
Introduction to Software Design

SEI Curriculum Module SEI-CM-2-2.1

January 1989

David Budgen
University of Stirling

Software Engineering Institute
Carnegie Mellon University

This work was sponsored by the U.S. Department of Defense.

Draft For Public Review

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include textbooks and educational software tools.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Requests for additional information should be addressed to the Director of Education, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

Comments on SEI materials are solicited, and may be sent to the Director of Education, or to the module author.

David Budgen
Department of Computing Science
University of Stirling
Stirling
Scotland FK9 4LA

© 1989 Carnegie Mellon University

Draft For Public Review

Foreword

In 1986, David Budgen was one of the original SEI curriculum module authors.
He, with co-author Richard Sincovec, wrote the first version of this module
and, in so doing, helped define what a module should be. In the two years since
Professor Budgen completed his work, the module concept has evolved, and the
detailed modules on design originally envisaged to complement that early mod-
ule have not materialized. A workshop was convened at the SEI in the spring
of 1988 to revisit CM-2 and to devise a plan for better serving the needs of

1software engineering educators for material on software design. Workshop
participants concluded that the original module provided a good basis for a
more ambitious introduction and made numerous suggestions concerning the
content and organization of a successor. Fortunately, Professor Budgen was
able to return to the SEI in the summer of 1988 to make such a revision—really
a rewrite—of his module. To do this, the author drew upon his recent experi-
ence teaching design, reviewer comments, the recommendations from the de-
sign workshop, and the work and methods of other module authors. Although
minor revisions remain to be made, this new version of Introduction to Soft-
ware Design should provide a helpful, insightful commentary on an important
software engineering topic.

— Lionel E. Deimel
Senior Computer Scientist, SEI

1Participants in the workshop were David Card (Computer Sciences Corp.), Raymonde Guindon (MCC), Everett Merritt (IBM), Richard
Sincovec (University of Colorado), David Weiss (SPC), and, from the SEI, Mark Ardis, Lionel Deimel, David Glass, and John Nestor.

SEI-CM-2-2.1 Draft For Public Review iii

iv Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

Acknowledgements Contents

The second version of this module has benefited from the Capsule Description 1
contributions of numerous people, including many who Philosophy 1
assisted in the production of the first version. I would

Objectives 2particularly like to acknowledge the contributions of John
Nestor and Jan Pedersen, who helped resolve some of the Prerequisite Knowledge 3
major structural issues that surfaced in the revision proc-

Module Content 4ess, and the comments and ideas of Glenn Bruns and
Hassan Gomaa. Despite all these valiant efforts, there are, Outline 4
no doubt, some remaining errors or ambiguities, for which Annotated Outline 5
I must take sole responsibility.

Glossary 17
The original version of this module was written with

Teaching Considerations 20Richard Sincovec, and we would like to thank Paul Jor-
gensen, Glenn Bruns, and David Weiss, all of whom made Suggested Schedules 20
major contributions. We also acknowledge the helpful Worked Examples 20
comments of Larry Peters, Michael Jackson, and Bob

Exercises 20Glass.

Bibliographies 23

Textbooks 23

Papers 29

SEI-CM-2-2.1 Draft For Public Review v

Introduction to Software Design

Module Revision History

Version 2.1 (January 1989) Editorial corrections by author
Version 2.0 (December 1988) Major revision of structure and content
Version 1.2 (July 1987) Format changes for title page and front matter; removed references to worked examples that are not yet

available; added acknowledgements
Version 1.1 (April 1987) Slight cosmetic changes
Version 1.0 (September 1986) Original version

vi Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

The module places strong emphasis upon providingCapsule Description
an understanding of design as a general problem-
solving activity and upon how it differs from theThis curriculum module provides an introduction to
problem-solving techniques of more established dis-the principles and concepts relevant to the design of
ciplines. Within this context, it is possible to under-large programs and systems. It examines the role
stand the role of design methods and the limitationsand context of the design activity as a form of
inherent within them.problem-solving process, describes how this is sup-

ported by current design methods, and considers the The design of software is essentially a creative oper-
strategies, strengths, limitations, and main domains ation, but the designer of a large system usually re-
of application of these methods. quires at least guidelines, and preferably a method,

to provide a structure for this task. The state of the
art is such that this module cannot advocate one de-
sign approach alone. Its emphasis, therefore, is on
identifying principles. In order to illustrate these, aPhilosophy
number of methods have been selected as represen-
tative examples of the different design strategies inDesign is an important activity for all except the
use and of the current best practice in software de-most trivial of systems. It exerts a major influence
sign. Since the module is an introduction to theupon the other phases of the development process, as
topic of design, the design methods chosen are onlywell as upon system maintenance. An understanding
described in outline, to a level considered sufficientof design issues and of the techniques available to
to illustrate the principles involved. No attempt hasassist in producing a design is essential background
been made to explain every nuance and special casefor the software engineer.
that might arise when using any particular method.

This module provides an introduction to the topic of
The module contains material needed for a basic un-software design, including the following major ele-
derstanding of the design process (and therefore as aments:
prerequisite for any advanced study of design).

• An explanation of the role of the design These topics might be taught in a software design
activity in producing large software- course or as part of an introductory course on soft-
based systems, together with an introduc- ware engineering. Since an understanding of the is-
tion to the principles that are used to as- sues and trade-offs that arise in system design re-
sess the quality of a design. quires an understanding of the structuring of soft-

• An introduction to a range of design ware systems, the material in this module should
representations, together with a descrip- also be considered as a necessary prerequisite to any
tion of their uses and limitations. study of system design.

• An explanation of the role of a design In writing this curriculum module, an effort has been
method in the production of a design and made to conform to the general framework for de-
of the design strategies used in software scribing software development processes and prod-
design methods. ucts introduced by H. Dieter Rombach in his curric-

ulum module Software Specification: A Framework• An introduction to several examples of
[Rombach87]. Professor Rombach’s module is adesign methods and an assessment of
useful prerequisite for understanding the terminolo-their strengths and limitations with
gy used here. Figure 1 shows the relationshipsrespect to different classes of problems.

SEI-CM-2-2.1 Draft For Public Review 1

Introduction to Software Design

among processes and products closely related to
software design, using the nomenclature of [Rom-
bach87]. Figure 2 shows a simplified representation
of the design process, omitting the inevitable itera-
tive details. This process is concerned with how a
system can be built so as to behave in the manner
described by the D-requirements product. During
the design process, further documents are generated,
which in turn provide inputs both to the detailed de-
sign and to implementation tasks. The output of the
design process is a design product, which is the in-
put to software implementation.

D-Req.

Build Abstract
Model

Architectural
Design

Refine Model

Detailed Design

Design Product

Design
Process

(input)

(output)

Figure 2. Design process.

Objectives

The student who has worked through a complete se-
lection of material from this module is expected to:

• Be able to explain the role of design in
the production of software systems and
understand the use of abstraction in the
design process.

• Be aware of the differences between de-
signing as an individual and as part of a
team, and of the need to record the proc-
ess of decision-making during design.

• Be familiar with the practices and repre-
sentation forms used in those design
methods that represent current best prac-

Requirements
Analysis

C-Req. Product

Specification

D-Req. Product

Design

Design Product

Implementation

Code

C(ustomer/User-
Oriented) Require-
ments Process

D(eveloper-oriented)
Requirements
Process

Describes what the
system should do

Describes how the
system should meet
the specification

Figure 1. Process-product relationships.

tice, and be able to explain the principles
behind each, their principal domains of
application, and their limitations (this
can be summarized as assessment of the
process).

2 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

• Be able to identify methods of assessing
the results of the design process in terms
of the quality of a design, the extent to
which it meets the original requirements,
and its likely performance, where appro-
priate (this can be summarized as assess-
ment of the product).

• Have been involved in a number of ex-
ercises that are intended to amplify and
illustrate the points made above.

The material of this module is not intended to be
sufficient to provide the student with a comprehen-
sive understanding of any particular design method.
Rather, he will be able to gain an understanding of
the domains of application that are best suited to
each method and an appreciation of the trade-offs
that occur during the design process. The student
should then be equipped to assist a more experienced
designer, as the next stage of his learning process,
and should have acquired the background that is
needed for reading some of the more specialized
texts on particular design methods.

Prerequisite Knowledge

The student should already have acquired a fairly
thorough knowledge of the techniques of program-
ming-in-the-small and of the use of abstraction, al-
though this module is not directly concerned with
implementation. It is necessary for the student to
possess a degree of programming experience in or-
der to be able to understand the reasons behind some
of the design decisions that need to be made, even
where these are at a fairly abstract level. For ex-
ample, a student undertaking a course based upon
this module typically should have written and modi-
fied programs of at least 500 lines of source code
and should be familiar with such data structures as
stacks, linked lists, queues, and trees.

While this module is concerned with both sequential
and parallel-processing problems, the student need
only be familiar with the basic concepts of parallel
processing. That is, the student should understand
the concepts of synchronization and mutual exclu-
sion, although he need not be familiar with the usual
details of their implementation.

The material of the module requires no specific
knowledge of computer hardware, although the stu-
dent is expected to have some basic knowledge of
conventional von Neumann architectures.

SEI-CM-2-2.1 Draft For Public Review 3

Introduction to Software Design

Module Content

A glossary of important terms follows the annotated 2. Classification of Systems
outline. a. Batch systems

b. Reactive systems

c. Concurrent systems

3. Design StrategiesOutline
a. Top-down strategies

I. The Role of Software Design b. Design by composition, evolution of design
methods1. The Design Process

c. Stylized designa. Definition of design
4. Design Representationsb. Objectives of the design process

a. Data flow diagrams (DFD)c. Design as a problem-solving process
b. HIPO diagramsd. Design as a “wicked” problem
c. Structure chartse. Design as a model-building process
d. Decision tablesf. The role of a design method
e. Entity structure diagrams (JSD)g. Constraints on the design process
f. System specification diagrams (JSD)h. Recording the process of design
g. Entity history diagramsi. Design by an individual vs. design by a

group h. Structure graphs
2. Design as a Step in System Development i. Finite state machines

a. Relationship of design to other activities j. Statecharts
b. Production models k. Petri nets
c. Economic factors l. Pseudocode
d. Roles of prototyping m. Formal design languages

3. Principles of Design III. Design Practices: Design Methods
a. Abstraction 1. Structured Systems Analysis and Structured

Designb. Modularity
a. Problem decomposition (SSA)c. Information-hiding
b. Create a data dictionaryd. Completeness
c. Describe process logice. Design for maintenance
d. Deriving a structured design from the logicalf. Design for reuse

modelg. Assessing a design
e. An assessment of SSA/SDh. Design verification

2. Design by Modeling the Problem: JSP and JSDII. Design Practices: General Issues
a. JSP and JSD principles and the relationship1. Role of Design Methods

between the two methods
a. Reasons for using a design method

b. JSP design process
b. Management benefits arising from the use of

c. Handling multiple inputs in JSP—structurea method
clashes

c. Limitations of design methods
d. Program inversion

d. General forms of systematic and formal
e. An assessment of JSPdesign methods
f. Extension of philosophy to JSD

4 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

g. Concept of entity-action-attribute 1. The Design Process

h. Steps involved in JSD Design is a process carried on in many spheres of
human activity. It typically involves the designer ini. An assessment of JSD
drawing upon his experience, together with a degree

3. Object-Oriented Design (OOD) of creative ability, in order to formulate and evaluate
a. The concept of objects a solution for a given problem. Here, we are con-

cerned with the process of designing software sys-b. Abstraction, information-hiding, modularity
tems. The design process within other disciplines,and localization
and particularly in other branches of engineering,

c. Steps involved in object-oriented design may usefully be compared and contrasted with the
design process conducted for software development.d. Limitations/problems in applying

object-oriented design A more general view of the design process in a
wider context is provided in [Jones70], and it ise. An assessment of OOD
worth quoting his explanation of “why design is4. Some Other Systematic Design Methods
difficult” at the outset:

a. Structured Analysis and Design Technique
The fundamental problem is that designers are

(SADT) obliged to use current information to predict a
future state that will not come about unless theirb. The Warnier-Orr approach
predictions are correct. The final outcome of

c. Stepwise Refinement with Verification designing has to be assumed before the means of
(Mills) achieving it can be explored: the designers have

to work backwards in time from an assumedd. SSADM
effect upon the world to the beginning of a chain

IV. Review of Design Practices of events that will bring the effect about.

1. Some Assessments of Design Methods These factors apply as much to software design as to
any other form of design, and they are further aug-a. General assessment of methods
mented by the fact that we are almost always con-

b. The use of software tools to support design cerned with the production of systems for new and
methods original applications of computers.

c. Selecting appropriate design approaches for a. Definition of designclasses of problems
The purpose of design is to specify a solution to a2. Trends and Developments
given problem. (Usually this problem is ex-

a. Evolution of design methods pressed as a functional specification.) The de-
signer postulates a solution, models it, evaluates itb. Trends in the development of design methods
against the original requirements, and, after some
iteration of these operations, produces a detailed
specification of the solution for the programmer
to implement. (In this context, the functional

Annotated Outline specification is regarded as being equivalent to
the “D-requirements” identified in [Rombach-
87].)I. The Role of Software Design

The purpose of this first section is to identify the role b. Objectives of the design process
and objectives of the design process, the context within

The objective of the design process is to producewhich it takes place, and the products that should result
a set of detailed specifications that describe thefrom it. The material provided is intended to achieve
intended form of implementation for the softwarethis purpose, rather than to describe how design is ac-
system. These specifications describe both thetually performed.
form (structure) of the solution and the way that
the components are to fit together, and so act as aWe can also identify some of the constraints and
set of “blueprints” that show how the system is tolimitations that apply to the design process generally,
be constructed.both in terms of the techniques currently available and

of our ability to control and manage the process. This
c. Design as a problem-solving processinformation provides much of the background required

for understanding the form of the design process. Design can be regarded as a form of problem-
solving process that involves making extensive
use of abstraction, including separation of the
logical aspects of the design from the physical

SEI-CM-2-2.1 Draft For Public Review 5

Introduction to Software Design

aspects of the design. Design involves making In practice, there will almost always be a set of
choices, often involving tradeoffs between the constraints restricting architectural and other
different qualities the designer is seeking to characteristics of the solution produced. Com-
achieve in his solution. The ultimate criterion pany design practices, standard hardware configu-
must be that of “fitness for purpose,” in that the rations, existing file structures, real-time con-
solution should not only exhibit the best possible straints, implementation language features, and
structure, but must also do the required job as the need to anticipate future changes all restrict
well as possible. the solution space available to the designer. It is

important to appreciate that we rarely design any-
d. Design as a “wicked” problem thing in total isolation and that some requirements

for compatibility nearly always exist.A “wicked” problem has been described as a form
of problem where the solution to one of its as- h. Recording the process of design
pects may reveal an even more serious difficulty.
Software design can be considered an example of It is important to record the history of the evolu-
this type of problem. See [Peters81] for an inter- tion of a design, particularly, the reasons for
esting discussion of this issue. making specific choices. This helps both with

design audits and with the maintenance task,
e. Design as a model-building process since the maintenance designer needs to know

why particular choices were made and why otherThe process of design involves the designer in
options were discarded. Unfortunately there is nofirst building a highly abstract model of the cho-
consensus about how this recording should besen solution—which the designer may possibly
done. Current design methods do not include it as“execute” symbolically—and then translating this
part of the design process, nor do they provideinto a detailed structure to act as the blueprint for
any specific forms of representation for the pur-construction. It is generally possible to distin-
pose. Such recording as does occur is likely to beguish between “architectural design” and
either by an individual or according to some“detailed design” phases. The former is con-
(relatively arbitrary) company practice.cerned with the general structure of a solution. It

may be influenced by consideration of the effects i. Design by an individual vs. design by a
of factors such as the choice between implemen- group
tation using distributed or single processors, the
need for compatibility with existing structures, The process of design is made more complex
and likely future developments. Detailed design when more than one designer is involved, since
is more concerned with the formulation of the designers need to find a way of “splitting” the
blueprints for the particular solution and with problem. A group effort requires that an addi-
modeling the detailed interaction between its tional process of “negotiation” occur when the
components. For a discussion of the importance components of the design are brought together. A
of model-building in software design, see good decomposition of design tasks is one that
[Adelson85]. provides minimal, well-structured interfaces be-

tween modules designed by different people.
f. The role of a design method

References:The role of a design method is to provide assis-
Papers: Adelson85tance with the model-building and with the trans-
Books: Abbott86, Birrell85, Fairley85,lation process. A design method can be viewed

Jones70, Peters81, Pressman82,as a plan of action based on a set of decision-
making criteria (the “process” part) and supported Rombach87
by diagrammatic or symbolic forms that aid in 2. Design as a Step in System Development
building a particular form of model (the
“representational” part). The representations may Design is a major phase in the development of soft-
also provide a framework that assists with evalu- ware systems. The forms and roles it takes on in
ating the consequences of making particular de- two widely-used production models are described
sign choices. It may be necessary to make some here. The prototyping model is especially useful in
top-level decisions about the overall architecture the design of interactive systems and expert systems.
of a system before applying any method, and

a. Relationship of design to other activitiessome of these decisions will then act as
constraints upon the form of the final design. The role of design is best understood in the con-

text of the other activities involved in producing ag. Constraints on the design process
plan of action for the implementation. Require-

Ideally, the designer is concerned solely with pro- ments analysis identifies what is needed in a sys-
ducing the “best” possible solution to a problem. tem; specification describes what the system

6 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

should do; and design describes how that should “throwaway” code, and can be consid-
be done. Figure 1 shows these relationships and ered as enhancing the requirements
the resulting products. See [Rombach87] for a analysis and functional specification in-
fuller description of these roles. formation.

b. Production models A rather different approach to the use of prototyp-
ing techniques, with an emphasis on the use of

While such tasks as specification, design, and im- executable specifications and a more formal ap-
plementation need to be performed in all cases, proach to design, is discussed in [Henderson86].
there are a number of ways in which their inter-
actions can be organized. The two main forms References:
are described below. Papers: Belady76, Henderson86

Books: Birrell85, Boehm81, Budde84,(i) Waterfall model
Fairley85, Pressman82, Rombach87,

This is widely discussed in the literature, al- Sommerville85
though the detailed form shows some variabil-

3. Principles of Designity. See the descriptions in [Birrell85] and in
[Fairley85] for clear expositions, with diagrams. It is possible to identify certain properties that we

expect a good design to possess in some measure,(ii) Incremental enhancement model
with the balance of emphasis being apportioned

This is one role for the use of prototyping (see among these according to the class of problem and
below) and is discussed in the same references the needs of the particular application. Identifiable
cited for the waterfall model. features that a design should exhibit include those

related to the functioning of the system, such as:
c. Economic factors

• Fitness for purpose—the system must
It is important to detect and eliminate errors dur- work, and work correctly, in that it should
ing design, since the earlier in the development perform the required tasks in the specified
process that errors are detected, the cheaper it manner and within the constraints of the
should be to correct them. The cost of software specified resources.
maintenance is also affected significantly by the • Robustness—the design should be stable
quality of a design. The economic issues of soft- against changes to such features as file and
ware production and maintenance are discussed in data structures, user interface, etc.
[Boehm81].

Desirable features include those facilitating mainte-
nance and reuse, including:d. Roles of prototyping

• Simplicity—the design should be as simpleFor a fuller discussion of the different ways in
as possible, but no simpler.which prototyping may be used for the develop-

• Separation of concerns—the different con-ment of software-based systems, see the paper by
cepts and components should be separatedFloyd in [Budde84]. The three main categories of
out (related closely to modularity).use identified by Floyd are:

• Information hiding—information about the• Evolutionary—adapting the system
detailed form of such objects as data struc-gradually to changing requirements,
tures and device interfaces should be keptwhich cannot be determined reliably in
local to a module or unit and should not bethe earliest stages of development (in-
directly “visible” outside that unit.cremental development). The prototype

eventually becomes the product. We can also identify some features that a bad design
is likely to exhibit and that will make it difficult to• Experimental—used to determine the
read and understand the designer’s intentions.adequacy of a proposed solution before
Among these are:investing in large-scale implementation.

This may involve investigating such • Having too much retained state informa-
features as performance and resource tion spread around the system.
needs, as well as the details of the • Using interfaces that are too complex.
human-computer interface. The proto-

• Containing excessively complex controltype is essentially “throwaway” code.
structures.• Exploratory—used to clarify require-

• Using modules lacking functional strength.ments and desirable features of the tar-
get system, and to evaluate alternate • Involving needless replication.
solutions. The prototype should be The issues that form the topics of this section are all

SEI-CM-2-2.1 Draft For Public Review 7

Introduction to Software Design

related to these lists of features. Because such fea- list of forms, roughly ranked from desirable to
tures are generally only made manifest through con- undesirable, is:
sideration of relatively detailed design structures, it 1. data coupling,
is also desirable to be able to relate them to more

2. stamp coupling,abstract concepts, and so to the use of abstraction in
3. control coupling,design. As a further categorization, it is useful to

distinguish between the constructional issues (which 4. common-environment coupling,
are essentially concerned with packaging and de- and
pendency), and the runtime issues (which involve 5. content coupling.
making decisions about such features as concurrency
and the calling hierarchy of procedures). c. Information-hiding

a. Abstraction This principle is widely accepted as a design cri-
terion [Parnas72, Parnas79] and forms a basis for

The increasing use of abstraction has been one of assessing a choice of modular structure. Basi-
the major factors in the development of a more cally, it involves concealing the details of the
structured approach to software design. The use structure and forms of certain objects and ensur-
of abstract objects and operations upon them ing that these can only be accessed by those pro-
needs to be seen as central to any attempt to pro- cedures provided to implement the operations on
duce a well-engineered design. Abstraction al- those abstract objects.
lows the designer to model logical structures as
well as physical structures (or properties as well d. Completeness
as representations).

This is primarily an issue of whether the design
b. Modularity meets all of the requirements of the specification,

including any real-time or similar operational
This can be related to ideas about such issues as constraints. It is largely concerned with the con-
separation of concerns and simplicity. Two well- cept of fitness for purpose.
established measures for assessing the partition-
ing of a system into “modules” (which may be e. Design for maintenance
implemented as programs, packages, subpro-

Since the maintenance of software usually ab-grams, etc.) are cohesion and coupling. Cohesion
sorbs greater effort than its production, the designis concerned with the relationships among the ele-
process should recognize the need for futurements making up a module, while coupling is
changes and modifications/enhancements of aconcerned with the interdependencies between
system, as indeed is encouraged by consideringdifferent modules. To make practical use of
the use of information hiding. Consideration ofthese, the different forms that each measure can
possible future changes also emphasizes the needtake must be related to particular implementation
for a design to be robust against possible changes.issues, such as the use of global variables. A
This issue generally supports the need to use goodgood description of these measures can be found
practices, rather than imposing specific needs, butin [Page-Jones80].
it may impose requirements upon the detailed

(i) Forms of cohesion form of the design, too. See [Birrell85] for a good
discussion of these points.

Seven forms of module cohesion (sometimes
termed association) are commonly recognized. f. Design for reuse
In order, from highly desirable to undesirable

Reuse represents a rather ill-defined and poorlythese are:
understood area. While the practice of reuse of1. functional,
software components is long-established and can

2. sequential, be extended to include the use of generic forms,
the reuse of design in any form is still relatively3. communicational,
new in concept. Ways of organizing for the reuse4. procedural,
of designer experience is quite well-established in

5. temporal, other branches of engineering, but within soft-
6. logical, and ware engineering even the reuse of a designer’s

own experience remains highly domain-depend-7. coincidental.
ent [Adelson85]. Reuse is an issue of concern

(ii) Forms of coupling when considering design methods in detail.

While coupling is more quantifiable than cohe- g. Assessing a design
sion, the terminology used for the descriptions

Design assessment is concerned with two majorof the main forms may vary a little more. A
issues:

8 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

cerned with establishing the rationale for using a de-• how well the design meets the specifi-
sign method, identifying the general forms that soft-cation (completeness and correctness)
ware design methods have, and explaining the reasonsand
why no one method can be regarded as being capable• how well-structured the design is
of meeting the needs of other than a particular class of(quality).
problems.

In addition, any assessment must consider both
1. Role of Design Methods

• the static structures of the design and
For those unfamiliar with programming-in-the-• the dynamic performance of the imple-
large, some of the rationale for using a design prac-mented system.
tice (of any form) may need to be explained. The

In order to match a design against the specifi- effects upon long-term factors such as maintenance
cation, we are able to make use of design reviews should also be emphasised.
and expert opinion (see [Yourdon85]). In order to
assess the dynamic aspects, we may also be able a. Reasons for using a design method
to use some form of operational model or proto-

The reasons for using a design method need to betype. Where formal methods are used for both
made explicit. A design method provides aspecification and design, it may also be possible
systematic means of organizing and structuringto use mathematical techniques for assessing the
the design process, as well as a set of criteria tostatic issues.
assist in making choices. It can provide a check-
list of actions, a means of building around partic-The assessment of quality is more subjective. Al-
ular principles, and may provide further assis-though some of the same techniques can be used
tance through the use of particular forms of nota-(such as design reviews), there is a need for some
tion or diagrams. The importance of such an ap-form of design metrics to support these. Unfor-
proach is particularly significant for larger sys-tunately metrics can only be used effectively with
tems, where the use of a method establishes awell-defined design representations, and so there
common set of design goals for all the partici-are relatively few guidelines available. (See
pants.[Mills88] for a fuller description of metrics used

with software.) Again, any assessment of the
b. Management benefits arising from the use ofdynamic qualities will need to make use of some

a methodform of modeling technique.

The management benefits of using one or moreh. Design verification
methods should be emphasised. The use of a

Formal methods make use of mathematical tech- “standard” method makes it easier for mainte-
niques to provide a means of verifying an initial nance designers to model and assess the likely
design for completeness and consistency. They effects of any changes they might need to make,
supply the formal correspondence between speci- since it helps them to understand the ideas and
fication and design [Berztiss87], so that the design models used by the original designer and to build
can be verified for completeness and consistency an equivalent model for themselves. During sys-
against the specification. Two of the most widely tem development, the use of a method also eases
used approaches are those based upon algebraic the hand-over of a design whenever staff changes
forms (such as OBJ-2, [Futatsugi85]) and the occur, since the new designers need to be able to
model-oriented forms (such as VDM [Bjørner82, reconstruct the necessary models and understand
Pedersen88] and Z [Hayes87]). Particular prob- the reasons behind particular choices.
lem areas for these methods include handling con-

c. Limitations of design methodscurrency and the extent of the mathematical
knowledge needed for their use. While a design method helps with the organiza-

tion of the design process, it does not, in anyReferences:
sense, provide a “recipe” for producing a design

Papers: Parnas72, Parnas79, Stevens74 for a particular problem. Each instance of the
Books: Abbott86, Berztiss87, Berztiss88, design process will be both domain- and

Birrell85, Bjørner82, Hayes87, application-specific, and takes place within the
Jensen79, Page-Jones80, constraints that the context imposes. (A useful
Pedersen88, Yourdon79, Yourdon85 analogy is to think of a design method as being a

set of instructions for producing a recipe. ThereII. Design Practices: General Issues
are detailed directions for laying out the pages

The material of the next few sections is concerned with and producing the photographs, but little guidance
examining the main managerial and technical features as to how much seasoning to put into a particular
of the design process. These sections are mainly con- dish.)

SEI-CM-2-2.1 Draft For Public Review 9

Introduction to Software Design

Design methods are also apt to be strongly a. Batch systems
oriented toward one domain of application,

The main feature of a batch system is that all ofthrough the criteria they use and the weightings
its operating characteristics are essentially deter-these criteria are given. The user of a method
mined when it begins processing one or more dataneeds to be fully aware of any such underlying
streams. Any changes that occur to these charac-assumptions.
teristics arise because of the contents of the

d. General forms of systematic and formal streams, when considered as sequential flows of
data. Such a system should perform operationsdesign methods
that are deterministic and repeatable. (An ex-

Design methods can be broadly classified as ei- ample of a batch system is a compiler.)
ther systematic methods or formal methods. For-

b. Reactive systemsmal methods largely depend upon the use of
mathematical notation in order to allow consis-

The principal characteristic of a reactive system istency checking and rigorous transformations.
that it is event-driven, the events being almost al-Systematic methods are generally less mathemati-
ways asynchronous and non-deterministic. (Acally rigorous in form, and usually consist of a
screen editor is an example of a reactive system.)“process” part describing what actions should be
In addition, the specifications of the required re-performed, and a “representational” part that de-
sponses to events often include quite explicit re-scribes how relevant structures may be repre-
quirements about timing.sented. Some systematic methods, such as JSP or

SSADM, may be highly prescriptive in nature, c. Concurrent systems
while others specify the actions for each step of

Such systems are characterized by the use of mul-the design process less completely. In general,
tiple threads of execution, utilizing one or morethe techniques from systematic methods can be
processors. They generally require that the proc-combined, and can make use of representations
ess of design should consider such issues asadapted from other forms, when and as appro-
scheduling overhead, mutual exclusion, andpriate.
synchronization of processes in the system.

References:
References:Books: Bergland81, Birrell85, Fairley85

Papers: Bergland812. Classification of Systems
Books: Allworth87, Bergland81, Connor85

When describing problems that are to be “solved” 3. Design Strategies
through the use of software-based systems, we often

This section aims to identify the general design strat-group those that possess similar characteristics and
egies that underly the different methods discussed inrefer to these as a “problem domain.” Such a domain
the next few sections. At this level, we are onlymay be very broad (for example, “data-processing
concerned with how these methods differ in terms ofsystems,” “real-time systems”) or quite tightly-de-
“strategy” and with the possible shortcomings orfined (for example, “compilers”). For particular de-
strengths of the various approaches.sign methods, we also refer to the “domain of

application,” by which we generally mean the
There are two broad strategies that can be adopted.classes of problem for which a particular method is
The first begins with a very abstract description of awell-suited. Both the “problem-oriented” and
solution and gradually refines this to produce a more“solution-oriented” views may be of use to a desig-
detailed solution (stepwise refinement). This strat-ner at different times.
egy is often referred to as a top-down process, and it
is essentially requirements-based. The second strat-Because the domains of application for design meth-
egy is based upon modeling the problem domain inods are ill-defined, it is generally impossible to at-
some way, with the purpose of gradually building uptempt to make any “comparative methods” form of
a solution by adding features and viewpoints. Thisevaluation or assessment. However, some general
can be considered as a strategy based upon a processscheme of classification of systems may help in dis-
of composition.cussing particular methods, and a scheme of batch,

reactive, and concurrent forms is described below.
a. Top-down strategiesMany problems will lead to software systems that

are a combination of more than one of these clas- The top-down approach can be considered a
sifications, so they should not be considered as “divide and conquer” approach to problem-
being mutually exclusive. Real-time and embedded solving and design. The focus of the approach is
systems can generally be classified in this way, but functional decomposition. The need for a full un-
they involve additional constraints upon size, perfor- derstanding of the problem at the outset is essen-
mance, and structure.

10 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

tial, since most of the important decisions must be tively standard techniques and structures have
made early on in the design process. Wrong deci- been evolved for the production of compilers.
sions may therefore lead to significant problems Where such a model exists, the adoption of a
or result in the need for a major redesign. Even more general design strategy is usually of little
where decisions made are not necessarily value or purpose.
“wrong” ones, different choices made at an early

References:stage may result in significantly different design
structures and features. Any attempt at producing Papers: Wirth71
a “stable” solution will therefore usually involve Books: Bergland81, Cameron83
some iteration in the process of decomposition, in 4. Design Representationsorder to explore the effects of different choices.

The use of diagrammatic and textual information to(i) When to stop subdividing represent different viewpoints of a design is an im-
portant tool for the designer. While most represen-For any process of subdivision, it is necessary
tations are normally introduced within the context ofto identify some “atomic” level at which any
a particular design method, designers can, and do,further decomposition provides no useful
make use of representations in a method-indepen-return. Designing by stepwise refinement
dent manner as a part of the problem-solving proc-alone lacks any firm guidelines on this issue.
ess. The role of each form should be identified in

(ii) Problems of replication and terms of its level of abstraction, its use for such pur-
recombination poses as supporting modeling during the earlier

stages of design, and for providing “blueprints” in
A sequence of refinements is likely to produce the later stages. Indeed, one view of the design
some duplication of low-level operations. “process” is that it consists of a series of
Where more than one designer is involved, transformations between “representations.” This, in
these may prove difficult to recognize, but they turn, suggests a framework for categorizing forms of
do need to be resolved. representation. Figure 3 shows a classification, in

terms of their roles, of the forms listed here.(iii) Use as a preliminary step in other design
methods a. Data flow diagrams (DFD)
Top-down design is often be used as a prelimi- These are “directed graphs” in which the nodes
nary step in other design methods, especially represent processing activities and the arcs spec-
where there is a need to separate concurrent ify the transfer of information between these.
components of a system. It may be of value in Good references with examples are [DeMarco79]
distinguishing the major modules of a system, and [Page-Jones80]. More formal realizations are
and in dividing tasks among a team of desig- also in use, and examples of such a form (as used
ners. with SSADM) are given in [Downs88].

b. Design by composition, evolution of design b. HIPO diagrams
methods

HIPO diagrams (Hierarchy-Process-Input-Output)
The emphasis in a top-down approach tends to be were developed at IBM as design representations
upon operations, while the composition approach for use in the development of software by top-
makes use of entities or objects, modeling these down techniques and for the documentation of
and the operations performed upon them. The released products. For examples see [Fairley85,
trend in the evolution of systematic design meth- Martin84].
ods is toward a greater balance between objects

c. Structure chartsand operations in formulating the description of
the solution. (We can regard an emphasis on

These are tree-like diagrams used to represent theoperations alone as being equivalent to describing
run-time calling hierarchy of the modules forminga solution by using only verbs and adverbs,
a sequential program. They were originally de-whereas adding to this through the use of objects
veloped for use with Structured Systems Analysisprovides us with the nouns needed to provide a
and Structured Design [Page-Jones80, Yourdon-fuller description.)
79]. A number of variant forms exist, and a
somewhat similar form with a different interpreta-c. Stylized design
tion is also used in JSP [Cameron83, Inge-

In a few domains of application, it may well be valdsson86, Jackson75], where it is termed a
that a strongly stylized model of a “good” solu- Structure Diagram. (See also Entity Structure
tion already exists. An example of such a domain Diagrams, below.)
is compiler writing, in which a number of rela-

SEI-CM-2-2.1 Draft For Public Review 11

Introduction to Software Design

Architectural
Design

Detailed
Design

Modeling the problem

Modeling the outline solution

Describing hierarchical structure

Describing data structure

Describing the solution logic

Describing the packaging

Data flow diagrams

“Block” diagrams
Data flow diagrams

Structure chart
Entity-structure diagram
System structure diagram
Pseudocode

Structure diagram (JSP)

Decision table
Finite state machine
Statechart
Pseudocode

Structure graph
“Block” diagrams

Phase Purpose Suitable Forms

Figure 3. Classification of representation forms.

packaging of the elements of a system [Buhr84].
d. Decision tables The form is strongly oriented to use with the Ada

programming language, although it is also usefulUsed to specify complex decision logic at the
with programming languages such as Modula-2.level of detailed design. Some examples are

given in [Fairley85]. i. Finite state machines
e. Entity structure diagrams (JSD) Used to specify operations in terms of sets of in-

puts and outputs, sets of states, and functions.Jackson’s form of Structure Diagram is also used
Can be used at all levels of design abstraction.for modeling the structure of design entities. In
[Birrell85] gives some simple examples.particular, it provides information about the time-

ordering of the actions performed by an entity. j. Statecharts
See examples in [Cameron83] and [Sutcliffe88].

Devised by Harel for use in describing large and
f. System specification diagrams (JSD) complex reactive system [Harel88]. Their claimed

advantage over mechanisms such as Finite StateThis form is used to represent the network of
Machines includes the provision of hierarchy, aprocesses in a system, and also the communica-
brevity of form, and the ability to describe con-tion links between them. See [Cameron83] and
current operations.[Sutcliffe88].

k. Petri netsg. Entity history diagrams
These are used to model the interactions of con-A form of diagram used in SSADM. They are
current systems by showing causal relationships.related to the entity-structure form used in JSD to
See [Birrell85] for examples.represent the time-ordered actions of a design en-

tity. See [Downs88]. l. Pseudocode
h. Structure graphs Used for describing sequential algorithms for de-

tailed program structures. Sometimes termedA form of block diagram used to describe the
“Structured English.”

12 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

and any components of these. Describing them. Formal design languages
data, correlating the data dictionary to the data

Mathematically-based languages may be used to flow diagrams, the treatment of aliases, the defini-
facilitate formal reasoning about the properties of tions in the data dictionary, data structures, data
a design. Algebraic forms such as OBJ-2 flows and data stores, and the implementation of a
[Futatsugi85] provide a property-oriented descrip- data dictionary are all problems to be dealt with at
tion which is based upon the definition of objects this stage. Steps to be performed are:
and operations upon them described in terms of

• Describe the data in a logical form.axioms. The model-oriented forms such as VDM
• Describe data structures, data flows, and[Bjørner82, Pedersen88] and Z [Hayes87] use a

data stores.description based upon defining objects and
operations built from a basic set of pre-defined • Correlate the data dictionary with the
types and their characteristic operations. data flow diagram.

• Data dictionary implementation.References:
Papers: Bergland81, Harel88, Stevens74 c. Describe process logic
Books: Birrell85, Bjørner82, Buhr84,

In this phase, the designer is concerned with de-Cameron83, DeMarco79, Downs88,
scribing the operations involved in the DFD (thatFairley85, Hayes87, Martin84,
is, the actions implied by the ‘bubbles’). IssuesPedersen88, Peters81, Sutcliffe88,
involved are:

Yourdon79
• Analyzing and presenting process logic.

III. Design Practices: Design Methods
• Use of Structured English or pseu-

The sections in this part of the module provide outline docode.
descriptions of a selection of widely-used design meth-

d. Deriving a structured design from the logicalods that represent a range of principles, features and
modelforms.

This phase involves deriving the hierarchical pro-1. Structured Systems Analysis and Structured
gram design from the non-hierarchical DFD. TheDesign
steps are:

The related techniques of Structured Systems Anal- • Control considerations.
ysis [DeMarco79, Gane79] and Structured Design

• Changeability considerations/Domain[Page-Jones80, Yourdon79] together form a system
of change.design technique based upon decomposition. How-

• Module coupling/Cohesion, binding.ever, they make use of data-flow considerations,
rather than being based solely upon function as a • Transform Analysis.
criterion. • Refining the design, including use of

design heuristics.a. Problem decomposition (SSA)
• Error and exception handling.The analysis step is an initial model-building
• Use of Transaction Analysis.process based upon the use of Data Flow

Diagrams (DFDs). These are drawn, expanded
Teaching Consideration: Before describing the proc-and analyzed in this initial step. The initial DFDs
ess, it may be useful to reiterate the quality issues thatmay describe existing physical processes, but the
are involved when making choices between design op-final forms should be concerned only with logical
tions. The process of transform analysis can then beprocesses that occur within the system. The basic used in conjunction with these, and the resulting need

steps are listed below: to refine the design, adding such features as exception
handling, should be described. The supplementary• Draw data flow diagrams.
technique of transaction analysis should be discussed.• Refine and evaluate DFDs.

• Check DFDs for consistency and for e. An assessment of SSA/SDdata conservation.
(i) Domains of application

b. Create a data dictionary
This technique is primarily oriented toward the

The Data Dictionary is concerned with recording design of sequential programs, although in
the information content of data, rather than with principle there is potential for basing a concur-
its physical realization. It augments the DFD by rent design upon the DFD. This, together with
defining any data forms mentioned in the DFD, the emphasis upon information flow, has led to
including data flows, data used within processes, this method being widely used in data proc-

essing systems.
SEI-CM-2-2.1 Draft For Public Review 13

Introduction to Software Design

put, it is quite possible that these may be organ-(ii) Major strengths
ized and structured using different “keys” (an

The DFD is readily comprehensible to the end ordering clash) or that one of the streams may
user, who can therefore provide direct input to contain multiple record types (which can lead to
the design process. The method is generally an interleaving clash). JSP has techniques to help
well-documented and is supported by a number cope with these and with some of the other forms
of software tools, primarily graphics editors. of structure clash that occur.

(iii) Major weaknesses d. Program inversion
The steps involved in transform analysis and A simple JSP design assumes a program that
transaction analysis appear to draw strongly reads and writes a set of serial data streams. The
upon heuristic knowledge and lack clear technique of program inversion is used to reor-
procedural guidelines for such operations as ganize the design about one or more of its data
locating the central transform. More generally, streams, so as to allow the program to be sus-
the emphasis is upon data flow rather than upon pended and resumed, to provide a “conversa-
the encapsulation of data structures. tional” form of operation.

References: e. An assessment of JSP
Papers: Stevens74 (i) Domains of application
Books: Connor85, DeMarco79, Gane79,

JSP is used for the design of sequential pro-Linger79, Myers78, Page-Jones80,
grams. Because of the emphasis upon dataYourdon79
structure, it has been used widely for the design

2. Design by Modeling the Problem: JSP and JSD of data processing systems, although tech-
niques such as program inversion make it pos-a. JSP and JSD principles and the relationship
sible to use JSP for a wide range of programbetween the two methods
forms.

These methods are based upon a process of
(ii) Major strengthscomposition. JSP (Jackson Structured Program-

ming) is a program design method concerned with
The method is highly prescriptive. Hence, dif-smaller, largely sequential, problems. It is highly
ferent designers can be expected to produceprescriptive in its form. JSD (Jackson System
similar designs.Development) extends the philosophy used in JSP

into a larger domain of application. Its model is (iii) Major weaknesses
based upon a set of disconnected processes.

The method becomes too complex for largerTime-ordering is an important dimension for both
systems that have many structure clashes.methods.

f. Extension of philosophy to JSDb. JSP design process

The JSD method makes use of an entity-action-The main steps in JSP are listed below:
attribute model of the world, and this is built up• Describe data streams using structure
and connected to the “real” world through a seriesdiagrams.
of well-defined steps and operations.

• Merge these to create the program struc-
g. Concept of entity-action-attributeture diagram.

• List operations and allocate to elements The core of this method involves modeling the
in the program structure. problem in terms of a set of entities and their

actions, and of the attributes associated with• Convert the program to text without
these actions. In the later steps, the method ex-conditions.
tends the model to include the interactions be-• Add iteration/selection conditions.
tween entities, as well as between entities and the
world external to the model. It models the timingTeaching Consideration: JSP should be introduced by
issues involved in these.using a fairly simple sequential problem. The syntax

and semantics of the Structure Diagrams will need to
h. Steps involved in JSDbe reiterated.

Note that JSD is still evolving. The form de-
scribed in [Jackson83] has been revised slightly.c. Handling multiple inputs in JSP—structure
The form described here is taken fromclashes
[Cameron83] and [Sutcliffe88]:

When there are multiple data streams used for in-

14 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

a. The concept of objects• Entity/Action and Entity Structure step.

• Initial model step. Software-based systems can be modeled in terms
of objects and operations, rather than in terms of• Interactive function step.
data and procedures. Although it is oriented• Information function step.
toward the Smalltalk-80 system, a useful refer-

• System timing step. ence here is [Robson81], which makes this dis-
• Implementation. tinction very clearly.

i. An assessment of JSD b. Abstraction, information-hiding, modularity
and localization(i) Domains of application

These issues should be drawn out within the con-Primarily intended for large (and possibly
text of OOD. A useful collection of references isconcurrent) systems where the time-ordering of
available as [Peterson87a] and [Peterson87b].events is important. Both data processing and
Note particularly the 1984 paper by Shawprocess control systems are suggested as ap-
[Shaw84].propriate domains of application.

c. Steps involved in object-oriented design(ii) Major strengths

The basic design steps of OOD are:The method is relatively prescriptive for the
model-building (analysis) steps. It encourages • Define an informal strategy for the
the use of abstraction and makes good use of problem solution.
an “object-oriented” philosophy. While the • Identify the objects used in the informal
later steps are less prescriptive, they still pro- strategy.
vide a well-defined framework for the proc-

• Identify the operations on the objectsesses involved.
used in the informal strategy.

(iii) Major weaknesses • Define the software system architecture
and interfaces to the operations.The JSD approach breaks down for data struc-

tures and relationships that cannot reasonably • Iterate the above process as needed.
be described in terms of histories of events.
The overhead of the method is too large to Teaching Consideration: OOD should be described

with the aid of an example. [Booch86] gives somemake its use with small problems worthwhile,
useful ideas about this.and learning enough about the method to be

able to make full use of it takes a long time.
d. Limitations/problems in applying

References: object-oriented design
Papers: Cameron86

This method needs an initial solution modelingBooks: Cameron83, Connor85,
stage to help with formulating the informal strat-Ingevaldsson86, Jackson83,
egy. In the absence of any specific guidelines forSutcliffe88
the method, this task is likely to draw upon the

3. Object-Oriented Design (OOD) analysis techniques of other methods.

The term “Object-Oriented” has acquired a number e. An assessment of OOD
of meanings and interpretations, both for program-

(i) Domains of applicationming and for design. There is no one clear defini-
tion of exactly what is meant by the term “Object- A fairly general range of applicability, al-
Oriented Design.” This degree of variation in the use though there seem to be few examples of its
of the term should be borne in mind when reading use for data processing problems.
any literature on this topic. For the purposes of this

(ii) Major strengthsmodule, Object-Oriented design is presented as a
method for modeling a problem by taking a balanced Well-matched to current developments in theview about objects and the operations performed form of imperative programming languagesupon them, along the lines suggested by Booch such as Ada, Modula-2, and C++.
[Booch86, Booch87]. By being data-oriented this
method differs from the previous methods which are (iii) Major weaknesses
all essentially process-oriented, even when using

The form of the solution is overly dependentdata flow or data structure to aid in identifying the
upon the structure of the initial informal strat-processes and their forms.
egy, and the method does not provide enough
support for the initial identification of objects.

SEI-CM-2-2.1 Draft For Public Review 15

Introduction to Software Design

References: d. SSADM
Papers: Abbott83, Booch86, Rentsch82, SSADM (Structured Systems Analysis and De-

Robson81, Shaw84 sign Method) provides an example of a highly
Books: Booch87, Peterson87a, prescriptive form of design method, using three

Peterson87b, Wiener84 viewpoints of data and providing explicit means
for cross-checking among them. Developed in4. Some Other Systematic Design Methods
the U. K., this method is acquiring a published

The design methods described in the preceding sec- “standard,” rather akin to the former registration
tions are examples of the application of particular accorded “Ada”. [Downs88] provides a very clear
philosophies of design. All are quite widely used. description of the method, together with some ex-
However, there are other design methods in use, and amples of its use.
this section provides brief summaries of some of

References:them that are widely-used and well-documented.
The list is in no way intended to be exhaustive or Papers: Bergland81
definitive. It is important, however, that the student Books: Bergland81, Birrell85, Connor85,
be aware that other systematic methods do exist. Downs88, Fairley85, Freeman80,

Linger79, Marca88, Mills86, Orr77,Teaching Consideration: Some of these design methods
Peters81, Riddle79, Warnier80can be used to illustrate particular points in class. Due to

the background of instructor or students, some of these IV. Review of Design Practices
methods may be more appropriate topics of study than
aforementioned design methods. The purpose of the final part of the module is to draw

together, summarize, and analyze the content of the
previous parts. From this it is possible to give somea. Structured Analysis and Design Technique
guidance on the question of “suitability for purpose”(SADT)
for methods when used in particular domains of appli-

SADT takes a data-flow view of what are essen- cation, and also to identify the current trends in design
tially top-down analysis and design activities, practices.
using a somewhat individual notation based on

1. Some Assessments of Design Methodsactigrams and datagrams. In particular, this
method contains a strong project organization ele-

This section presents a general assessment of thement. Some brief but good examples are given in
design methods currently in use. The extent to[Birrell85] and [Fairley85], and a complete and de-
which particular methods encourage the designer totailed description is available from [Marca88].
produce designs that are “well-structured,” in terms
of the generally-accepted design principles, is con-b. The Warnier-Orr approach
sidered as a useful and important feature to be in-

Warnier’s Logical Construction of Programs cluded in this assessment. Criteria for choosing a
(LCP), his Logical Construction of Systems design method for a particular problem classifica-
(LCS), and the Warnier-Orr Structured Systems tion, including specific issues that apply to each
Design technique all have roots and philosophy class of problems, are considered.
similar to those of JSP/JSD. The diagrammatic

a. General assessment of methodsform used in LCP is somewhat different from that
of JSP, but like JSP, this method is highly

Considerations for design method assessment:prescriptive in form [Orr77, Warnier80].
• Design philosophy and selection crite-

c. Stepwise Refinement with Verification ria.
(Mills) • Prescriptive elements of the method.
This method is described in [Linger79] and places • Suitable domains of applicability.
emphasis upon the use of mathematical forms, • Scope for direct assessment of quality in
rather than graphical notations. (It is not a the method.
“formal method,” in the accepted sense of that
term, however.) Both data abstraction and func- Teaching Consideration: Design methods should be
tion abstraction are used in the design process, discussed in terms of the above. An “evaluation
and the use of mathematical notation assists with matrix” as used in [Blank83] may prove helpful in
the verification phase. [Linger79] is primarily presenting this material, but because different methods

are suited to different domains of application, it isconcerned with detailed design, while [Mills86]
neither practical nor useful to attempt any form ofaddresses the issues of more general problem
comparative assessment of methods in the sense of at-decomposition.
tempting to rank them.

16 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

b. The use of software tools to support design b. Trends in the development of design methods
methods

Some current trends are toward using a more
balanced approach to problem modeling and alsoThere are a number of tools available for use in
toward using a greater degree of mathematicaldeveloping designs using particular design meth-
formalism. A relatively new influence is that ofods. Most of these tools are relatively “passive,”
cognitive science, which considers the modelingin that they provide facilities to support the
process from the viewpoint of the modeler and his“representational” part of a method (such as
ability to handle particular concepts. Develop-graphics editors), without providing any form of
ments in imperative programming languages (insupport for the “process” part.
Ada, Modula-2, C++) are having significant in-

c. Selecting appropriate design approaches for fluence on design methods as well.
classes of problems

References:
The matching of design methods with design

Papers: Yau86problems is something of a “horses for courses”
Books: Freeman80situation, in that selecting the most appropriate

method (approach) will depend upon many fac-
tors, including

• the nature of the problem;
Glossary• company/project practices;

• available experience with particular de-
abstractionsign methods;

A view of a problem that extracts the essential• scope for reusing existing design com-
information relevant to a particular purpose andponents; and
ignores the remainder of the information• other personal/local factors.
[IEEE83].In making trade-offs between these factors, a

designer needs to have an appreciation of any
batchoverhead that particular choices may involve (for

example, the amount of time needed to learn, say, A form of processing in which input data
JSD, as against Structured Design; the likelihood streams are processed sequentially and with no
of being able to reuse that knowledge of a design interaction with any form of user. Contrast with
method; the benefits that might be gained from reactive.
using available software tools; etc.).

cohesionReferences:
The degree to which the tasks performed by aBooks: Bergland81, Connor85, Freeman80,
single program module are functionally related.Peters81, Riddle79
Contrast with coupling [IEEE83].

2. Trends and Developments

complexityThe evolution of design methods should be re-
viewed, examining the changes that have occurred in The degree of complication of a system or sys-
terms of criteria used, basic cognitive models, de- tem component, determined by such factors as
sign representations, domain of applicability etc. the number and intricacy of interfaces, the num-
This section should consider the relationship be- ber and intricacy of conditional branches, the de-
tween systematic and formal design methods, and

gree of nesting, the types of data structures, andshould examine the trends for both of these ap-
other system characteristics [IEEE83].proaches.

a. Evolution of design methods concurrent processes
Processes that may execute in parallel on multi-While it may be difficult to place specific dates
ple processors or asynchronously on a singleon design methods, since they usually evolve over
processor. Concurrent processes may interacta period of time, it may be useful to consider a

chart showing the historical development of de- with each other, and one process may suspend
sign methods and the major influences upon each execution pending receipt of information from
one. As with programming languages, some another process or the occurrence of an external
methods are essentially dead-ends, while others event [IEEE83].
may spawn a number of developments that take
an idea and expand upon it.

SEI-CM-2-2.1 Draft For Public Review 17

Introduction to Software Design

coupling JSP
A measure of the interdependence among mod- Jackson Structured Programming [Cameron83]
ules in a computer program. Contrast with

metriccohesion [IEEE83].
A parameter used as a measure of some program

data abstraction or system attribute, usually concerned with as-
The result of extracting and retaining only the sessing quality.
essential characteristic properties of data by de-

modularityfining specific data types and their associated
functional characteristics, thus separating and The extent to which software is composed of
hiding the representation details. See also discrete components such that a change to one
information hiding [IEEE83]. component has minimal impact on other compo-

nents [IEEE83].
data dictionary

productA collection of the names of all data items used
in a software system, together with relevant An entity designated for delivery to a user.
properties of those items; for example, length of
data item, representation, etc. [IEEE83]. prototype

A component of a software development cycle
design method that is used for evaluation purposes. For a fuller

A systematic approach to creating a design, con- discussion, see [Budde84].
sisting of the ordered application of a specific
collection of tools, techniques, and guidelines reactive
[IEEE83]. A form of processing in which the program’s

operations are determined through interaction
exception with external processes. Contrast with batch.

An event that causes suspension of normal proc-
ess execution [IEEE83]. real-time

Pertaining to the processing of data by a com-
generic software components puter in connection with another process outside

System elements that are parameterized in such the computer according to time requirements im-
a way that they can be used with different data posed by the outside process. This term is also
objects without its being necessary to modify used to describe systems operating in conver-
their form. sational mode, and processes that can be in-

fluenced by human intervention while they are
HIPO diagrams in progress [IEEE83].

Hierarchy-Process-Input-Output diagrams, de-
reusabilityveloped at IBM to help represent schemes for

top-down software development, and as aids to The extent to which a module can be used in
the documentation of released products. multiple applications [IEEE83].

information hiding SADT
The technique of encapsulating software design Structured Analysis and Design Technique. The
decisions in modules in such a way that the two main forms of diagram used with this are
module’s interfaces reveal as little as possible the actigram and the datagram. For examples,
about the inner workings of the module; thus, see [Fairley85, Marca88].
each module is a “black box” to the other mod-
ules in the system [IEEE83]. software life cycle

A typical sequence of phased activities that rep-
JSD resent the various stages of engineering through

Jackson System Development [Cameron83, which a software system will normally pass.
Sutcliffe88].

18 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

software maintenance
The process of modifying a product after
delivery in order to correct faults (corrective
maintenance), to improve performance or other
attributes (perfective maintenance), or to adapt
the product to a changed environment (adaptive
maintenance).

SSADM
Structured Systems Analysis and Design Meth-
od, derived from work done by Learmonth, Bur-
chett Management Systems (LBMS). See
[Downs88].

SEI-CM-2-2.1 Draft For Public Review 19

Introduction to Software Design

Teaching Considerations

Suggested Schedules Exercises

The material in this module can be taught in differ- The most obvious teaching strategy is to single out
ent ways, depending on the time available. Table 1 one design method for extended discussion and ex-
at the end of this section presents suggestions for ercises. It should be emphasized, however, that stu-
three different schedules. The first requires about 30 dents who have taken a single course based upon
lecture hours, as might be available in a full semester this material should not be expected to undertake de-
course on software design. The second requires sign tasks requiring the detailed use of any design
about 19 hours and might be appropriate for a course method.
that combines software specification and design.
The third requires about 9 hours, as in a course that
surveys many aspects of software engineering.

Worked Examples

The demonstration of various design methods
through worked examples is valuable in teaching
this material. Three example problems frequently
referenced in the literature are the following:

1. Text Formatter. This is a program that
reads in one or more files that contain
text, together with embedded formatting
commands, and generates a nicely for-
matted output document. It is an ex-
ample of a straightforward batch process.

2. Library Record Maintenance. This is
a program that maintains a set of records
on book holdings and issues for a library.
In this form, it is both sequential and
reactive, but it could be extended to have
a concurrent structure.

3. Elevator Control. This is an example of
a concurrent system that contains re-
active components. It can also be con-
sidered as an example of an embedded
system.

The value of these examples is enhanced if the stu-
dents see the same problems as examples of require-
ments specification, design, implementation, and
testing. However, because design methods are op-
timized for different domains of application, the in-
structor is advised against seeking to use the same
example problem for demonstrating different meth-
ods. Where only limited time is available for teach-
ing this material, JSP may provide the most conven-
ient basis for a worked example that is concise and
illustrates clearly the use of both the “process” and
“representational” components of a design method.
20 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

Table 1. Suggested Schedules

Topic Full Syllabus Medium Syllabus Short Syllabus
Sections Hrs Sections Hrs Sections Hrs

I. The Role of Software Design
1. The Design Process a.-i. 2.0 a.-i. 1.5 a.-i. 1.0
2. Design as a Life-Cycle Phase a.-d. 1.0 a.-d. 1.0 a.-c. 0.5
3. Principles of Design a.-b. 2.0 a.-b. 1.5 a.-d. 1.0

c.-d. 1.0 c.-f. 1.5 e.-h. 1.0
e.-f. 1.0 g.-h. 1.0
g.-h. 1.0

Subtotal for Part I 8.0 6.5 3.5

II. Design Practices: General Issues
1. Role of Design Methods a.-d. 1.0 a.-d. 0.5 a.-d. 0.5
2. Problem Classification a.-d. 1.0 a.-d. 0.5 a.-d. 0.5
3. Design Strategies a.-c. 1.0 a.-c. 0.5 a.-c. 0.5
4. Design Representations a.-m. 3.0 a.-m. 2.0 a.,c. 0.5

e.,h.,l. 0.5

Subtotal for Part II 6.0 3.5 2.5

III Design Practices: Design Methods
1. Structured Analysis and Design a.-e. 2.0 a.-e. 1.0 a.-e. 1.0
1a. Worked Examples of Structured Design * * * * 0.0
2. Jackson’s Methods a.-i. 2.0 a.-i. 1.5 a.-f. 1.0
2a. Worked Examples using Jackson’s JSP

Method * * * * 0.0
3. Object-oriented design a.-e. 1.5 a.-e. 1.0 a.-e. 0.5
3a. Worked Examples of Object-Oriented

Design * * * * 0.0
4. Other Systematic Design Methods a.-d. 1.0 a.-d. 1.0 a.-d. 0.0
4a. Examples of other methods * * * * 0.0

Subtotal for Part III 6.5 4.5 2.5

IV Review of Design Practices
1. Some Comparisons a.-c. 1.0 a.-c. 0.5 a.-c. 0.5
2. Trends and Developments a.-b. 0.5 a.-b. 0.5 a.-b. 0.0

Subtotal for Part IV 1.5 1.0 0.5

* Total time devoted to worked
examples 4.0-8.0 3.5 0.0

TOTAL TIME 26.0-30.0 19.0 9.0

SEI-CM-2-2.1 Draft For Public Review 21

Introduction to Software Design

Comments:

This table is intended to serve as a guideline for the relative amount of time to be spent on each topic.

Full Syllabus The instructor could spend a total of 4 to 8 hours on some, but not necessarily all, the
worked examples.

Medium Syllabus Most of the topics are covered, but less time is spent on each topic than in the full
syllabus. Only one of the worked examples is discussed.

Short Syllabus A number of topics are omitted, and the worked examples are not discussed.

22 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

Bibliographies

Berztiss87Textbooks
Berztiss, A. Formal Specification of Software. Cur-
riculum Module SEI-CM-8-1.0, Software Engineer-This section describes textbooks and reports cover-
ing Institute, Carnegie Mellon University, Pitts-ing various aspects of software engineering. All of
burgh, Pa., Oct. 1987.them contain material relevant to software design,

and a number of the entries are primarily devoted to
Berztiss88describing specific methods used in software design.
Berztiss, A., and M. A. Ardis. Formal VerificationThe annotations provided are mostly in two parts—
of Programs. Curriculum Module SEI-CM-20-1.0,the first part providing general comments on content,
Software Engineering Institute, Carnegie Mellonthe second part containing suggestions of how the
University, Pittsburgh, Pa., Dec. 1988.reference may be used for teaching.

Birrell85Abbott86
Birrell, N. D., and M. A. Ould. A Practical Hand-Abbott, R. J. An Integrated Approach to Software
book for Software Development. New York: Cam-Development. New York: John Wiley, 1986. ISBN
bridge University Press, 1985. ISBN 0-521-25462-0-471-82646-4.
0.

A general text on software engineering that is or-
ganized as a collection of annotated outlines for Provides a good overview of the software engineer-
technical documents that are important to the devel- ing view of system development, supported by an
opment and maintenance of software. overview of a wide range of the techniques that are

available to support each phase of development.
The latter half of the book covers a wide range ofAllworth87
design issues, together with examples. The bookAllworth, S. T., and R. N. Zobel. Introduction to
makes particularly good use of diagrams to helpReal-Time Software Design, 2nd Ed. New York: make its points.

Springer-Verlag, 1987. ISBN 0-387-91307-6.
A good book for students to use in an introductory

One of the few books that is devoted to this partic- course on design.
ular and rather specialized aspect of software de-
sign. The book makes good use of the concept of a

Bjørner82virtual machine for design of such systems and is
Bjørner, D., and C. B. Jones. Formal Specificationswell provided with diagrams. Much of the discus-

sion is concerned with detailed design issues. The and Software Development. Englewood Cliffs,
book pulls together into a single theme material N. J.: Prentice-Hall, 1982.
taken from diverse areas.

The primary concern of this text is the development
The instructor might find this a useful text to refer of formal specifications, with emphasis being
to when looking at domain-specific issues. placed upon the need to be able to relate design to

specification. It contains chapters by a number of
authors describing aspects and applications of VDMBergland81
(Vienna Development Method), presented at an ad-Bergland, G. D., and R. D. Gordon. Software Design
vanced level and requiring some background in dis-Strategies, 2nd Ed. Washington, D. C.: IEEE Com-
crete mathematics.puter Society Press, 1981. ISBN 0-8186-0389-5.
A book for the instructor rather than for the student.

Several major design strategies are developed and
compared in this tutorial text, including functional

Blank83decomposition, Jackson’s JSP method, and data
Blank, J. and M. J. Krijger, eds. Software Engineer-flow design. The process of organizing and coor-

dinating the efforts of the design team and descrip- ing: Methods and Techniques. New York: Wiley-
tions and use of several design tools currently used Interscience, 1983. ISBN 0-471-88503-7.
in industry are also presented. Contains a useful

A report produced by the Information Structureskey word index at the end of the book.
Subgroup of the Dutch Database Club, which aims

Essential collection of papers for the instructor. to evaluate and compare a number of different de-
Contains some useful reading material for students.

SEI-CM-2-2.1 Draft For Public Review 23

Introduction to Software Design

sign methods. Many of the methods will be unfa- This book should be part of the prerequisite reading
miliar to most readers, although the list does include for every student who aspires to study software en-
more widely-known methods such as SADT, gineering.
Warnier-Orr, and JSD. A summary of the features
of each method is included. Budde84

Budde, R., K. Kuhlenkamp, L. Mathiassen, andThe use of an “Evaluation Matrix” as a means of
presenting information about the features and appli- H. Zullighoven, eds. Approaches to Prototyping.
cation areas of a method is an interesting feature. It New York: Springer-Verlag, 1984. ISBN 0-387-
can provide useful material for the instructor. 13490-5.

A collection of papers from a workshop held toBoehm81
study the use of different forms of prototyping in

Boehm, B. Software Engineering Economics. systems design and development. The opening
Englewood Cliffs, N. J.: Prentice-Hall, 1981. ISBN paper gives a good review and taxonomy for the
0-13-822122-7. field.

Boehm is particularly well known for his COCO- Can provide useful reference material for both in-
MO cost estimation model. This book provides a structor and students.
practical introduction to the planning and estimation
tasks that are involved in software development. It Buhr84
provides a somewhat different insight into the de- Buhr, R. J. A. System Design with Ada. Englewoodsign process and trade-offs and related issues that

Cliffs, N. J.: Prentice-Hall, 1984. ISBN 0-13-are associated with it. The book is centered around
881623-9.a description of COCOMO, which provides the

framework for discussing a large number of issues Presents and illustrates a top-down, design-oriented
that are important for both the design process and introduction to Ada, using a specially developed
the design product. graphical design notation (the structure graph).

Presentation is oriented toward concurrent pro-An essential reference text for both instructor and
grams.student.

Recommended reading for the instructor. Good ma-
Booch87 terial for student reading and student class presen-

tations.Booch, G. R. Software Engineering with Ada, 2nd
Ed. Menlo Park, Calif.: Benjamin/Cummings,
1987. ISBN 0-8053-0600-5. Cameron83

Cameron, J. R. JSP & JSD: The Jackson ApproachDescribes the Ada language and its use, with partic-
to Software Development. Washington, D. C.:ular reference to the features of Ada that support
IEEE Computer Society Press, 1983. ISBN 0-8186-software engineering principles. Contains five ex-
8516-6.amples on object-oriented design, presented in a

highly readable form. A collection of articles and papers describing JSP
and JSD and illustrating these methods using aThe examples of object-oriented design provide
range of examples of reasonable size and com-some valuable ideas and source material for the in-
plexity.structor.

Good source material for the instructor. A potential
Brooks75 source of material for student tutorials.
Brooks, Jr., F. P. The Mythical Man-Month. Read-
ing, Mass.: Addison-Wesley, 1975. ISBN 0-201- Connor85
00650-2. Connor, D. Information System Specification and

Design Road Map. Englewood Cliffs, N. J.:This book can be regarded as being a classical pres-
Prentice-Hall, 1985. ISBN 0-13-464868-4.entation of the problems that may be encountered in

the development and management of a large soft- Essentially aimed at DP-style systems that are con-
ware system. As such, it should be regarded as cerned with record management. Gives an over-
essential preliminary reading for anyone who has view of a number of methods based on a document
little or no prior experience of programming-in- library problem.
the-large, or who has not been involved in project
management. The book contains many important
lessons for the designer, presented in a particularly
readable format.

24 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

Cross84 Fairley85
Cross, N., ed. Developments in Design Methodology. Fairley, R. E. Software Engineering Concepts. New
New York: John Wiley, 1984. ISBN 0-471-10248- York: McGraw-Hill, 1985. ISBN 0-07-019902-7.
2.

Describes the basic concepts and major issues of
software engineering, including current tools andA comprehensive summary of work in the field of
techniques. Contains a chapter on design thatdesign theory over the past twenty-five years. In-
covers fundamental design concepts, including as-cludes important papers by J Christopher Jones,
sessment criteria, design notations, and design tech-Christopher Alexander, Herbert Simon, and Horst
niques.Rittel.

Good source material for instructor. Recommended
Davis83 reading for students.
Davis, W. S. Systems Analysis and Design. Read-
ing, Mass.: Addison-Wesley, 1983. ISBN 0-201- Fox82
10271-4. Fox, J. M. Software and Its Development. Engle-

wood Cliffs, N. J.: Prentice-Hall, 1982. ISBN 0-13-A presentation on analysis and design based around
822098-0.the use of three case studies. Each of the case

studies is taken through the steps of problem defini- Discusses the development of large scale software.
tion, feasibility study, analysis, system design, and
detailed design. The main emphasis of the book is

Franta82on analysis rather than design, as such. The book is
Franta, W. R., H. K. Berg, W. E. Boebert, andoriented toward business applications. The book
T. G. Moher. Formal Methods of Program Verifi-primarily makes use of the SSA/SD approach to de-

sign. cation and Specification. Englewood Cliffs, N. J.:
Prentice-Hall, 1982.The case studies may provide a useful basis for

class discussions.
Freeman80
Freeman, P., and A. I. Wasserman, eds. SoftwareDeMarco79
Design Techniques, 4th Ed. Silver Spring, Md.:DeMarco, T. Structured Analysis and System Speci-
IEEE Computer Society Press, 1980. ISBN 0-8186-fication. Englewood Cliffs, N. J.: Yourdon Press,
0514-0.1979. ISBN 0-917072-07-3.

A large collection of papers covering basic con-A readable book on structured analysis and system
cepts, analysis and specification, architectural de-specification that covers data flow diagrams, data
sign, data design, detailed design, and managementdictionaries, and process specification.
issues. Includes several of the papers listed in this

Good source material for the instructor. Recom- bibliography section.
mended reading for students.

Should provide a useful source of material for the
instructor and useful material for student tutorials.

Downs88
Downs E., P. Clare, and I. Coe. SSADM: Structured Gane79Systems Analysis and Design Method. New York:

Gane, C., and T. Sarson. Structured Systems Anal-Prentice-Hall, 1988. ISBN 0-13-854324-0.
ysis: Tools and Techniques. Englewood Cliffs,

SSADM is a highly prescriptive design method, N. J.: Prentice-Hall, 1979. ISBN 0-13-854547-2.
with a fully defined structure and terminology. This

One of the more widely used books on structuredbook begins by describing the structure of the meth-
systems analysis. The book discusses some of theod, and then describes the activities that should be
problems in analysis, reviews graphical tools, andassociated with each of the phases, stages, steps,
shows how the graphical tools fit together to make aand tasks involved. Written in a clear and readable
logical model. Each tool is treated in detail, includ-style, this book makes good use of diagrams
ing the data flow diagram. A structured systemthroughout.
development method that takes advantage of the

The level of detail makes this book more suitable tools is presented. The importance of changeability
for use by the instructor than by the student, unless and how it may be treated is also covered.
SSADM is being used as the main topic of a course

Essential instructor reading. Recommended studentunit.
reading.

SEI-CM-2-2.1 Draft For Public Review 25

Introduction to Software Design

Presents a semiformal approach to program designHansen86
that maps the syntactic structure of a program’s in-Hansen, K. Data Structured Program Design.
put into a structure for an algorithm to process thatEnglewood Cliffs, N.J.: Prentice-Hall, 1986. ISBN
input. This can be considered as the sourcebook for0-9605884-2-6.
JSP, and despite the use of COBOL for the pro-
gramming examples, it discusses a lot of importantThe main theme of this book is Orr’s Data Struc-
issues.tured Systems Development (DSSD) method, which

is also compared and contrasted with the related For a more general approach to the use of JSP, see
work of Warnier and Michael Jackson (JSP). The [Cameron83]. [Ingevaldsson86] is better suited for
program examples use COBOL, although a knowl- student use.
edge of this language is probably not essential to an
understanding of the material. The book contains

Jackson83many examples of the use of Warnier/Orr diagrams.
Jackson, M. A. System Development. Englewood

Written in a very readable style. It may be rather Cliffs, N. J.: Prentice-Hall, 1983. ISBN 0-13-detailed in its treatment of the subject matter for use
880328-5.by students, but it contains some useful guidelines

and ideas for the instructor. This book contains the original description of JSD.
It is built around three worked examples. Note that
[Cameron83] and [Sutcliffe88] provide descriptionsHayes87
of a more current form of the JSD method and con-Hayes, I, ed. Specification Case Studies. Englewood
tain more manageable examples for students.Cliffs, N. J.: Prentice-Hall, 1987. ISBN 0-13-

826579-8. A source of material for the instructor, rather than
for the student.

A collected set of case studies that are all based
upon the use of Z, providing a well-structured intro-

Jensen79duction to the use of formal methods. The section
Jensen, R. W., and C. C. Tonies, eds. Software En-on specification of the UNIX filing system may in-

volve sufficiently familiar material to provide a gineering. Englewood Cliffs, N. J.: Prentice-Hall,
good introduction for many students. 1979. ISBN 0-13-822130-8.

Suitable for use by both instructors and students. A collection of articles that are primarily oriented
toward management. However, structured program
design is covered.IEEE83

IEEE. IEEE Standard Glossary of Software Engi-
Jones70neering Terminology. New York: IEEE, 1983.

ANSI/IEEE Std 729-1983. Jones, J. Christopher. Design Methods: Seeds of
Human Futures. New York: Wiley Interscience,Provides definitions for many of the terms used in
1970. ISBN 0-471-44790-0.software engineering.

This is a quite widely-cited book. It treats design as
a strategy for problem-solving in a fairly wideIngevaldsson86
domain, rather than being centered on the design ofIngevaldsson, L. JSP: A Practical Method of Pro-
software. It is included here because it is an ex-gram Design, 2nd Ed. Bromley, Kent, U. K.:
ample of a book that emphasizes the inter-Chartwell-Bratt Ltd., 1986. ISBN 0-86238-107-X.
disciplinary nature of design, and so illustrates the
point that the problems we encounter are not uniqueA practical book that relates JSP concepts to a
to software design. It also highlights cognitive is-wider domain. (The reader is invited to draw struc-
sues of the design process.ture diagrams to describe a train, a telephone direct-

ory, and other structures). This book is in a very A book that offers thoughts and ideas for the in-
readable style, and is well-provided with examples structor, and which might also provide some
and exercises (and with solutions for the latter). thoughts for the student, when used for background

reading.A useful book for anyone teaching any details about
JSP, and well-suited for use by students.

Jones80
Jackson75 Jones, C. B. Software Development: A Rigorous Ap-
Jackson, M. A. Principles of Program Design. Or- proach. Englewood Cliffs, N. J.: Prentice-Hall,
lando, Fla.: Academic Press, 1975. ISBN 0-12- 1980. ISBN 0-13-821884-6.
379050-6.

26 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

Presents a formal approach to specification and ver- format used for the book makes the examples par-
ification of programs and to the use of abstract data ticularly clear and readable.
types. The level of detail provided makes this particularly
The material of this book may be difficult for any- suitable for use as a source of material for the in-
one who lacks the necessary mathematical back- structor.
ground or who is unfamiliar with the type of nota-
tion used. Martin84

Martin J., and C. McClure. Diagramming Tech-
Kernighan76 niques for Analysts and Programmers. Englewood
Kernighan, B. W., and P. Plauger. Software Tools. Cliffs, N. J.: Prentice-Hall, 1984. ISBN 0-13-
Reading, Mass.: Addison-Wesley, 1976. ISBN 0- 208794-4.
201-03668-1.

A useful summary of some major forms of diagrams
A popular guide to programming style and to the that also provides a set of examples for a wide range
organization and design of software tools. Strongly of diagrammatic forms.
linked to the UNIX philosophy of providing small,

Useful material for the instructor.independent tools and linking these together to pro-
duce more powerful tools tailored for specific pur-

Millington81poses.
Millington, D. Systems Analysis and Design forProvides a readable and interesting source of ideas
Computer Applications. New York: Halsted Press,for the student, taking a somewhat different view of
1981. ISBN 0-470-27224-4.design than that used in most of the texts listed in

this bibliography.
Mills86
Mills, H. D., R. C. Linger, and A. R. Hevner.Linger79
Principles of Information Systems Analysis and De-Linger, R. C., H. D. Mills, and B. I. Witt. Structured
sign. Orlando, Fla.: Academic Press, 1986. ISBNProgramming: Theory and Practice. Reading,
0-12-497545-3.Mass.: Addison-Wesley, 1979. ISBN 0-201-14461-

1. This book presents a box structure approach to the
design of information systems, based upon the useCentral theme is the design of mathematically cor-
of “black box,” “state machine,” and “clear box”rect structured programs by the use of systematic
structures. Management issues involved in the de-methods of program analysis and synthesis.
sign process are included in the presentation, al-

Instructors may find this book useful for material on though the main emphasis is on the design transfor-
structured programming. Material may be appro- mation techniques involved.
priate for student tutorials.

Mills88
Liskov86 Mills, E. E. Software Metrics. Curriculum Module
Liskov B., and J. Guttag. Abstraction and Specifi- SEI-CM-12-1.1, Software Engineering Institute,
cation in Program Design. New York: McGraw- Carnegie Mellon University, Pittsburgh, Pa., Dec.
Hill, 1986. ISBN 0-07-037996-3. 1988.

Discusses different uses of abstractions, based
largely around the programming language CLU, Myers78
and with an emphasis upon the issues of Myers, G. J. Composite Structure Design. New
programming-in-the-large. Primarily concerned York: Van Nostrand, 1978. ISBN 0-442-80584-5.
with relatively detailed design issues.

A data flow approach to program design similar to
Yourdon79.Marca88

Marca, D. A., and C. L. McGowan. SADT: Struc-
Page-Jones80tured Analysis and Design Technique. New York:
Page-Jones, M. The Practical Guide to StructuredMcGraw-Hill, 1988. ISBN 0-07-040235-3.
Systems Design. Englewood Cliffs, N. J.: Yourdon

A detailed description of SADT, which makes use Press, 1980. ISBN 0-917072-17-0.
of a generous supply of illustrations and examples,

Presents the tools of structured analysis and showsas well as providing a number of case studies taken
how to use these tools. Defines the activity of de-from different application domains. The large size

SEI-CM-2-2.1 Draft For Public Review 27

Introduction to Software Design

sign and the qualities of a good design with respect ters on stepwise refinement, cohesion and coupling,
to partitioning, coupling, and cohesion. Presents a data flow, and data structure.
discussion on transform and transaction analysis. A good source of material for the instructor, could
A readable book that should be a valuable source of also be used as secondary reading material for stu-
material for both the instructor and student inter- dents.
ested in a comprehensive presentation of structured
systems analysis. Rombach87

Rombach, H. D. Software Specification: A Frame-
Pedersen88 work. Curriculum Module SEI-CM-11-1.0, Soft-
Pedersen, J.S. Software Development Using VDM. ware Engineering Institute, Carnegie Mellon Univer-
Curriculum Module SEI-CM-16-1.0, Software Engi- sity, Pittsburgh, Pa., Oct. 1987.
neering Institute, Carnegie Mellon University, Pitts-
burgh, Pa., April 1988. Sommerville85

Sommerville, I. Software Engineering, 2nd Ed.
Peters81 Reading, Mass.: Addison-Wesley, 1985. ISBN 0-
Peters, L. J. Software Design: Methods and Tech- 201-14229-5.
niques. Englewood Cliffs, N. J.: Yourdon Press,

General textbook on software engineering, covering1981. ISBN 0-917072-19-7.
the software life cycle and human aspects of soft-

The first two chapters of this book give a very good ware engineering. Some emphasis on Ada.
description of the software design process, viewed Good reading and source material for instructor.as a problem-solving process. The issues of design Suitable reading for students, although the ratio ofrepresentation are also discussed in some detail. text to diagrams makes it rather heavy going inThe later chapters on design methods are now a parts.little dated, in terms of the selection of methods
used.

Sutcliffe88
This book contains a lot of useful material for the Sutcliffe, A. Jackson System Development. New
instructor, and the student can benefit from using York: Prentice-Hall, 1988. ISBN 0-13-508128-9.the book as secondary support material.

A clear introduction to the concepts and use of JSD.
A particularly useful feature is the inclusion of twoPeterson87a
worked examples at the back of the book.Peterson, G. E, ed. Object-Oriented Computing, Vol-

ume 1: Concepts. Washington, D. C.: IEEE Com-
Warnier80puter Society Press, 1987. ISBN 0-8186-0821-8.
Warnier, J. D. Logical Construction of Programs.

A useful collection of papers concerned with the New York: Van Nostrand, 1980. ISBN 0-442-
development of object-oriented thinking. It also 22556-3.manages to strike a balance between the view of
Smalltalk-80 and that of languages such as Ada. Presents a semiformal approach to program design

that maps the structure of a program’s input into a
structure for an algorithm to process the input.Peterson87b

Peterson, G. E, ed. Object-Oriented Computing, Vol-
Wiener84ume 2: Implementations. Washington, D. C.: IEEE

Computer Society Press, 1987. ISBN 0-8186-0822- Wiener, R. S., and R. F. Sincovec. Software Engi-
6. neering with Modula-2 and Ada. New York: John

Wiley, 1984. ISBN 0-471-89014-6.
Complements the material of Volume 1 by assem-
bling papers concerned with making use of object- Examines each phase of the software engineering
oriented thinking in various forms of systems. process. The focus is on object-oriented design,

with implementation in Modula-2 or Ada. Presents
a review of design methods and principles.Pressman82

Pressman, R. S. Software Engineering: A Practi- May be useful for use by an instructor or by a stu-
tioner’s Approach. New York: McGraw-Hill, 1982. dent interested in object-oriented design and imple-

mentations in Modula-2 and Ada.ISBN 0-07-050781-3.

A survey that covers the software life cycle in a
relatively informal manner. Includes separate chap-

28 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

amples used to illustrate the points are based uponYourdon79
the Ada programming language. They emphasizeYourdon, E., and L. Constantine. Structured Design:
the way that this approach designs around the con-Fundamentals of a Discipline of Computer Program
cept of modularity.and System Design. Englewood Cliffs, N. J.:

Prentice-Hall, 1979. ISBN 0-13-854471-9. A useful source of material and examples of object-
oriented methods for the teacher, and one that can

Presents a data flow approach to program design usefully be read by any student who wants a better
similar to [Myers79]. Much of this material is an and fuller understanding of this approach.
expansion of the ideas expressed in [Stevens74].
Well-written and a good source of material for the

Adelson85instructor, although perhaps a little dated for use by
Adelson, B., and E. Soloway. “The Role of Domainthe student.
Experience in Software Design.” IEEE Trans. Soft-
ware Eng. SE-11, 11 (Nov. 1985), 1351-1360.Yourdon85

Yourdon, E. Structured Walkthroughs, 3rd Ed. New Abstract: A designer’s expertise rests on the knowl-
York: Yourdon Press, 1985. ISBN 0-917072-55-3. edge and skills which develop with experience in a

domain. As a result, when a designer is designing
A very readable book that discusses a particular an object in an unfamiliar domain he will not have
way of managing the process of design and assess- the same knowledge and skills available to him as
ing the product. Reviews can be used with all when he is designing an object in a familiar
methods, and this book offers some practical advice domain. In this paper we look at the software
about how to organize them. designer’s underlying constellation of knowledge

and skills, and at the way in which this constellationStudents should be encouraged to read this very
is dependent upon experience in a domain. Whatpractical little book to help provide them with a part
skills drop out, what skills, or interactions of skillsof the general background to the design process.
come forward as experience with the domain
changes? To answer the above question, we studied
expert designers in experimentally created design
contexts with which they were differentially

Papers familiar. In this paper we describe the knowledge
and skills we found were central to each of the
above contexts and discuss the functional utility ofThis section provides an annotated set of references
each. In addition to discussing the knowledge andto a select group of published papers covering
skills we observed in expert designers, we will alsovarious aspects of software design and design meth-
compare novice and expert behavior.

ods. The annotations are structured as for textbooks.
One of the very few papers to consider the effects ofAbstracts are included whenever available.
a designer’s prior experience upon the decisions
made in particular circumstances. The paper coversAbbott83
such issues as the building of mental models, theAbbott, R. J. “Program design by informal English representation of constraints, and the use of such

descriptions.” Comm. ACM 26, 11 (Nov. 1983), techniques as making notes. An important first step
882-894. in an area that is largely uncharted.

Abstract: A technique is presented for developing A good source of discussion material and ideas.
programs from informal but precise English The paper is sufficiently short and well-presented
descriptions. The technique shows how to derive for it to be read by advanced students. While stu-
data types from common nouns, variables from di- dents may find difficulty in relating to all of the
rect references, operators from verbs and attributes, issues, there is much that they should be able to
and control structures from their English equiv- relate to their own experiences.
alents. The primary contribution is the proposed
relationships between common nouns and data

Belady76types; the others follow directly. Ada is used as the
Belady, L. A., and M. M. Lehman. “A model oftarget programming language because it has useful
large program development.” IBM Systems J. 15, 3program design constructs.
(1976), 225-252.

This paper describes the relationship between ob-
Abstract: Discussed are observations made on thejects and data types. It introduces the ideas of
development of OS/360 and its subsequent enhance-object-oriented design as a means of deriving the
ments and releases. Some modelling approaches tostructure of a program, based upon the use of an
organizing these observations are also presented.informal but precise English description. The ex-

SEI-CM-2-2.1 Draft For Public Review 29

Introduction to Software Design

This very comprehensive paper can be regarded as paper that can reasonably be read by students who
one of the classic papers in this subject area, in are seeking some insight into this approach to de-
terms of its contribution to our understanding of signing systems.
how the structures of very large systems evolve
with time. While it is not strictly concerned with Cameron86
specific design methods or directly with the design Cameron, J. R. “An Overview of JSD.” IEEE Trans.
process, it does provide an important part of the

Software Eng. SE-12, 2 (Feb. 1986), 222-240.background material needed for an understanding of
the problems that face the designer. Abstract: The Jackson System Development (JSD)

method addresses most of the software lifecycle.A good source of material for the teacher, and al-
JSD specifications consist mainly of a distributedthough it is rather long for the purpose, it can also
network of processes that communicate by message-provide a good source of discussion material for
passing and by read-only inspection of each other’sstudent tutorials.
data. A JSD specification is therefore directly ex-
ecutable, at least in principle. Specifications are

Bergland81 developed middle-out from an initial set of “model”
Bergland, G. D. “A Guided Tour of Program Design processes. The model processes define a set of

events, which limit the scope of the system, defineMethodologies.” Computer 14, 10 (Oct. 1981),
its semantics, and form the basis for defining data13-37.
and outputs. Implementation often involves recon-

A useful survey of design methods with a slant figuring or transforming the network to run on a
toward data processing issues. It provides a com- smaller number of real or virtual processors. The
parative study of a number of different design meth- main phases of JSD are introduced and illustrated
ods, based on an example of a stock control prob- by a small example system. The rationale for the
lem. It makes its points in a clear and readable approach is also discussed.
manner.

A clear summary of a rather complicated and
Good source material for the teacher and a good powerful design method. As the method is still
review article for use by students, too, although the evolving, the steps described are slightly different
restricted domain of the example problem requires from those presented in Michael Jackson’s book
that it be supplemented in some way by lectures and System Development.
further reading.

Rather too long and complicated for direct use by
students, but a good source of material for theBooch86 teacher.

Booch, G. “Object-Oriented Development.” IEEE
Trans. Software Eng. SE-12, 2 (Feb. 1986), 211-221. Futatsugi85

Abstract: Object-oriented development is a partial- Futatsugi, K., et al. “Principles of OBJ-2.” Conf.
lifecycle software development method in which the Record 12th Ann. ACM Symp. on Principles of Pro-
decomposition of a system is based upon the con- gramming Lang. New York: ACM, 1985, 52-66.
cept of an object. This method is fundamentally

OBJ-2 is a functional programming language withdifferent from traditional functional approaches to
an underlying formal semantics that is based upondesign and serves to help manage the complexity of
equational logic and an operational semantics that ismassive software-intensive systems. The paper ex-
based on rewrite rules. The paper deals with issuesamines the process of object-oriented development

as well as the influences upon this approach from of modularization and parameterization, as well as
advances in abstraction mechanisms, programming implementation techniques.
languages, and hardware. The concept of an object
is central to object-oriented development and so Harel88
that properties of an object are discussed in detail. Harel, D. “On Visual Formalisms.” Comm. ACM 31,The paper concludes with an examination of the

5 (May 1988), 514-530.mapping of object-oriented techniques to Ada using
a design case study. Abstract: The higraph, a general kind of diagram-

ming object, forms a visual formalism of topologi-A well-presented summary of object-oriented meth-
cal nature. Higraphs are suited for a wide array ofods, based around the two examples of a car cruise-
applications to databases, knowledge representa-control system and a navigational/weather data col-
tion, and, most notably, the behavioural specifica-lection buoy. This paper also comments on the rela-
tion of complex concurrent systems using thetionship between this method and the JSD method.
higraph-based language of statecharts.

A useful source of material for the teacher and a
An elegant and clearly-written paper discussing a

30 Draft For Public Review SEI-CM-2-2.1

Introduction to Software Design

number of important issues about design represen- form. The discussion is based upon an example of a
tation. The first part of the paper is concerned with problem that may not be very familiar to many
general issues, whereas the latter part provides an readers.
interesting exposition of statecharts. The paper in- The teacher must read this paper; the student mightcludes a detailed example, in the form of a descrip- do better to settle for the teacher’s interpretation.tion of a digital watch.

Parnas79Henderson86
Parnas, D. L. “Designing Software for Ease of Ex-Henderson, P. “Functional Programming, Formal
tension and Contraction.” IEEE Trans. SoftwareSpecification, and Rapid Prototyping.” IEEE Trans.
Eng. SE-5, 2 (March 1979), 128-137.Software Eng. SE-12, 2 (Feb. 1986), 241-250.

Abstract: Designing software to be extensible andAbstract: Functional programming has enormous easily contracted is discussed as a special case of
potential for reducing the high cost of software de- design for change. A number of ways that extension
velopment. Because of the simple mathematical and contraction problems manifest themselves in
basis of functional programming it is easier to de- current software are explained. Four steps in the
sign correct programs in a purely functional style design of software that is more flexible are then
than in a traditional imperative style. We argue discussed. The most critical step is the design of a
here that functional programs combine the clarity software structure called the “uses” relation. Some
required for the formal specification of software de- criteria for design decisions are given and il-
signs with the ability to validate the design by ex- lustrated using a small example. It is shown that
ecution. As such they are ideal for rapidly proto- the identification of minimal subsets and minimal
typing a design as it is developed. We give an ex- extensions can lead to software that can be tailored
ample which is larger than those traditionally used to the needs of a broad variety of users.
to explain functional programming. We use this
example to illustrate a method of software design An extension to his 1972 paper, in terms of relating
which efficiently and reliably turns an informal de- the basic ideas developed there to the problems en-
scription of requirements into an executable formal countered by a programmer. Largely concerned
specification. with the relationships between modules, particularly

with the concept of the “uses” relationship.This paper illustrates a rather different approach to
design of software systems, based on prototyping A fairly hard paper for the student, but one that can
and using formal specifications. provide a good source of discussion material.

Parnas72 Rentsch82
Parnas, D. L. “On the Criteria to be used in decom- Rentsch, T. “Object Oriented Programming.” ACM
posing systems into modules.” Comm. ACM 15, 12 SIGPLAN Notices 17, 9 (Sept. 1982), 51-57.
(Dec. 1972), 1053-1058.

Relates object-oriented design practices to a number
of existing systems, including Smalltalk. The au-Abstract: This paper discusses modularization as a
thor emphasizes the multiple views of object-mechanism for improving the flexibility and com-

prehensibility of a system while allowing the shor- orientation applied to computer systems.
tening of its development time. The effectiveness of

Not suitable for direct use by students, due to itsa “modularization” is dependent upon the criteria
having too many references to a wide range of ar-used in dividing the system into modules. A system
chitectures and programming languages. The tea-design problem is presented and both a convention-
cher might enjoy it, however.al and unconventional decomposition are described.

It is shown that the unconventional decompositions
Robson81have distinct advantages for the goals outlined. The

criteria used in arriving at the decompositions are Robson, D. “Object-Oriented Software Systems.”
discussed. The unconventional decomposition, if Byte 6, 8 (Aug. 1981), 74-86.
implemented with the conventional assumption that

Abstract: This article describes a general class ofa module consists of one or more subroutines, will
tools for manipulating information called object-be less efficient in most cases. An alternative ap-
oriented software systems. It defines a series ofproach to implementation which does not have this
terms, including software system and object-effect is sketched.
oriented. The description is greatly influenced by a

A truly “classical” paper, in the sense of being often series of object-oriented programming environ-
cited but probably rarely read. It is a very important ments developed in the last ten years by the Learn-
paper that lays down the basic ideas about infor- ing Research Group of Xerox’s Palo Alto Research
mation hiding but in a very concise and compact

SEI-CM-2-2.1 Draft For Public Review 31

Introduction to Software Design

Center, the latest being the Smalltalk-80 system. Wirth71
The article describes object-oriented software sys- Wirth, N. “Program Development by Stepwise
tems in general, instead of the Smalltalk-80 system Refinement.” Comm. ACM 14, 4 (April 1971),
in particular, in order to focus attention on the fun- 221-227.
damental property that sets the Smalltalk-80 system
apart from most other programming environments. Abstract: The creative activity of programming—to
The words “object-oriented” mean different things be distinguished from coding—is usually taught by
to different people. Although the definition given in examples serving to exhibit certain techniques. It is
this article may exclude systems that should right- here considered as a sequence of design decisions
fully be called object-oriented, it is a useful abstrac- concerning the decomposition of tasks into subtasks
tion of the idea behind many software systems. and of data into data structures. The process of

successive refinement of specifications is illustratedA brief and clear exposition of the distinctive fea-
by a short but nontrivial example, from which ature of the object-oriented viewpoint, which is con-
number of conclusions are drawn regarding the arttrasted with the more “traditional” viewpoint of data
and the instruction of programming.and procedures. Some important concepts that it

briefly introduces include classes and instances, An introduction to the idea of design as a series of
and the concept of inheritance. refinements, based upon the ideas of top-down de-

sign.
Shaw84 The example used in the paper is the classical (and
Shaw, M. “Abstraction Techniques in Modern Pro- rather complex) eight queen’s chess problem.
gramming Languages.” IEEE Software 1, 4 (Oct. While no longer providing a major source of mate-
1984), 10-26. rial for the teacher, this may be a useful paper to

discuss in tutorials.
In this paper, the author looks at programming lan-
guage responses to the dual problems of high soft-

Yau86ware cost and low software quality. She argues:
Yau, S. S., and J. J.-P. Tsai. “A Survey of Software“The best new developments in programming lan-
Design Techniques.” IEEE Trans. Software Eng.guages support and exploit abstraction techniques.

These techniques emphasize engineering concerns, SE-12, 6 (June 1986), 713-721.
including design, specification, correctness, and

Abstract: Software design is the process whichreliability.”
translates the requirements into a detailed design
representation of a software system. Good software

Stevens74 design is a key to produce reliable and understand-
Stevens, W. P., G. J. Myers, and L. L. Constantine. able software. To support software design, many
“Structured Design.” IBM Systems J. 13, 2 (May techniques and tools have been developed. In this

paper, important techniques for software design, in-1974), 115-139.
cluding architectural and detailed design stages,

Abstract: Considerations and techniques are pro- are surveyed. Recent advances in distributed soft-
posed that reduce the complexity of programs by ware system design methodologies are also re-
dividing them into functional modules. This can viewed. To ensure software quality, various design
make it possible to create complex systems from verification and validation techniques are also dis-
simple, independent, reusable modules. Debugging cussed. In addition, current software metrics and
and modifying programs, reconfiguring I/O devices, error-resistant software design methodologies are
and managing large programming projects can all considered. Future research in software design is
be greatly simplified. And, as the module library also discussed.
grows, increasingly sophisticated programs can be

This is something of a review paper, and it presentsimplemented using less and less new code.
a suitably long list of references at the end, although

This paper can be fairly termed a classic, in that it it still manages to ignore the development of the
introduced the whole notion of structured analysis JSD method entirely.
and structured design, as well as the concepts of

May provide a useful overview for the student, al-coupling and cohesion, and the use of structure
though it is rather concise for this purpose. A fairlycharts to describe the hierarchical form of a pro-
comprehensive source of references for student andgram.
teacher.

Most of the material is now available in many of the
books on design, which also include the subsequent
revisions to the basic thinking that was introduced
in this paper. The original paper is now of limited
value to the teacher, and probably of even less value
to the student.

32 Draft For Public Review SEI-CM-2-2.1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

