
Formal Verification of Programs

SEI Curriculum Module SEI-CM-20-1.0

December 1988

Alfs T. Berztiss
University of Pittsburgh

Mark A. Ardis
Software Engineering Institute

Software Engineering Institute
Carnegie Mellon University

This work was sponsored by the U.S. Department of Defense.

Draft For Public Review

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include model curricula, textbooks, educational software, and a variety of reports and proceedings.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Comments on SEI educational publications, reports concerning their use, and requests for additional information should
be addressed to the Director of Education, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213.

Comments on this curriculum module may also be directed to the module authors.

Alfs T. Berztiss Mark A. Ardis
Department of Computer Science Software Engineering Institute
University of Pittsburgh Carnegie Mellon University
Pittsburgh, PA 15260 Pittsburgh, PA 15213

Copyright © 1988 by Carnegie Mellon University

Draft For Public Review
201052589

Formal Verification of Programs

Acknowledgements Contents

We would like to thank Susan Gerhart, David Gries, Jan Capsule Description 1
Storbank Pedersen, Mary Shaw, and Jeanette Wing for Philosophy 1
their many helpful comments and suggestions.

Objectives 1

Prerequisite Knowledge 2

Module Content 3

Outline 3

Annotated Outline 3

Teaching Considerations 11

Suggested Schedules 11

Worked Examples and Exercises 11

Bibliography 12

SEI-CM-20-1.0 Draft For Public Review iii

Formal Verification of Programs

Module Revision History

Version 1.0 (December 1988) Draft for public review

iv Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

gram. Third, it is essential to verify formally someCapsule Description
critical parts of software systems that have to be
safe, such as life-support systems.This module introduces formal verification of pro-

grams. It deals primarily with proofs of sequential
programs, but also with consistency proofs for data
types and deduction of particular behaviors of pro-
grams from their specifications. Two approaches are Objectives
considered: verification after implementation that a
program is consistent with its specification, and The main thrust of this module is the actual use of
parallel development of a program and its specifi- verification techniques. However, formal verifica-
cation. An assessment of formal verification is pro- tion can be studied from different viewpoints. The
vided. programming methodologist is primarily interested

in the integration of programming with formal veri-
fication. A logician’s main concern is the inference
system in which the verification takes place. An ob-
jective of artificial intelligence is to provide im-Philosophy
proved heuristics for program verifiers (which are
instances of mechanical theorem provers).Central to the development of a program is a

requirements statement, which tells in precise terms A software engineer does the actual formal verifi-
what the program is to accomplish. Parts of this cation, or requests that it be done. This requires at
document can be expressed formally, i.e., in a lan- least the ability to determine its feasibility, which, in
guage that has formally defined syntax and seman- turn, requires an understanding of the viewpoints
tics. Other parts cannot be so expressed. Our con- listed above. One purpose of this module is to facil-
cern here is with the formal component only. This itate this understanding.
we shall call the specification of the program, con-

A student who has absorbed the material of thissistent with the usage adopted in [Berztiss87].
module can be expected to:

Verification demonstrates that a program is consis- • Understand the nature of formal verifica-
tent with its requirements. Verification can be either tion and its role in the software devel-
formal or informal. All programs have to be veri- opment process.
fied, but formal verification is not often practicable.

• Be familiar with a number of different
Nevertheless, formal verification is highly relevant approaches to formal verification.
to practical software engineering. First, concern • Be able to carry out formal verificationswith formal verification increases our understanding

using these approaches.of the nature of the program under development. In
particular, it causes the software engineer to focus
on the precision, consistency, and completeness of
the requirements statement. Second, concern with
proofs causes the software engineer to opt for the
simplest implementation consistent with require-
ments. This reduces the potential for introducing er-
rors and contributes to the maintainability of the pro-

SEI-CM-20-1.0 Draft For Public Review 1

Formal Verification of Programs

Prerequisite Knowledge

For a full appreciation of the topics of this module,
the student should have had experience both with
programming-in-the-small, where program proofs
can be practicable, and with programming-in-the-
large, where the proof techniques have not yet been
developed to a high degree of practicability. In par-
ticular, there must be an understanding of the speci-
fication process [Rombach87] and of formal specifi-
cations [Berztiss87].

Ability to understand formal specifications implies
that the student already has some knowledge of
predicate logic. Additional topics of predicate logic
are introduced in the module itself. The student
should also have a general understanding of discrete
mathematics at least equivalent to that provided by a
three–credit-hour college course. The need here is
for mathematical maturity rather than specific course
content.

Finally, the student needs to have some understand-
ing of verification and validation in general, an area
outlined in [Collofello88].

2 Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

Module Content

Outline Annotated Outline

I. Introduction I. Introduction
1. Requirements statements and specifications 1. Requirements statements and specifications

2. The meaning of a proof The term “program” can describe any computerized
software system or any component of such a system.3. The meaning of correctness
Thus, the term can be applied to a range of softwarea. Correctness: programs products: a module that encapsulates a data type, a

b. Correctness: data types procedure that formats a string, a database manage-
ment system, a distributed operating system, a chessII. Predicate Logic
player, etc. In most cases, program development

1. Basic concepts obeys a common characteristic: it starts with a re-
a. Notation quirements statement or a specification.

b. Interpretations A requirements statement is a testable statement de-
scribing properties that a program is to possess. Ac. Theories
statement is testable if there is a reasonable expec-2. Inference systems
tation that it can be experimentally shown that a pro-

a. Natural deduction gram does or does not satisfy the statement. For
example, “the program has an average response timeb. Resolution
of 500 msec” is testable, and so is “the average time

c. Heuristics for resolution between program breakdowns is at least 8 hours,
with 95% confidence.” “The program has good re-d. Induction principles
sponse times” is too vague to be testable.III. Verification Methods
A specification is a provable statement describing1. Hoare logic
properties that a program is to possess. A statementa. The while language
is provable if there is a reasonable expectation that it

b. Extensions and limitations can be established by a formal logical proof or an
informal mathematical argument that a program is or2. Dijkstra’s approach
is not consistent with the statement. For example,a. Weakest preconditions
two provable statements are: “the program satisfies

b. Development of programs and proofs in the output predicate P(x),” and “for n input items,
2parallel the running time of the program is at most O(n).”

The statement, “the program has an average re-3. Mills’s functional correctness
sponse time of 500 msec,” may be provable; but “the

IV. Special Problems average time between program breakdowns is at
least 8 hours with 95% confidence” is not provable.1. Loops
Provable statements are also testable.a. Invariants
The qualifier “reasonable expectation” relates tob. Functions
both theoretical and practical problems. In general,2. Procedures, parameters, and goto’s it is undecidable whether a program will stop.

3. Arrays, records, and pointers Moreover, even in decidable cases, the proof of a
program may be too difficult to find. Also, the state-4. Data types
ment “the average time between program break-

a. Data abstraction downs is at least 8 years, with 95% confidence” is
testable in principle, but not in practice.b. Consistency and sufficient completeness

c. Implementation This module deals primarily with formal verification
of the functional properties of simple programs, i.e.,V. Automation of Verification
with proofs that show that the outputs generated by

VI. Assessment of Verification these programs are consistent with the specifications
of the programs. The application of formal tech-
niques to specifications themselves must also be

SEI-CM-20-1.0 Draft For Public Review 3

Formal Verification of Programs

considered. In a specification, one should aim at papers on specification, but some of the papers
consistency and completeness. For example, if a are relevant to verification as well.
sorted array C[1..n] is to be produced from array

Sometimes it is argued that a functional programA[1..n], then the statement that C[i+1] ≥ C[i] is to
(one written in Lisp, say) or a logical programhold for all i in 1..n-1 is an incomplete specification.
(e.g., one written in Prolog) is its own specifi-For completeness, it has also to be stated that C is a
cation and is therefore correct by definitionpermutation of A. The specification would be incon-
[Turner85, Henderson86, Kowalski85]. However,sistent if it further required that C[1] contain the
it can also be argued that a specification and anlargest element of C. In the specification of pro-
implementation represent two points of view of agrams, completeness cannot be formally proven, and
problem, which can be useful in understanding orconsistency is difficult to prove; but both of these
debugging both. For example, testing may revealproperties can be formally proven for specifications
errors in either the specification or the codeof data types.
[Gannon81]. Taking this a step further, [Hoare87]

2. The meaning of a proof argues for setting up and proving consistent two
or more independent specifications for a software

In mathematics, a proof is the derivation of a state- system; it appears that the concept of institutions
ment from a set of theorems, and the statement itself [Goguen86] would be useful for this.
then becomes a theorem. In a formal proof, every
step of the proof is the application of an inference b. Correctness: data types
rule of logic. In an informal proof, instead of such

For abstract data types, correctness arises in twostrict justification, an appeal is made to the math-
contexts. First, the specification is correct if it isematical knowledge of the reader. This distinction
consistent and complete. (These terms will beis discussed in [Culik83].
discussed later.) Second, an implementation of

Computer scientists are interested in formal proofs the abstract data type is correct if it can be shown
because they can be generated by computer, or, at to be consistent with the specification.
least, a computer scientist and a computer can co-

II. Predicate Logicoperate interactively in the generation of a formal
1. Basic conceptsproof. In any case, a formal proof can be checked

mechanically; the checking of an informal proof is a. Notation
not as easy. Moreover, when a program and its

A formal proof establishes that a statement is aproof are developed side by side, the programmer
logical consequence of axioms or previouslygains a better understanding of both the program and
proven theorems. This requires a framework forthe programming process in general. Software engi-
reasoning, which is provided by the language ofneers are interested in formal proofs because the un-
logic. Syntactic rules define which combinationsderlying proof methodologies cause them to consid-
of the symbols of this language are well-formeder the precision, consistency, and completeness of
formulas (WFFs) and which WFFs are clauses.specifications, the clarity of implementations, and
Note that every WFF can be expressed as a set ofthe consistency of implementations and specifica-
clauses. Depending on how restrictive or permis-tions. This, in turn, results in more reliable soft-
sive the syntax, we obtain different logics:ware, even when an explicit formal proof is not per-
propositional logic, first-order predicate logicformed.
with equality, second-order predicate logic, etc.

3. The meaning of correctness
b. Interpretationsa. Correctness: programs

A WFF is interpreted by assigning a meaning toIn the context of computer programs, the proof of
every constant symbol and free variable in it. Ana program is the demonstration that it is consis-
interpreted WFF is a statement. Different inter-tent with its specification. For a formal proof, the
pretations of the same WFF transform it into dif-program is regarded as a formal object, i.e., as a
ferent statements. Semantic rules of the logic per-string in a language for which there is a formal
mit a statement to be evaluated, where the evalu-syntax and a formal semantics. Similarly, the
ation of a statement yields the value true or thespecification has to be written in a formal lan-
value false. A WFF is valid if and only if itguage. Two levels of proof are distinguished:
evaluates to true for every interpretation; it istotal proof of a program shows that the program
satisfiable if and only if it evaluates to true for atis consistent with its specification; partial or
least one interpretation. It is nonvalid if and onlyconditional proof shows that it is consistent with
if it evaluates to false for at least one interpreta-the specification provided execution of the pro-
tion; and it is unsatisfiable if and only if it evalu-gram terminates. Verification is surveyed in
ates to false for every interpretation.[Berg82]. [Gehani86] is primarily a collection of

4 Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

An interpretation in which a WFF evaluates to simplified introduction. Here is a simple version
true is a model for this WFF. The notion of a of the or-elimination rule:
model can be extended to any arbitrary subset Q a → c, b → c, a ∨ b
of the set of WFFs: an interpretation is a model of

cQ if every WFF in Q evaluates to true under this
The notation asserts that if the expression (orinterpretation. A WFF w, which need not belong
expressions) above the line is (are all) true, thento Q, is a logical consequence of Q if it evaluates
the expression (or expressions) below the line isto true under every interpretation of Q.
(are) also true. Here we have the assertion: “If a

A calculus is a set of axiomatic schemas and a set implies c, and b implies c, and a or b is true, then
of inference rules that are to generate WFFs with also c is true.” Some proofs are simpler when
a particular property. The calculus is sound if all equivalence transformations are used instead of
the WFFs generated by the calculus have the the rules of the natural deduction system (see
property, and complete if it can generate all the Chapter 2 of [Gries81]).
WFFs with this property. First-order predicate

b. Resolutioncalculus is sound and complete.

Suppose we have to prove that, on assuming cer-The property of greatest interest is validity: a
tain WFFs to hold, Q also holds. One approach ispredicate calculus is to construct only valid
to take the assumptions and the negation of Q,WFFs. A predicate logic is decidable if an algo-
namely ¬ Q, convert these WFFs to a set ofrithm exists that determines, for every WFF of the
clauses [Manna74], and eliminate clauses fromlogic, whether or not it is valid. It is
this set until nothing is left, i.e., until the nullsemi-decidable if an algorithm exists that deter-
clause has been obtained. The null clause standsmines for every valid WFF that it is valid, but the
for contradiction, which means that ¬ Q does notalgorithm need not halt if the WFF is nonvalid. It
hold, and that therefore Q does hold. Commonly,is undecidable if it is not even semi-decidable.
the clauses are eliminated by application of theSecond-order predicate logic is undecidable.
resolution principle, which, in a very simpleFirst-order predicate logic is semi-decidable
form, is the inference rule(which follows from the soundness and complete-

ness of the calculus); with some syntactic restric- P ∨ Q, ¬ P ∨ R
tions, it can become decidable. Q ∨ R

The precise form of the general rule is, however,c. Theories
rather complicated [Manna74, Genesereth87], pri-

Given the set of WFFs of first-order predicate marily because the clauses targeted for elimina-
logic, a subset Q of this set of WFFs is a theory if tion have to be made “compatible,” which is done
it has a model and if all logical consequences of by unification.
Q are also in Q. The existence of a model implies

c. Heuristics for resolutionconsistency. The closure property implies that a
theory contains at least all the valid WFFs of If the ultimate null clause is obtained by applica-
predicate logic, but it also contains additional for- tions of the resolution principle alone, the process
mulas that relate to a particular application, such is called resolution refutation. The economy of
as a theory of strings. having to deal with just one inference rule has led

to a widespread use of resolution refutation in au-A good introduction to this material can be ob-
tomatic theorem provers. The heuristics thattained by reading both Section 2.1 of [Manna74]
make resolution refutation practicable are sur-and Chapter 2 of [Loeckx84]). For examples of
veyed in [Genesereth87].interpretations, see [Boolos80]. The better known

data types of computer science are studied as the- d. Induction principles
ories in [Manna85].

Program proofs, particularly of recursive pro-
2. Inference systems grams and of programs based on recursively de-

fined data types, often use induction. Here, how-a. Natural deduction
ever, the common induction principle, which

The natural deduction system is so called because ranges over natural numbers, has to be general-
it is supposed to embody the principles that ized. Noetherian or structural induction is one
humans use in day-to-day reasoning. The main such generalization. This and other induction
component of the system is a set of pairs of rules, principles are defined in [Manna74] and
one pair for each logical operator. One of the [Loeckx84].
rules permits the introduction of the operator, the
other its elimination. A thorough treatment can
be found in [Manna74]. [Gries81] gives a

SEI-CM-20-1.0 Draft For Public Review 5

Formal Verification of Programs

of view in [Apt81]. The approach has been ap-III. Verification Methods
plied to the specification of “real” programming1. Hoare logic
languages, notably Pascal [Hoare73].

a. The while language
However, there are several limitations. An im-

In 1969, Hoare [Hoare69] introduced an axiomatic portant one has to do with the data types on which
approach to program correctness. He used a very the program operates. Apt’s survey contains the
simple language that has only assignment, se- proof of a program for division by repeated sub-
quencing of statements, if-then-else, and while traction. Despite the extreme simplicity of the
(hence, the while language). Each of these con- program, appeal has to be made twice to the
structs is interpreted by a proof rule. The assign- properties of integers. This means that an auto-
ment rule is an axiom, and the other three are mated program verifier has to be provided with
inference rules. This interpretation is the seman- knowledge about properties of different data
tics of the language and is used in program types, which is a difficult task in general, but one
proofs. A fourth inference rule had to be added which has been successfully handled for integers
just for program proofs. All the rules use some and arrays [Constable82]. More seriously, it may
form of the expression {P}S{R}, which reads “if not be possible to express the postcondition of a
statement P is true before execution of S, then, program in first-order logic. This is the case for a
provided S terminates, R will be true after execu- program that computes the transitive closure of a
tion of S.” If this expression is true, then P is a relation. On the theoretical plane, it has been
precondition of S, and R is a postcondition. demonstrated that there are programming lan-

guages for which a Hoare logic does not existTwo examples of the rules are the assignment
[Clarke79], as well as languages for which Hoare-axiom and the composition rule. The assignment
type proofs are exponential in lengthaxiom is
[Cherniavsky79]. Moreover, the proof of a pro-

{R[t/x]} x := t {R} gram in Hoare logic guarantees correctness of im-
plementation only if the program is processed bywhere R[t/x] is a version of R in which every
a compiler based on the same Hoare logic.occurrence of x is replaced by the expression t.

The axiom may be read as “if R[t/x]) is true be- 2. Dijkstra’s approach
fore execution of x := t, then R is true afterwards.”

a. Weakest preconditionsThe composition rule:
Suppose we have shown that {P}S{R} is true{P} S {R}, {R} S {Q}1 2
when P states that the input is any positive in-

{P} S ; S {Q}1 2 teger. If we now were to suspect that program S
may be read as “given a composition of two state- is applicable to negative integers as well, we
ments such that R is a postcondition of the first would have to repeat the proof with a modified P.
statement with respect to precondition P and a Dijkstra noted that the most important statement
precondition of the second statement with respect is R, and that we should not be required to supply
to postcondition Q, then P is a precondition and Q P; instead, the program proof should define the
a postcondition of the composition.” set of all input values for which the output satis-

fies R [Dijkstra75].The nature of the proof of a program S is as fol-
lows. The programmer supplies statements P and For S and R as before, define a predicate wp(S, R).
R, which supposedly describe the intended pur- This, the weakest precondition of S with respect
pose of the program. Statement P defines to R, defines the set of all inputs for which S
properties of the input of the program; R defines produces in finite time an output that satisfies R.
properties of the output. Expression {P}S{R} is Note that in Dijkstra’s usage, {P}S{R} reads “if
then the hypothesis to be proven. Let us write the statement P is true before execution of S, then S
program as S ; S ; . . . ; S . Then, a postcon-1 2 n terminates with R being true.” Under this usage,
dition of S is derived from precondition P of the {P}S{R} and P → wp(S, R) are equivalent, i.e.,1
entire program. The composition rule permits us the set of inputs defined by P is a subset of the set
to use this postcondition for the precondition of of inputs defined by wp(S, R). Ideally, we should
S ; . . . ; S , and so forth, until R is shown to be a always determine the weakest precondition of a2 n
postcondition of the entire program by showing it program with respect to a given result assertion R.
to be a postcondition of S . In real life, we may not be clever enough to do so;n

then the implication P → wp(S, R) still allows us
b. Extensions and limitations to apply Dijkstra’s approach with a less than per-

fect determination of the input range.This approach has been extended to other con-
structs of programming languages, and the exten-
sions have been surveyed from a logician’s point

6 Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

b. Development of programs and proofs in IV. Special Problems
parallel 1. Loops

a. InvariantsWeakest preconditions are often associated with
the development of a program and its proof in

The proving of programs that contain only simpleparallel, with the proof ideas guiding program de-
constructs, such as assignments and conditionalvelopment. [Dijkstra76] is a monograph on this
statements, is trivial. Proofs of programs thatapproach. Good texts also exist, based on
contain loops require a greater degree of creativ-Dijkstra’s language [Gries81] and Hoare’s lan-
ity. Here the correctness problem is tackled byguage [Backhouse86]. See [Dromey88] for a set
proposing a loop invariant, i.e., a condition that isof heuristics that can help in systematic program
to hold at every entry to and every exit from thedevelopment.
loop. To take a simple example, an invariant for
a loop that accumulates the sum of the elementsDijkstra’s language differs from Hoare’s, but as-
of an array A[1..n] as the value of variable sum issignment and composition should have the same

kmeaning in both. We have, as expected: sum = A[i], where k counts the times the loop∑i=1
has been executed. When the loop invariant iswp (“x := t ”, R) = R[t/x]
known and is closely related to the postcondition

wp (“S ; S ”, R) = wp (S , wp (S , R))1 2 1 2 of the loop, the verification of the loop is
straightforward and can be carried out accordingNote that a wp guarantees total correctness. The
to a checklist of five steps given on page 145 ofsignificant difference between the two approaches
[Gries81]. Two of the steps relate to a boundis in the way they deal with looping, because the
function: loop termination is shown by provingwp-approach has to ensure that a loop terminates.
that the bound function is never negative and thatNote that proofs of programs written in Dijkstra’s
it decreases in each iteration of the loop. For ourlanguage may be exponential in length [Jones81],
example, the bound function is n-k. (See alsobut this is unlikely to arise in practice.
[Gries82].)

3. Mills’s functional correctness
The postcondition for the summation loop is

nHarlan Mills has proposed a method of specification sum = A[i], so the loop invariant is closely∑i=1and proof based on functions and relations rather related to the postcondition, and application of the
than preconditions and postconditions. In this meth- checklist is easy. Often this is not so, and the
od, called the functional correctness method, one formulation of the loop invariant requires much
describes a program or procedure by a function that creativity. Automation of the derivation of in-
relates output values of the active variables to their variants in simpler instances has been investi-
input values. This is the specification function. gated [Dershowitz81]. Gries suggests that loops
[Mills86] contains an introduction to this method be constructed from proposed postconditions, and
based on Pascal, including heuristics for developing he devotes an entire chapter of [Gries81] to the
specifications. The theory and context for the meth- development of loop invariants. This is essential
od are covered in [Linger79]. Application of this reading, but it should be noted that a full ap-
method within IBM has been called the “Cleanroom preciation of the heuristics proposed by Gries
approach” [Mills87]. may require the study of more examples than

Gries provides. The development of loop in-For assignment and conditional statements, function-
variants from the properties of a problem isal correctness provides simple rules. Assignment to
studied in [Turski84].a variable is described by a function from the type of

the variable to the same type. Conditional state- Intermittent assertions have been proposed as an
ments are described by conditional expressions in alternative to invariant assertions [Burstall74,
terms of functions. Composition of statements is Manna78]. Burstall arrives at the intermittent
described by composition of functions. A proof assertions by means of symbolic execution. Sym-
consists of a demonstration that the function com- bolic execution forms the basis for a verification
puted by a program (or sequence of statements) is method described in [Hantler76] as well.
equivalent to the specification function. In practice, [Manna78] claims that intermittent assertions lead
one often shows that the function computed contains to cleaner proofs of total correctness, but this
the specification function, since specifications are claim has been questioned [Gries79a]. The meth-
often incomplete. Proof of correctness of implemen- od of intermittent assertions is based on temporal
tations is discussed in [Gannon87]. logic. For a brief introduction to temporal logic,

see [Manna81]. Proofs of the Schorr-Waite mark-
ing algorithm have been undertaken using both
invariant assertions [Gries79b] and intermittent

SEI-CM-20-1.0 Draft For Public Review 7

Formal Verification of Programs

assertions [Topor79]. Another method that does Goto’s and exit’s are more difficult to handle. At-
not require invariant assertions for loops is sub- tempts to deal with these constructs are described in
goal induction [Morris77]; its relation to earlier [Clint72, Kowaltowski77]. Part of the difficulty with
methods is discussed in [King80] and to functional unrestricted transfers of control is the rapid increase
correctness, in [Dunlop82]. A taxonomy of induc- in complexity of the programs that use them. Good
tion principles can be found in [Cousot82]. programming practice dictates that such transfers be
[Mili86] surveys the development of correct pro- used only in special cases, e.g., exits from loops and
grams by reasoning about them under both ap- error exits. Proof rules for such restricted cases are
proaches, Dijkstra-Gries and functional correct- given in [Arbib79, Luckham80, Cristian84].
ness.

3. Arrays, records, and pointers
b. Functions

Hoare’s axiom of assignment [Hoare69] assumes
In Mills’s functional correctness, one must guess that the variable on the left-hand side of the assign-
a function that describes a loop. Then, the func- ment is a simple identifier, and substitution for a
tion must be shown to be equivalent to an un- simple identifier is easy to define. However, most
rolled version of the loop. For example, suppose programming languages allow more complicated
that we wish to find the function computed by left-hand sides of assignments, including array
“while B do S.” We guess a function f, and show references, record selection, and pointers. Proofs in-
f = [if B then S] f where the square brackets volving assignment to one of these objects require°
denote “the function computed by.” Additionally, additional machinery. The usual method is to intro-
we must show that the function correctly de- duce functions that perform the appropriate substi-
scribes the case when the loop body is never ex- tution and selection. The resulting expressions are
ecuted. This is done by showing equivalence much larger, but intellectually no more difficult to
with the identity function for that special case. use, than simple identifiers.
Rather than show that a loop terminates, one

[Hoare73] handles these special cases for Pascal.shows that the domain of the function guessed
[Gries81] and [Reynolds81] use a notation that sig-includes the domain of the actual loop function.
nificantly improves the readability of proofs involv-

Guessing loop functions is as difficult as guessing ing arrays. [Luckham79] provides a nice simplifi-
loop invariants. Initialized loops are easier to de- cation of the semantics of all of these constructs.
scribe because one can use the initialization

4. Data typesknowledge to simplify the description. Other-
a. Data abstractionwise, one must describe the function computed by

the loop, assuming any number of initial itera-
Data abstraction has a number of meanings. Intions. [Dunlop82] describes this phenomenon and
the main, specification of data types is based ei-compares functional correctness to Hoare’s
ther on an abstract model or an algebraic ap-axiomatic method.
proach. Under the abstract model approach, the
operations of the data type are expressed in terms2. Procedures, parameters, and goto’s
of operations of a simpler type, e.g., stack opera-

Procedures provide another source of problems for tions as operations on sequences. On the other
verification. Good treatments of procedures can be hand, the basis of an algebraic specification is a
found in [Gries81] and [Martin83]. For procedure self-contained set of axioms. For references, see
calls without parameters, or calls where the argu- [Berztiss87]. The application of specifications of
ments match the parameters, the semantics of the data types to programming-in-the-large is ad-
call may be described by macro-expansion. This dressed in [Goguen86], [Guttag85], [Liskov86],
leads to a very simple rule. There are two remaining and [Wulf81].
problems: substitution of parameters and recursion.
The first problem is solved by introducing a rule of Verification, in the context of abstract data types,
substitution that prohibits aliasing and side effects. relates to three activities. First, one should be
The second problem is solved with induction: able to determine whether an implementation that

derives from a specification has certain properties1. Prove that the procedure is correct
before any implementation actually takes place.whenever there are no recursive calls.
Second, it should be possible to demonstrate the2. Assuming that the procedure is correct consistency and completeness of a specification.for n recursive calls, show that it is cor- Third, an implementation should be provably con-rect for n+1 recursive calls. sistent with its specification. Examples of reason-

Procedures are treated similarly in both the weakest ing about properties of prospective implementa-
precondition and the functional correctness methods. tions from their specifications are found in

[Guttag80], [Shaw81], [Chi85], and [Wing87].
Limitations in reasoning about abstract data types

8 Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

are discussed in [MacQueen85]. Implementation 3. Verification systems. These tools assist
correctness is considered in [Guttag78b]. the user in developing a proof of a pro-

gram, using previously proven lemmas
b. Consistency and sufficient completeness (which might have been proven by hand or

with the assistance of a theorem prover)An algebraic specification defines a theory. Con-
and verification conditions.sequently, it is consistent if there is a model. But

The first class, theorem provers, includes a great diver-the mere existence of a model is not enough; the
sity of tools and approaches. Some theorem proversmodel should express user expectations with
try to do as much as possible before requiring theregard to the data type being specified. The
user’s intervention (e.g., Boyer-Moore [Boyer79,model is then a “correct” implementation. This
Boyer81b]), while others encourage the user to provideapproach is discussed in [Guttag78b] and
assistance or advice (e.g., NuPRL [Constable86]). Ver-[Goguen78]. Completeness in the logical sense
ification condition generators are rather simple to con-does not leave much implementation freedom,
struct and are often included in verification systems.which has led to the introduction of the concept of
Because they embody language-specific knowledge,sufficient completeness [Guttag78a]. This is
they are usually compiler-specific. A verification con-highly technical material. [Berztiss83] provides
dition generator for FORTRAN is described inan introduction for the nonspecialist.
[Boyer81a]. Verification systems, such as Affirm

c. Implementation [Sunshine82] and Gypsy [Good85], are usually
language-dependent (since they often use a built-in ver-In an early paper on the verification of an imple-
ification condition generator) and are very interactive.mentation of a data type with respect to its speci-
All of these systems require an extensive learningfication, Hoare describes the relationship between
period before they can be used effectively.an abstract operation and its implementation in

terms of an “abstraction mapping” R [Hoare72]. [Lindsay88] is an excellent survey of verification tech-
This mapping from representation to abstraction nology. [Cheheyl81] is an earlier survey, restricted in
must obey a commutative property. For example, the number of systems covered, but highly informative
let an abstract operation f be implemented by a about the four systems it deals with. The strengths and
concrete function p and denote its function sym- weaknesses of current verification technology are sur-
bol by P. Then mapping R must obey the rela- veyed in [Levitt85] and [Craigen87].
tionship: R(P(x)) = f (R(x)). Intuitively, the left-

VI. Assessment of Verificationhand side of this equation describes the result of
finding the abstract value of the result of applying

Criticisms of formal verification have come fromthe implemented operation, and the right-hand
various quarters: an argument is advanced in [DeMillo-side describes the result of applying the abstract
79] that a proof has to convince its reader, which for-operation to the appropriate original abstract
mal proofs may fail to do; Naur [Naur82] notes somevalue.
negative effects of basing verification on specifications
that are difficult to understand; a distinction betweenV. Automation of Verification
mathematical and logical proofs (or scientific and
mathematical theories) is emphasized in [Culik83] andTeaching Consideration: Students often ask whether there is
[Turski86]. Either by emphasizing the difference be-any way to automate some of the more tedious steps of the
tween mathematical and logical proofs or by ignoringprogram verification process. It is a good idea to discuss
this difference, all of these criticisms suggest thatsuch tools; the discussion will help to clarify the distinction
closer attention should be given to the separation of thebetween those tasks that are simple and mechanical and

those that require inspiration or creativity. proof of an algorithm from the proof of a program.

The simultaneous development of an algorithm and a
Tools to support the verification of programs usually program can work very well for simple algorithms
fall into one of three classes: [Gries81, Backhouse86]. However, there are some al-

1. Theorem provers. These tools assist the gorithms that are difficult to deal with under any ap-
user in proving theorems, using a large proach to correctness. Iteration schemas of numerical
body of knowledge about interesting types, analysis belong to this class. Here the proof of conver-
such as integers. gence of an iterative algorithm, i.e., proof of

termination in our terminology, may occupy a numer-2. Verification condition generators. These
ical analyst several years.tools produce logical formulas (verification

conditions) from a program and its specifi-
Abstract data types provides an area in which the for-cation. The user must then prove that
mal approach has been a success. Routine applicationthose formulas are theorems, in order to
of data abstraction and reasoning from abstract specifi-show that the program is correct.
cations is just beginning in industry [Cohen86], about

SEI-CM-20-1.0 Draft For Public Review 9

Formal Verification of Programs

10-15 years after the initial research, which is the nor-
mal time span for a successful innovation to become
accepted in practice.

10 Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

Teaching Considerations

ductory textbooks on programming in particular lan-Suggested Schedules
guages. It is essential that the instructor solve ex-
ercises before assigning them.Teaching the material of this module can easily oc-

cupy one or two entire semesters, in the unlikely
event that so much time is available. In a more
realistic setting, the material could be part of a
course on verification and validation, say one-third
or one-half of the course. The exact length of time
available for program proving will depend on the
background knowledge of the students, e.g., whether
or not they have previously studied predicate logic.

Keeping in mind likely time restrictions, the instruc-
tor has to select carefully the material to be covered.
Emphasis should be on Section III, where one verifi-
cation method should be selected for detailed discus-
sion. The other methods should be given in brief
overview. Although most of the technical material
of Section II would be omitted when time is limited,
the instructor should have some familiarity with this
background material.

Worked Examples and Exercises

Before teaching this material, the instructor should
have carried out as many formal verifications as
needed to acquire the self-confidence that is essen-
tial for conveying the importance of the material to
the students. At the very least, examples from the
literature must be studied thoroughly before they are
presented in class. Many examples of supposedly
formal proofs have been published without the full
justification required in a formal proof. In some
cases, the proofreading could have been better as
well.

When a proof is incremental, i.e., when a program is
developed in parallel with its proof, the development
should be done in class. It should be done inter-
actively, with full class participation. On the other
hand, proofs of existing programs tend to be very
boring, and they should not be developed in class.
The examples should be duplicated for distribution
to the class and copied to overhead transparencies
for classroom presentation.

Good exercises are still rather hard to come by in
this area. Instead of restricting attention to books on
verification, one can also look for exercises in intro-

SEI-CM-20-1.0 Draft For Public Review 11

Formal Verification of Programs

Bibliography

Apt81 Berg82
Apt, K. R. “Ten Years of Hoare’s Logic: A Survey Berg, H. K., W. E. Boebert, W. R. Franta, and
—Part I.” ACM Trans. Prog. Lang. and Syst. 3 T. G. Moher. Formal Methods of Program Verifi-
(1981), 431-483. cation and Specification. Englewood Cliffs, N. J.:

Prentice-Hall, 1982.
Abstract: A survey of various results concerning
Hoare’s approach to proving partial and total cor- A wide-ranging survey of verification. The bibliog-
rectness of programs is presented. Emphasis is raphy is extensive (166 entries).
placed on the soundness and completeness issues.
Various proof systems for while programs, recur- Berztiss83
sive procedures, local variable declarations, and

Berztiss, A. T., and S. Thatte. “Specification and Im-procedures with parameters, together with the cor-
plementation of Abstract Data Types.” In Advancesresponding soundness, completeness, and incom-
in Computers, Vol. 22. New York: Academic Press,pleteness results, are discussed.
1983, 295-353.

A fairly technical survey with an extensive bibliog-
This survey of the equational algebraic specificationraphy of 55 entries.
of abstract data types contains a section on verifi-
cation of implementations of the abstract data types.Arbib79

Arbib, M. A., and S. Alagic. “Proof Rules for
Berztiss87Gotos.” Acta Informatica 11 (1979), 139-148.
Berztiss, A. Formal Specification of Software. Cur-

Abstract: We offer a program specification format riculum Module SEI-CM-8-1.0, Software Engineer-
adapted to statements with multiple exits, and use it ing Institute, Carnegie Mellon University, Pitts-
to present proof rules to replace the somewhat un- burgh, Pa., Oct. 1987.satisfactory treatment of jumps in [Clint72]. We jus-
tify the bridled use of “goto”s in return exits, This module discusses formal specification of soft-
failure exits, and loops with jumps in the middle. ware, with emphasis on functional properties.
To exemplify our methodology, we prove the func-
tion lookup. Boolos80
A well-presented contribution to a rather specialized Boolos, G. S., and R. C. Jeffrey. Computability and
topic. Logic. Cambridge, England: Cambridge University

Press, 1980.
Ashcroft76 A very readable introduction to the topics of the
Ashcroft, E. A., M. Clint, and C. A. R. Hoare. title.
“Remarks on ’Program Proving: Jumps and Func-
tions by M. Clint and C. A. R. Hoare’.” Acta Infor- Boyer79
matica 6 (1976), 317-318.

Boyer, R. S., and J. S. Moore. A Computational
Corrects an error in [Clint72]. Logic. New York: Academic Press, 1979.

This book defines a logical theory tailored to the
Backhouse86 needs of reasoning about Lisp programs and de-
Backhouse, R. C. Program Construction and scribes many techniques that the authors have de-
Verification. Englewood Cliffs, N. J.: Prentice-Hall, veloped for proving theorems in this theory. Partic-
1986. ular emphasis is on induction.

An introductory text that emphasizes the need to
Boyer81aconsider program development and program verifi-
Boyer, R. S., and J. S. Moore. “A Verification Con-cation in parallel. An excellent source of worked
dition Generator for Fortran.” In The Correctnessexamples that illustrate this approach. Note that

Backhouse has been careful to avoid overlap of ex- Problem in Computer Science, R. S. Boyer and
amples with [Gries81]. J. S. Moore, eds. London: Academic Press, 1981,

9-101.

12 Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

main obstacle to the introduction of metafunctions:Abstract: This paper provides both a precise speci-
proving them correct by machine.fication of a subset of Fortran 66 and Fortran 77

and a specification of the verification condition
An extension of [Boyer79].generator we have implemented for that subset.

Our subset includes all the statements of Fortran 66
Burstall74except the following: Read, Write, Rewind, Back-

space, Endfile, Format, Equivalence, Data and Burstall, R. M. “Program Proving as Hand Simula-
Block Data. We place some restrictions on the tion with a Little Induction.” In Proc. IFIP World
remaining statements; however, our subset includes Congress 1974. Amsterdam: North-Holland, 1974,
certain uses of Common, adjustable array dimen- 308-312.
sions, function subprograms, subroutine sub-
programs with side effects, and computed and as- Abstract: A method of proving facts about pro-
signed Go Tos. Unusual features of our system in- grams is presented in an informal manner, in the
clude a syntax checker that enforces all our syntac- hope that it will have some intuitive appeal to pro-
tic restrictions on the language, the thorough anal- grammers. It derives essentially from Manna’s
ysis of aliasing, the generation of verification con- method, but it is influenced by the recent idea of
ditions to prove termination, and the generation of ‘executing’ a program symbolically as part of the
verification conditions to ensure against such run- proof process. Some examples are worked out, in-
time errors as array bound violations and arith- cluding one to invert a permutation in situ and one
metic overflow. We have used the system to verify to traverse a tree; the latter seems to come out
several running Fortran programs. We present one rather easily this way. Finally this technique and
such program and discuss its verification. the Floyd one are related to a system of modal

logic.
A demonstration that some programs written in
older languages can still be verified. The example An interesting feature of Burstall’s approach is the
is the Boyer-Moore substring matching algorithm. use of inductive proofs on iterative programs.

Boyer81b Cheheyl81
Boyer, R. S., and J. S. Moore. “Metafunctions: Prov- Cheheyl, M. H., M. Gasser, G. A. Huff, and
ing Them Correct and Using Them Efficiently as J. K. Millen. “Verifying Security.” ACM Computing
New Proof Procedures.” In The Correctness Prob- Surveys 13 (1981), 279-339.
lem in Computer Science, R. S. Boyer and

Abstract: Four automated specification and verifi-J. S. Moore, eds. London: Academic Press, 1981,
cation environments are surveyed and compared:

103-184. HDM, FDM, Gypsy, and AFFIRM. The emphasis
of the comparison is on the way these systems couldAbstract: We describe a sound method for permit-
be used to prove security properties of an operatingting the user of a mechanical theorem-proving sys-
system design.tem to add executable code to the system, thereby

implementing a new proof strategy and modifying The acronyms HDM and FDM stand for Hierar-
the behavior of the system. The new code is chical Development Methodology and Formal De-
mechanically derived from a function definition velopment Methodology, respectively. HDM is
conceived by the user but proved correct by the sys- based on the specification language Special, and the
tem before the new code is added. We present a (non-interactive) Boyer-Moore theorem prover.
simple formal method for stating within the theory FDM makes use of the Ina Jo specification language
of the system the correctness of such functions. The and an interactive theorem prover. Gypsy is amethod avoids the complexity of embedding the

highly integrated environment intended for the in-rules of inference of the logic in the logic. Instead,
cremental verification of software. In Affirm, soft-we define a meaning function that maps from ob-
ware development is regarded as the specificationjects denoting expressions to the values of those ex-
and implementation of abstract data types, and spec-pressions under a given assignment. We demon-
ifications are written as algebraic axioms. Althoughstrate that if the statement of correctness for a given
this survey deals specifically with the verification of“metafunction” is proved, then the code derived
security, it provides clear descriptions of the fourfrom that function’s definition can be used as a new
verification methodologies listed above and is anproof procedure. We explain how we have imple-
invaluable guide to further reading. The largest ap-mented the technique so that the actual application
plication example known at the time is indicated forof a metafunction is as efficient as hand-coded pro-
each environment; these examples correct the rathercedures in the implementation language. We prove
negative prognosis for automated verification ex-the correctness of our implementation. We discuss
pressed in [DeMillo79].a useful metafunction that our system has proved

correct and now uses routinely. We discuss the

SEI-CM-20-1.0 Draft For Public Review 13

Formal Verification of Programs

language (i.e. all true formulas of the assertionCherniavsky79
language) and if the assertion language satisfies aCherniavsky, J. C., and S. N. Kamin. “A Complete
natural expressibility condition then a sound andand Consistent Hoare Axiomatics for a Simple Pro-
complete axiom system for a large subset of Algolgramming Language.” J. ACM 26 (1979), 119-128.
may be devised. We exhibit programming language
constructs for which it is impossible to obtain soundAbstract: A simple programming language L ism
and complete sets of Hoare axioms even in this spe-defined for which a complete axiomatics is obtain-
cial sense of Cook’s. These constructs include (i)able. Completeness is shown by presenting a rela-
recursive procedures with procedure parameters intively complete Hoare axiomatics, demonstrating,
a programming language which uses static scope ofby direct construction, that the first-order theory of
identifiers and (ii) coroutines in a language whichaddition P is expressive, and noting than P is+ + allows parameterless recursive procedures. Modifi-complete. It is then shown that L is maximal withm cation of these constructs for which sound and com-this property. Further, a notion of complexity of a
plete systems of axioms may be obtained are alsoHoare system is introduced based upon the lengths
discussed.of proofs (disregarding proofs in the underlying

logic), and the system L P is shown to have poly- The results of this paper have minor practical rele-m +
nomial complexity. The notion is shown to be non- vance to the verification of programs, but they in-
trivial by presenting a language for which any dicate theoretical limitations of the Hoare approach
Hoare axiom system has exponential complexity. to program correctness.

This very theoretical paper shows that proofs in a
Clint72Hoare logic can be exponential in length.
Clint, M., and C. A. R. Hoare. “Program Proving:
Jumps and Functions.” Acta Informatica 1 (1972),Chi85
214-224. See [Ashcroft76] for a correction.Chi, U. H. “Formal Specification of User Interfaces:

A Comparison and Evaluation of Four Axiomatic Abstract: Proof methods adequate for a wide range
Approaches.” IEEE Trans. Software Eng. SE-11 of computer programs have been expounded in
(1985), 671-685. [Hoare69] and [Hoare71]. This paper develops a

method suitable for programs containing functions,
Abstract: Few examples of formal specification of and a certain kind of jump. The method is il-
the semantics of user interfaces exist in the litera- lustrated by the proof of a useful and efficient pro-
ture. This paper presents a comparison of four gram for table lookup by logarithmic search.
axiomatic approaches which we have applied to the
specification of a commercial user interface—the The ability to deal with programs that contain func-
line editor for the Tandy PC-1 Pocket Computer. tions is essential for modular software development.
These techniques are shown to result in complete The techniques of this paper are therefore very im-
and relatively concise descriptions. A number of portant for software verification by means of the
useful and nontrivial properties of the interface are Hoare approach.
formally deduced from one of the specifications. In
addition, a direct implementation of the interface is Cohen86
constructed from a formal specification. Limita-

Cohen, B., W. T. Harwood, and M. I. Jackson. Thetions of these specification examples are discussed
Specification of Complex Systems. Wokingham,along with future research work.
England: Addison-Wesley, 1986.

The significance of this paper to formal verification
A fairly short introduction (143 pages) that exploreslies in the full proofs of three statements about the
some aspects of the electronic office by means ofuser interface that are given in the appendix.
equational algebraic specification and the Vienna
Development Method (VDM). Specification ofClarke79 concurrent systems is briefly touched on as well.

Clarke, E. M. “Programming Language Constructs
for Which It Is Impossible to Obtain Good Hoare Collofello88Axiom Systems.” J. ACM 26 (1979), 129-147.

Collofello, J. S. Introduction to Software Verifica-
Abstract: Hoare axiom systems for establishing tion and Validation. Curriculum Module SEI-
partial correctness of programs may fail to be com- CM-13-1.1, Software Engineering Institute, Carne-
plete because of (a) incompleteness of the assertion gie Mellon University, Pittsburgh, Pa., Dec. 1988.
language relative to the underlying interpretation

The author provides the following capsule descrip-or (b) inability of the assertion language to express
tion: “This module provides a framework for un-the invariants of loops. Cook has shown that if
derstanding the curriculum modules in the verifi-there is a complete proof system for the assertion

14 Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

responding verification condition.cation and validation area. Verification and valida-
tion techniques are introduced and their ap-

The proof methods based on the induction prin-plicability discussed. Approaches to integrating
ciples are all applied to a single example, divisionthese techniques into comprehensive verification
by repeated subtraction. This is an attempt to bringand validation plans are also addressed.”
order into a rather confusing field. Primarily of
interest to the specialist.

Constable82
Constable, R. L., S. D. Johnson, and Craigen87
C. D. Eichenlaub. An Introduction to the PL/CV2 Craigen, D. “Strengths and Weaknesses of ProgramProgramming Logic. Berlin: Springer-Verlag, 1982. Verification Systems.” In Proc. 1st European Soft-Springer-Verlag Lecture Notes in Computer Science, ware Engineering Conf., H. K. Nichols andNo. 135. D. Simpson, eds. Berlin: Springer-Verlag, 1987,

396-404. Springer-Verlag Lecture Notes in Math-This paper describes a formal system for reasoning
about integers, arrays, and programming language ematics, No. 289.
commands in the PL/CS language. The reasoning

Abstract: For over a decade, major research ef-can be checked by the PL/CV Proof Checker.
forts have been directed at developing and applying
Program Verification Systems. Particular examples

Constable86 are the Gypsy Verification Environment (at The
Constable, R. L., et al. Implementing Mathematics University of Texas at Austin and Computational
with the NuPRL Proof Development System. Logic, Inc.), and Affirm-85 (at General Electric,

Schenectady, New York).Englewood Cliffs, N. J.: Prentice-Hall, 1986.

In this paper, I discuss the putative strengths andThe NuPRL (“New Pearl”) system is an environ-
weaknesses of the current generation of verificationment for deriving proofs in constructive type theory.
systems, describe the characteristics of a systemPRL systems are concerned with three kinds of
which can be developed at low technical risk, andobjects: problems, their solutions, and explanations
then describe briefly a research effort, at I.P. Sharpof the solutions. When a problem is expressed as a
Associates, to develop a new verification systemformula in a logical theory and a solution of the
called EVES.problem as some computable function, then a proof

of the formula can be regarded as an explanation of The weaknesses referred to in the title are, primar-
the solution. However, formal constructive proofs ily: logical unsoundness permitted by the systems,
can be executed and, thus, can become solutions. expense of use, excessive dependence on low-level
Hence the formalization of an informal explanation inference rules, the scarcity of reusable mathemati-
becomes the development of a program. cal theories, specification languages with low ex-

pressive power, and poor environmental support.
Cousot82 The strengths, which do not fully exist in current

systems, are: the verification system as guarantor ofCousot, P., and R. Cousot. “Induction Principles for
logical soundness, as processor of trivial detail inProving Invariance Properties of Programs.” In
proofs, and as tracker of re-verification needs whenTools and Notions for Program Construction,
specifications change.D. Neel, ed. Cambridge, England: Cambridge Uni-

versity Press, 1982, 75-119.
Cristian84

Abstract: We propose sixteen sound and complete Cristian, F. “Correct and Robust Programs.” IEEE
induction principles for proving program in- Trans. Software Eng. SE-10 (1984), 163-174.variance properties. We study their relationships
and show that they can be derived from each other Abstract: The design of programs which are both
by commuting mathematical transformations. Only correct and robust is investigated. It is argued that
five of these induction principles correspond to al- the notion of an exception is a valuable tool for
ready known invariance proof methods. We choose structuring the specification, design, verification,
a non-conventional induction principle and con- and modification of such programs. The syntax and
struct corresponding partial correctness, non- semantics of a language with procedures and ex-
termination and clean behavior proof methods. ception handling are presented. A deductive system
When constructing these new proof methods, we in- is proposed for proving total correctness and
formally apply our mathematical approach robustness properties of programs written in this
published earlier. This essentially consists in language.
decomposing the global inductive invariant in-

The system is both sound and complete. It supportsvolved in the induction principle into an equivalent
proof modularization, in that it allows one to reasonset of local invariants and in deriving the cor-

SEI-CM-20-1.0 Draft For Public Review 15

Formal Verification of Programs

separately about fault-free and fault-tolerant system should be required reading for every computer sci-
properties. Since the programming language con- entist.
sidered closely resembles CLU or Ada, the
presented deductive system is easily adaptable for Dershowitz81
verifying total correctness and robustness Dershowitz, N., and Z. Manna. “Inference Rules forproperties of programs written in these, or similar,

Program Annotation.” IEEE Trans. Software Eng.languages.
SE-7 (1981), 207-222.

The main advantage of Cristian’s approach over
Abstract: Methods are presented whereby ansimilar approaches is that the effect of faults, which
Algol-like program given together with its specifi-are detected as occurrences of exceptions, can be
cations can be documented automatically. The pro-treated separately from the verification of fault-free
gram is incrementally annotated with invariantprogram properties.
relations that hold between program variables at
intermediate points in the program text and explain

Culik83 the actual workings of a program regardless of
Culik, K., and M. M. Rizki. “Logic versus Math- whether it is correct. Thus, this documentation can
ematics in Computer Science Education.” ACM be used for proving correctness of programs or may

serve as an aid in debugging incorrect programs.SIGCSE Bulletin 15, 1 (Feb. 1983), 14-20.

The annotation techniques are formulated asAbstract: Informal mathematical proofs admit and
Hoare-like inference rules that derive invariantsrequire interpretation while formal logic proofs
from the assignment statements, from the controlsuppress (abstract from) meanings. The former is
structure of the program, or, heuristically, fromclosely related to problem solving and computer
suggested invariants. The application of these rulesprogramming. The latter, which is commonly used
is demonstrated by examples that have run on anfor proving program correctness, complicates this
experimental implementation.procedure because it separates problem solving

from programming. A constructive mathematical The abstract conveys both the content and the intent
proof in finite discrete mathematics of an existential of this important paper very well. The references
theorem is a computer program if the pertinent data give excellent coverage of earlier work.
structures and functions are expressed in a pro-
gramming language. Several detailed examples of

Dijkstra75graph theoretical problems and theorems are
presented along with their constructive proofs and Dijkstra, E. W. “Guarded Commands, Nondeter-
corresponding programs. minacy and Formal Derivation of Programs.” Comm.

ACM 18 (1975), 453-457.One can gain important insights regarding programs
and their proofs from this paper, without necessarily Abstract: So-called “guarded commands” are in-
agreeing with all of the authors’ conclusions. troduced as a building block for alternative and re-

petitive constructs that allow nondeterministic pro-
gram components for which at least the activityDeMillo79
evoked, but possibly even the final state, is not nec-DeMillo, R. A., R. J. Lipton, and A. J. Perlis.
essarily uniquely determined by the initial state.“Social Processes and Proofs of Theorems and
For the formal derivation of programs expressed inPrograms.” Comm. ACM 22 (1979), 271-280. terms of these constructs, a calculus will be shown.

Abstract: It is argued that formal verification of This paper introduced weakest preconditions.
programs, no matter how obtained, will not play the
same key role in the development of computer sci-

Dijkstra76ence and software engineering as proofs do in
Dijkstra, E. W. A Discipline of Programming.mathematics. Furthermore the absence of con-

tinuity, the inevitability of change, and the com- Englewood Cliffs, N. J.: Prentice-Hall, 1976.
plexity of specification of significantly many real

Weakest preconditions expounded by the masterprograms make the formal verification process diffi-
himself. The book suffers from the absence of ancult to justify and manage. It is felt that ease of
index and a bibliography.formal verification should not dominate program

language design.
Dromey88

This controversial article argues that program verifi-
Dromey, R. G. “Systematic Program Development.”cation is impracticable except, perhaps, in some in-
IEEE Trans. Software Eng. SE-14 (1988), 12-29.stances. Although these instances are not as few as

the authors imply (see [Cheheyl81], for example), Abstract: A constructive method of program devel-
some of the arguments of the article are valid, and it opment is presented. It is based on a simple strat-

16 Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

egy for problem decomposition that is claimed to be both code and axioms to evaluate the test data. Al-
more supportive of goal-oriented programming though a successful test does not conclusively dem-
than the Wirth-Dijkstra top-down refinement meth- onstrate the consistency of axioms and code, in
od. With the proposed method, a program is devel- practice the tests are seldom successful, revealing
oped by making a sequence of refinements, each of errors. The advantage over conventional program-
which can establish the postcondition for a cor- ming systems is threefold:
responding sequence of progressively weaker (1) The presence of the axioms eliminates the needpreconditions until a mechanism has been com- for a test oracle; only inputs need be supplied.posed that will establish the postcondition for the
original given precondition for the problem. The (2) Testing is automated: a user writes axioms, im-
strategy can minimize case analysis, simplify con- plementations, and test points; the system writes the
structive program proofs, and ensure a correspon- test drivers.
dence between program structure and data struc- (3) The results of tests are often surprising andture. helpful because it is difficult to get away with

“trivial” tests: what is not significant for the code isOften the postcondition for a program is given in a
liable to be a severe test of the axioms, and viceform that makes it difficult to construct a program
versa.that will satisfy this postcondition. This paper deals

with transformations of the postcondition that make The reader should note that the testing of implemen-
this task easier. tations of data abstractions against their algebraic

specifications can reveal errors in either.
Dunlop82
Dunlop, D. D., and V. R. Basili. “A Comparative Gannon87
Analysis of Functional Correctness.” ACM Comput- Gannon, J. D., R. G. Hamlet, and H. D. Mills.
ing Surveys 14 (1982), 229-244. “Theory of Modules.” IEEE Trans. Software Eng.

SE-13 (1987), 820-829.Abstract: The functional correctness technique is
presented and discussed. It is also explained that Abstract: Because large-scale software develop-
the underlying theory has an implication for the ment is a struggle against internal program com-
derivation of loop invariants. The functional verifi- plexity, the modules into which programs are divi-
cation conditions concerning program loops are ded play a central role in software engineering. A
then shown to be a specialization of the commonly module encapsulating a data type allows the pro-
used inductive assertion verification conditions. grammer to ignore both the details of its operation,
Next, the functional technique is compared and con- and its value representations. It is a primary
trasted with subgoal induction. Finally, the diffi- strength of program proving that as modules divide
culty of proving initialized loop programs is ex- a program, making it easier to understand, so do
amined in light of both the inductive assertion and they divide its proof. Each module can be verified
functional correctness theories. in isolation, then its internal details ignored in a

proof of its use. This paper describes proofs ofA brief overview of functional correctness with a
module abstraction based on functional semantics,discussion of its theoretical foundations.
and contrasts this with the Alphard formalism based
on Hoare logic.Gannon81
In this, one of a series of papers on functional cor-Gannon, J., P. McMullin, and R. Hamlet. “Data-
rectness, modules are identified as data types. FirstAbstraction Implementation, Specification, and
a formal semantics of modules is developed; this isTesting.” ACM Trans. Prog. Lang. and Syst. 3
then used to formulate a theory for proving module(1981), 211-223.
implementations correct with respect to their speci-

Abstract: A compiler-based system DAISTS that fications. The approach is illustrated with an ex-
combines a data-abstraction implementation lan- ample, the data type of rational numbers. The Al-
guage (derived from the Simula class) with specifi- phard formalism is described in [Shaw81].
cation by algebraic axioms is described. The com-
piler, presented with two independent syntactic ob- Gehani86
jects in the axioms and implementation code, com-

Gehani, N., and A. D. McGettrick, eds. Softwarepiles a “program” that consists of the former as test
Specification Techniques. Wokingham, England:driver for the latter. Data points, in the form of
Addison-Wesley, 1986.expressions using the abstract functions and con-

stant values, are fed to this program to determine if A collection of 21 papers, most of which have con-
the implementation and axioms agree. Along the tributed significantly to shaping the field of soft-
way, structural testing measures can be applied to ware specification and verification.

SEI-CM-20-1.0 Draft For Public Review 17

Formal Verification of Programs

module hierarchies, “data constraints” (for dataGenesereth87
abstraction) and multiplex institutions (for combin-Genesereth, M. R., and N. J. Nilsson. Logical Foun-
ing multiple logical systems). In addition, institu-dations of Artificial Intelligence. Los Altos, Calif.:
tion morphisms support the transfer of results (asMorgan Kaufmann, 1987.
well as associated artifacts, such as theorem
provers) from one language to another. More gen-Chapters 3-5 of this book give a good introduction
erally, institutions are intended to support as muchto logic, particularly to uses of the resolution prin-
computer science as possible independently of theciple.
underlying logical system.

Goguen78 This viewpoint extends from specification languages
to programming languages, where, in addition toGoguen, J. A., J. W. Thatcher, and E. R. Wagner.
the programming-in-the-large features mentioned“An Initial Algebra Approach to the Specification,
above, it provides a precise basis for a “wideCorrectness, and Implementation of Abstract Data
spectrum” integration of programming and specifi-Types.” In Current Trends in Programming Method-
cations. A logical programming language is oneology, Vol. 4, R. T. Yeh, ed. Englewood Cliffs, N. J.: whose statements are sentences in an institution,

Prentice-Hall, 1978, 80-149. whose operational semantics is based upon deduc-
tion in that institution, giving a “closed world” forAbstract: Abstract data types have been claimed a
a program. This notion encompasses a number ofpowerful tool in programming (as in Simula and
modern programming paradigms, including func-CLU), both from the viewpoint of user convenience
tional, logic, and object-oriented, and has been use-and that of software reliability. Recently algebra
ful in unifying these paradigms, by unifying theirhas emerged as a promising method for the specifi-
underlying institutions, as well as in providing themcation of abstract data types; this makes it possible
with sophisticated facilities for data abstraction andto prove the correctness of implementations of ab-
programming-in-the-large.stract types. It also raises the question of the cor-

rectness of the specifications and the proper method This wide-ranging but somewhat technical paper
for handling run-time errors in abstract types. Un- contains useful references to earlier work on institu-
fortunately not all the algebra underlying these is- tions.
sues is entirely trivial, nor has it been adequately
developed or explained. In this chapter we show

Good85how a reasonable notation for many-sorted al-
Good, D. “Mechanical Proofs About Computergebras makes them just as manageable as one-

sorted (universal) algebras, and we present com- Programs.” In Mathematical Logic and Program-
paratively simple yet completely rigorous state- ming Languages, C. A. R. Hoare and J. C. Shep-
ments of the major algebraic issues underlying ab- herdson, eds. Englewood Cliffs, N. J.: Prentice-
stract data types. We present a number of specifi- Hall, 1985, 55-75.
cations, with correctness proofs for some; the issue

Abstract: The Gypsy verification environment is aof error messages is thoroughly explained, and the
large computer program that supports the devel-issue of implementations is broached.
opment of software systems and formal, mathemati-

This is an important contribution to the literature on cal proofs about their behavior. The environment
abstract data types, but its authors assume provides conventional development tools, such as a
familiarity with some fairly advanced mathematics. parser for the Gypsy language, an editor and a

compiler. These are used to evolve a library of
components that define both the software andGoguen86
precise specifications about its desired behaviour.Goguen, J. A. “One, None, A Hundred Thousand
The environment also has a verification conditionSpecification Languages.” In Proc. IFIP World Con-
generator that automatically transforms a softwaregress 1986. Amsterdam: North-Holland, 1986,
component and its specification into logical for-995-1003. mulas that are sufficient to prove that the compo-
nent always runs according to specification. Facil-Abstract: Many different languages have been pro-
ities for constructing formal, mechanical proofs ofposed for specification, verification, and design in
these formulas are also provided. Many of thesecomputer science; moreover, these languages are
proofs are completed automatically without humanbased upon many different logical systems. In an
intervention. The capabilities of the Gypsy systemattempt to comprehend this diversity, the theory of
and the results of its application are discussed.institutions formalizes the intuitive notion of a

“logical system.” A number of general linguistic An outline of the Gypsy system. In addition to the
features have been defined “institutionally” and are conventional tools of text editor, parser, pretty-
available for any language based upon a suitable printer, interpreter, compiler, and Ada translator, the
institution. These features include generic modules,

18 Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

[Dijkstra76] and explained in [Gries81]. Neverthe-system also contains a verification condition gener-
less, its use still poses problems for some. The pur-ator, a simplifier, a proof checker, and an optimizer.
pose of this paper is to provide further explanation.The verification condition generator produces logi-
Two problems are solved that, without this furthercal conditions that are sufficient to verify that an
explanation, seem difficult.implementation meets its specification, and the op-

timizer produces logical conditions that guarantee
The two problems are the determination of a non-the validity of various program optimizations. The
empty sequence of adjacent array elements whosesimplifier reduces the complexity of logical expres-
sum is a minimum, and the finding of the largestsions, and the proof checker performs truth-
square of true elements in a rectangular Booleanpreserving transformations of logical expressions.
matrix.The proof checker is interactive.

Guttag78aGries79a
Guttag, J. V., and J. J. Horning. “The AlgebraicGries, D. “Is Sometime Ever Better Than Always?”
Specification of Abstract Data Types.” Acta Infor-ACM Trans. Prog. Lang. and Syst. 1 (1979),
matica 10 (1978), 27-52.258-265.

Abstract: There have been many recent proposalsAbstract: The “intermittent assertion” method for
for embedding abstract data types in programmingproving programs correct is explained and com-
languages. In order to reason about programspared with the conventional methods. Simple con-
using abstract data types, it is desirable to specifyventional proofs of iterative algorithms that com-
their properties at an abstract level, independent ofpute recursively defined functions, including
any particular implementation. This paper presentsAckermann’s function, are given.
an algebraic technique for such specifications, de-
velops some of the formal properties of the tech-Gries shows by means of examples of program
nique, and shows that these provide useful guide-proofs that the conventional approach can be as ef-
lines for the construction of adequate specifications.fective as that of intermittent assertions.

This paper introduces the concept of sufficient com-
Gries79b pleteness of an algebraic specification of a data
Gries, D. “The Schorr-Waite Graph Marking type.
Algorithm.” Acta Informatica 11 (1979), 223-232.

Guttag78bAbstract: An explanation is given of the Schorr-
Guttag, J. V., E. Horowitz, and D. R. Musser.Waite algorithm for marking all nodes of a directed
“Abstract Data Types and Software Validation.”graph that are reachable from one given node,

using the axiomatic method. Comm. ACM 21 (1978), 1048-1064.

The weakest precondition approach is used to dem- Abstract: A data abstraction can be naturally spec-
ified using algebraic axioms. The virtue of theseonstrate the correctness of the Schorr-Waite algo-
axioms is that they permit a representation-rithm, which is a method for traversing a structure
independent formal specification of a data type. Anwithout the use of a stack. This is a companion
example is given which shows how to employ al-paper to [Topor79].
gebraic axioms at successive levels of implemen-
tation. The major thrust of the paper is twofold.Gries81
First, it is shown how the use of algebraicGries, D. The Science of Programming. New York: axiomatizations can simplify the process of proving

Springer-Verlag, 1981. the correctness of an implementation of an abstract
data type. Second, semi-automatic tools are de-The first part of this book is an excellent source of
scribed which can be used both to automate suchmaterial on logic. Gries believes that a program and
proofs of correctness and to derive an immediateits specification, in the form of assertions, should be
implementation from the axioms. This implemen-developed side-by-side. This can work very well
tation allows for limited testing of programs at de-for programming-in-the-small.
sign time, before a conventional implementation is
accomplished.

Gries82
The abstract conveys the content of this importantGries, D. “A Note on a Standard Strategy for Devel-
paper very well.oping Loop Invariants and Loops.” Science of Com-

puter Programming 2 (1982), 207-214.

Abstract: A by-now-standard strategy for devel-
oping a loop invariant and loop was developed in

SEI-CM-20-1.0 Draft For Public Review 19

Formal Verification of Programs

a more general assertion structure must be pro-Guttag80
vided. The symbolic execution tree of such pro-Guttag, J., and J. J. Horning. “Formal Specification
grams must be traversed inductively rather than ex-as a Design Tool.” In Software Specification
plicitly. This leads naturally to the use of addi-Techniques, N. Gehani and A. D. McGettrick, eds.
tional assertions which are called “inductive

Reading, Mass.: Addison-Wesley, 1986, 187-208. assertions.”
This paper advocates the use of formal specifica- Earlier approaches to symbolic execution put this
tions and develops a formal specification of a dis- technique somewhere between testing and formal
play system. Section 4 is relevant here. It deals verification. Here, however, the combination of
with the formalization of questions such as “If I add symbolic execution with the use of inductive asser-
the same component to the contents of two pictures tions results in a true variant of formal verification.
that appear to be identical, will the resulting pic-
tures also appear to be identical?” and with the for-

Henderson86mal derivation of answers to the questions from the
Henderson, P. “Functional Programming, Formalspecifications. Although not program proving, this
Specifications, and Rapid Prototyping.” IEEE Trans.is a formal approach to software validation.
Software Eng. SE-12 (1986), 241-250.

Guttag85 Abstract: Functional programming has enormous
Guttag, J. V., J. J. Horning, and J. M. Wing. “The potential for reducing the high cost of software de-
Larch Family of Specification Languages.” IEEE velopment. Because of the simple mathematical
Software 2, 5 (Sept. 1985), 24-36. basis of functional programming it is easier to de-

sign correct programs in a purely functional style
Abstract: Larch specifications are two-tiered. than in a traditional imperative style. We argue
Each one has a component written in an algebraic here that functional programs combine the clarity
language and another tailored to a programming required for the formal specification of software de-
language. sign with the ability to validate the design by execu-

tion. As such they are ideal for rapidly prototypingThe two-tiered approach permits Larch to bring to-
a design as it is developed. We give an examplegether abstract data types and programming in-the-
which is larger than those traditionally used to ex-large.
plain functional programming. We use this example
to illustrate a method of software design which ef-

Hantler76 ficiently and reliably turns an informal description
Hantler, S. L., and J. C. King. “An Introduction to of requirements into an executable formal specifi-
Proving the Correctness of Programs.” ACM Com- cation.
puting Surveys 8 (1976), 331-353.

The intent of Henderson’s paper is to support the
Abstract: This paper explains, in an introductory view that functional programs are their own specifi-
fashion, the method of specifying the correct be- cations and that functional programming should,
havior of a program by the use of input/output therefore, become a primary tool in the software
assertions and describes one method for showing development process.
that the program is correct with respect to those
assertions. An initial assertion characterizes con- Hoare69
ditions expected to be true upon entry to the pro-

Hoare, C. A. R. “An Axiomatic Basis for Computergram and a final assertion characterizes conditions
Programming.” Comm. ACM 12 (1969), 576-580,expected to be true upon exit from the program.
583.When a program contains no branches, a technique

known as symbolic execution can be used to show Abstract: In this paper an attempt is made to ex-
that the truth of the initial assertion upon entry plore the logical foundations of computer program-
guarantees the truth of the final assertion upon exit. ming by use of techniques which were first applied
More generally, for a program with branches, one in the study of geometry and have later been ex-
can define a symbolic execution tree. If there is an tended to other branches of mathematics. This in-
upper bound on the number of times each loop in volves the elucidation of sets of axioms and rules of
such a program may be executed, a proof of cor- inference which can be used in proofs of the
rectness can be given by a simple traversal of the properties of computer programs. Examples are
(finite) symbolic execution tree. given of such axioms and rules, and a formal proof

of a simple theorem is displayed. Finally, it isHowever, for most programs, no fixed bound on the
argued that important advantages, both theoreticalnumber of times each loop is executed exists and the
and practical, may follow from a pursuance of thesecorresponding symbolic execution tree is infinite.
topics.In order to prove the correctness of such programs,

20 Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

The original paper on Hoare’s method. The impor- Jones81
tant theoretical and practical advantages alluded to Jones, N. D., and S. S. Muchnick. “Complexity of
in the abstract have indeed followed from a pur- Flow Analysis, Inductive Assertion Synthesis and a
suance of the topics of this paper. Language Due to Dijkstra.” In Program Flow

Analysis, S. S. Muchnick and N. D. Jones, eds.
Hoare71 Englewood Cliffs, N. J.: Prentice-Hall, 1981,
Hoare, C. A. R. “Procedures and Parameters—An 380-393.
Axiomatic Approach.” In Symposium on Semantics

The authors question the practicability ofof Algorithmic Languages, E. Engeler, ed. Berlin:
mechanized verification of arbitrary programs onSpringer-Verlag, 1971, 102-116. Springer-Verlag the basis of their observation that even for very

Lecture Notes in Mathematics, No. 188. simple programs written in a simple programming
language, the lengths of their proofs may not haveThe first paper to extend the method of [Hoare69] to
polynomial bounds.include procedures. Better treatments of this topic

are to be found in [Martin83] and [Gries81].
King80
King, J. C. “Program Correctness: On InductiveHoare72
Assertion Methods.” IEEE Trans. Software Eng.Hoare, C. A. R. “Proof of Correctness of Data
SE-6 (1980), 465-479.Representations.” Acta Informatica 1 (1972),

271-281. Abstract: A study of several of the proof of correct-
ness methods is presented. In particular, the formAbstract: A powerful method of simplifying the
of induction used is explored in detail. A relationalproofs of program correctness is suggested; and
semantic model for programming languages is in-some new light is shed on the problem of functions
troduced and its relation to predicate transformerswith side-effects.
is explored. A rather elementary viewpoint is taken

Here Hoare considers correctness of data represen- in order to expose, as simply as possible, the basic
tations, i.e., demonstrations that a concrete repre- differences of the methods and the underlying prin-
sentation exhibits all the properties expected of it by ciples involved. These results were obtained by at-
an “abstract program.” tempting to thoroughly understand the “subgoal

induction” method.

Hoare73 Subgoal induction [Morris77] is compared to earlier
Hoare, C. A. R. and N. Wirth. “An Axiomatic Defi- approaches.
nition of the Programming Language Pascal.” Acta
Informatica 2 (1973), 335-355. Kowalski85

Kowalski, R. “The Relation Between Logic Pro-Abstract: The axiomatic definition method pro-
gramming and Logic Specification.” Inposed in [Hoare69] is extended and applied to de-

fine the meaning of the programming language Pas- Mathematical Logic and Programming Languages,
cal. The whole language is covered with the excep- C. A. R. Hoare and J. C. Shepherdson, eds.
tion of real arithmetic and goto statements. Englewood Cliffs, N. J.: Prentice-Hall, 1985, 11-27.
This paper showed that the axiomatic approach does Abstract: Formal logic is widely accepted as a pro-
not have to be confined to “toy” programming lan- gram specification language in computing science.
guages. It is ideally suited to the representation of knowl-

edge and the description of problems without
regard to the choice of programming language. ItsHoare87
use as a specification language is compatible notHoare, C. A. R. “An Overview of Some Formal
only with conventional programming languages butMethods for Program Design.” Computer 20, 9
also with programming languages based entirely on(Sept. 1987), 85-91.
logic itself. In this paper I shall investigate the
relation that holds when both programs and pro-Abstract: The design of a small program, like that
gram specifications are expressed in formal logic.of a large system, requires a variety of formal meth-

ods and notations, related by mathematical reason- In many cases, when a specification completely de-
ing. fines the relations to be computed, there is no syn-

tactic distinction between specification and pro-Hoare advocates two formal specifications for soft-
gram. Moreover the same mechanism that is usedware of critical importance, which are to be shown
to execute logic programs, namely automatedconsistent or equivalent by means of a proof.
deduction, can also be used to execute logic specifi-

SEI-CM-20-1.0 Draft For Public Review 21

Formal Verification of Programs

cations. The only difference between a complete MIT Press, 1986. Distributed by McGraw-Hill.
specification and a program is one of efficiency. A

This textbook on rigorous program development isprogram is more efficient than a specification.
based on the programming language CLU. Chapter

Kowalski argues that a complete logical specifica- 11 deals with verification.
tion is indistinguishable from a logical program; the
only observable difference is one of efficiency. Loeckx84

Loeckx, J., and K. Sieber. The Foundations of Pro-
Kowaltowski77 gram Verification. Chichester and Stuttgart: Wiley-
Kowaltowski, T. “Axiomatic Approach to Side Ef- Teubner, 1984.
fects and General Jumps.” Acta Informatica 7

This book is strong on the mathematical foun-(1977), 357-360.
dations of program verification and contains a

Abstract: Hoare’s axiomatic method is applied in thorough discussion of the semantics of program-
order to describe two controversial features: side ming languages. It introduces several approaches to
effects and general jumps. The relative simplicity of verification, including Hoare’s axiomatic approach
this description suggests that reasons for the exclu- and Milner’s LCF; but it has few examples. This
sion of these features from programming languages limits its usefulness as a textbook. (A second edi-
are subtler than it has been thought. tion, published in 1987, does not seem to have gone

beyond the correction of misprints—at least, theThe simplicity of the description alluded to in the
bibliography has not been updated.)abstract does not imply simplicity of proofs of pro-

grams with side effects and general jumps, or even
Luckham79an ability to understand such programs.
Luckham, D. C., and N. Suzuki. “Verification of Ar-
ray, Record, and Pointer Operations in Pascal.” ACMLevitt85
Trans. Prog. Lang. and Syst. 1 (1979), 226-244.Proc. VERkshop III. K. N. Levitt, S. D. Crocker,

and D. Craigen, eds. ACM Software Engineering Abstract: A practical method is presented for auto-
Notes 10, 4 (Aug. 1985). mating in a uniform way the verification of Pascal

programs that operate on the standard Pascal dataThe most recent workshop on formal verification. structures Array, Record, and Pointer. New asser-Papers address the state of current technology, the- tion language primitives are introduced for describ-
ory, and applications. ing computational effects of operations on these

data structures. Axioms defining the semantics of
Lindsay88 the new primitives are given. Proof rules for stan-

dard Pascal operations on data structures are thenLindsay, P. A. “A Survey of Mechanical Support for
defined using the extended assertion language. AnFormal Reasoning.” Software Engineering J. 3
axiomatic rule for the Pascal storage allocation op-(1988), 3-27.
eration, NEW, is also given. These rules have been

This survey examines seven support systems in de- implemented in the Stanford Pascal program veri-
tail and introduces eleven others. The systems dis- fier. Examples illustrating the verification of pro-
cussed in detail: LCF (Logic for Computable grams which operate on list structures implemented
Functions), NuPRL, Veritas, Isabelle, Affirm, the with pointers and records are discussed. These in-
Boyer-Moore system, and Gypsy. The bibliography clude programs with side effects.
contains 87 items.

The examples of this paper deal with side effects in
pointer data structures, reachability in linear lists,

Linger79 and the implementation of an event queue.
Linger, R. C., H. D. Mills, and B. I. Witt. Structured
Programming: Theory and Practice. Reading, Luckham80
Mass.: Addison-Wesley, 1979. Luckham, D. C., and W. Polak. “Ada Exception

Handling: An Axiomatic Approach.” ACM Trans.In the functional correctness setting, program cor-
rectness is defined as a correspondence between a Prog. Lang. and Syst. 2 (1980), 225-233.
program and its intended function. This notion is

Abstract: A method of documenting exceptionthoroughly explored in Chapter 6 of this book.
propagation and handling in Ada programs is pro-
posed. Exception propagation declarations are in-

Liskov86 troduced as a new component of Ada specifications,
Liskov, B., and J. Guttag. Abstraction and Specifi- permitting documentation of those exceptions that
cation in Program Development. Cambridge, Mass.: can be propagated by a subprogram. Exception

22 Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

handlers are documented by entry assertions. when control passes through the corresponding
Axioms and proof rules for Ada exceptions are point, but that need not be true every time. The
given. These rules are simple extensions of previ- method, introduced by Burstall, promises to provide
ous rules for Pascal and define an axiomatic a valuable complement to the more conventional
semantics of Ada exceptions. As a result, Ada pro- methods.
grams specified according to the method can be The intermittent-assertion method is presented withanalyzed by formal proof techniques for consistency a number of examples of correctness and termina-with their specifications, even if they employ excep- tion proofs. Some of these proofs are markedlytion propagation and handling to achieve required simpler than their conventional counterparts. Onresults (i.e., nonerror situations). Example verifica- the other hand, it is shown that a proof of correct-tions are given. ness or termination by any of the conventional tech-

niques can be rephrased directly as a proof usingBy dealing with a rather specialized topic, this arti-
intermittent assertions. Finally, it is shown how thecle demonstrates further that formal proofs can be
intermittent-assertion method can be applied toapplied to programs written in very rich languages.
prove the validity of program transformations and
the correctness of continuously operating programs.MacQueen85
This is an elaboration of the technique introduced inMacQueen, D. B., and D. T. Sannella.
[Burstall74].“Completeness of Proof Systems for Equational

Specifications.” IEEE Trans. Software Eng. SE-11
(1985), 454-461. Manna81

Manna, Z., and A. Pnueli. “Verification of Concur-Abstract: Contrary to popular belief, equational
rent Programs: The Temporal Framework.” In Thelogic with induction is not complete for initial
Correctness Problem in Computer Science,models of equational specifications. Indeed, under
R. S. Boyer and J. S. Moore, eds. London: Aca-some regimes (the Clear specification language and
demic Press, 1981, 215-273.most other algebraic specification languages) no

proof system exists which is complete even with
Abstract: This is the first in a series of reportsrespect to ground equations. A collection of known
describing the application of Temporal Logic to theresults is presented along with some new obser-
specification and verification of concurrent pro-vations.
grams.

The significance of this paper is largely theoretical. We first introduce Temporal Logic as a tool for
However, its results put limits on reasoning from reasoning about sequences of states. Models of
specifications. For example, one may ask whether a concurrent programs based both on transition
program will respond in a particular way to a given graphs and on linear-text representations are
input. It may well do so, but there may be no way presented and the notions of concurrent and fair
to prove this from the specifications. executions are defined.

The general temporal language is then specializedManna74
to reason about those execution states and execu-

Manna, Z. Mathematical Theory of Computation. tion sequences that are fair computations of concur-
New York: McGraw-Hill, 1974. rent programs. Subsequently, the language is used

to describe properties of concurrent programs.Although the parts of the book that deal with pro-
gram verification are by now rather dated, this book The set of interesting properties is classified into
remains an excellent introduction to the predicate Invariance (Safety), Eventuality (Liveness) and
calculus and to fixpoints in the verification of recur- Precedence (Until) properties. Among the
sive programs. properties studied are: Partial Correctness, Global

Invariance, Clean Behavior, Mutual Exclusion,
Deadlock Absence, Termination, Total Correctness,Manna78
Intermittent Assertions, Accessibility, StarvationManna, Z., and R. Waldinger. “Is ‘Sometime’ Some-
Freedom, Responsiveness, Safe Liveness, Absencetimes Better Than ‘Always’? Intermittent Assertions of Unsolicited Response, Fair Responsiveness and

in Proving Program Correctness.” Comm. ACM 21 Precedence.
(1978), 159-172.

In the following reports of this series we use the
Abstract: This paper explores a technique for prov- temporal formalism to develop proof methodologies
ing the correctness and termination of programs for proving the properties discussed here.
simultaneously. This approach, the “intermittent-

The earlier parts of this paper provide a useful intro-assertion” method, involves documenting the pro-
duction to temporal logic and to the issues of func-gram with assertions that must be true at some time

SEI-CM-20-1.0 Draft For Public Review 23

Formal Verification of Programs

tional programming. much to a systematization of the rather confusing
field of the development of correct programs by
reasoning about them during their construction.Manna85
The authors are rather pessimistic on the prac-Manna, Z., and R. Waldinger. The Logical Basis for
ticability of rigorous program development in-the-

Computer Programming, Vol. 1: Deductive large and on fully automatic programming in gen-
Reasoning. Reading, Mass.: Addison-Wesley, 1985. eral. A very important paper.

A thorough exploration of some basic data
types—such as non-negative integers, trees, lists, Mills86
and sets—as mathematical theories, and reasoning Mills, H. D., V. R. Basili, J. D. Gannon, and
about them. R. G. Hamlet. Principles of Computer Program-

ming, A Mathematical Approach. Newton, Mass.:
Martin83 Allyn and Bacon, 1986.
Martin, A. J. “A General Proof Rule for Procedures

This book deals with functional correctness as itin Predicate Transformer Semantics.” Acta Infor-
would be covered in an introductory computer sci-

matica 20 (1983), 301-313. ence course.
Abstract: A proof rule for the procedure call is
derived for procedures with value, result and value- Mills87
result parameters. It is extended to procedures with Mills, H. D., M. Dyer, and R. C. Linger.
unrestricted global variables and to recursive pro- “Cleanroom Software Engineering.” IEEE Software
cedures. Like D. Gries’s proof rule, it is based on 4, 5 (September 1987), 19-25.the substitution rule for assignment. However, it is
more general and much simpler to apply. Assume Abstract: Software quality can be engineered un-
that {U} S {V} has been proved about the proce- der statistical quality control and delivered with
dure body S. The proof rule for determining better quality. The Cleanroom process gives man-
whether a call establishes predicate E is based on agement an engineering approach to release reli-
finding an “adaptation” A satisfying A ∧V ⇒ E′, able products.
where E′ is derived from E by some substitution of
parameters. Morris77

Morris, J. H., and B. Wegbreit. “Program Verifica-
Mili86 tion by Subgoal Induction.” In Current Trends in
Mili, A., J. Desharnais, and J. R. Gagne. “Formal Programming Methodology, Vol. II: Program
Methods of Stepwise Refinement of Programs.” Validation, R. T. Yeh, ed. Englewood Cliffs, N. J.:
ACM Computing Surveys 18 (1986), 231-276. Prentice-Hall, 1977, 197-227.

Abstract: Of the many ways to express program Abstract: A new proof method, subgoal induction,
specifications, three of the most common are: as a is presented as an alternative or supplement to the
pair of assertions, an input assertion and an output the commonly used inductive assertion method. Its
assertion; as a function mapping legal inputs to major virtue is that it can often be used to prove a
correct outputs; or as a relation containing the loop’s correctness directly from its input-output
input/output pairs that are considered correct. The specification without the use of an invariant. The
construction of programs consists of mapping a po- relation between subgoal induction and other com-
tentially complex specification into a program by monly used induction rules is explored and, in par-
recursively decomposing complex specifications ticular, it is shown that subgoal induction can be
into simpler ones. We show how this decomposition used as a specialized form of computation induc-
takes place in all three modes of specification and tion. Finally, a set of sufficient conditions are
draw some conclusions on the nature of program- presented which guarantee that an input-output
ming. specification is strong enough for the induction step

of a proof by subgoal induction to be valid.The authors classify program design according to
the specification mode on which it is based. For The reading of this paper should be followed by that
each of the three modes listed in the abstract, the of Section 5 of [Dunlop82], where subgoal induction
authors provide a design system consisting of an is discussed as a generalization of functional cor-
assignment rule, decomposition rules, and a rectness.
generalization rule (systems A, F, and R,
respectively). They then use the rules to derive pro-

Naur82grams for the longest recurring subsequence prob-
Naur, P. “Formalization in Program Development.”lem (System A), sorting (System F), and right justi-
BIT 22 (1982), 437-453.fication of text (System R). This paper contributes

24 Draft For Public Review SEI-CM-20-1.0

Formal Verification of Programs

verification tools incorporated in a running systemAbstract: The concepts of specification and for-
called Affirm. Although developed for the specifi-malization, as relevant to the development of pro-
cation of abstract data types and the verification ofgrams, are introduced and discussed. It is found
their properties, the formalism embodied in Affirmthat certain arguments given for using particular
can also express the concepts underlying state tran-modes of expression in developing and proving pro-
sition machines. Such models easily express mostgrams correct are invalid. As illustration a formal-
of the events occurring in protocol systems, includ-ized description of Algol 60 is discussed and found
ing those of the users, their agent processes, and thedeficient. Emphasis on formalization is shown to
communication channels. The paper reviews thehave harmful effects on program development, such
basic concepts of state transition models and theas neglect of informal precision and simple for-
Affirm formalism and methodology and describesmalizations. A style of specifications using for-
their union. A detailed example, the alternating bitmalizations only to enhance intuitive understan-
protocol, illustrates various properties of interestdability is recommended.
for specification and verification. Other examples

A thoughtful critique of too formal an approach to explored using this formalism are briefly described
software development. It is most important to un- and the accumulated experience is discussed.
derstand that Naur is not opposed to all formaliza-

An excellent introduction to Affirm, and a demon-tions but only to those that obscure meaning.
stration of its practical utility in a realistic problem
domain.Reynolds81

Reynolds, J. C. The Craft of Programming.
Topor79Englewood Cliffs, N. J.: Prentice-Hall, 1981.
Topor, R. W. “The Correctness of the Schorr-Waite

A text on development of correct programs. The List Marking Algorithm.” Acta Informatica 11
section on interval diagrams for arrays is particu- (1979), 211-221.
larly important.

Abstract: This paper presents a relatively simple
proof of a nontrivial algorithm for marking theRombach87
nodes of a list structure. The proof separatesRombach, H. D. Software Specification: A
properties of the algorithm from properties of the

Framework. Curriculum Module SEI-CM-11-1.0, data on which it operates and is a significant appli-
Software Engineering Institute, Carnegie Mellon cation of the method of “intermittent assertions.”
University, Pittsburgh, Pa., Oct. 1987.

The correctness of the Schorr-Waite algorithm,
This module gives an overview of software specifi- which is a method for traversing a structure without
cation and provides a framework within which to the use of a stack, is demonstrated using the inter-
discuss specification of both process and product mittent assertion method of [Burstall74] and
types. [Manna78]. This is a companion paper to

[Gries79b].
Shaw81
Shaw, M., ed. Alphard: Form and Content. New Turner85
York: Springer-Verlag, 1981. Turner, D. A. “Functional Programs as Executable

Specifications.” In Mathematical Logic and Pro-The Alphard approach to programming puts very
gramming Languages, C. A. R. Hoare andheavy emphasis on abstractions and on the formal
J. C. Shepherdson, eds. Englewood Cliffs, N. J.:verification of implementations of such abstrac-
Prentice-Hall, 1985, 29-54.tions. Most of the ten papers in this collection deal

with verification issues. Abstract: To write specifications we need to be
able to define the data domains in which we are

Sunshine82 interested, such as numbers, lists, trees and graphs.
We also need to be able to define functions overSunshine, C. A., et al. “Specification and Verifica-
these domains. It is desirable that the notationtion of Communication Protocols in AFFIRM Using
should be higher order, so that function spaces canState Transition Models.” IEEE Trans. Software
themselves be treated as data domains. Finally,Eng. SE-8 (1982), 460-489.
given the potential for confusion in specifications

Abstract: It is becoming increasingly important involving a large number of data types, it is a prac-
that communication protocols be formally specified tical necessity that there should be a simple syntac-
and verified. This paper describes a particular tic discipline that ensures that only well typed ap-
approach—the state transition model—using a col- plications of functions can occur.
lection of mechanically supported specification and

A functional programming language with these

SEI-CM-20-1.0 Draft For Public Review 25

Formal Verification of Programs

properties is presented and its use as a specification mistakes, premature design decisions, ambiguities,
tool is demonstrated on a series of examples. Al- and incompleteness in the informal requirements.
though such a notation lacks the power of some We also discuss how Larch’s two-tiered specifica-
imaginable specification languages (for example, in tion method influenced our modifications to and ex-
not allowing existential quantifiers), it has the ad- trapolations from the requirements.
vantage that specifications written in it are always

Wing gives several examples of reasoning about theexecutable. The strengths and weaknesses of this
properties of a system on the basis of its formalapproach are discussed, and also the prospects for
specification.the use of purely functional languages in production

programming.
Wulf81

An exposition of the functional language Miranda, Wulf, W. A., M. Shaw, P. N. Hilfinger, and L. Flon.in which recursion equations are combined with
Fundamental Structures of Computer Science. Read-some notation from set theory. The set notation
ing, Mass.: Addison-Wesley, 1981.allows Miranda to be regarded as a language for

both specification and programming. This text introduces some of the basic concepts of
computer science. Sections on verification are dis-

Turski84 tributed throughout the text; Chapters 5, 11, and 17
are particularly relevant.Turski, W. M. “On Programming by Iterations.”

IEEE Trans. Software Eng. SE-10 (1984), 175-178.

Abstract: Iterative computations are considered in
this paper as a general problem-solving technique.
The loop invariant is derived from problem
properties rather than from program properties (as
is usual in programming literature). To this end,
the notion of equisolution states—a special subset
of space-state in which lie the iterated
trajectories—is introduced.

The approach described in the abstract is applied to
sorting.

Turski86
Turski, W. M. “And No Philosopher’s Stone,
Either.” In Proc. IFIP World Congress 1986.
Amsterdam: North-Holland, 1986, 1077-1080.

Turski argues that software consists of a formal
component to which formal logical verification ap-
plies, and of non-formal domain descriptions or sci-
entific theories that have to be experimentally vali-
dated (tested).

Wing87
Wing, J. M. “A Larch Specification of the Library
Problem.” In Proc. 4th Intl. Workshop on Software
Specification and Design, M. T. Harandi, ed. Silver
Spring, Md.: IEEE Computer Society Press, 1987,
34-41.

Abstract: A claim made by many in the formal
specification community is that forcing precision in
the early stages of program development can
greatly clarify the understanding of a client’s prob-
lem requirements. We help justify this claim via an
example by first walking through a Larch specifi-
cation of Kemmerer’s library problem and then dis-
cussing the questions that arose in our process of
formalization. Following this process helped reveal

26 Draft For Public Review SEI-CM-20-1.0

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

