phase,
specification unless there is a correct version ofconsideration is given to factors that could have a
B. By considering subsets and supersets, de-profound effect on the future evolution of the sys-
signing systems is seen as a process of design-tem, namely the desirable system subsets (this in-
ing program families.formation is used during the design phase in de-

veloping the uses hierarchy) and the likely future
changes to the system requirements (this infor-

SEI-CM-22-1.0 11

Software Design Methods for Real-Time Systems

ware interface that are likely to change,c. Steps in Method
whereas the latter hide the characteristics of

The following steps in the NRL method are based I/O devices that are likely to change.
on [Parnas86]. Reviews are considered an inte-
gral part of the method and are conducted for (2) Behavior Hiding Modules
each work product [Parnas85].

These are modules that hide the behavior of
the system as specified by the functions de-(i) Establish and Document Requirements
fined in the requirements specification.

The software requirements specification is a Thus, if the requirements change, these
black-box specification of the system. The modules are affected.
method emphasizes the outputs of the system
over its inputs. The system is viewed as a (3) Software Decision Modules
finite state machine whose outputs define the

These are modules that hide software desig-system outputs as functions of the state of the
ner decisions that are likely to change.system’s environment.

(iii) Design and Document Module AbstractThe method uses separation of concerns in or-
Interfacesganizing the specification document. Sections

are provided on the computer (hardware and The abstract interface specification for each
software) specification, the input/output inter- leaf module in the module hierarchy is devel-
faces, specification of output values, timing oped. This specification defines the external
constraints, accuracy constraints, likely view of the information hiding module, i.e., all
changes to the system, and undesired event the information required by the user of the
handling. The requirements method is dis- module. It is intended to contain just enough
cussed in more detail in [Heninger80] information for the programmer of another

module to be able to use it. The interface spec-(ii) Design and Document the Module
ification includes the operations provided byStructure
the module, the parameters for these opera-
tions, the externally visible effects of theTo manage the complexity of handling large
module’s operations, timing and accuracy con-numbers of modules, the NRL method organ-
straints, assumptions that users and implemen-izes information hiding modules into a tree-
tors can make about the module, and definitionstructured hierarchy and documents them in a
of undesired events raised. More informationmodule guide. The guide defines the responsi-
on designing abstract interfaces is given inbilities of each module by describing the de-
[Britton81]sign decisions that are to be encapsulated in the

module. The module guide helps to provide
(iv) Design and Document Uses Hierarchystructure, a check on completeness, and to

avoid duplication of function. The guide al- The uses hierarchy defines the subsets that can
lows modules to be referenced more easily dur- be obtained by deleting operations and without
ing the subsequent development and mainte- rewriting any operations. This is important for
nance phases of the project. staging system development and for develop-

ing families of systems. During this stage, theThe module hierarchy is an “is composed of”
operations used by each operation (provided byrelation. Each non-leaf module is composed of
a module) are determined. By this means alower-level modules. Leaf modules are ex-
hierarchy of operations is developed. Theecutable. The main categories of modules, as
“allowed-to-use structure” defines the possibledetermined on the A-7 project, are:
choices of operations, while the “uses

• Hardware hiding modules structure” specifies the choice of operations for
a particular version (member of the family).• Behavior hiding modules
More information on the uses hierarchy is• Software decision modules
given in [Parnas79]

Further categorization of modules may be car-
ried out, although this is likely to be (v) Design and Document Module Internal
application-dependent. Module structuring is Structures
described in more detail in [Parnas84].

After designing the module abstract interface,
(1) Hardware Hiding Modules the internal design of each module is devel-

oped. This includes designing the internal data
These are either extended computer modules structures and algorithms used by the modules.
or device interface modules. The former In some cases, the module may be decomposed
hide the characteristics of the hardware/soft- further into sub-modules.

12 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

During this phase, the process (task) structure is often difficult to see how the major
of the system is developed [Faulk88]. Separa- components of the system fit togeth-
tion of concerns is used in designing the task er. This is compounded by the lack
structure. Inter-task synchronization is of any graphical notation.
achieved by means of events. Tasks may be • There is less emphasis on task struc-
demand or periodic tasks. turing. Although recognized as an

important software structure, littled. Products of Design Process
guidance is given as to how to iden-

(i) Software Requirements Specification tify the tasks in the system.
(ii) Module Guide • Proceeding from the software re-

quirements specification to the mod-(iii) Module Abstract Interface
ule structure is often a big step. It isSpecifications.
possible for significant components

(iv) Uses Hierarchy of the system to be omitted, partic-
ularly those not directly visible from(v) Module Internal Structures
the requirements specification, e.g.,(vi) Task Structure software decision modules.

e. Assessment of Method
f. Extensions and/or Variations(i) Strengths

The ADARTS method [Gomaa89b, Gomaa89c]
• Emphasis on information hiding uses a set of module structuring criteria that are

leads to modules that are relatively based on the NRL module structuring criteria for
modifiable and maintainable. identifying information hiding modules, in addi-

• In addition to the emphasis on infor- tion to a set of task structuring criteria for identi-
mation hiding, the module hierarchy fying concurrent tasks.
provides a means of managing large

3. Object-Oriented Designnumbers of modules by organizing
them into a tree-structured hierarchy. a. Overview

• Emphasis is placed on designing for Object-oriented design (OOD) is a design method
change. This starts during the re- based on the concepts of abstraction and infor-
quirements phase when likely mation hiding. There has been much debate on
changes in requirements are consid- whether inheritance is an essential feature of
ered. It continues into design with object-oriented design. Two views of OOD are to
the module structure, where each be found. The first is in the Ada world, and its
module hides an independently most widely known advocate is Booch [Booch86,
changeable aspect of the system. Booch87a, Booch87b]. It holds that inheritance is

• Emphasis is placed on identifying a desirable but not essential feature of OOD. The
system subsets. This also starts dur- second view originated in the object-oriented pro-
ing the requirements phase when de- gramming area, as illustrated by Smalltalk
sirable subsets are identified. It con- [Goldberg83], C++ [Stroustrup86], and Eiffel
tinues in the design phase with the [Meyer88]. This view states that inheritance is an
uses hierarchy. essential feature of OOD.

• There is a clear separation between In a recent taxonomy of languages supporting ob-
requirements and design. The re- jects, Wegner [Wegner87] has referred to lan-
quirements present a black-box view guages that support information hiding modules
of the system, emphasizing inputs, (objects) but not inheritance, such as Ada and
outputs, externally visible states and Modula-2, as object-based languages, while lan-
their transitions, as well as output- guages that support objects, classes, and in-
oriented functions. heritance are considered object-oriented lan-

• Emphasizes the use of finite state guages. However, a similar taxonomy for object-
machines, which is particularly im- oriented design methods has not been constructed.
portant in the design of real-time

In this section, the Booch view is used, since it iscontrol systems.
widely referenced in the Ada-based real-time sys-

(ii) Weaknesses tem domain. Booch starts with an English lan-
guage or RTSA system specification and then• It is usually difficult to get an over- provides object structuring criteria for determin-

view of the system. In particular, it ing the objects in the system.

SEI-CM-22-1.0 13

Software Design Methods for Real-Time Systems

b. Basic Concepts (ii) Identify the Operations Suffered by and
Required of Each Object(i) Object Identification
In this step, the behavior of each object isObjects are identified by determining the en-
characterized by identifying the operations thattities in the problem domain. Each real-world
it provides and that are used by other objects,entity is mapped onto a software object.
as well as the operations it uses from other ob-

(ii) Abstraction jects. Starting with a Structured Analysis spec-
ification, operations are identified from the

Abstraction is used in the separation of an transformations on the data flow diagrams.
object’s specification from its body. The spec-
ification is the visible part of the object and (iii) Establish the Visibility of Each Object in
defines the operations that may be performed Relation to Other Objects
on the object, i.e., how other objects may use

The static dependencies between objects areit. The body of the object, i.e., its internal part,
identified. Visibility is considered on an objectis hidden from other objects. Abstraction is
basis (corresponding to the Ada “with” clause).also used in developing object hierarchies.
A decision might be made to create a new class

(iii) Information Hiding that defines the common behavior of a group of
similar objects. An object diagram is drawn toInformation hiding is used in structuring the
show these dependencies.object, i.e., in deciding what information

should be visible and what information should Three kinds of objects are possible: servers
be hidden. Thus, those aspects of a module (that provide operations for other objects but
that need not be visible to other objects are do not use operations from other objects), ac-
hidden. Hence, if the internals of the object tors (that use operations from other objects but
change, only this object is impacted. do not provide any), and agents (that provide

operations and also use operations from otherc. Steps in Method
objects).

(i) Identify the Objects and Their Attributes
(iv) Establish the Interface of Each Object

In OOD, an object is considered to have state,
The outside view of each object is developed.i.e., persistent data. The state of the object
The interface forms the boundary between thechanges as a result of operations on the object.
object’s outside view and inside view. An AdaThe characteristics of an object are that it:
package specification may now be developed• has state
for the object.

• is characterized by the actions it suf-
(v) Implement Each Objectfers (operations it provides) and re-

quires (uses) of other objects
The internals of each object are developed.

• is a unique instance of some class This involves designing the data structures and
• has restricted visibility of and by internal logic of each object.

other objects
d. Products of Design Process

• can be viewed either by its specifi-
cation or implementation Booch [Booch86] has described four products of

an object-oriented design. In addition, each pack-
An informal strategy is used for identifying ob- age is specified by means of an Ada package
jects. Initially, Booch [Booch87a] advocated specification.
identifying objects by underlining all nouns
(which are candidates for objects) and verbs (i) A Hardware Diagram
(candidates for operations) in the specification.

This captures the organization of the under-However, this is not practical for large-scale or
lying target hardware system.even medium-size systems.

(ii) A Class Structure DiagramBooch later advocated the use of Structured
Analysis as a starting point for the design, and This shows the relationships among classes of
then identifying objects from the data flow objects.
diagrams by applying a set of object structur-

(iii) An Object Diagraming criteria [Booch86, Booch87b]. For each ex-
ternal entity on the system context diagram,

This shows the visibility of each object in rela-there is a corresponding software object. For
tion to other objects.each data store on the data flow diagrams, there

is a corresponding software object.
14 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

ing approach to software design. A JSD design(iv) The Architecture Diagram
models the behavior of real-world entities over

This represents the physical design of the sys- time. Each entity is mapped onto a software
tem and shows the system structured into Ada process (task). JSD is an outgrowth of Jackson
packages. Structured Programming (JSP), which is a pro-

gram design method [Jackson75]. As JSD hase. Assessment of Method
evolved over several years, this section describes

This assessment is made in terms of how ap- JSD as presented in the latest material available to
plicable OOD is to the design of real-time sys- the author [Cameron89].
tems.

Although JSD is, in principle, applicable to real-
(i) Strengths time systems, the emphasis of earlier work

[Jackson83, Cameron86] has been on data proc-
• Is based on the concepts of abstrac- essing applications. More recently, however, a

tion and information hiding, two key number of articles have directly addressed the is-
concepts in software design. sue of applying JSD to real-time systems

• Structuring the system into objects, [Renold88, Cameron89, Sanden89]. Renold de-
which are implemented as packages, scribed mapping JSD designs to concurrent proc-
should make the system more main- essing implementations. A report in [Cameron89]
tainable and components potentially describes mapping a JSD design to the MASCOT
reusable. notation [Simpson86], which specifically ad-

dresses concurrent processing. Sanden• Maps well to languages that support
[Sanden89] describes a variation on JSD that ad-information hiding modules such as
dresses the needs of real-time systems and alsoAda and Modula-2.
maps directly to Ada.

(ii) Weaknesses
b. Basic Concepts

• Does not adequately address the im- (i) Modeling the Real World
portant issues of task structuring, an

A fundamental concept of JSD is that the de-important limitation in real-time de-
sign should model reality first [Jackson83], be-sign.
fore considering the functions of the system.• The form of the solution depends
The system is considered a simulation of thesubstantially on the informal strategy
real world. The functions of the system areused for identifying objects.
then added to this simulation.

• Does not address timing constraints.
(ii) Entities and Concurrent Processes• The object structuring criteria are not

as comprehensive as the NRL mod- Each real-world entity is modeled by means of
ule structuring criteria. This is dis- a concurrent process called a model process.
cussed in more detail in section V. This process faithfully models the entity in the

real world. Since real-world entities usuallyf. Extensions and/or Variations
have long lives, each model process typically

More recently, object-oriented analysis [Shlaer88] also has a long life.
methods have emerged. These methods use

(iii) Transformation to Computerentity-relationship modeling techniques for iden-
Representationtifying objects in the problem domain. Seidewitz

[Seidewitz86, Seidewitz88] has also developed a The model of reality in terms of potentially
method called the General Object-Oriented De- large numbers of software processes is trans-
sign (GOOD) method. With this approach, the formed in a series of steps to an implemen-
specification effort begins by identifying entities tation version that consists of one or more con-
in the problem domain. The ADARTS method current tasks.
[Gomaa89b, Gomaa89c] applies task structuring
criteria in addition to module structuring criteria c. Steps in Method
that incorporate the OOD object structuring crite- (i) Model Phase
ria.

During the modeling phase, the real-world en-
4. Jackson System Development for Real-Time tities are identified. Each entity is defined in

Systems terms of the actions (events) it experiences.
The attributes of each action experienced bya. Overview
the entity are defined. Furthermore, the attri-

Jackson System Development (JSD) is a model-

SEI-CM-22-1.0 15

Software Design Methods for Real-Time Systems

butes of the entity itself are also defined. An is little or no need for program inversion.
entity structure diagram is developed, in which Mappings to Ada implementations have also
the sequence of actions experienced by the en- been defined [Cameron89].
tity is explicitly shown. A software model

d. Products of Design Processprocess is created for each entity and has the
(i) Process Definitionssame basic structure as the entity.

Given as structure diagrams and structure text.(ii) Network Phase
In the case of model processes, this also in-

During this phase, the communication between cludes the definition of the entity attributes, as
processes is defined, function is added to well as each input action and its attributes.
model processes, and function processes are

(ii) System Network Diagramadded.

Shows the concurrent model and function proc-Communication between processes is in the
esses in the system and their data stream andform of data streams of messages or by means
state vector interfaces.of state vector inspections. In the first case, a

producer process sends a message to a con-
(iii) System Implementation Diagramsumer, whereas in the latter case, a process

may read data belonging to another process. A Shows the physical implementation of the sys-
network diagram is developed showing the tem, as well as structure text for the system
communication between the model processes. implementation.

The functions of the system are considered e. Assessment of Method
next. Some simple functions are added to the

This assessment is made in terms of how ap-model processes, providing they can be directly
plicable JSD is to the design of real-time systems.associated with an action experienced by the

process. Other independent functions are (i) Strengthsrepresented by function processes. Typical
function processes are input data collection • The emphasis on modeling real-
processes, error handling processes, output world entities is a theme that has
processes, and interactive processes. The net- since been followed by several of the
work diagram is updated to show the function object oriented analysis and design
processes and their communication with other methods.
function or model processes. • Modeling each real-world entity by

emphasizing the sequence of eventsAfter the network diagram has been estab-
experienced by the entity is espe-lished, the timing constraints of the system are
cially relevant in real-time system de-considered. Thus, it can be specified that cer-
sign.tain system outputs must be generated within a

specified time from the arrival of certain in- • Concurrent processing is a central
puts. theme of the method.

• Clear steps are provided for mapping(iii) Implementation Phase
a JSD design to an implementation.

During the implementation phase, the JSD
(ii) Weaknessesspecification, consisting potentially of a very

large numbers of processes, is mapped onto an • Since the entity structure—and con-implementation version that is directly ex-
sequently the process structure—ecutable. Originally, with the emphasis on
models the sequence of events in thedata processing, the specification was mapped
real-world so faithfully, relativelyonto one program using the concept of program
small changes in the real world caninversion [Jackson75]. Each process is trans-
impact the software structure. Thisformed into a subroutine; a scheduler
could make maintainability more dif-(supervisory) routine decides when to call the
ficult and is a potential hindrance toprocess routines.
reuse [Cameron89].

During the implementation phase, JSD specifi- • It is often easier to model event se-
cations can be mapped to real-time designs. quences in a complex entity using a
Mappings have been defined from JSD to state transition diagram than an entity
MASCOT subsystems, activities, channels, and structure diagram. This is particular-
pools [Cameron89]. With this approach, there ly the case in real-time systems

16 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

where complex event sequences are The DARTS method has evolved over time. In-
not unusual, a fact recognized by itially, it started with a Structured Analysis speci-
some real-time system advocates of fication [Gomaa84]. Later, after the introduction
JSD [Renold88, Sanden89]. of Real-Time Structured Analysis [Ward85], it

was extended to start with a Real-Time Structured• The guidelines for the identification
Analysis specification [Gomaa87]. A more recentof function processes are rather
development has been an extension to DARTSvague. In many JSD examples
called ADARTS, Ada-based Design Approach for[Jackson83, Cameron86,
Real-Time Systems [Gomaa89b, Gomaa89c], toCameron89], there are substantially
address structuring a real-time system into con-more function processes than model
current tasks and information hiding modules.processes.
Another extension, DARTS/DA [Gomaa89a],

• JSD does not emphasize data abstrac- deals with structuring a real-time application into
tion and information hiding. This distributed real-time subsystems. More informa-
could have a negative impact on tion on these extensions is given below.
maintainability.

b. Basic Concepts
f. Extensions and/or Variations

(i) Task Structuring Criteria
Sanden [Sanden89] describes a variation on JSD

A set of task structuring criteria are provided tothat addresses the needs of real-time systems and
assist the designer in structuring a real-timealso maps directly to Ada. The approach, called
system into concurrent tasks. These criteria areEntity-Life Modeling, eliminates the distinction
a set of heuristics derived from experience ob-between model and function processes, maps
tained in the design of concurrent systems.processes directly onto Ada tasks, uses state tran-
The main consideration in identifying the taskssition diagrams instead of entity structure
is the concurrent nature of the functions withindiagrams when this is considered desirable, and
the system. In DARTS, the task structuringuses information hiding modules to encapsulate
criteria are applied to the transformationsdata structures and state vectors.
(functions) on the data flow/control flow

5. DARTS (Design Approach for Real-Time diagrams developed using Real-Time Struc-
tured Analysis. Thus, a function is groupedSystems)
with other functions into a task based on thea. Overview
temporal sequence in which the functions are

The DARTS design method emphasizes the executed.
decomposition of a real-time system into concur-

(ii) Task Interfacesrent tasks and defining the interfaces between
these tasks. The method originated because of a Guidelines are provided for defining the inter-
perceived problem with a frequently used ap- faces between concurrent tasks. Task inter-
proach for real-time system development. This faces are in the form of message communica-
involves using Structured Analysis, and more re- tion, event synchronization, or information
cently Real-Time Structured Analysis (RTSA), hiding modules (IHMs). Message communi-
during the analysis phase, followed by Structured cation may be either loosely coupled or tightly
Design during the design phase. The problem coupled. Event synchronization is provided in
with this approach is that it does not take into cases where no data are passed between tasks.
account the characteristics of real-time systems, Access to shared data is provided by means of
which typically consist of several concurrent IHMs.
tasks (processes).

(iii) Information Hiding
The DARTS design method addresses these is-

Information hiding is used as a criterion forsues by providing the decomposition principles
encapsulating data stores. IHMs are used forand steps for allowing the software designer to
hiding the contents and representation of dataproceed from a Real-Time Structured Analysis
stores and state transition tables. Where anspecification to a design consisting of concurrent
IHM is accessed by more than one task, thetasks. DARTS [Gomaa84, Gomaa86a, Gomaa87]
access procedures must synchronize the accessprovides a set of task structuring criteria for struc-
to the data.turing a real-time system into concurrent tasks, as

well as a mechanism for defining the interfaces
(iv) Finite State Machinesbetween tasks. These criteria may be applied to a

specification developed using RTSA. Each task, Finite state machines, in the form of state tran-
which represents a sequential program, may then sition diagrams, are used to define the be-
be designed using Structured Design.

SEI-CM-22-1.0 17

Software Design Methods for Real-Time Systems

havioral characteristics of the system. State ing the sequence of task execution from exter-
transition diagrams are an effective tool for nal input to system response.
showing the different states of the system and

(iv) Design Each Taskthe transitions between them.

Each task represents the execution of a sequen-(v) Evolutionary Prototyping and
tial program. Using the Structured DesignIncremental Implementation
method, each task is structured into modules.
Either transform analysis or transaction anal-Evolutionary prototyping and incremental im-
ysis is used for this purpose. The function ofplementation are assisted by the identification
each module and its interface to other modulesof system subsets using event sequence
are defined. The internals of each module arediagrams. These diagrams identify the se-
designed.quence of execution of tasks and modules that

are required to process an external event. Sys-
d. Products of Design Processtem subsets form the basis for incremental de-

(i) RTSA Specificationvelopment.

See section on RTSA.c. Steps in Method
(i) Develop Structured System Specification (ii) Task Structure Specification

using Real-Time Structured Analysis
Defines the concurrent tasks in the system. The

The system context diagram and state transi- function of each task and its interface to other
tion diagrams are developed. The system con- tasks are specified.
text diagram is decomposed into hierarchically

(iii) Task Decompositionstructured data flow/control flow diagrams.
The relationship between the state transition The decomposition of each task into modules
diagrams and the control and data transfor- is defined. The function of each module, its
mations (functions) is established. This step is interface, and detailed design in PDL, are also
similar to RTSA steps (i) - (v). defined.

(ii) Structure the System into Concurrent e. Assessment of Method
Tasks

(i) Strengths
The task structuring criteria are applied to the

• Emphasizes the decomposition of theleaf nodes of the hierarchical set of data flow/
system into concurrent tasks and pro-control flow diagrams. A preliminary task
vides criteria for identifying thestructure diagram is drawn, showing the tasks
tasks, an important consideration inidentified using the task structuring criteria.
real-time system design.I/O transforms that interface to external de-

vices are mapped to asynchronous I/O tasks or • Provides detailed guidelines for de-
periodic I/O tasks. Internal transforms are fining the interfaces between tasks.
mapped onto control or periodic tasks and/or • Emphasizes the use of state transition
may be combined with other transforms ac- diagrams, which is particularly im-
cording to the sequential, temporal, or func- portant in the design of real-time
tional cohesion criteria. control systems.

• Provides a transition from a Real-(iii) Define Task Interfaces
Time Structured Analysis specifica-

Task interfaces are defined by analyzing the tion to a real-time design. Real-Time
data flow and control flow interfaces between Structured Analysis is probably the
the tasks identified in the previous stage. Data most widely used analysis and speci-
flows between tasks are transformed into either fication method for real-time sys-
loosely coupled or tightly coupled message in- tems. Its use is being encouraged by
terfaces. Control flows are transformed into the proliferation of CASE tools sup-
event signals. Data stores form the basis of porting the method. However, many
information hiding modules. designers then find it difficult to

proceed to a real-time design.At this stage, a timing analysis may be per-
DARTS directly addresses this issueformed. Given the required response times to
by providing the decomposition prin-external events, timing budgets are allocated to
ciples and steps for allowing the soft-each task. Event sequence diagrams
ware designer to proceed from a[Gomaa86a] can help in this analysis by show-
Real-Time Structured Analysis speci-

18 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

fication to a design consisting of con- ments Engineering Methodology) method [Alford85].
current tasks. DCDS provides a graphical notation for hierarchi-

cally decomposing a real-time system design, em-
(ii) Weaknesses phasizing events, as well as both sequential and con-

current functions. With each high-level function, a• Although DARTS uses information
performance index (i.e., maximum allowed responsehiding for encapsulating data stores,
time) is provided. As the function is hierarchicallyit does not use information hiding as
decomposed, the performance index is dividedextensively as the NRL and OOD
amongst the lower-level functions. Eventually, atmethods. Instead, it uses the Struc-
the lowest level of decomposition, sequential andtured Design method, not information
concurrent functions are allocated to the componentshiding, for structuring tasks into
of the real-time system.procedural modules.

PAMELA [Cherry86] is a software design method• A potential problem in using DARTS
that is strongly oriented toward Ada. The methodis that if the RTSA phase is not done
uses a hierarchical decomposition approach, basedwell, this could make task and pack-
on data flow diagrams, in which transformations areage structuring more difficult. One
eventually decomposed into concurrent tasks at theof the problems of RTSA is that it
lowest level. The tasks and their interfaces aredoes not provide many guidelines as
mapped to Ada.to how to perform a system decom-

position. The approach recom-
Some real-time design approaches are actually de-mended with DARTS is to develop
sign notations that suggest a particular approach tothe state transition diagrams before
performing a decomposition. However, they do notthe data flow diagrams, i.e., to pay
provide the principles and steps for performing aattention to control considerations
design, and hence are not strictly design methods.before functional considerations.
Statecharts [Harel88b] are a graphical notation for

f. Extensions and/or Variations hierarchically decomposing state transition
diagrams. Statemate [Harel88a] is a tool based on(i) DARTS/DA
statecharts that also includes activity charts and

In large systems, it is usually necessary to module charts. Statemate can be used to support
structure a system into subsystems before various specification and design methods. For ex-
structuring the subsystems into tasks and mod- ample, an industrial course is available showing how
ules. One approach for structuring a system a Real-Time Structured Analysis [Ward85] specifi-
into subsystems is an extension to DARTS to cation can be expressed in Statemate.
support distributed real-time applications,

MASCOT diagrams [Simpson79, Simpson86] are acalled DARTS/DA [Gomaa89a].
notation for concurrent systems. This notation has

(ii) ADARTS been used in conjunction with JSD, as described in
Section III.4 and [Cameron89].

The DARTS weakness in information hiding is
addressed by the ADARTS method IV. Design Verification and Validation
[Gomaa89b, Gomaa89c]. ADARTS uses the

This section addresses design verification and valida-DARTS task structuring criteria for identifying
tion. For more detailed information on software verifi-tasks, but it replaces Structured Design with an
cation and validation, refer to the introduction ofinformation hiding module structuring phase in
[Collofello88b].which modules are identified using a set of

module structuring criteria. These criteria are 1. Software Technical Reviews
based on the Naval Research Laboratory meth-
od [Parnas84] module structuring criteria, sup- The purpose of software technical reviews is to de-
ported by the object-oriented design [Booch86] tect errors in software products. Reviews should be
object structuring criteria. ADARTS designs carried out throughout the life cycle. Studies have
may be described using a graphical notation shown that the longer an error goes undetected, the
similar to Buhr diagrams [Buhr84]. more costly it is to correct [Boehm76]. Technical

reviews can be very effective at uncovering design
6. Other Real-Time Software Design Methods errors. Most design methods do not specifically ad-

dress reviews. However, software development or-Some other software design methods for real-time
ganizations frequently incorporate design methodssystems are briefly reviewed in this section.
and technical review procedures for products of the

The Distributed Computing Design System (DCDS) design process into a software life cycle that is
is an outgrowth of the SREM (Systems Require- tailored to the organizations’ needs.

SEI-CM-22-1.0 19

Software Design Methods for Real-Time Systems

One design method that also addresses design re- detailed information on this topic, refer to
views is the NRL method, which uses a procedure [Perlman88]. Throw-away prototypes can also be
called Active Design Reviews [Parnas85]. With this used for experimental prototyping of the design.
approach, each reviewer is expected to answer a set They can be used to determine if certain algorithms
of questions about the product under review. Ques- are logically correct or to determine if they meet
tions are organized by area of expertise. their performance goals.

More information on technical reviews is given in The evolutionary prototyping approach is a form of
[Collofello88a]. A classic paper on the topic is incremental development, in which the prototype
[Fagan76]. evolves through several intermediate operational

systems into the delivered system [McCracken82,
2. Requirements Tracing Gomaa86b]. This approach can help in determining

whether the system meets its performance goals, forRequirements tracing is a means of determining the
testing critical components of the design and forcompleteness of a design. This is achieved by
reducing development risk by spreading the imple-checking whether all the software requirements of
mentation over a longer period. Event sequencethe system have been incorporated into the design.
diagrams may be used to assist in selecting systemThis is typically carried out using requirements
subsets for each increment [Gomaa86a].matrices. For checking that the design meets its

requirements, the matrix should map each software 5. Software Testing
requirement to one or more design components, such
as tasks and/or modules. More information on re- Some aspects of software testing of real-time sys-
quirements tracing is given in [Collofello88b]. tems are no different than for non–real-time systems.

Most differences arise either from the software
3. Simulation system’s consisting of several concurrent tasks or

from its interfacing to external devices.Simulation can be an effective way of verifying that
the design is sound and that it meets its timing re- More information on software testing can be found
quirements. With this approach, the software sys- in [Collofello88b], [Beizer84], and [Myers79].
tem under development, as well as the environment
in which it is to operate, are simulated. To be of a. Testing Concurrent Software
most value, the simulation should be performed be-

A major problem in testing real-time systems—fore system development is started. Although much
indeed any concurrent system—is that executionuseful information can be obtained from a simula-
of such a system is non-deterministic. An ap-tion exercise, simulation models are often very de-
proach for the deterministic testing of concurrenttailed. The time to develop them can therefore be
systems is described in [Tai87]. A systematicconsiderable. Care must also be taken to ensure that
method for the integration testing of concurrentthe assumptions made in the model are realistic.
tasks is described in [Gomaa86a]. A method for

In many real-time system development projects, en- analyzing and testing transaction flow through a
vironment simulators are used. In this case, the real- system is described in [McCabe85].
time application itself is developed, but the environ-

b. System Testingment in which it is to operate is simulated. This has
the advantage of creating a controlled environment System testing is the process of testing an inte-
that can greatly assist in software regression testing grated hardware and software system to verify
and performance testing [Beizer84, Gomaa86a, that the system meets its specified requirements
Myers79]. [IEEE83]. During system testing, several aspects

of a real-time system need to be tested [Beizer84,4. Prototyping
Myers79]. These include:

Agresti [Agresti86] states that “[p]rototyping is the • Functional testing to determine that the
process of building a working model of a system or system performs the functions described
part of a system. The objective of prototyping is to in the requirements specification.
clarify the characteristics of a product or system by

• Load (stress) testing to determineconstructing a version that can be exercised.” Two
whether the system can handle the largemain classes of prototypes are throw-away
and varied workload it is expected toprototypes and evolutionary prototypes [Gomaa86b].
handle when operational.

Throw-away prototypes can be used to help clarify • Performance testing to test that the sys-
user requirements [Agresti86, Gomaa81]. This ap- tem meets its response-time require-
proach is particularly useful for helping develop the ments.
user interface, and it can be used for real-time sys-

System testing of real-time systems can be greatlytems that have a complex user interface. For more

20 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

assisted by the construction of environment In JSD, entities in the problem domain are
simulators [Gomaa86a, Myers79] that simulate modeled using entity structure diagrams that
the behavior of the external devices to which the show the sequence of events experienced by the
system must interface. entity. The regular expression notation used by

entity structure diagrams is mathematically equiv-
V. Review of Real-Time Software Design Methods alent to finite state machine notation. However,

1. Comparison of Real-Time Software Design for complex entities, where there are compara-
tively many transitions in relation to the numberMethods
of states, it is frequently clearer and more concise

In comparing real-time software design methods, the to use a finite state machine notation, rather than
approach taken here is to evaluate how each ad- entity structure diagrams.
dresses the three real-time–specific design concepts

b. Support for Concurrent Tasksoutlined in section II.3.b, namely, finite state
machines for defining the control aspects of a real-

Although all the methods address concurrenttime system, concurrent tasks for defining the con-
tasks to some extent, there is a wide variation incurrency in the system, and information hiding for
the emphasis placed on them. Concurrent tasksdefining modifiable and potentially reusable soft-
are fundamental to two of the methods, DARTSware components. A fourth criterion is how each
and JSD. The NRL and OOD methods place lesshandles timing constraints, an important character-
emphasis on task structuring.istic of real-time systems. A comparison of real-

time software design methods is also given in The Ward/Mellor [Ward85] version of RTSAD
[Kelly87]. addresses structuring the system into concurrent

tasks, but provides few guidelines for this pur-a. Support for Finite State Machines
pose. Structured Design is a program design
method, and hence does not address the issue ofThe use of finite state machines is a major con-
task structuring. However, Structured Design cansideration in three of the methods, RTSAD,
be used for designing individual tasks.DARTS, and NRL. It is a secondary considera-

tion in OOD. In JSD, a different approach is
DARTS addresses the weaknesses of RTSAD intaken, with event sequences depicted using entity
the task structuring area by introducing the taskstructure diagrams.
structuring criteria for identifying concurrent
tasks in the system and by providing guidelinesThe major extension to Structured Analysis for
for defining task interfaces.real-time applications is to address the control as-

pects of a system, primarily through the use of
Concurrent processing plays an important role infinite state machines. The use of state transition
JSD, since each external entity is mapped onto adiagrams and tables have been well-integrated
model process. Function processes are theninto the method through the use of control trans-
added. Model processes are similar to controlformations and specifications.
tasks in DARTS. In Renold’s view, many of the
DARTS task structuring criteria are almost equiv-Finite state machines are also an important feature
alent to the criteria for the definition of functionof the DARTS method, which advocates analyz-
processes in JSD [Renold88].ing the control aspects of the system before the

functional aspects. DARTS uses RTSA as a
The NRL method views the task (process) struc-front-end to the design method. Control tasks ex-
ture as an important software structure that is or-ecute finite state machines, and state transition
thogonal to the module and uses structures. How-tables are encapsulated into information hiding
ever, it provides few guidelines for identifyingmodules.
concurrent tasks.

Finite state machines are also an important aspect
The OOD method assumes that the same objectof the NRL method. A key feature of the specifi-
structuring criteria can be used for identifyingcation method is the identification of system
tasks (active objects) and information hidingmodes (super-states) and the transitions between
modules (passive objects). This view is contrarythem. In the design phase, each mode transition
to that of the DARTS and NRL methods, whichtable is encapsulated in a mode determination
assume that different criteria are required formodule.
tasks and modules.

In object-oriented design, an object may be de-
c. Support for Information Hidingfined by means of a finite state machine that is

encapsulated within the object. However, OOD Information hiding is the fundamental underlying
does not give as much prominence to finite state principle in two of the methods, NRL and OOD.
machines as the previous three methods. It is also addressed by the DARTS and RTSAD

SEI-CM-22-1.0 21

Software Design Methods for Real-Time Systems

methods. Information hiding is not addressed by quency of task activation and context switching
JSD. overhead are also considered in arriving at a

timing estimate [Ward85].
Both the NRL and OOD methods emphasize the
structuring of a system into information hiding DARTS uses the RTSA timing specification to
modules (objects). The NRL module structuring allocate time budgets to each task. Event se-
criteria are more comprehensive than those of quence diagrams [Gomaa86a] are used to show
OOD. In particular, there is a whole category of the sequence of tasks executed from external in-
modules, namely software decision modules, ad- put to system response. Percentages of this re-
dressed by the NRL method that is not identified sponse time are then allocated to each task in the
in OOD. The NRL method is also more con- sequence and to system overhead.
cerned about each module hiding a secret, namely

In the NRL method, timing constraints are speci-a decision that could change independently.
fied at the requirements stage for periodic and de-Thus, in the NRL method, a module can hide the
mand functions that generate system outputs.details of an algorithm that could potentially
During design, the timing requirements for eachchange.
process include its deadline and worst case execu-

Object structuring in OOD does not pay as much tion time [Faulk88].
attention as the NRL method to each object/mod-

In JSD, timing requirements in the form of systemule hiding one secret. Thus, an object could hide
responses to external inputs are analyzed with themore than one secret. Consequently, OOD-
assistance of the network diagram to determinederived components may not be as modifiable and
timing constraints on individual processes in-reusable as NRL-derived components.
volved in generating the response [Jackson83].

RTSAD is weak in the area of information hiding. This approach is similar to the use of event se-
In its application of information hiding, Struc- quence diagrams in DARTS.
tured Design lags behind the NRL method and

2. Trends in Real-Time Software Design MethodsOOD. Although the concept of informational
strength (information hiding) modules was added Many of the trends in software design methods are
by Myers [Myers78], the design strategies of not specific to real-time systems. The trend most
transform analysis and transaction analysis do not specific to real-time systems relates to the perfor-
address information hiding. A designer using this mance analysis of real-time designs.
method is liable to arrive at a design that is

a. “Eclectic” Design Methodsmainly functional. Because of this, requirements
and design changes are likely to have a more

Greater efforts are likely to be made to incorpo-severe effect on systems developed using
rate concepts from different design methods andRTSAD.
to integrate them to produce “eclectic” design
methods. Efforts in this direction can be seen inAlthough DARTS uses information hiding for en-
ADARTS [Gomaa89b, Gomaa89c] and Entitycapsulating data stores, it does not use informa-
Life Modeling [Sanden89]. ADARTS attempts totion hiding as extensively as NRL and OOD. It
integrate task structuring concepts from DARTSuses the Structured Design method, and not infor-
with module and object structuring concepts frommation hiding, for structuring tasks into
the NRL and OOD methods. Entity Life Model-procedural modules.
ing attempts to integrate JSD concepts with infor-

d. Timing Constraints mation hiding and Ada tasking.

Four of the methods, RTSAD, NRL, DARTS, and b. Domain Specification and Design Methods
JSD, address timing constraints. The required

Existing specification and design methods are forsystem response times are defined during system
the development of specific systems. In the fu-specification. During design, the timing require-
ture, domain methods are likely to be developedments for each task are determined. OOD does
for specifying and designing families of systemsnot specifically address timing constraints.
[Parnas79, Lubars87, Prieto-Diaz87]. Individual

RTSAD addresses timing constraints during the target systems are then developed by tailoring the
analysis and design phases. During analysis, the domain specifications and designs to the needs of
response time specification is developed. This the target system.
includes response times to external events, sam-

c. Computer Support Tools and Softwarepling times of external inputs, required frequency
Development Environmentsof periodic output, and response times to user in-

puts [Hatley88]. During design, the timing re-
Many existing computer support tools for soft-quirements of each task are determined. Fre-

22 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

ware specification and design methods are little sign methods is in the use of formal methods. A
more than graphical editors with some limited ca- formal method uses a formal specification lan-
pability for checking for consistency amongst dif- guage, i.e., a language with mathematically de-
ferent components of a specification or design. fined syntax and semantics. A good example of
Trends in software development environments one of the more mature formal methods is the
[Dart87] are in the direction of making them sup- Vienna Development Method, described in
port the entire software life cycle and orienting [Pedersen89]. VDM has been successfully ap-
them toward supporting specific software design plied in the areas of programming language
methods by incorporating the rules of the design semantics and compiler construction.
methods.

Formal methods for real-time systems are current-
d. Executable Specifications and Designs ly in the research stage. Methods that show

promise include temporal logic and Petri net
Computer support tools are being developed to based methods. A computer support tool with a
allow specifications and designs to be executed, formal basis is Statemate [Harel88a], which is
and hence to allow designers to validate their de- based on finite state machine theory.
signs. A good example of these tools is Statemate
[Harel88a]. Statemate allows a prototype of the
system to be developed that describes the func-
tionality and behavior of the system. The ap-
proach of developing executable specifications Glossary
and designs has been termed the operational ap-
proach to software development [Zave84]. Abstract data type

e. Performance Analysis of Real-Time Designs A data type defined by the operations that ma-
nipulate it, thus hiding its representation details.Software design methods for real-time systems

need to be integrated with performance analysis
Abstractiontechniques to allow real-time designers to analyze

their designs from a performance perspective. A view of a problem that extracts the essential
Alternative designs could then be evaluated, and information relevant to a particular purpose and
the designer could select the design that best ignores the remainder of the information
meets the system objectives. One approach for [IEEE83].
achieving this is to transform the design into a
Petri net model [Peterson81] whose performance Behavior hiding module (NRL)
can be analyzed using timed Petri net modeling

A module that hides the behavior of the systemtechniques [Coolahan83].
as specified by a function defined in the require-

Real-time scheduling is an approach that is partic- ments specification.
ularly appropriate for hard real-time systems that
have deadlines that must be met [Goodenough89]. Class
With this approach, the real-time design is

A template for objects.analyzed to determine whether it can meet its
deadlines.

Cohesion (Structured Design)
f. Application of Knowledge-Based Techniques The degree to which the functions performed by

a module are related (adapted from [IEEE83]).Many design methods use heuristics, such as the
DARTS task structuring criteria and the Struc-
tured Design module coupling and cohesion crite- Context diagram (Structured Analysis)
ria. Heuristics are based on designer experience The highest level data flow diagram in a Struc-
and are “rules of thumb.” Because of this, it is tured Analysis specification. It is used to define
usually not possible to incorporate these heuris- the boundary between the system to be devel-tics into algorithms. However, knowledge based

oped and the external environment.tools could be developed that incorporate rules
embodying these heuristics [Tsai88]. By this

Control flow (Boeing/Hatley Real-Time Struc-means, a designer’s assistant [Balzer83] could be
tured Analysis)provided to help the design team during architec-

tural design. A binary signal or multi-valued discrete signal.

g. Application of Formal Methods

Another trend in software specification and de-

SEI-CM-22-1.0 23

Software Design Methods for Real-Time Systems

Control flow diagram (Boeing/Hatley Real-Time Device interface module (NRL)
Structured Analysis) A module that hides the characteristics of an I/O
A graphic representation showing the control device. Presents an abstract device interface to
flows between data and control transformations. its users.

Control specification (Boeing/Hatley Real-Time Embedded system
Structured Analysis) A software system that is a component of a
A specification that describes the behavior of the larger hardware/software system.
system in terms of decision tables, state transi-

Event flow (Ward/Mellor Real-Time Structuredtion tables, state transition diagrams, and/or
Analysis)process activation tables.
A signal that indicates an event has taken place.

Control transformation (Ward/Mellor Real-Time
Structured Analysis) Information hiding
A control function that is defined by means of a The technique of encapsulating software design
state transition diagram. decisions in modules in such a way that the

module’s interface reveals only what its users
Coupling (Structured Design) need to know; thus each module is a “black box”

A measure of the interdependence between mod- to the other modules in the system (adapted from
ules in a computer program [IEEE83]. [IEEE83]).

Data abstraction Information hiding module
Defining a data structure or data type by the set A module that is structured according to the in-
of operations that manipulate it, thus separating formation hiding technique. The module hides
and hiding the representation details. some data and is accessed by means of access

procedures or functions.
Data dictionary

ModularityA collection of the names of all data items used
in a software system, together with relevant The extent to which software is composed of
properties of those items [IEEE83]. Defines the discrete components, such that a change to one
contents of all data flows, event flows, and data component has minimal impact on other compo-
stores in the system (Real-Time Structured nents [IEEE83].
Analysis).

Module hierarchy (NRL)
Data flow (Structured Analysis) A hierarchical classification of information

The data that are passed between a source trans- hiding modules.
formation and a destination transformation or

Object (OOD)to/from the external environment.
An instance of a class. An object is an infor-

Data flow diagram (Structured Analysis) mation hiding module that contains both data
A graphic representation showing a network of and operations on that data.
related functions (transformations) and the data

Process (concurrent processing)interfaces between those functions.
Same as task.

Data store (Structured Analysis)
Process (Structured Analysis)A repository of data, usually shown on a data

flow diagram. A function of the system, also called transfor-
mation or bubble.

Design method
Real-timeA systematic approach to creating a design, con-

sisting of the ordered application of a specific Pertaining to the processing of data by a com-
collection of tools, techniques, and guidelines puter in connection with another process outside
[IEEE83]. the computer, according to time requirements

24 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

imposed by the outside process. This term is
also used to describe systems operating in con-
versational mode and processes that can be in-
fluenced by human intervention while they are
in progress [IEEE83].

Reusability
The extent to which software can be used in
multiple applications (adapted from [IEEE83]).

Software decision module (NRL)
A module that hides a design decision that is
likely to change.

State transition diagram
A diagram that shows the different states of a
system or subsystem and the transitions between
them

Task (concurrent processing)
A task represents the execution of a sequential
program or a sequential component of a concur-
rent program. Each task deals with a sequential
thread of execution—there is no concurrency
within a task.

Task structuring criteria (DARTS)
A set of heuristics for assisting a designer in
structuring a system into concurrent tasks.

Transaction analysis (Structured Design)
A design strategy used for transforming a data
flow diagram into a structure chart whose struc-
ture is based on identifying the different trans-
action types.

Transform analysis (Structured Design)
A design strategy used for transforming a data
flow diagram into a structure chart whose em-
phasis is on input-process-output flow.

Transformation (Structured Analysis)
A function of the system, also called process or
bubble.

SEI-CM-22-1.0 25

Software Design Methods for Real-Time Systems

Teaching Considerations

development, as described in, for example,Textbooks
[Allworth87] or [Buhr84].

4. As an advanced graduate-level course on soft-There is no one textbook that can be used for teach-
ware design methods for real-time systems thating the material in this module. Several textbooks
could follow an earlier course serving as an in-address specific topics. An introductory textbook on
troduction to software design.real-time systems is [Allworth87]. [Pressman87]

contains overviews of several design methods, in- For treatments (1), (2), and (4), students should al-
cluding RTSAD, OOD, JSD, and DARTS. There ready be familiar with concurrent processing con-
are several books on Structured Analysis and De- cepts. In (3), concurrent processing concepts can be
sign. A comprehensive and up-to-date treatment of taught as part of the real-time systems course.
Structured Analysis is given in [Yourdon89]. In-

The material in this module has been used by thedepth, though different, treatments of Real-Time
author in settings (1), (2), and (4).Structured Analysis and Design are given in

[Hatley88] and [Ward85]. A readable version of In the next section, possible syllabi are outlined.
Structured Design is given in [Page-Jones88]. OOD
is covered briefly in [Booch87b]. A different view
of OOD is given in [Meyer88]. Several of Parnas’s
ideas that form the basis of the NRL method are in-

Suggested Schedulestroduced in [Lamb88]. DARTS is described in
[Nielsen88]. Ada-oriented design is described in

1. Graduate course on design methods, emphasiz-[Buhr84] and [Nielsen88].
ing real-time systems:

Since it is not practical to expect students to pur-
• Topics I and II in [Budgen89] (14chase or read all these books, the instructor can as-

hours)semble a collection of papers covering the material
described in this module. A suggested collection • Topic III in [Budgen89]: Structured
consists of those papers classified as “essential” in Analysis and Design (2 hours);
Classification of References, below. JSP: (2 hours)

• Topics I and II in this module (6
hours)

• Topic III in this module: survey of
Suggested Course Types real-time software design methods

(3 hours per method = 15 hours)
The material in this module may be taught in differ- • Review of design methods: based
ent ways, depending upon the time available and the on topic IV in [Budgen89] and topic
knowledge level of the students. Possible treatments V in this module (3 hours)
include:

TOTAL TIME: 42 hours
1. As part of a graduate-level course on design

2. Variation on (1), emphasizing one designmethods, with special emphasis on the design
method: Expand coverage of selected designof real-time systems. In this case, the material
method from 3 to 9 hours. This could be donecan be combined with the material in the cur-
by reducing time allotted to each of the otherriculum module Introduction to Software
methods by 1 hour.Design [Budgen89].

3. Graduate course on real-time systems:2. A variation on the above is to survey several of
the design methods but to teach one in more • General material on real-time sys-
detail, such that students can solve a substantial tems from [Allworth87] or [Buhr84],
problem using that method. including topic I in this module (18

hours)3. As part of a graduate-level course on real-time
systems. In this case, the material can be • Topic II in this module (6 hours)
preceded by other topics in real-time system

26 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

Real-time problems that may be used are:• Topic III in this module: survey of
real-time software design methods • Elevator control system [Jackson83,
(3 hours per method = 15 hours) Sanden89]

• Review of design methods: based • Cruise control system
on topic V in this module (3 hours) • Buoy system [Booch86]

TOTAL TIME: 42 hours
• Patient monitoring system

4. Advanced graduate course on software design
• Automated teller machine systemmethods for real-time systems:
• Flexible manufacturing system• Topics I and II in this module (6

Problem definitions for the cruise control andhours)
flexible manufacturing system problems are given in• Topic III in this module: survey of the support materials package.real-time software design methods
Possible teaching approaches to the use of these(6 hours per method: 3 hours lec-
problems are:ture, 3 hours student solution pres-

entations and discussion = 30 a. Work on one problem throughout the semester
hours) using one of the methods. This has the advan-

tage that students get an in-depth appreciation• Topic IV in this module (3 hours)
of one of the methods. This approach has been• Review of design methods: based
used for a relatively complex flexible manufac-on topic V in this module (3 hours)
turing system.

TOTAL TIME: 42 HOURS
b. Divide the class up into groups. Each group

uses a different method to solve the same prob-
lem. Time is allocated at the end of the term
for each group to present its solution. A classWorked Examples discussion is held on the strengths and
weaknesses of each method, as found through

It is difficult, if not impossible, to teach this material students’ application of them to the problem.
without worked examples illustrating the different

c. Work on the same problem using each of thedesign methods. It is especially instructive if the
methods. This approach has been used withsame problem can be used to illustrate each of the
the elevator problem. Class discussions aremethods. The author has used the problem of de-
held after teaching each method, so that stu-signing an automobile cruise control system to il-
dents can compare their solutions.lustrate each of the real-time software design meth-

d. Offer a design lab course in the following term,ods. These worked examples are included in the
in which the students work in groups to devel-support materials package for this module, which is
op a solution to a substantial real-time problemsoon to be released.
using one of the methods. In this case, students

The suggested approach for using the worked ex- can also begin implementation.
amples is to first present an overview of a given

The author has used approaches (a), (c), and (d).method and then to follow this by illustrating the
Approach (c) is probably the most demanding andmethod applyed to the cruise control problem.
should only be used in conjunction with course type
(4). Approaches (a) and (d) can be used in conjunc-
tion with course types (1), (2), or (4).

Exercises

As part of any course treating real-time design meth-
ods, students should work on one or more real-time
problems, either individually or in groups. Whether
one or more problems are tackled depends on the
size of the problem(s) and the length of the course.
However, sufficient time should be allocated for stu-
dents to work on problems, since this is the best way
for them to really understand the methods.

SEI-CM-22-1.0 27

Software Design Methods for Real-Time Systems

• Detailed: More detailed references onClassification of References
the topics covered in the module. These
references are likely to be of greater in-In the lists below, the references in the bibliography
terest to instructors, but may also beare classified by subject matter and by applicability.
relevant to students undertaking moreThe categories used in the subject matter classifica-
detailed investigations into a particulartion are:
topics.• General SE: General references on soft-

• Background: Background material thatware engineering
can be covered in courses prior to treat-• Concurrency: General references on ing the material in this module. This list

concurrent processing includes curriculum modules listed in
• Real-Time: General references on real- Philosophy under “Module Interface.”

time systems • Additional: References to additional in-
• RTSAD: Real-Time Structured Analysis formation on topics related to real-time

and Design design. These references are useful for
getting a broader view of the area and• NRL: Naval Research Laboratory Soft-
cover other design methods, testing real-ware Cost Reduction method
time systems, etc.• OOD: Object-oriented design

• Advanced: References for instructors or• JSD: Jackson System Development
students wishing to get an in-depth view

• DARTS: Design Approach for Real- of current research or advanced develop-
Time Systems ment topics of interest in the area of real-

time systems.• Modules: SEI curriculum modules

Categories in the applicability classification are:

• Essential: Instructors and students
should read these references, which are
directly relevant to the material in this
module.

28 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

Classification by Subject Matter

General SE Concurrency RTSAD OOD DARTS

Agresti86 Bic88 Bruyn88 Booch86 Gomaa84
Balzer83 BrinchHansen73 DeMarco78 Booch87a Gomaa86a
Basili75 Buhr84 Gane79 Booch87b Gomaa87
Beizer84 Dijkstra68 Hatley88 Goldberg83 Gomaa89a
Boehm76 Gehani84 Myers78 Meyer87 Gomaa89b
Brooks75 Hoare74 Page-Jones88 Meyer88 Gomaa89c
Dart87 Hoare85 Ward85 Seidewitz86 Nielsen88
Davis88 Peterson81 Ward86 Seidewitz88
Fagan76 Peterson85 Yourdon79 Shlaer88

ModulesFairley85 Yourdon89 Stroustrup86
Freeman83 Wegner87 Brackett89Real-TimeGomaa81 Budgen89NRLGomaa83 Alford85 Collofello88aJSDGomaa86b Allworth87 Britton81 Collofello88b
Harel88b Cherry86 Faulk88 Cameron86 Pedersen89
IEEE83 Coolahan83 Heninger80 Cameron89 Perlman88
Lubars87 Glass83 Lamb88 Jackson75 Rombach89
Martin85 Goodenough89 Parnas74 Jackson83
McCabe85 Harel88a Parnas79 Kato87
McCracken82 Kelly87 Parnas84 Renold88
Mills87 Simpson79 Parnas85 Sanden89
Myers79 Simpson86 Parnas86
Parnas72 Stankovic88
Pressman87
Prieto-Diaz87
Tai87
Tsai88
Zave84

SEI-CM-22-1.0 29

Software Design Methods for Real-Time Systems

Categorization by Applicability

Essential Detailed Background Additional Advanced

Booch86 Booch87b Allworth87 Alford85 Agresti86
Cameron86 Britton81 Basili75 Beizer84 Balzer83
Davis88 Bruyn88 Bic88 Cherry86 Coolahan83
Gomaa84 Buhr84 Boehm76 Collofello88a Dart87
Gomaa86a Cameron89 Booch87a Collofello88b Goodenough89
Gomaa89a DeMarco78 Brackett89 Fagan76 Harel88b
Gomaa89b Faulk88 BrinchHansen73 Freeman83 Hoare85
Kelly87 Gane79 Brooks75 Goldberg83 Kato87
Meyer87 Gomaa87 Budgen89 Gomaa83 Lubars87
Parnas79 Gomaa89c Dijkstra68 Gomaa86b Peterson81
Parnas84 Hatley88 Fairley85 Harel88a Prieto-Diaz87
Parnas85 Heninger80 Gehani84 IEEE83 Tai87
Parnas86 Jackson83 Glass83 Jackson75 Tsai88
Renold88 Lamb88 Gomaa81 Martin85
Sanden89 Meyer88 Hoare74 McCabe85
Seidewitz88 Myers78 McCracken82 Mills87
Ward86 Nielsen88 Parnas72 Myers79
Wegner87 Page-Jones88 Peterson85 Pedersen89

Parnas74 Pressman87 Perlman88
Seidewitz86 Rombach89 Shlaer88
Ward85 Simpson79
Yourdon79 Simpson86
Yourdon89 Stroustrup86

Zave84

30 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

Bibliography

velopment and quantitative analysis of a productionAgresti86
compiler for the language SIMPL-T is used to dem-Agresti, W. W. New Paradigms for Software
onstrate that the application of iterative enhance-Development. Washington, D. C.: IEEE Computer
ment to software development is practical and effi-Society Press, 1986.
cient, encourages the generation of an easily
modifiable product, and facilitates reliability.A very good collection of papers covering critiques

of the conventional software life-cycle model,
One of the first papers to advocate the incrementalprototyping, operational specification, and transfor-
development approach to software engineering.mational implementation.

Good source material for the instructor. Forms an Beizer84
excellent basis for a graduate seminar. Beizer, B. Software System Testing and Quality

Assurance. New York: Van Nostrand, 1984.
Alford85

See comments in [Collofello88b] bibliography.Alford, M. “SREM at the Age of Eight: The Distri-
buted Computing Design System.” Computer 18, 4

Bic88(April 1985), 36-46.
Bic, L., and A. C. Shaw. The Logical Design of

Provides a good overview of the DCDS method. Operating Systems, 2nd Ed. Englewood Cliffs,
N. J.: Prentice-Hall, 1988.

Allworth87
A good reference book on operating systems.Allworth, S. T., and R. N. Zobel. Introduction to

Real Time Software Design, 2nd Ed. New York:
Boehm76Springer-Verlag, 1987.
Boehm, B. “Software Engineering.” IEEE Trans.

A good introductory book on real-time system de- Computers C-25, 12 (Dec. 1976), 1226-1241.
sign, although much of the discussion is concerned
with detailed design issues. Also, good coverage of Abstract: This paper provides a definition of the
the MASCOT notation and hardware interfacing is- term “software engineering” and a survey of the
sues. Good source material for the instructor and current state of the art and likely future trends in
students. the field. The survey covers the technology avail-

able in the various phases of the software life cycle
—requirements engineering, design, coding, test,Balzer83
and maintenance—and in the overall area of soft-Balzer, R., et al. “Software Technology in the
ware management and integrated technology-1990’s: Using a New Paradigm.” Computer 16, 11 management approaches. It is oriented primarily

(Nov. 1983), 30-37. toward discussing the domain of applicability of
techniques (where and when they work), rather thanAdvocates a revolutionary paradigm for software
how they work in detail. To cover the latter, andevelopment using a transformational approach.
extensive set of 104 references is provided.

A classic paper on the waterfall model of the soft-Basili75
ware life cycle.Basili, B. R., and A. J. Turner. “Iterative Enhance-

ment: A Practical Technique for Software
Booch86Development.” IEEE Trans. Software Eng. SE-1, 4

(Dec. 1975), 390-396. Booch, G. “Object-Oriented Development.” IEEE
Trans. Software Eng. SE-12, 2 (Feb. 1986), 211-221.Abstract: This paper recommends the “iterative

enhancement” technique as a practical means for Abstract: Object-oriented development is a partial-
using a top-down, stepwise refinement approach to lifecycle software development method in which the
software development. This technique begins with a decomposition of a system is based upon the con-
simple initial implementation of a properly chosen cept of an object. This method is fundamentally
(skeletal) subproject which is followed by the different from traditional functional approaches to
gradual enhancement of successive implementations design and serves to help manage the complexity of
in order to build the full implementation. The de- massive software-intensive systems. The paper ex-

SEI-CM-22-1.0 31

Software Design Methods for Real-Time Systems

amines the process of object-oriented development • requirements representation
as well as the influences upon this approach from • requirements communication
advances in abstraction mechanisms, programming

• development of acceptance criteria andlanguages, and hardware. The concept of an object
proceduresis central to object-oriented development and so the

The outcome of requirements definition is a precur-properties of an object are discussed in detail. The
sor of software design.paper concludes with an examination of the map-

ping of object-oriented techniques to Ada using a
design case study. BrinchHansen73

Brinch Hansen, P. Operating System Principles.This paper presents an overview of object-oriented
Englewood Cliffs, N. J.: Prentice-Hall, 1973.design, as viewed in the Ada world, i.e., with em-

phasis on information hiding, but not inheritance.
A classic book on operating systems, although nowThe paper outlines how a Structured Analysis speci-
somewhat dated.fication can be mapped to OOD. The method is

illustrated by means of two examples, a cruise con-
Britton81trol problem and a navigational/weather collection
Britton, K., R. Parker, and D. Parnas. “A Procedurebuoy. This paper is also included in [Booch87b].
for Designing Abstract Interfaces for Device Inter-A good source of material for the instructor and a
face Modules.” Proc. 5th Intl. Conf. Software Eng.paper that can reasonably be read by students.
New York: IEEE, 1981, 195-204.

Booch87a Abstract: This paper describes the abstract inter-
face principle and shows how it can be applied inBooch, G. Software Engineering with Ada, 2nd Ed.
the design of device interface modules. The pur-Menlo Park, Calif.: Benjamin/Cummings, 1987.
pose of this principle is to reduce maintenance costs

Describes Ada and its use, with particular emphasis for embedded real-time software by facilitating the
on the features of the language that support large- adaptation of the software to altered hardware in-
scale software system development, such as terfaces. This principle has been applied in the
packages, tasks, and generics. It also provides an Naval Research Laboratory’s redesign of the flight
introduction to a version of object-oriented design software for the Navy’s A-7 aircraft. This paper
that typically can only be readily applied to small discusses a design approach based on the abstract
programs. interface principle and presents solutions to inter-

esting problems encountered in the A-7 redesign.Good source of material for the instructor.
The specification document for the A-7 device inter-
face modules is available on request; it provides a

Booch87b fully worked out example of the design approach
discussed in this paper.Booch, G. Software Components with Ada. Menlo

Park, Calif.: Benjamin/Cummings, 1987.
Describes the application of the information hiding
concept to the design of device interface modules.This book presents a large collection of Ada

packages that form the basis of a software reuse Good source of material for the instructor.
library. It advocates a “software by composition”
approach to software development. Also includes

Brooks75[Booch86].
Brooks, F. The Mythical Man-Month. Reading,
Mass.: Addison-Wesley, 1975. “Reprinted withBrackett89
corrections” in 1982.Brackett, J. W. Software Requirements. Curriculum

Module SEI-CM-19-1.1, Software Engineering Insti- A true classic covering the problems that are fre-
tute, Carnegie Mellon University, Pittsburgh, Pa., quently encountered in developing and managing

large scale software systems, based on the author’sDec. 1989.
experience managing the development of IBM’s

Capsule Description: This curriculum module is OS/360 operating system.
concerned with the definition of software require-

This book should be read by all those interested inments—the software engineering process of deter-
software engineering.mining what is to be produced—and the products

generated in that definition. The process involves
all of the following: Bruyn88

• requirements identification Bruyn, W., R. Jensen, D. Keskar, and P. Ward.
“ESML: An Extended Systems Modeling• requirements analysis

32 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

ecutable, at least in principle. Specifications areLanguage.” ACM Software Engineering Notes 13, 1
developed middle-out from an initial set of “model”(Jan. 1988), 58-67.
processes. The model processes define a set of

Abstract: ESML (Extended Systems Modeling events, which limit the scope of the system, define
Language) is a new system modeling language its semantics, and form the basis for defining data
based on the Ward-Mellor and Boeing structured and outputs. Implementation often involves recon-
methods techniques, both of which have proposed figuring or transforming the network to run on a
certain extensions of the DeMarco data flow smaller number of real or virtual processors. The
diagram notation to capture control and timing in- main phases of JSD are introduced and illustrated
formation. The combined notation has a broad by a small example system. The rationale for the
range of mechanisms for describing both com- approach is also discussed.
binatorial and sequential control logic.

A clear summary of JSD. As the method is still
This paper presents the basic features of ESML, the evolving, the steps described are slightly different
recent attempt to merge the Ward/Mellor and from [Jackson83]. The method is illustrated by
Boeing/Hatley approaches to Real-Time Structured means of a detailed library example. This paper is
Analysis. The ESML method is illustrated by also included in [Cameron89].
means of a cruise control example.

Good source material for the instructor. For a real-
A good source of material for the instructor. time course, a different example would be more ap-

propriate.
Budgen89
Budgen, D. Introduction to Software Design. Cur- Cameron89
riculum Module SEI-CM-2-2.1, Software Engineer- Cameron, J., ed. JSP & JSD: The Jackson Approach
ing Institute, Carnegie Mellon University, Pitts- to Software Development, 2nd Ed. Washington,
burgh, Pa., Jan. 1989. D. C.: IEEE Computer Society Press, 1989.

Capsule Description: This curriculum module pro- A collection of articles and papers describing JSP
vides an introduction to the principles and concepts and JSD and illustrating these methods using a
relevant to the design of large programs and sys- range of examples of reasonable size and com-
tems. It examines the role and context of the design plexity. Covers the latest developments in JSD and
activity as a form of problem-solving process, de- has some interesting papers on JSD applied to real-
scribes how this is supported by current design time systems, including [Renold88], as well as
methods, and considers the strategies, strengths, papers addressing mapping JSD specifications to
limitations, and main domains of application of MASCOT and Ada. Also includes [Cameron86]
these methods. and a comparison of JSD with OOD.

An excellent source of material for the instructor.Buhr84 Good material for students requiring an in-depth
Buhr, R. System Development with Ada. Englewood view of JSD.
Cliffs, N. J.: Prentice-Hall, 1984.

Cherry86This book presents a design-oriented introduction to
Ada, with special emphasis on concurrent process- Cherry G. The PAMELA Designer’s Handbook.
ing. Introduces a graphical design notation—the Reston, Va.: Thought Tools, 1986.
structure graph—that is gaining widespread accep-

One of the few references on the PAMELA method.tance in the Ada community.

A good source of material for the instructor and Collofello88astudents, particularly if the orientation of the course
Collofello, J. Software Technical Review Process.is toward Ada.
Curriculum Module SEI-CM-3-1.5, Software Engi-
neering Institute, Carnegie Mellon University, Pitts-Cameron86
burgh, Pa., June 1988.Cameron, J. “An Overview of JSD.” IEEE Trans.

Software Eng. SE-12, 2 (Feb. 1986), 222-240. Capsule Description: This module consists of a
comprehensive examination of the technical review

Abstract: The Jackson System Development (JSD) process in the software development and mainte-
method addresses most of the software lifecycle. nance life cycle. Formal review methodologies are
JSD specifications consist mainly of a distributed analyzed in detail from the perspective of the review
network of processes that communicate by message- participants, project management and software
passing and by read-only inspection of each other’s quality assurance. Sample review agendas are also
data. A JSD specification is therefore directly ex- presented for common types of reviews. The objec-

SEI-CM-22-1.0 33

Software Design Methods for Real-Time Systems

tive of the module is to provide the student with the An excellent source of material for instructor and
information necessary to plan and execute highly students.
efficient and cost effective technical reviews.

DeMarco78
Collofello88b DeMarco, T. Structured Analysis and System
Collofello, J. Introduction to Software Verification Specification. Englewood Cliffs, N. J.: Yourdon
and Validation. Curriculum Module SEI-CM-13- Press, 1978.
1.1, Software Engineering Institute, Carnegie Mellon

A very popular book on Structured Analysis, al-University, Pittsburgh, Pa., Dec. 1988.
though a more up to-date treatment of the subject is
given in [Yourdon89].Capsule Description: Software verification and

validation techniques are introduced and their ap-
plicability discussed. Approaches to integrating Dijkstra68
these techniques into comprehensive verification Dijkstra, E. W. “Cooperating Sequential Processes.”
and validation plans are also addressed. This cur-

In Programming Languages, F. Genuys, ed. Newriculum module provides an overview needed to un-
York: Academic Press, 1968, 43-112.derstand in-depth curriculum modules in the verifi-

cation and validation area. A classic paper which first introduced the concept
of concurrent processes and process synchroniza-
tion using semaphores. Illustrated by means of sev-Coolahan83
eral examples.Coolahan, J., and N. Roussopoulos. “Timing Re-

quirements for Time-Driven Systems Using Aug- Good source material for the instructor. However,
mented Petri Nets.” IEEE Trans. Software Eng. the concepts have been described in several text
SE-9, 5 (Sept. 1983), 603-616. books, such as [Bic88] and [Peterson85], which are

probably more readable for students.
Abstract: A methodology for the statement of
timing requirements is presented for a class of em-

Fagan76bedded computer systems. The notion of a “time-
Fagan, Michael E. “Design and Code Inspections todriven” system is introduced which is formalized

using a Petri net model augmented with timing in- Reduce Errors in Program Development.” IBM Sys-
formation. Several subclasses of time-driven sys- tems J. 15, 3 (1976), 182-211.
tems are defined with increasing levels of com-

See comments in [Collofello88a] bibliography.plexity. By deriving the conditions under which the
Petri net model can be proven to be safe in the
presence of time, timing requirements for modules Fairley85
in the system can be obtained. Analytical tech- Fairley, R. Software Engineering Concepts. New
niques are developed for proving safeness in the York: McGraw-Hill, 1985.
presence of time for the net constructions used in
the defined subclasses of time-driven systems. One of the best textbooks on software engineering

available. Describes the basic concepts and major
This paper describes extensions to Petri nets to issues in the field. Contains a chapter on design
handle timing requirements for real-time systems. that covers fundamental design concepts, design

notations, and design methods.
Dart87

Good source of material for the instructor. ShouldDart, S., R. Ellison, P. Feiler, and N. Habermann. be read by all software engineering students and is
“Software Development Environments.” Computer considered a prerequisite to the material in this cur-
20, 11 (Nov. 1987), 18-28. riculum module.

A very good introductory paper on this topic.
Faulk88
Faulk, S. R., and D. L. Parnas. “On SynchronizationDavis88
in Hard Real Time Systems.” Comm. ACM 31, 3Davis, A. “A Comparison of Techniques for the
(March 1988), 274-287.Specification of External System Behavior.” Comm.

ACM 31, 9 (Sept. 1988), 1098-1115. A detailed description of how concurrent processes
are supported in the NRL method.An excellent survey and comparison of different

specification techniques. Includes data flow Excellent source material for the instructor. How-
diagrams, finite state machines, Petri nets and ever, probably rather difficult for students.
statecharts.

34 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

than correcting a system after it has gone into pro-Freeman83
duction. This paper describes how a prototype wasFreeman, P., and A. I. Wasserman, eds. Software
used to help specify the requirements of a computerDesign Techniques, 4th Ed. Silver Spring, Md.:
system to manage and control a semiconductorIEEE Computer Society Press, 1980.
processing facility. The cost of developing and run-
ning the prototype was less than 10% of the totalA wide-ranging collection of papers on software de-
software development cost.sign covering basic concepts, analysis and specifi-

cation, architectural design, detailed design, and Describes, with a detailed case study, how prototyp-management issues. ing may be used to assist in the requirements speci-
fication process.Very good source material for the instructor and for

students who want to get a broad perspective on
software design. Gomaa83

Gomaa, H. “The Impact of Rapid Prototyping on
Gane79 Specifying User Requirements.” ACM Software En-
Gane, C., and T. Sarson. Structured Systems Anal- gineering Notes 8, 2 (April 1983), 17-28.
ysis: Tools and Techniques. Englewood Cliffs,

Abstract: Prototyping has been recognized asN. J.: Prentice-Hall, 1979.
being a powerful and indeed essential tool in many
branches of engineering. Although softwareA popular book on Structured Analysis, although a
prototyping is often considered too expensive, cor-more up-to-date treatment of the subject is given in
recting ambiguities and misunderstandings at the[Yourdon89].
requirements specification stage is significantly
cheaper than correcting a system after it has goneGehani84
into production. This paper describes how rapid

Gehani, N. Ada Concurrent Programming. Engle- prototyping impacts the Requirements Analysis and
wood Cliffs, N. J.: Prentice-Hall, 1984. Specification phase of the software life cycle. This

is illustrated by describing the experience gainedGood book on concurrency in Ada. Several ex-
from a prototype used to assist in the requirementsamples are covered, including the multiple readers/
specification of a system to manage and control anwriters problem.
integrated circuit fabrication facility. The cost of
the prototype was less than 10 percent of the total

Glass83 software development cost.
Real-Time Software. Glass, R. L., ed. Englewood

Describes a prototyping based method for require-Cliffs, N. J.: Prentice-Hall, 1983.
ments specification and gives an example of its use.

An interesting and varied collection of papers and
articles on real-time software. Gomaa84
Good source material for the instructor. Gomaa, H. “A Software Design Method for Real

Time Systems.” Comm. ACM 27, 9 (Sept. 1984),
938-949.Goldberg83

Goldberg, A., and D. Robson. Smalltalk-80: The This paper describes the DARTS design method
Language and Its Implementation. Reading, Mass.: and illustrates its use by means of an example of a
Addison-Wesley, 1983. robot controller system. A later version of the

method is given in [Gomaa87]. The task structuringA detailed reference on Smalltalk-80.
criteria are refined in [Gomaa89b].

Good source of material for instructor and students.Gomaa81
Gomaa, H., and D. B. H. Scott. “Prototyping as a

Gomaa86aTool in the Specification of User Requirements.”
Gomaa, H. “Software Development of Real TimeProc. 5th Intl. Conf. Software Eng. New York:
Systems.” Comm. ACM 29, 7 (July 1986), 657-668.IEEE, 1981, 333-339.

This paper describes how DARTS is used in a soft-Abstract: One of the major problems in developing
ware life-cycle context for real-time systems. Thenew computer applications is specifying the user’s
paper also describes the use of event sequencerequirements such that the requirements specifica-
diagrams to assist in incremental development.tion is correct, complete, and unambiguous. Al-

though prototyping is often considered too expen- Good source of material for instructor and students.
sive, correcting ambiguities and misunderstandings
at the specification stage is significantly cheaper

SEI-CM-22-1.0 35

Software Design Methods for Real-Time Systems

method for distributed real-time applications thatGomaa86b
typically consist of several concurrent tasks execut-Gomaa, H. “Prototypes-Keep Them or Throw Them
ing on multiple nodes supported by a local areaAway?” In State of the Art Report on Prototyping,
network. The design method is an extension ofM. E. Lipp, ed. Maidenhead, Berkshire, England:
DARTS, the design approach for real-time systems,

Pergamon Infotech Ltd., 1986, 41-54, 125-126. and is called DARTS/DA, DARTS for distributed
real-time applications. The method starts by devel-Abstract: This paper describes two different types
oping a data flow model of the distributed appli-of software prototype: throw-away prototypes and
cation using structured analysis. The next stageevolutionary prototypes. The throw-away prototype
involves decomposing the application into distribu-is a rapid prototype, developed for experimental
ted subsystems based on a set of subsystem struc-purposes, and can be used to assist in specifying
turing criteria and defining the interfaces betweenuser requirements—in particular the user interface.
them. Next, each subsystem is structured into con-The evolutionary prototype is the result of using an
current tasks using the DARTS task structuring cri-incremental development approach. Initially, a
teria and the interfaces between tasks are defined.subset of the final system is identified and devel-
Finally, each task, which represents a sequentialoped, so the prototype is actually an early version
program, is structured into modules using the struc-of the production system. The paper identifies the
tured design method. As an example, DARTS/DA ismain characteristics and benefits of each type of
applied to the design of a distributed factoryprototype. The impact on the software life-cycle in
automation system.each case is also described and examples of actual

projects which used these approaches, as well as This paper extends DARTS to address the design of
the lessons learned from them, are given. distributed real-time applications. The new method,

DARTS/DA is illustrated by means of a factoryThis paper points out the differences between
automation example.throw-away prototyping and evolutionary prototyp-

ing and the need for very different approaches when Good source material for instructor and students.
applying these techniques.

Gomaa89b
Gomaa87 Gomaa, H. “Structuring Criteria for Real Time Sys-
Gomaa, H. “Using the DARTS Software Design tem Design.” Proc. 11th Intl. Conf. Software Eng.
Method for Real Time Systems.” Proc. 12th Struc- Washington, D. C.: IEEE Computer Society Press,
tured Methods Conf. Chicago: Structured Tech- May 1989, 290-301.
niques Association, Aug. 1987, 76-90.

Abstract: This paper discusses and compares the
Abstract: This paper describes a software design criteria used by different design methods for decom-
method for real time systems and gives an example posing a real time system into tasks and modules.
of its use. The method is called DARTS, the Design The criteria considered are coupling, cohesion and
Approach for Real Time Systems. DARTS starts by information hiding for module structuring and con-
developing a data flow model of the system using currency for tasks. The Structured Design method
the real time extensions to Structured Analysis. The uses the module coupling and cohesion criteria.
next stage involves transforming the data flow The NRL method and Object Oriented Design use
model into a task structure model defining the con- information hiding as the primary criterion for
current tasks in the system and the interfaces be- identifying modules and objects respectively. The
tween them. The emphasis of this transformation Darts design method uses a set of task structuring
process is on concurrent processing and data ab- criteria for identifying the concurrent tasks in the
straction. Next, each task, which represents a se- system. A new design method for real time systems
quential program, is structured into modules using is introduced that uses both task structuring and
Structured Design. information hiding module structuring criteria. The

method is described and illustrated by mens of anThis paper describes how DARTS may be used in
example of an automobile cruise control system.conjunction with Real-Time Structured Analysis.

The robot controller example [Gomaa84] is updated Describes the task and module structuring criteria
to reflect this. used by different real-time design methods includ-

ing RTSAD, NRL, OOD, and DARTS. Attempts to
blend the task structuring criteria of DARTS withGomaa89a
the information module structuring criteria of NRLGomaa, H. “A Software Design Method for Distri-
and OOD into a new method called ADARTS.buted Real-Time Applications.” J. Syst. and Soft-

ware 9, 2 (Feb. 1989), 81-94. Good source material for instructor and students.

Abstract: This paper describes a software design

36 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

ware. It enables a user to prepare, analyze andGomaa89c
debug diagrammatic, yet precise, descriptions of theGomaa, H. “A Software Design Method for Ada
system under development from three inter-relatedBased Real Time Systems.” Proc. 6th ACM
points of view, capturing structure, functionalityWashington Ada Symposium. New York: ACM,
and behavior. These views are represented by three

1989, 273-284. graphical languages, the most intricate of which is
the language of statecharts used to depict reactiveAbstract: This paper describes a software design
behavior over time. In addition to the use ofmethod for structuring real time systems into con-
statecharts, the main novelty of STATEMATE is incurrent tasks and information hiding packages. The
the fact that it ‘understands’ the entire descriptionsmethod is called Adarts, an Ada based Design Ap-
perfectly, to the point of being able to analyze themproach for Real Time Systems. Adarts uses two sets
for crucial dynamic properties, to carry out rigor-of structuring criteria; task structuring criteria are
ous animated executions and simulations of the de-used to identify the concurrent tasks in the system
scribed system, and to create runing code automat-while package structuring criteria are used to iden-
ically. These features are invaluable when it comestify the information hiding packages.
to the quality and reliability of the final outcome.

A description of the ADARTS method with partic-
A good overview of the Statemate tool. Also de-ular reference to Ada-based real-time systems.
scribes how statecharts have been incorporated into

Of particular interest to Ada-based real-time system Statemate.
design.

Harel88b
Goodenough89 Harel, D. “On Visual Formalisms.” Comm. ACM 31,
Goodenough, J. B., and C. Sha. Real-Time Schedul- 5 (May 1988), 514-530.
ing Theory and Ada. CMU/SEI-89-TR-14, Software

Abstract: The higraph, a general kind of diagram-Engineering Institute, Pittsburgh, Pa., 1989.
ming object, forms a visual formalism of topologi-

Abstract: The Ada tasking model was intended to cal nature. Higraphs are suited for a wide array of
support the management of concurrency in a applications to databases, knowledge representa-
priority-driven scheduling environment. In this tion, and, most notably, the behavioural specifica-
paper, we review some important results of a tion of complex concurrent systems using the
priority-based scheduling theory, illustrate its ap- higraph-based language of statecharts.
plications with examples, discuss its implications

This paper describes a number of important issuesfor the Ada tasking model, and suggest
concerning design representation. The paper dis-workarounds that permit us to implement analytical
cusses general issues as well as presenting a goodscheduling algorithms within the existing
introduction to statecharts, illustrated by the digitalframework of Ada. This paper is a revision of
watch example.CMU/SEI-88-TR-33. (The most important revisions

affect our discussion of aperiodic tasks and our Good source material for instructor and students.
analysis of how to support the priority ceiling
protocol.) A shortened version is also being

Hatley88presented at the 1989 Ada-Europe Conference.
Hatley, Derek J., and I. Pirbhai. Strategies for Real

A readable and informative paper on a complex Time System Specification. New York: Dorset
topic. House, 1988.

A comprehensive description of the Boeing/HatleyHarel88a
approach to Real-Time Structured Analysis. TheHarel, D., et al. “STATEMATE: A Working Envi-
method is illustrated by means of several examplesronment for the Development of Complex Reactive
including the cruise control system and home heat-

Systems.” Proc. 10th Intl. Conf. on Software Eng. ing system.
Washington, D. C.: IEEE Computer Society Press,

Good source material for the instructor. Probably1988, 396-406.
too detailed for students, unless they are carrying

Abstract: This paper provides a brief overview of out an in-depth study of the method.
the STATEMATE system, constructed over the past
three years by i-Logix Inc., and Ad Cad Ltd. Heninger80STATEMATE is a graphical working environment,

Heninger, K. “Specifying Software Requirementsintended for the specification, analysis, design and
for Complex Systems: New Techniques and Theirdocumentation of large and complex reactive sys-
Applications.” IEEE Trans. Software Eng. SE-6, 1tems, such as real-time embedded systems, control
(Jan. 1980), 2-13.and communication systems, and interactive soft-

SEI-CM-22-1.0 37

Software Design Methods for Real-Time Systems

Abstract: This paper concerns new techniques for Jackson83
making requirements specifications precise, con- Jackson, M. A. System Development. Englewood
cise, and easy to check for completeness and consis- Cliffs, N. J.: Prentice-Hall, 1983.
tency. The techniques are well-suited for complex
real-time software systems; they were developed to The original source book on JSD. A more current
document the requirements of existing flight soft- version of the method is presented in [Cameron86]
ware for the Navy’s A-7 aircraft. The paper out- and [Cameron89]. The book is rather difficult to
lines the information that belongs in a requirements read, as the description of the method is intertwined
document and discusses the objectives behind the with three worked examples. The elevator example
techniques. Each technique is described and il- has been extracted and included in [Sanden89].
lustrated with examples from the A-7 document.

A source of material for the instructor, rather thanThe purpose of the paper is to introduce A-7 docu-
the student.ment as a model of a disciplined approach to re-

quirements specification; the document is available
Kato87to anyone who wishes to see a fully worked-out ex-

ample of the approach. Kato, J., and Y. Morisawa. “Direct Execution of a
JSD Specification.” Proc. COMPSAC 87.An overview of the NRL black-box requirements
Washington, D. C.: IEEE Computer Society Press,specification method with examples from the A-7
1987, 30-37.aircraft project.

Abstract: This paper presents the direct executionGood source material for the instructor. Probably
of a Jackson System Development (JSD) specifica-difficult reading for students, however.
tion as a part of the Jackson System development
Environment (JSE). When we have a tool for ex-Hoare74 ecuting a JSD specification, we can use it as a rapid

Hoare, C. A. R. “Monitors: An Operating System prototyping tool of system development. We intro-
Structuring Concept.” Comm. ACM 17, 10 (Oct. duce a language, named the Jackson System devel-
1974), 549-557. opment Language (JSL) which is a JSD specifica-

tion language.Abstract: This paper develops Brinch-Hansen’s
concept of a monitor as a method of structuring an This paper describes the main part of JSL and ex-
operating system. It introduces a form of plains its interpreter.
synchronization, describes a possible method of im-

Describes a tool to support the execution of JSDplementation in terms of semaphores and gives a
specifications.suitable proof rule. Illustrative examples include a

single resource schedule, a bounded buffer, an
alarm clock, a buffer pool, a disk head optimizer, Kelly87
and a version of the problem of readers and writers. Kelly, J. “A Comparison of Four Design Methods

for Real Time Systems.” Proc. 9th Intl. Conf. Soft-A classic paper on operating systems.
ware Eng. Washington, D. C.: IEEE Computer So-
ciety Press, 1987, 238-252.Hoare85

Abstract: The purpose of this paper is to compareHoare, C. A. R. Communicating Sequential
four design methods which are of current interest inProcesses. Englewood Cliffs, N. J.: Prentice/Hall
real-time software development. The comparisonInternational, 1985.
presents the relative strengths and weakness of each
method with additional information on graphic

IEEE83 notation and the recommended sequence of steps
IEEE. IEEE Standard Glossary of Software Engi- involved in the use of each method. The methods
neering Terminology. New York: IEEE, 1983. selected for comparison were:
ANSI/IEEE Std 729-1983. • STRUCTURED DESIGN FOR REAL-

TIME SYSTEMSThis standard provides definitions for many of the
terms used in software engineering. • OBJECT ORIENTED DESIGN

• PAMELA (Process Abstraction Method for
Embedded Large Applications)Jackson75

Jackson, M. A. Principles of Program Design. Lon- • SCR (Software Cost Reduction project -
Naval Research Laboratory)don: Academic Press, 1975.

Readers interested in a framework for comparingThe original source book on JSP. JSP is also
methods, an overview of the four selected method-covered in detail in [Cameron89].

38 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

ologies, and an aid to narrowing candidates for McCabe85
adoption should find this paper helpful McCabe, T., and G. Schulmeyer. “System Testing

Aided by Structured Analysis: A PracticalProvides a framework for comparing real-time de-
Experience.” IEEE Trans. Software Eng. SE-11, 9sign methods. Uses this framework to compare
(Sept. 1985), 917-921.RTSAD, PAMELA, OOD, and NRL methods.

Good source material for the instructor and stu- Abstract: This paper deals with the use of Struc-
tured Analysis just prior to system acceptance test-dents.
ing. Specifically, the drawing of data flow
diagrams (DFD) was done after integration testing.Lamb88
The DFD’s provided a picture of the logical flowLamb, David Alex. Software Engineering: Planning through the integrated system for thorough system

for Change. Englewood Cliffs, N. J.: Prentice-Hall, acceptance testing. System test sets, [sic] were de-
1988. rived from the flows in the DFD’s. System test

repeatability was enhanced by the matrix whichThis book provides a very good overview of many
flowed from the test sets.of the ideas of David Parnas that formed the basis of

the NRL method. See comments in [Collofello88b] bibliography.
Good source material for the instructor and stu-
dents. Chapters 4, 5, and 6 are particularly relevant McCracken82
to this module. McCracken, D., and M. Jackson. “Life Cycle Con-

cept Considered Harmful.” ACM Software Engineer-
Lubars87 ing Notes 7, 2 (April 1982), 29-32.
Lubars, M. D., and M. T. Harandi. “Knowledge-

A brief note advocating an evolutionary prototypingBased Software Design Using Design Schemas.” approach to software development.
Proc. 9th Intl. Conf. Software Eng. Washington,
D. C.: IEEE Computer Society Press, 1987,

Meyer87253-262.
Meyer, B. “Reusability: The Case for Object-

Abstract: Design schemas provide a means for Oriented Design.” IEEE Software 4, 2 (March 1987),
abstracting software designs into broadly reusable 50-64.
components that can be assembled and refined into

An excellent paper describing the benefits of usingnew software designs. This paper describes a
inheritance in object-oriented design. Illustrated byknowledge-based software development paradigm
means of a detailed example of an airline reserva-that is based on the design schema representation.
tion system. The material is covered in more detailIt combines design schemas, domain knowledge,
in [Meyer88].and various types of rules to assist in the quick gen-

eration of software designs from user specifications. Excellent source of material for the instructor.
A prototypical environment, IDeA (Intelligent De- However, students may find the paper difficult and
sign Aid), is described that supports the knowledge- prefer the lengthier treatment given in [Meyer88].
based paradigm. The schema-based techniques
used in IDeA are presented along with some ex-

Meyer88amples of their use.
Meyer, B. Object-Oriented Software Construction.

An interesting paper addressing a promising area of New York: Prentice-Hall, 1988.
research—domain modeling.

A comprehensive description of designing object-
oriented systems using inheritance, in addition toMartin85
information hiding. Several examples are givenMartin, J., and C. McClure. Structured Techniques
using the object-oriented programming languagefor Computing. Englewood Cliffs, N. J.: Prentice-
Eiffel.

Hall, 1985.
This book warrants a course of its own on object-

A wide ranging survey of several diagramming oriented software development.
techniques and design methods. Compares JSP,
Structured Analysis/Design, and the Warnier/Orr

Mills87method. The book is oriented toward information
Mills, H. D., R. C. Linger, and A. R. Hevner. “Boxsystems.
Structured Information Systems.” IBM Systems
J. 26, 4 (Dec. 1987), 395-413.

SEI-CM-22-1.0 39

Software Design Methods for Real-Time Systems

a “modularization” is dependent upon the criteriaA description of the Box-Structured Information
used in dividing the system into modules. A systemSystem design method.
design problem is presented and both a convention-
al and unconventional decomposition are described.Myers78
It is shown that the unconventional decompositionsMyers, G. Composite/Structured Design. New have distinct advantages for the goals outlined. The

York: Van Nostrand, 1978. criteria used in arriving at the decompositions are
discussed. The unconventional decomposition, ifAn early book on the Structured Design method by
implemented with the conventional assumption thatone of its developers. The book introduces the in-
a module consists of one or more subroutines, willformation hiding concept as a module cohesion cri-
be less efficient in most cases. An alternative ap-terion, something still not done in later books, e.g.,
proach to implementation which does not have this[Page-Jones88].
effect is sketched.

A classic paper that introduces the concept of infor-Myers79
mation hiding as a design criterion.Myers, G. The Art of Software Testing. New York:

John Wiley, 1979. A good source of material for the instructor.

See comments in [Collofello88b] bibliography.
Parnas74
Parnas, D. “On a ‘Buzzword’: HierarchicalNielsen88
Structure.” Proc. IFIP Congress 1974. Amsterdam:Nielsen, K., and K. Shumate. Designing Large Real
North-Holland, 1974, 336-339.Time Systems with Ada. New York: McGraw-Hill,

1988. Abstract: This paper discusses the use of the term
“hierarchially structured” to describe the design ofA detailed book for those interested in developing
operating systems. Although the various uses ofAda-based real-time systems. Addresses many
this term are often considered to be closely related,Ada-specific issues. The design method is based on
close examination of the use of the term shows thatDARTS [Gomaa84]. Several detailed case studies
it has a number of quite different meanings. Forare covered, including the robot controller example
example, one can find two different senses of

[Gomaa84] and an air traffic control system.
“hierarchy” in a single operating system [3] and
[6]. An understanding of the different meanings ofGood reference material for the instructor. This is a
the term is essential, if a designer wishes to applygood reference book for a real-time design course
recent work in Software Engineering and Designoriented toward Ada.
Methodology. This paper attempts to provide such
an understanding.Page-Jones88

Page-Jones, M. The Practical Guide to Structured An infrequently referenced paper that describes in
Systems Design, 2nd Ed. Englewood Cliffs, N. J.: detail the interesting view that a software system

consists of three orthogonal structures, the informa-Yourdon Press, 1988.
tion hiding module structure [Parnas84], the uses

A readable book on the popular Structured Design structure [Parnas79], and the process structure
method. Also has an overview of Structured Anal- [Faulk88]. A paper that should be read by all sys-
ysis. Although recently revived, the book does not tem designers, particularly those who believe that
cover recent developments in design methods. Un- the same structuring criteria may be used for tasks
like [Myers78], it views information hiding as a de- and objects.
sign heuristic, rather than as a module cohesion cri-

An essential source of material for the instructor.terion, which is probably confusing for both stu-
Students may do better to settle for the instructor’sdents and practitioners.
interpretation.

A good source of material for the instructor.

Parnas79
Parnas72 Parnas, D. “Designing Software for Ease of Exten-
Parnas, D. “On the Criteria for Decomposing a Sys- sion and Contraction.” IEEE Trans. Software Eng.
tem into Modules.” Comm. ACM 15, 12 (Dec. 1972), SE-5, 2 (March 1979), 128-138.
1053-1058.

Abstract: Designing software to be extensible and
Abstract: This paper discusses modularization as a easily contracted is discussed as a special case of
mechanism for improving the flexibility and com- design for change. A number of ways that extension
prehensibility of a system while allowing the shor- and contraction problems manifest themselves in
tening of its development time. The effectiveness of

40 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

current software are explained. Four steps in the focussed on those aspects of the design
design of software that is more flexible are then that suit his experience and expertise.
discussed. The most critical step is the design of a 2. The characteristics of the reviewers
software structure called the “uses” relation. Some needed should be explicitly specified be-
criteria for design decisions are given and il- fore reviewers are selected.
lustrated using a small example. It is shown that

3. Reviewers should be asked to make posi-the identification of minimal subsets and minimal
tive assertions about the design ratherextensions can lead to software that can be tailored
than simply allowed to point out defects.to the needs of a broad variety of users.

4. The designers pose questions to the
An important paper that describes the uses structure, reviewers, rather than vice versa. These
a hierarchy of operations provided by modules, and questions are posed on a set of question-
how this structure may be used for determining sub- naires that requires careful study of some
sets and extensions of a software system. aspect of the design.

5. Interaction between designers andA good source of material for the instructor and
reviewers occurs in small meetings involv-students, although the example may be difficult to
ing 2 - 4 people rather than meetings ofunderstand.
large groups.

Parnas84 Illustrations of these ideas drawn from the appli-
cation of active design reviews to the Naval Re-Parnas, D., P. Clements, and D. Weiss. “The Modu-
search Laboratory’s Software Cost Reduction Proj-lar Structure of Complex Systems.” Proc. 7th Intl.
ect are included.Conf. Software Eng. Long Beach, Calif.: IEEE

Computer Society, 1984, 408-416. An interesting paper that advocates a highly par-
ticipatory role by design reviewers.Abstract: This paper discuses the organization of

software that is inherently complex because there
are very many arbitrary details that must be Parnas86
precisely right for the software to be correct. We Parnas, D., and P. Clemens. “A Rational Design
show how the software design technique known as Process: How and Why to Fake It.” IEEE Trans.
information hiding or abstraction can be supple- Software Eng. SE-12, 2 (Feb. 1986), 251-257.
mented by a hierarchically-structured document,
which we call a module guide. The guide is in- Abstract: Many have sought a software design
tended to allow both designers and maintainers to process that allows a program to be derived sys-
identify easily the parts of the software that they tematically from a precise statement of require-
must understand without reading irrelevant details ments. This paper proposes that, although we will
about other parts of the software. The paper in- not succeed in designing a real product in that way,
cludes an extract from a software module guide to we can produce documentation that makes it appear
illustrate our proposals. that the software was designed by such a process.

We first describe the ideal process, and the docu-
A very important paper that describes the applica- mentation that it requires. We then explain why one
tion of the information hiding concept to the design should attempt to design according to the ideal
of a complex real-time system. Detailed example of process and why one should produce the documen-
the A-7 aircraft. tation that would have been produced by that proc-

ess. We describe the contents of each of the re-Essential reading for the instructor and students.
quired documents.

Parnas85 A clear overview of the NRL method that also de-
scribes the rationale behind it and stresses the im-Parnas, D., and D. Weiss. “Active Design Reviews:
portance of documentation throughout the life cy-Principles and Practices.” Proc. 8th Intl. Conf. Soft-
cle. Several aspects of the method are described inware Eng. Washington, D. C.: IEEE Computer So-
more detail in other papers, e.g., [Parnas84].ciety Press, 1985, 132-136.
Essential reading for the instructor and students.Abstract: Although many new software design

techniques have emerged in the past 15 years, there
Pedersen89have been few changes to the procedures for re-

viewing the designs produced using these tech- Pedersen, J. S. Software Development Using VDM.
niques. This paper describes an improved tech- Curriculum Module SEI-CM-16-1.1, Software Engi-
nique, based on the following ideas, for reviewing neering Institute, Carnegie Mellon University, Pitts-
designs. burgh, Pa., Dec. 1989.

1. The efforts of each reviewer should be

SEI-CM-22-1.0 41

Software Design Methods for Real-Time Systems

Capsule Description: This module introduces the Prieto-Diaz87
Vienna Development Method (VDM) approach to Prieto-Diaz, R. “Domain Analysis for Reusability.”
software development. The method is oriented Proc. COMPSAC 87. Washington, D. C.: IEEE
toward a formal model view of the software to be Computer Society Press, 1987, 23-29.
developed. The emphasis of the module is on for-
mal specification and systematic development of Abstract: Domain analysis is a knowledge inten-
programs using VDM. A major part of the module sive activity for which no methodology or any kind
deals with the particular specification language of formalization is yet available. Domain analysis
(and abstraction mechanisms) used in VDM. is conducted informally and all reported experi-

ences concentrate on the outcome, not on the proc-
ess. We propose a model domain analysis processPerlman88
derived from analyzing some domain analysis casesPerlman, G. User Interface Development. Curricu-
and two existing approaches. After decompositionlum Module SEI-CM-17-1.0, Software Engineering of the activities analyzed, we were able to capture

Institute, Carnegie Mellon University, Pittsburgh, the domain analysis process in a set of data flow
Pa., April 1988. diagrams. The model identifies intermediate activi-

ties and workproducts for which support tools canCapsule Description: This module covers the is-
be developed. A project is currently under way tosues, information sources, and methods used in the
verify our model.design, implementation, and evaluation of user

interfaces, the parts of software systems designed to An interesting research paper that presents an ap-
interact with people. User interface design draws proach to analyzing application domains.
on the experiences of designers, current trends in
input/output technology, cognitive psychology,

Renold88human factors (ergonomics) research, guidelines
Renold, A. “Jackson System Development for Realand standards, and on the feedback from evaluating
Time Systems.” In JSP & JSD: The Jackson Ap-working systems. User interface implementation

applies modern software development techniques to proach to Software Development, 2nd Ed.,
building user interfaces. User interface evaluation J. Cameron, ed. Washington, D. C.: IEEE Computer
can be based on empirical evaluation of working Society Press, 1989, 235-278.
systems or on the predictive evaluation of system

A good description of how JSD may be used fordesign specifications.
designing real-time systems. Also includes a com-
parison of JSD with Structured Analysis/Design andPeterson81
DARTS.

Peterson, J. Petri Net Theory and the Modeling of
Systems. Englewood Cliffs, N. J.: Prentice-Hall,

Rombach891981.
Rombach, D. Software Specifications: A

An excellent reference book on Petri nets, providing Framework. Curriculum Module SEI-CM-11-2.0,
a readable treatment of the subject, with many ex- Software Engineering Institute, Carnegie Mellon
amples. University, Pittsburgh, Pa., Dec. 1989.

Capsule Description: This curriculum modulePeterson85
presents a framework for understanding softwarePeterson, J., and A. Silberschatz. Operating System product and process specifications. An unusual ap-

Concepts, 2nd Ed. Reading, Mass.: Addison-Wes- proach has been chosen in order to be able to ad-
ley, 1985. dress all aspects related to “specification” without

confusing the many existing uses of the term. In thisA very good reference book on operating systems.
module, the term specification refers to any plan (or
standard) according to which products of some type

Pressman87 are constructed or processes of some type are per-
Pressman, R. Software Engineering: A formed, not to the products or processes themselves.

In this sense, a specification is itself a product thatPractitioner’s Approach, 2nd Ed. New York:
describes how products of some type should look orMcGraw-Hill, 1987.
how processes of some type should be performed.

A very good introduction to software engineering. The framework includes
Also has chapters on several design methods, in- • a reference software life-cycle model andcluding Structured Analysis and Design, DARTS,

terminology,object-oriented design, and JSD.
• a characterizing scheme for software

A good source of material for the instructor and product and process specifications,
students.

42 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

A good source of material for the instructor and• guidelines for using the characterization
students.scheme to identify clearly certain life-cycle

phases, and

Shlaer88• guidelines for using the characterization
scheme to select and evaluate specification Shlaer, Sally, and Stephen J. Mellor.
techniques. Object-Oriented Systems Analysis: Modeling the

World in Data. Englewood Cliffs, N. J.: Yourdon
Sanden89 Press, 1988.
Sanden, B. “An Entity Life Modeling approach to

A rather narrow view of object-oriented require-the Design of Concurrent Software.” Comm. ACM ments analysis, concentrating on semantic data
32, 3 (March 1989), 330-343. modeling. However, the treatment given is read-

able, though somewhat introductory.Describes a variation on JSD that addresses the
needs of real-time systems and also maps directly to Good source of material for the instructor. Prob-
Ada. Illustrates the method by comparing it to JSD, ably too narrow for students.
using Jackson’s elevator example [Jackson83].

Simpson79
Seidewitz86 Simpson, H., and K. Jackson. “Process Synchroniza-
Seidewitz, Ed, and Mike Stark. “Towards a General tion in MASCOT.” Computer J. 22, 4 (Nov. 1979),
Object-Oriented Software Development 332-345.
Methodology.” Proc. 1st Intl. Conf. on Ada® Pro-

An early paper on MASCOT, concentrating on thegramming Language Applications for the NASA
concurrent process synchronization aspects ofSpace Station, vol. II. Houston: University of
MASCOT.Houston-Clear Lake, 1986, D.4.6.1-D.4.6.14.

An early paper on the GOOD method for object- Simpson86
oriented design. Simpson, H. “The MASCOT Method.” Software

Eng. J. 1, 3 (May 1986), 103-120.
Seidewitz88

A more recent paper on MASCOT that covers theSeidewitz, Ed. “General Object-Oriented Software
extensions and notation for MASCOT 3.Development: Background and Experience.” Proc.

21st Ann. Hawaii Intl. Conf. System Sciences, vol. II.
Stankovic88Washington, D. C.: IEEE Computer Society Press,
Stankovic, J. A., and K. Ramamritham. Hard Real-1988, 262-270.
Time Systems. Washington, D. C.: IEEE Computer

Abstract: The effective use of Ada™ requires the Society Press, 1988.
adoption of modern software-engineering tech-

A wide-ranging collection of papers covering theniques such as object-oriented methodologies. A
specification, design and analysis of real-time sys-Goddard Space Flight Center Software Engineering
tems (with particular emphasis on timingLaboratory Ada pilot project has provided an op-
constraints), real-time languages, real time operat-portunity for studying object-oriented design in

Ada. The project involves the development of a ing systems, architecture and hardware, communi-
simulation system in Ada in parallel with a similar cation, and fault tolerance.
FORTRAN development. As part of the project, the

Good source material for the instructor. Forms anAda development team trained and evaluated
excellent basis for a graduate seminar on this topic.object-oriented and process-oriented design meth-

odologies for Ada. Finding these methodologies
Stroustrup86limited in various ways, the team created a general

object-oriented development methodology which Stroustrup, B. The C++ Programming Language.
they applied to the project. This paper discusses Reading, Mass.: Addison-Wesley, 1986.
some background on the development of the meth-

A good reference book on this object-oriented lan-odology, describes the main principles of the ap-
guage.proach and presents some experiences with using

the methodology, including a general comparison of
the Ada and FORTRAN simulator designs. Tai87

Tai, Kuo-Chung, and Sanjiv Ahuja. “ReproducibleA later paper on the GOOD method. Interesting in
Testing of Communication Software.” Proc. COM-its application of entity-relationship modeling to
PSAC 87. Washington, D. C.: IEEE Computer Soci-help identify objects in the problem domain.
ety Press, 1987, 331-337.

SEI-CM-22-1.0 43

Software Design Methods for Real-Time Systems

and of data repositories (stores), linked by commu-Abstract: Communication software uses timers and
nication paths (flows). The execution rules provideconstructs such as SEND/RECEIVE and ENQ/DEQ
a qualitative prediction rather than a quantitativeto control synchronization between concurrent
one, describing the acceptance of inputs and theprocesses. As a result, repeated executions of a
production of outputs by the transformations but notcommunication program with the same test se-
input and output values.quence may produce different results. This unpre-

dictable program behavior makes the debugging The transformation schema permits the creation
and testing of communication software difficult. and evaluation of two different types of system
The reproducible testing problem is to exercise a models. In the essential (requirements) model, the
given sequence of synchronization events between schema is used to represent a virtual machine with
concurrent processes. In this paper, we present infinite resources. The elements of the schema
solutions to the reproducible testing problems for depict idealized processing and memory compo-
SEND/RECEIVE and timers. nents. In the implementation model, the schema is

used to represent a real machine with limitedPresents an interesting approach to testing concur-
resources, and the results of the execution predictrent systems.
the behavior of an implementation of requirements.
The transformations of the schema can depict soft-Tsai88 ware running on digital processors, hard-wired

Tsai, J. J.-P., and J. C. Ridge. “Intelligent Support digital or analog circuits, and so on, and the stores
for Specifications Transformation.” IEEE Software of the schema can depict disk files, tables in mem-
5, 6 (Nov. 1988), 28-36. ory, and so on.

An overview of RTSA, with some refinement andWard85 terminology changes in the notation of [Ward85].
Ward, P. T., and S. J. Mellor. Structured Develop-

A good source of material for the instructor andment for Real-Time Systems. New York: Yourdon
students.Press, 1985-1986. The three volumes in this series

are Introduction and Tools, Essential Modeling
Wegner87Techniques, and Implementation Modeling
Wegner, P. “Dimensions of Object Based LanguageTechniques.
Design.” Proc. OOPSLA ’87. New York: ACM,

A comprehensive treatment of the Ward/Mellor ap- 1987, 168-182. Proceedings available as special is-
proach to Real-Time Structured Analysis and De- sue of SIGPLAN Notices 22, 12 (Dec. 1987).
sign.

Abstract: The design space of object-based lan-A good source of material for the instructor. Prob-
guages is characterized in terms of objects, classes,ably too detailed for students, unless they are carry-
inheritance, data abstraction, strong typing, con-ing out an in-depth study of the method.
currency, and persistence. Language classes
(paradigms) associated with interesting subsets of

Ward86 these features are identified and language design
Ward, P. “The Transformation Schema: An Exten- issues for selected paradigms are examined. Or-

thogonal dimensions that span the object-orientedsion of the Data Flow Diagram to Represent Control
design space are related to non-orthogonal featuresand Timing.” IEEE Trans. Software Eng. 12, 2 (Feb.
of real languages. The self-referential application1986), 198-210.
of object-oriented methodology to the development

Abstract: The data flow diagram has been exten- of object-based language paradigms is demon-
sively used to model the data transformation as- strated.
pects of proposed systems. However, previous

Delegation is defined as a generalization of in-definitions of the data flow diagram have not pro-
heritance and design alternatives such as non-strict,vided a comprehensive way to represent the inter-
multiple, and abstract inheritance are considered.action between the timing and control aspects of a
Actors and prototypes are presented as examples ofsystem and its data transformation behavior. This
classless (delegation based) languages. Processespaper describes an extension of the data flow
are classified by their degree of internal concur-diagram called the transformation schema. The
rency. The potential inconsistency of object-transformation schema provides a notation and for-
oriented sharing and distributed autonomy is dis-mation rules for building a comprehensive system
cussed, suggesting that compromises between shar-model, and a set of execution rules to allow predic-
ing and autonomy will be necessary in designingtion of the behavior over time of a system modeled
strongly typed object-oriented distributed databasein this way. The notation and formation rules allow
languages.depiction of a system as a network of potentially

concurrent “centers of activity” (transformations),

44 SEI-CM-22-1.0

Software Design Methods for Real-Time Systems

A very interesting paper giving a comprehensive
taxonomy of languages supporting objects.

Required reading for the instructor and students
who want a clear overview of object-oriented con-
cepts and how they are supported by object-oriented
languages.

Yourdon79
Yourdon, E., and L. Constantine. Structured Design.
Englewood Cliffs, N. J.: Prentice-Hall, 1979.

The classic text on Structured Design, although
somewhat dated and not as readable as [Page-
Jones88].

Yourdon89
Yourdon, E. Modern Structured Analysis.
Englewood Cliffs, N. J.: Prentice-Hall, 1989.

Probably the most comprehensive and up-to-date
book on the popular Structured Analysis method.
Includes material on the real-time extensions to
Structured Analysis and Entity-Relationship model-
ing. There are also two detailed case studies. If
you need one book on Structured Analysis, this is
probably the one to get.

Very good source material for instructor and stu-
dents.

Zave84
Zave, P. “The Operational Versus the Conventional
Approach to Software Development.” Comm. ACM
27, 2 (Feb. 1984), 104-118.

This paper advocates an alternative approach to
software development in which a problem-oriented
executable operational specification is developed,
followed by a transformation phase that results in an
implementation-oriented specification. A character-
istic of the operational specification is that, in order
to be executable, it freely interleaves requirements
(external behavior) and internal structure.

SEI-CM-22-1.0 45

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

