
Formal Specification of Software

SEI Curriculum Module SEI-CM-8-1.0

October 1987

Alfs Berztiss
University of Pittsburgh

Software Engineering Institute
Carnegie Mellon University

This work was sponsored by the U.S. Department of Defense.

Draft For Public Review

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include model curricula, textbooks, educational software, and a variety of reports and proceedings.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Comments on SEI educational publications, reports concerning their use, and requests for additional information should
be addressed to the Director of Education, Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213.

Comments on this curriculum module may also be directed to the module author.

Alfs Berztiss
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

Copyright © 1987 by Carnegie Mellon University

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position.
It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

Formal Specification of Software

Contents

Capsule Description 1

Philosophy 1

Objectives 2

Prerequisite Knowledge 2

Module Content 3

Outline 3

Annotated Outline 3

Teaching Considerations 9

Suggested Schedules 9

Support Materials 9

Projects and Exercises 9

Bibliography 10

A support materials package, SEI-SM-8,
is available for this module.

SEI-CM-8-1.0 Draft For Public Review iii

Formal Specification of Software

Module Revision History

Version 1.0 (October 1987) Draft for public review

iv Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

Central to the development of a large software sys-Capsule Description
tem is a contract between the developer and a client.
This document expresses what the system is to ac-This module introduces methods for the formal spec-
complish in precise terms. Parts of the documentification of programs and large software systems,
can be expressed formally, i.e., in a language thatand reviews the domains of application of these
has formally defined syntax and semantics. Othermethods. Its emphasis is on the functional
parts cannot be so expressed. Our concern here isproperties of software. It does not deal with the
limited to the formal component.specification of programming languages, the specifi-

cation of user-computer interfaces, or the verifica- This module will
tion of programs. Neither does it attempt to cover • survey a range of formal specification
the specification of distributed systems. methods;

• establish a taxonomy of software, and re-
late specification methods to this
taxonomy;Philosophy

• expose students to a broad range of ex-
amples of actual formal specifications;The term specification has various interpretations.

• introduce validation of specifications;Under one interpretation, specification is the process
andof producing documents that prescribe the require-

ments, design, behavior and other characteristics of a • relate formal specification to topics such
system or system component [Standard83]. Under as knowledge representation, verifica-
this interpretation specification also denotes all the tion, transformation of specifications into
documents produced by the process. A requirements programs, and reusability.
statement defines what a software system is to do,

This module introduces material necessary to under-and a design document describes how the system is
stand current trends in the software developmentto do this. However, requirements are generally de-
process, which are in the direction of increased for-fined by iterating through two stages. The first stage
malism. It should be a prerequisite of modules thatproduces an informal statement in natural language.
deal with design. There is a close relationship be-This statement is then translated, as far as feasible,
tween requirements analysis, formal specification,into a precise language defined by formal syntax and
and design. This suggests that the material dealingsemantics. For lack of a separate term to describe
with these topics should be studied at about the samethis formal statement we shall call it specification,
time. Indeed, the three topics can be the basis for anor, when emphasis is needed, formal specification.
introductory course in software engineering.In our usage, then, specification denotes (1) the

process of producing various characterizations of
software, and (2) the product of a specific stage of
this process, namely a formal statement of what a
software system is to do, where the other products of
the specification process are an informal require-
ments statement and a design. To avoid unnecessary
repetition this document uses the term specification
to refer to the stage of the specification process that
produces specifications.

SEI-CM-8-1.0 Draft For Public Review 1

Formal Specification of Software

There needs to be some understanding of the placeObjectives
of formal specification in the total process of soft-
ware characterization. [Rombach87] deals with thisThere is an abundance of literature on formal speci-
topic in some detail.fication, with a variety of different approaches de-

veloped by different groups, such as programming
methodologists, information system developers, and
control system developers. One purpose of this
module is to introduce some measure of uniformity.

A student who has mastered the material of this
module can be expected to

• understand the central role of formal
specification in the software develop-
ment process;

• be able to partition a system into compo-
nents and apply appropriate specification
methods to these components;

• have participated in a number of specifi-
cation exercises, at least one of which
has been a group project, and to have
participated in the validation of specifi-
cations.

Because of the centrality of this module, ideally an
entire semester should be spent on it. However, it
can be combined with requirements analysis and de-
sign in a single course. The group project may have
to be omitted then, but it must be understood that the
experience of working in a team is an important
component of education in software engineering,
and this experience should still be provided as part
of some other module.

Prerequisite Knowledge

The student must have sufficient experience to be
able to appreciate the need for proper specifications.
This experience may have come from the ad hoc de-
velopment of a software system of some complexity
or, better still, from attempts to modify a poorly doc-
umented and poorly modularized system. Typically,
the student should have written programs containing
at least 500 lines of source code, and should have
experience with multiple implementations of stan-
dard data structures such as stacks and trees.

The student must have an understanding of discrete
mathematics at least equivalent to that provided by a
three-credit-hour college course. The need here is
for mathematical maturity, rather than specific
course content. Individual topics, such as predicate
logic with quantification, can be introduced as re-
quired in the module itself.

2 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

Module Content

f. Specification methodologiesOutline
3. Information-control systems

I. Principles of Formal Specification a. The SF specification language
1. Definition of formal specification b. Example: Library system
2. Requirements and specification c. Example: Elevator

a. Client-specifier interaction IV. The Process of Formal Specification
b. Abstraction of domain-specific concepts 1. Mechanics of specification
c. Modularization a. Specification teams
d. Validation b. The specification development log

3. Specification and design c. Graphical aids and other documentation
a. Declarative and operational styles d. An infrastructure for specification
b. Design as algorithm selection 2. Validation and verification
c. Transformational development of software a. Formal methods

II. Formal Specification of Programs b. Walkthroughs
1. Axiomatic specification c. Executable specifications
2. Abstract models 3. Reusability of specifications
3. Set theory

4. Predicate logic

5. Programming languages in specification
Annotated Outline

6. Evaluation of the specification methods
a. Abstract data types The detailed outline of this module is given in a de-
b. Data transformers clarative style, i.e., as a description of the various

aspects of formal specification of software, rather7. Examples
than as an imperative prescription.a. Data types: Nat0, set, stack, queue, etc
General references: [Berg82], [Birrell85], [Cohen86],b. Data transformer: Text formatter
[Freeman84], [Gehani86], [Liskov79], [Rama-

III. Formal Specification of Persistent Systems moorthy78], [Specs87].
1. Persistent data bases

a. Nature of information systems
I. Principles of Formal Specificationb. Conceptual schema

1. Definition of formal specificationc. Behavioral aspects

d. Temporal and spatial aspects of information Central to the software development process is a
contract between a client and a software developer.systems
The contract is prealgorithmic in that it defines thee. Specification of knowledge bases
observable properties of a software system without

f. Specification methodologies defining the methods that are to provide it with these
properties. This document has to capture both func-2. Processes
tional and non-functional properties of the software

a. Sequencing of events system to be developed. Functional properties de-
b. Synchronization of processes fine the outputs of the system; non-functional

properties relate to the processes by which the out-c. Real time
puts are obtained. An example of a functional prop-

d. Interaction with sensors erty is the requirement that no output line of a text
formatter be longer than 132 characters. The re-e. Fail-safe behavior
quirement that an elevator system respond to a call

SEI-CM-8-1.0 Draft For Public Review 3

Formal Specification of Software

within 10 seconds for 95% of all calls is non- References: [Beierle84], [Birrell85], [Boehm76],
functional. Some parts of the contract can be ex- [Parnas72].
pressed in a language with formal syntax and seman-

3. Specification and designtics—they constitute a formal specification.
a. Declarative and operational styles

In principle, functional properties can be specified
b. Design as algorithm selectionformally, but we do not have adequate languages for

the formal specification of many of the non- c. Transformational development of software
functional components of the contract. Still, as

Specifications follow either a declarative or an oper-much as possible should be formally specified, for
ational style. A declarative specification describesthree reasons. First, a contract should be un-
the result of an operation with no reference to theambiguous, and we need the precision of a formal
operation; an operational specification defines thespecification language to ensure this. Second, for-
process by which the result is obtained. Sometimesmalization imposes a uniform style on the contract.
a declarative definition can be so complicated thatThe third reason relates to verification, which estab-
the only sensible way to describe the result is tolishes that a software system is consistent with the
describe the process. However, the description ofcontract. Therefore, if the final software product is
the process should still be at an abstract level. Oneto be verified, its specification has to be comparable
advantage of the declarative style is that it gives thewith the product, and, because code is written in
designer complete freedom in algorithm selection,formally defined languages, specifications also have
but the operational style makes it possible to turnto be formal. Note, however, that in order to avoid a
specifications into software by means of transfor-bias towards a particular implementation, a specifi-
mations, i.e., to bypass the design phase.cation language should be independent of the lan-

guage of implementation of the software system. References: [Bauer81], [Beierle84], [Finance84],
[Gries81], [Liskov86], [Olive86], [Partsch83],References: [Anderson84], [Balzer79], [Freeman84],
[Partsch86], [Zave84].[Heininger80], [Parnas77].

II. Formal Specification of Programs2. Requirements and specification
1. Axiomatic specificationa. Client-specifier interaction

The algebra of sets can be defined by means ofb. Abstraction of domain-specific concepts
axioms that give precise meaning to operations suchc. Modularization
as union and complementation. But set algebra need

d. Validation not be regarded as a mathematical system alone. We
can interpret sets and operations on sets as a dataRequirements analysis and specification rarely fol-
type, and the axioms then provide a formal specifi-low each other in strict sequence. Rather, formal
cation of this data type. This notion has been ex-specification is an interactive process in which
tended to what are commonly known as data struc-clarifications of the requirements document have to
tures. The method is surveyed in [Berztiss83]; fur-be sought from the client, and the process of
ther examples can be found in [Cohen86] andclarification may well indicate defects in the require-
[Manna85]; [Ehrig85] provides a comprehensivements definition. A common vocabulary is estab-
treatment. [Burstall81] deals with the combination oflished in this interaction, and the most important en-
axiomatic specification with other specificationtities of the vocabulary become the data types for the
styles—[Goguen86] is a technical overview of laterapplication, i.e., the concrete entities of the appli-
development of this approach.cation are turned into abstract components of the

specification. Abstract data types are often identi- 2. Abstract models
fied with modules; modularization then may take

Implementation of data types specified by axioms isplace at some point in the requirements analysis or
rather difficult. Also, the axiomatic specification offormal specification stage.
some data structures requires an inordinately large

Up to some limit, the greater the investment in the number of axioms. Abstract modeling gets around
testing of a specification, the lower the total soft- these difficulties by the selection of an abstract im-
ware development cost. Hence, while a specifica- plementation of a data type in terms of a more basic
tion is being developed, it should be checked against type, e.g., a stack in terms of a sequence, and a stack
the client’s requirements to determine that it reflects operation is then described by the effects it has on
them faithfully. This is validation. Validation will the sequence. This approach is contrasted to
suggest changes in the specification; such changes axiomatic specification in [Liskov79]. It is used in
are easier to implement in a modularized specifi- the Alphard [Shaw81] and CLU [Liskov86] lan-
cation. guages, which permit both specification (by abstract

modeling) and implementation of data types. A dif-

4 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

ferent approach is to associate a state with each data tion language [Kowalski85]. For an interesting ex-
object and define operations in terms of state ample of a Prolog specification see [Veloso85].
changes [Claybrook82]. The Vienna Development Functional programming has also been used in spec-
Method (VDM) is a very elaborate language based ification [Turner85, Henderson86]. Both logical pro-
on the abstract model approach. An introduction grams and functional programs are regarded as their
with good examples can be found in [Cohen86]; own specifications, with "implementation" of a func-
some very large application studies are described in tional specification considered merely as a search
[Bjorner82]; [Jones78] is the reference manual. for greater efficiency.

3. Set theory 6. Evaluation of the specification methods
a. Abstract data typesA group at Oxford University has developed the

specification language Z, which is based on set the- b. Data transformers
ory and logic. A rather complicated symbolism is

Let us partition data types into three kinds. First arebuilt up by defining relations, functions, orders, se-
some fundamental data types, such as booleans,quences, and bags in terms of sets. This approach
reals, and integers. Next are basic structuring types,can be regarded as a variant of the abstract model
namely sets, bags, sequences, and maps (finiteapproach, with set theory providing the abstract
functions). The third kind consists of devices; theymodel. [Abrial80] is an early exposition of Z;
are used for the implementation of algorithms in the[Hayes87] contains extensive examples.
design phase. For the fundamental data types and

4. Predicate logic the basic structuring types axiomatic specification,
abstract models, and the set theoretical approach are

A computational unit (function, procedure) can be more or less equally easy to apply. The choice is
specified by predicates describing the output from then determined by other considerations. Either the
the unit. Generally two predicates are needed—one axiomatic or the set theoretical approach should be
defines the appearance of the output, the other re- used when the program derived from the specifi-
lates the output to the input. For example, sorting is cation is to be formally verified; the abstract model
specified by predicates that indicate that the output permits easier implementation. As regards devices,
of the unit is in fact sorted and that it is a permuta- some can be defined as special cases of sequences,
tion of the input. An excellent introduction to this e.g., stacks and queues, and arrays (sequences of
approach, and how it relates to program verification, sequences). Other devices need to be defined inde-
can be found in [Gries81]. Predicate logic is com- pendently, e.g., binary trees. With some devices the
bined with axiomatic specification in Larch. This number of axioms can become too large for
specification language has a common shared lan- axiomatic specification to be practicable, but the ab-
guage in which data types, called traits in Larch, are stract model approach and Z are both still ap-
defined axiomatically, and interface languages (one plicable.
for each implementation language under
consideration), in which operations from the traits Only some of the operations of an abstract data type
are used in predicative specification of program are regarded as basic, e.g., an operation that reads
units. For introductions to Larch see [Horning85], the top element of a stack. An operation that, say,
[Guttag85], and [Liskov86]; more detail can be found replaces the top two elements of a stack with a
in [Guttag86a] and [Guttag86b]. single new element is a derived operation. How-

ever, the distinction between basic and derived
5. Programming languages in specification operations is not sharp. In one context we might

regard matrix multiplication basic, in another de-We have already mentioned Alphard and CLU,
rived. Even the classification of types is not sharp:which can be regarded as languages for both specifi-
text may be regarded as fundamental or as a specialcation and programming. Use of Ada for specifi-
case of the sequence.cation has been advocated [Ada85], but this has to be

approached with some caution. If the specification
Still, we shall make a distinction between basic andis syntactically correct, then we already have a pro-
derived operations of a data type, and refer to thegram. Now, under the assumption that specification
latter as data transformers. A data transformer ac-is prealgorithmic, a program should not be regarded
cepts one or more objects as input and transformsas a specification, but programs, too, leave low-level
them into output objects. The specification has toalgorithms undefined (e.g., the algorithm for multi-
describe the output and relate the output to the input.plication implied by the expression a*b). Indeed,
For this predicate logic is the best choice, possiblysince both formal specifications and programs are
applied in the context of Larch or Z.written in languages with formal syntax and seman-

tics, the distinction between the two can become Another way of looking at data transformation is in
blurred. The logic programming language Prolog is terms of data streams. Then the input to a data
another candidate for consideration as a specifica- transformer is one or more input streams. The out-

SEI-CM-8-1.0 Draft For Public Review 5

Formal Specification of Software

put may be a single value (the inner product of two Section II relates to the generation of results by in-
vectors), a new data stream (formatted text), or sev- tensive computation. Such computations are the
eral streams (a phase of a merge sort). The data concern of classical programming. A persistent data
streams—the preorder sequence of a binary tree, base, on the other hand, is a resource that is updated
sorted values from a heap, a pseudorandom number and consulted over an extended period of time. A
sequence—can be produced by generators. A dis- system based on a persistent database, with capabil-
cussion of generators can be found in [Griswold81]. ities for changing the database and responding to

queries, is known as an information system. For
A data transformer may be specified in a number of discussions of the issues involved in the specifica-
different ways. Consider a spelling checker that tion of information systems see [Bubenko80,
takes a text (intext) and a dictionary, and generates Brodie84, Borgida85a, Jardine84]. We shall survey
the set of words found in the text but not in the the issues briefly here.
dictionary. At one level, the specification may
simply be a predicate that defines the output as the A conceptual schema describes the organization of
set difference of the input text and the dictionary, the database. The schema may consist of relation
regarded as sets of words. At another level, the tables, or a structure of entity sets and relationships
spelling checker may be regarded as being com- [Chen76], or a collection of data types that consist of
posed of generators that produce, in turn, text sepa- sets and functions [Berztiss86a, Berztiss86b].
rated into words (split), a sorted word list (sort), the Events cause changes in the database. A behavioral
same list with duplicates removed (reduce), and the model superimposed on the conceptual schema re-
list with words found in the dictionary removed lates to the database changes. It defines either the
(diff). Each generator can be defined by predicates, valid states of the database (declarative approach) or
and the spelling checker as a whole can be defined the valid events (operational approach) [Olive86].
by functional composition: errors = diff (reduce

An example of a declaration is the formal expression(sort (split (intext))), dictionary). Under the first ap-
corresponding to the statement "the salary of an em-proach it has to be verified that an implementation is
ployee may never be greater than the salary of thein fact consistent with the specification. The func-
supervisor of the employee". This approach has thetional composition of the second approach is its own
advantages that deductive processes may be appliedspecification.
to the declarations, and therefore it is sometimes

Unfortunately it is an overspecification in that the called the deductive approach. Moreover, the meth-
particular sequencing of the operations is really an ods by which database integrity is maintained are
algorithm. However, specifications written in terms left open. Under the operational approach one
of predicates tend to be very complex, and the better would check that a proposed new salary for an em-
readability of a specification as a composition of ployee is no larger than that of the supervisor and no
operations may outweigh the loss of freedom smaller than those of the subordinates of this em-
brought about by the overspecification. It has to be ployee, and the new salary would only take effect if
emphasized that the writing of the predicates that these preconditions were satisfied. An operational
specify a text formatter, say, is a very difficult task, specification is easier to convert into a prototype im-
and the result is very difficult to read. Indeed, the plementation. An operational specification may also
reading difficulty may prevent adequate validation be easier to formulate, but not always.
of a specification. In such a case it may be worth-

Suppose that the data base consists of finite sets andwhile to sacrifice freedom of choice for better
functions. A distinction needs to be made betweenreadability [Naur82].
data types of the application, such as employee,

7. Examples library catalog, and the data types set and function,
which implement the data types of the application.a. Data types: Nat0, set, stack, queue, etc
The operational specification indicates under what

b. Data transformer: Text formatter conditions the sets and functions may change, but
the actual changes are brought about by set andIII. Formal Specification of Persistent Systems
function operations. The latter would have been1. Persistent data bases
specified by the techniques of Section II.

a. Nature of information systems
An information system should be able to deal withb. Conceptual schema
time references in the database and with sequencing

c. Behavioral aspects of events (temporal aspect), and with distribution of
the database over different sites, particularly in and. Temporal and spatial aspects of information
office setting (spatial aspect), but methodologies forsystems
specifying temporal and spatial aspects are still un-

e. Specification of knowledge bases der development. For some approaches to the speci-
fication of office automation see [Gibbs83,f. Specification methodologies

6 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

Chang85]. An information system that can cope dicate what happens when a sensor fails. The speci-
with incomplete and inconsistent data, and includes fication for the controlling software does not have to
inference-making capabilities, is known as a knowl- define how the controlled system behaves when the
edge system. Specification methodologies for controller fails, but it does have to define how the
knowledge systems are in a research stage, but controller is to start up again after a failure. Issues
progress is being made toward their development relating to fault-tolerance are discussed in
[Borgida85b, Brodie86]. [Avizienis85, Leveson87].

The entire topic of specification of information sys- Most of the aspects discussed here have related to
tems is still unsettled. Numerous specification performance rather than functionality. We should
methodologies have been proposed, with varying de- therefore determine which non-functional require-
grees of formality [Olle82, Olle83, Olle86, ments can and which cannot be specified formally.
Brodie84, Furtado86]; we have tried to distill fea- A general characterization is a major research task,
tures from all these methodologies into a composite but the distinction can be made in individual in-
approach called SF—it is described in Section III.3. stances. Consider a bank of elevators, a module for
Note that Larch has been used to specify an infor- the operation of an individual elevator, and a dis-
mation system [Wing87], but its general suitability patcher module for the control of the entire bank of
for this purpose remains to be established. elevators. The operation of a single elevator is de-

termined by its users and the dispatcher, and a speci-
2. Processes fication can be written quite easily. However, the

a. Sequencing of events dispatcher is to see to it that, for example, an
elevator will reach a caller within 10 seconds forb. Synchronization of processes
95% of all calls. At this time the only nontrivial

c. Real time formalization of this requirement seems to be al-
gorithmic, but an algorithm is a component of de-d. Interaction with sensors
sign rather than specification.

e. Fail-safe behavior
The three most prominent examples of specificationf. Specification methodologies
languages for systems that include control features

A process is the controlled evolution of a system in are Gist [Feather87], PAISLey [Zave86], and
time, where the controlling actions normally depend MSG.84 [Berzins85, Berzins86], but see also
on the states of a database. The controlled system is [Dasarathy85]. These approaches emphasize the ex-
generally external to the controlling software, e.g., ecutability of specifications. Also, synchronization
an elevator. We shall refer to a system comprising a of processes was not the primary consideration in
database and a process or a system of processes as the design of these specification languages. A speci-
an information-control system. Again it is useful to fication method that does emphasize synchroniza-
think in terms of events, where the events change the tion is Hoare’s CSP [Hoare78]; it has been applied to
database or the controlled system. The simplest the elevator problem [Schwartz87]. Another ap-
control operation is the ordering of events in se- proach has been to use temporal logic, which is an
quences. The sequence of operations of a data trans- extension of classical logic that enables it to deal
former may be indicated by functional composition, with time. Here the primary concern is the suita-
but the sequencing of events in an information- bility of the specification methodology for the verifi-
control system needs to be indicated by more com- cation of an implementation of a system of processes
plicated control mechanisms such as path expres- —[Manna81] is a good exposition. A common fea-
sions or traces (declarative approach) [Campbell74, ture of all these approaches is the minor attention
Furtado85], or message passing (operational given to the specification of database operations.
approach) [Berzins85]. Specification of distributed systems is a specialized

topic that is not included in this module—for a sur-
A sequence of events defines a process, and the vey see [Alford85], but note that Z may be used to
specification of a system may have to define how specify distributed systems [Hayes87].
processes are synchronized. The control
mechanisms mentioned above are adequate for this 3. Information-control systems
purpose as well. Sometimes, however, events must a. The SF specification language
take place at a specific time (in the United States,

b. Example: Library systemclocks were advanced one hour at midnight on April
4, 1987) or after a specific delay (holders of overdue c. Example: Elevator
library books must be reminded after a grace period

It was noted earlier that there is a large variety ofexpires). The specification methodology must be
methodologies for the specification of informationable to deal with such real-time aspects. Further, a
systems, but rarely do they address control issues.controller receives inputs, by means of sensors, from
On the other hand, languages for the specification ofthe system it controls. The specification has to in-

SEI-CM-8-1.0 Draft For Public Review 7

Formal Specification of Software

control processes do not deal adequately with data- totype is derived from the specification by
base issues. The specification language SF (Set- "correctness-preserving" transformations, then it
Function) [Berztiss86a, Berztiss86b] has features for must necessarily be consistent with the specification,
dealing with both information and control; it is a i.e., there is no need for further verification.
language for the specification of information-control

References: [Balzer85], [Berg82], [Bouge85],systems. It does not attempt to deal with the specifi-
[Henderson86], [Kemmerer85], [Turner85], [Your-cation of basic data types—when a queue is needed,
don86].it is imported, under the assumption that it has been

specified in some other framework, say Larch. 3. Reusability of specifications
Specifications in SF of a library system and of an Recent work on reusability, particularly by Big-
elevator are to be found in the support material gerstaff and Richter, suggests that reuse of specifi-
package for this module. cations is more practicable than reuse of designs or

code. A possible application of reusable specifica-IV. The Process of Formal Specification
tions is in the software factory. So far, reusability in

1. Mechanics of specification this context has been confined to code, but it should
be extended to specifications. The reusability ofa. Specification teams
specifications depends on modularization. For ex-b. The specification development log
ample, when a text formatter is being specified, a

c. Graphical aids and other documentation specification module for the text data type should
already exist. This module is retrieved, and opera-d. An infrastructure for specification
tions from it used in the specification of operations

Specifications of large systems are themselves large to define the application. Any of the latter that are
and complex, and their development is necessarily a deemed to be of general interest can be added to the
group activity. In fact, writing the specification may text module. Moreover, it should be indicated in the
take longer than building the system from that speci- documentation of the text module that it has been
fication. Further, requirements typically change used in the specification of the text formatter. A
while a specification is being produced. It is essen- type of semantic net is thus created that should help
tial that all assignments to members of a specifi- in retrieving components for reuse at a later time.
cation team and all requirements changes are docu- Even research on the reuse of specifications has not
mented in a log kept by the specification team. A properly begun yet.
register of other documentation should also be main-

References: [Biggerstaff87], [Matsumoto84].tained. Such documentation may contain function-
ality diagrams of basic data types and devices, data
flow diagrams, E-R (Entity-Relationship) diagrams,
state transition diagrams, Petri nets, etc. Specifi-
cation teams should be provided with a proper in-
frastructure to perform their task efficiently, i.e.,
they should have access to electronic conferencing
facilities and the like, and they should be provided
with tools for configuration control, cross-
referencing, etc.

References: [Bidoit86], [Chen76], [Martin85],
[Peterson81], [Ramamoorthy86], [Reisig85].

2. Validation and verification
a. Formal methods

b. Walkthroughs

c. Executable specifications

The consistency and sufficient completeness of al-
gebraic specifications can be established, but we
regard this as part of verification, and verification is
not emphasized in this module. Instead, validation
is stressed, particularly the static analysis technique
known as walkthroughs. Moreover, prototype im-
plementation of the specifications of information-
control systems is rather easy, and dynamic test
methods can be applied to the prototype. If the pro-

8 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

Teaching Considerations

finite-state transition diagram and Petri net that wereSuggested Schedules
actually used to come to an understanding of the
problem (and not added as a decoration after allAs already indicated in the statement of objectives,
work had been done) are also included.an entire semester, nominally 40 hours, should

ideally be spent on this module. The following Teams of students in a software specification course
rough breakdown is suggested: at the University of Pittsburgh specified a student

registration system or an elevator controller. The• Principles of Formal Specification: 10
teams kept logs of their activities; an example is in-hours
cluded.• Formal Specification of Programs: 10

hours

• Formal Specification of Persistent Sys-
tems: 10 hours Projects and Exercises

• The Process of Formal Specification: 10
hours Several projects and exercises are suggested in the

support materials package for this module. Some ofNo finer breakdown will be attempted. Too much
the projects are:depends on the background of the instructor, the

composition of the class, and the rapport between in- • a student registration system
structor and class. Moreover, if a major specifica- • a system of coin-operated luggage lock-tion project is undertaken, topics in different sections

ers at an airport or railroad stationwould have to be intermixed, so that lecture material
• a dry-cleaning/formalwear-rental busi-could support project development effectively. The

nessmaterial on Principles of Specification is to come in
large part from [Rombach87]. Smaller specifications can be designed for:
If teaching of specification is combined with re- • a car cruise-control system;
quirements analysis and design, a fair amount of in- • a telephone dialing system
tegration can be undertaken, particularly of require-

• a traffic light systemments analysis and specification, and the breakdown
below is suggested: • the n-queens problem

• Principles of Software Development: 10 It is highly recommended that the instructor do sev-
hours eral specification exercises before teaching this ma-

terial.• Specification and Design Methodologies:
20 hours

• The Process of Software Development:
10 hours

Support Materials

The support materials package for this module con-
tains specifications of the library system and
elevator examples written in the SF specification
language for information-control systems, as well as
a specification of the text formatter expressed in
terms of predicates. Specifications of these systems
produced by other approaches can be found in
[Specs87]. With regard to the elevator example, the

SEI-CM-8-1.0 Draft For Public Review 9

Formal Specification of Software

Bibliography

Although there are several good books that deal with Anderson84
the specification of what we have called basic opera- T. Anderson, ed. Software Requirements, Specifica-
tions of abstract data types and data transformers, tion and Testing. Oxford, England: Blackwell,
there is yet no comprehensive text that would cover 1984.
the specification of information-control systems as

A collection of non-technical papers on the topicswell. One of the purposes of this module is to inte-
listed in the title.grate the separate developments; a textbook to sup-

port this endeavor should become available in 1988.
Avizienis85For the time being, however, instructors of this mod-
Avizienis, A. “The N-version Approach to Fault-ule will have to read rather extensively. Some of the
Tolerant Software.” IEEE Trans. Software Eng.papers have been marked essential reading. These
SE-11 (1985), 1491-1501.papers should be read by the instructor, who can

then decide what should be assigned to the class to Abstract: Evaluation of the N-version software ap-
read on the basis of the background of the students. proach to the tolerance of design faults is reviewed.

Principal requirements for the implementation of N-
version software are summarized and the DEDIXAbrial80
distributed supervisor and testbed for the executionAbrial, J. R., S. A. Schuman, and B. Meyer.
of N-version software is described. Goals of cur-“Specification Language.” In On the Construction of
rent research are presented and some potential ben-

Programs, R. M. McKeag and A. M. Macnaghten, efits of the N-version approach are identified.
eds. Cambridge, England: Cambridge University

Contains strong arguments that link fault-tolerancePress, 1980, 343-410.
to effective specification. Should be examined.

This is an early description of Z, a specification
language based on sets. Balzer79

Balzer, R., and N. Goodman. “Principles of Good
Ada85 Software Specification and their Implication for
Goldsack, S. J., ed. Ada for Specification: Pos- Specification Languages.” Proc. IEEE Conf. Specifi-
sibilities and Limitations. Cambridge, England: cations of Reliable Software. Silver Spring, Md.:
Cambridge University Press, 1985. IEEE Computer Society Press, 1979, 58-67.

Reprinted in [Gehani86], 25-39.Although primarily an investigation of Ada as a
specification language, this book is also a valuable Abstract: Careful consideration of the primarysurvey of specification languages in general, and of uses of software specifications leads directly to
the process that transforms a specification into code. three criteria for judging specifications, which are
The view is taken that Ada can be used for both then used to develop eight design principles for
coding and specification, but that two different sets "good" specifications. These principles, in turn, im-
of semantics then have to exist for the two contexts. ply a number of requirements for specification lan-
At least some parts of this book should be read. guages that strongly constrain the set of adequate

specification languages and identify the need for
Alford85 several novel capabilities such as historical and fu-

ture references, elimination of variables, and resultAlford, M. W., J. P. Ansart, G. Hommel,
specification.L. Lamport, B. Liskov, G. P. Mullery, and

F. B. Schneider. Distributed Systems: Methods and A catalog of eight principles and eighteen implica-
Tools for Specification. Berlin: Springer-Verlag, tions for the design of specification languages. Es-
1985. Springer-Verlag Lecture Notes in Computer sential reading.
Science, No. 190.

Balzer85Notes for a course on the specification of distributed
Balzer, R. “A 15 Year Perspective on Automaticsystems, i.e., a subset of what we have called

information-control systems in this module. Programming.” IEEE Trans. Software Eng. SE-11
(1985), 1257-1268.

Abstract: Automatic programming consists not

10 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

only of an automatic compiler, but also some means requirements definition to verified implementation.
of acquiring the high-level specification to be com- (By now the tools have been implemented. The
piled, some means of determining that it is the in- result is an impressive system that has not received
tended specification, and some (interactive) means the recognition it deserves.)
of translating this high-level specification into a
lower-level one which can be automatically com- Berg82
piled. Berg, H. K., W. E. Boebert, W. R. Franta, and
We have been working on this extended automatic T. G. Moher. Formal Methods of Program Verifi-
programming problem for nearly 15 years, and this cation and Specification. Englewood Cliffs, N. J.:
paper presents our perspective and approach to this Prentice-Hall, 1982.
problem and justifies it in terms of our successes

Here the primary concern is verification, with speci-and failures. Much of our recent work centers on
an operational testbed incorporating usable aspects fication considered only as it relates to verification.
of this technology. This testbed is being used as a Still, the chapter on specification gives a useful
prototyping vehicle for our own research and will overview of specification of the objects of classical
soon be released to the research community as a programming, and should be read. The bibliogra-
framework for development and evolution of Com- phy is extensive (166 entries).
mon Lisp systems.

Berzins85Balzer summarizes his experiences and obser-
Berzins, V., and M. Gray. “Analysis and Design invations regarding the transformational development

of software. Should be examined. MSG.84: Formalizing Functional Specifications.”
IEEE Trans. Software Eng. SE-11 (1985), 657-670.

Bauer81 Abstract: Model building is identified as the most
Bauer, F. L., et al. “Programming in a Wide important part of the analysis and design process
Spectrum Language: A Collection of Examples.” for software systems. A set of primitives to support
Science of Comp. Programming 1 (1981), 73-114. this process is presented, along with a formal lan-

guage, MSG.84, for recording the results of anal-
Abstract: The paper exemplifies programming in a ysis and design. The semantics of the notation is
wide spectrum language by presenting styles which defined in terms of the actor formalism, which is
range from non-operative specifications—using ab- based on a message passing paradigm. The auto-
stract types and tools from predicate logic as well matic derivation of a graphical form of the specifi-
as set theory—over recursive functions, to cation for user review is discussed. Potentials for
procedural programs with variables. Besides a computer-aided design based on MSG.84 are in-
number of basic types, we develop an interpreter for dicated.
parts of the language itself, an algorithm for apply-
ing transformation rules to program represen- Defines MSG.84, which supports the specification
tations, a text editor, and a simulation of Backus’ of control systems via the actor formalism of mes-
functional programming language. sage passing.

An introduction to the CIP (Computer-aided
Berzins86Intuition-guided Programming) approach. The
Berzins, V., M. Gray, and D. Naumann.same language is used for specifications and
“Abstraction-Based Software Development.” Comm.machine-oriented programs, with transformations

converting the former into the latter. ACM 29 (1986), 402-415.

Abstract: A five-year experience with abstraction-
Beierle84 based software-development techniques in the uni-
Beierle, C., M. Gerlach, R. Gobel, W. Olthoff, versity environment indicates that the investment re-
R. Raulefs, and A. Voss. “Integrated Program De- quired to support the paradigm in practice is
velopment and Verification.” In Software returned in terms of greater ability to control com-

plexity in large projects—provided there exists a setValidation, H. L. Hausen, ed. Amsterdam: North-
of software tools sufficient to support the approach.Holland, 1984, 189-205.

Reports on classroom experience with MSG.84, theAbstract: A survey of an integrated program devel-
specification language introduced in [Berzins85].opment and verification support environment is

prtesented. The system supports the entire range
from requirements definitions to verified programs. Berztiss83

Berztiss, A. T., and S. Thatte. “Specification and Im-A sophisticated set of tools is proposed that sup-
plementation of Abstract Data Types.” In Advancesports the entire system development process from

SEI-CM-8-1.0 Draft For Public Review 11

Formal Specification of Software

between devices, such as queues and binary trees,in Computers, Vol. 22. New York: Academic Press,
and the data types of an information system are1983, 295-353.
pointed out. Should be read because it is a fairly

A survey of the equational algebraic specification of coherent statement of the philosophical foundations
abstract data types. of this module.

Berztiss86a Bidoit86
Berztiss, A. “The Set-Function Approach to Concep- Bidoit, M., C. Choppy, and F. Voisin. “The
tual Modeling.” In Information System Design Meth- ASSPEGIQUE Specification Environment.” In
odologies: Improving the Practice, T. W. Olle, Recent Trends in Data Type Specification,
H. G. Sol, and A. A. Verrijn-Stuart, eds. Amster- H. J. Kreowski, ed. Berlin: Springer-Verlag, 1986,
dam: North-Holland, 1986, 107-144. 54-72. Springer-Verlag Informatikfachberichte, No.

116.Abstract: We examine the design of information
systems and develop a methodology for the con- Describes an environment for the development of
struction of conceptual schemas. We call it the set- algebraic specifications. In particular, the environ-
function (SF) methodology, and use it to express a ment contains a graphical tool that displays the
conceptual schema for the IFIP Working Con- functionality diagram for an abstract data type.
ference example. Novel features of our approach:
(i) a deliberate attempt to integrate the specification

Biggerstaff87of information systems with the formalisms of data
Biggerstaff, T., and C. Richter. “Reusabilitytype specification in programming methodology, (ii)

simultaneous concerns with theoretical foundations Framework, Assessment, and Directions.” IEEE
and simplicity of use, (iii) separation of static and Software 4, 2 (March 1987), 41-48.
dynamic aspects of the specification to allow one to

Abstract: Reusability is widely believed to be a keyuse only as much of the methodology as is neces-
to improving software development productivity andsary for a particular task, (iv) a strong concern with
quality. The reuse of software componentsreliability of the conceptual schema being defined,
amplifies the software developer’s capabilities. Itincluding considerations of rapid prototyping, and
results in fewer total symbols in a system’s devel-(v) a design that should foster the use of fourth and
opment and in less time spent on organizing thosefifth generation system development tools.
symbols.

Introduces the SF specification language and uses it
However, while reusability is a strategy of greaton the IFIP Working Conference case study. The
promise, it is one whose promise has been largelyspecification has a major flaw in that it is not
unfulfilled.modularized. The paper contains a fairly extensive

discussion of properties of specifications of infor- Expresses the belief that the greatest payoffs can be
mation systems in general. expected from reuse of specifications by means of

what the authors call semantic binding. Should be
read.Berztiss86b

Berztiss, A. “Data Abstraction in the Specification
Birrell85of Information Systems.” Proc. IFIP World Con-

gress 1986. Amsterdam: North-Holland, 1986, Birrell, N. D., and M. A. Ould. A Practical Hand-
83-90. book for Software Development. Cambridge,

England: Cambridge University Press, 1985.
Abstract: Four classes of computational activities
are identified, namely changes in an information A rich source of examples of the use of various
base, look-ups, computation of function values by communication tools, e.g., diagrammatic represen-
computational rules, and processes, and it is argued tations such as data flow diagrams and Petri nets.
that they require different specification
mechanisms. Our particular concern is information Bjorner82bases, which we define as collections of sets and

Bjorner, D., and C. B. Jones. Formal Specificationfunctions. Their changes are specified in terms of
and Software Development. Englewood Cliffs, N. J.:events, and temporal aspects are taken care of by a
Prentice-Hall, 1982.fully separate "responder". The methodology is il-

lustrated by the specification of a system for manag- An introduction to the Vienna Development Methoding checking accounts by a bank.
(VDM), together with a rich selection of examples
of its application. VDM has been used with consid-The SF language is used to specify an account han-
erable success in the specification of data trans-dling system for a bank. Some essential differences
formers.

12 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

Boehm76 Bouge85
Boehm, B. “Software Engineering.” IEEE Trans. Bouge, L., N. Choquet, L. Fribourg, and
Computers C-25 (1976), 1226-1241. M. C. Gaudel. “Application of Prolog to Test Sets

Generation from Algebraic Specifications.” In Proc.
Abstract: This paper provides a definition of the

TAPSOFT ’85, Vol. 2. Berlin: Springer-Verlag,term "software engineering" and a survey of the
1985, 261-275. Springer-Verlag Lecture Notes incurrent state of the art and likely future trends in
Computer Science, No. 186.the field. The survey covers the technology avail-

able in the various phases of the software life cycle Abstract: We present a method and a tool for gen-
—requirements engineering, design, coding, test, erating test sets from algebraic data type specifi-
and maintenance—and in the overall area of soft- cations. We give formal definitions of the basic
ware management and integrated technology- concepts required in our approach of functional
management approaches. It is oriented primarily testing. Then we discuss the problem of testing al-
toward discussing the domain of applicability of gebraic data types implementations. This allows
techniques (where and when they work), rather than the introduction of additional hypotheses and thus
how they work in detail. To cover the latter, an the description of an effective method for gener-
extensive set of 104 references is provided. ating test sets. The method can be improved by

using PROLOG. Indeed, it turns out that PROLOGProvides data which show that error correction is
is a very well suited tool for generating test sets inleast costly when the errors are detected and
this context. Applicability of the method is dis-repaired during requirements analysis and specifi-
cussed and a complete example is given.cation.

A specialized paper, but indicative of an interesting
Borgida85a mix of theory and practice that characterizes much

of the current research on specification.Borgida, A. “Features of Languages for the Devel-
opment of Information Systems at the Conceptual
Level.” IEEE Software 2, 1 (Jan. 1985), 63-72. Brodie84

Brodie, M. L., J. Mylopoulos, and J. W. Schmidt,Abstract: Conceptual modeling languages make in-
eds. On Conceptual Modelling: Perspectives fromformation systems easier to design and maintain by
Artificial Intelligence, Databases, and Programmingusing vocabularies that relate naturally and directly
Languages. New York: Springer-Verlag, 1984.to the "real world" of many computer applications.

A collection of papers dealing with the applicationA useful set of principles for the design of specifi-
of information systems to knowledge representa-cation languages for information systems. The au-
tion, etc. Should be examined.thor emphasizes the important property that specifi-

cations of information systems can be automatically
translated into implementations. Should be read. Brodie86

Brodie, M. L., and J. Mylopoulos, eds. On Knowl-
Borgida85b edge Base Management Systems. New York:
Borgida, A., S. Greenspan, and J. Mylopoulos. Springer-Verlag, 1986.
“Knowledge Representation as the Basis for Re-

A collection of papers dealing with the transfor-quirements Specification.” Computer 18, 4 (April mation of information systems into knowledge sys-
1985), 82-91. tems. Should be examined, but not as relevant to

the specification of information systems asAbstract: Specification of many kinds of knowledge
[Brodie84].about the world is essential to requirements engi-

neering. Research on knowledge representation in
artificial intelligence provides a wealth of relevant Bubenko80
techniques that can be incorporated into specifica- Bubenko, J. “Information Modeling in the Context
tion languages. of System Development.” Proc. IFIP World Con-

gress 1980. Amsterdam: North-Holland, 1980,An investigation of the relationship between the
395-411.knowledge representation techniques of artificial in-

telligence and the specification of information sys-
Abstract: The concepts of an information systemtems. Required reading for one view of the direc-
and information requirements are examined. Antion in which the methodology for the development
appraisal of significant results in the areas of infor-of information systems should be moving.
mation system specification and of data modeling is
presented. A framework for specification of goal-
oriented information requirements for an informa-

SEI-CM-8-1.0 Draft For Public Review 13

Formal Specification of Software

tion system is outlined. It is argued that a total Chang85
requirement specification must include an abstract Chang, S. K., and W. L. Chan. “Transformation and
model of the enterprise. The model should view the Verification of Office Procedures.” IEEE Trans.
application in an extended time perspective. The Software Eng. SE-11 (1985), 724-734.
main part of this paper is concerned with concepts
useful for specification of such a model. Abstract: An office procedure is a structured set of

office activities for accomplishing a specific office
This is one of the most widely cited papers on the task. A unified model, called office procedure
development of information systems. It is partic- model (OPM), is presented to model office proce-
ularly useful for its discussion of time in the specifi- dures. The OPM describes the relationships among
cation of information systems. The philosophy un- messages, databases, alerters, and activities. The
derlying the SF specification language of OPM can be used to coordinate and integrate the
[Berztiss86a] has much in common with the views activities of an office procedure. The OPM also
expressed in this paper. Required reading. allows the specification of office protocols in an of-

fice information system. A methodology for the ver-
Burstall81 ification of office procedures is presented. With this

methodology, potential problems in office proce-Burstall, R. M., and J. A. Goguen. “An Informal In-
dure specification, such as deadlock, unspecifiedtroduction to Specifications Using CLEAR.” In The
message reception, etc., can be analyzed effectively.Correctness Problem in Computer Science, Boyer,

R. S., and J. S. Moore, eds. Academic Press, Lon- The office procedure model presented in this paper
don, 1981, 185-213. Also in [Gehani86], 363-389. allows the specification of office protocols in an

office information system.Abstract: Precise and intelligible specifications are
a prerequisite for any systematic development of

Chen76programs, as well as being the starting point for
correctness proofs. This paper describes "Clear", a Chen, P. P. “The Entity-Relationship Model:
language for giving modular and well-structured Toward a Unified View of Data.” ACM Trans. Data-
specifications; the informal presentation gives ex- base Syst. 1 (1976), 9-36.
amples and sketches the algebraic background.

Abstract: A data model, called the entity-
This very important paper contains an informal in- relationship model, is proposed. This model incor-
troduction to institutions, which permit different porates some of the important semantic information
styles to be combined in one specification. Re- about the real world. A special diagrammatic tech-
quired reading. nique is introduced as a tool for database design.

An example of database design and description
using the model and the diagrammatic technique isCampbell74
given. Some implications for data integrity, infor-Campbell, R. H., and A. N. Habermann. “The Speci-
mation retrieval, and data manipulation are dis-fication of Process Synchronization by Path
cussed.Expressions.” In Proc. Internat. Symp. Operating
The entity-relationship model can be used as a basisSystems, Rocquencourt, 1974, Gelenbe, E., and
for unification of different views of data: the net-C. Kaiser, eds. Berlin: Springer-Verlag, 1974,
work model, the relational model, and the entity set89-102. Springer-Verlag Lecture Notes in Computer
model. Semantic ambiguities in these models areScience, No. 16.
analyzed. Possible ways to derive their views of
data from the entity-relationship model areAbstract: A new method of expressing synchroniza-
presented.tion is presented and the motivations and con-

siderations which led to this method are explained.
This paper introduces the E-R model, which hasSynchronization rules, given by ’path expressions’,
probably had the most significant influence on sub-are incorporated into the type definitions which are
sequent methodologies for the development of in-used to introduce data objects shared by several
formation systems. Required reading.synchronous processes. It is shown that the

method’s ability to express synchronization rules is
Claybrook82equivalent to that of P and V operations, and a

means of automatically translating path expressions Claybrook, B. G. “A Specification Method for Spec-
to existing primitive synchronization operations is ifying Data and Procedural Abstractions.” IEEE
given. Trans. Software Eng. SE-8 (1982), 449-459.
Path expressions have been used to analyze permis- Abstract: A specification method designed primar-
sible patterns of interleaving of processes in a sys- ily for specifying data abstractions, but suitable for
tem. They could be used equally well to analyze describing procedural abstractions as well, is de-
sequences of events.

14 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

scribed. The specification method is based on the Feather87
abstract model approach to specifying abstractions. Feather, M. S. “Language Support for the Specifi-
Several data abstractions and procedural abstrac- cation and Development of Composite Syatems.”
tions are specified and a proof of implementation ACM Trans. Prog. Lang. and Syst. 9 (1987),
correctness is given for one of the data abstractions

198-234.—a symbol table.
Abstract: When a complex system is to be realizedThe abstract model approach is used to specify the
as a combination of interacting components, devel-data type of symbol table, and the implementation
opment of those components should commence frombased on this specification is proven correct.
a specification of the behavior required of the com-
posite system. A separate specification should be

Cohen86 used to describe the decomposition of that system
Cohen, B., W. T. Harwood, and M. I. Jackson. The into components. The first phase of implementation

from a specification in this style is the derivation ofSpecification of Complex Systems. Wokingham,
the individual component behaviors implied byEngland: Addison-Wesley, 1986.
these specifications.

A fairly short (143 pages) introduction that explores
The virtues of this approach to specification are ex-some aspects of the electronic office by means of
pounded, and specification language features thatequational algebraic specification and the Vienna
are supportive of it are presented. It is shown howDevelopment Method (VDM). Specification of
these are incorporated in the specification languageconcurrent systems is briefly touched on as well.
Gist, which our group has developed. These issuesListings of centers of current research activity in the
are illustrated in a development of a controller formore theoretical approaches to specification, and of
elevators serving passengers in a multistory build-experimental specification languages are particular-
ing.ly valuable. Essential reading.
This is the most recent in a series of papers dealing
with the specification language Gist. Gist is basedDasarathy85
on ’histories’, which correspond to traces of eventDasarathy, B. “Timing Constraints on Real-Time
occurrences.Systems: Constructs for Expressing Them, Methods

of Validating Them.” IEEE Trans. Software Eng.
Finance84SE-11 (1985), 80-86.
Finance, J. P., M. Grandbastien, N. Levy, A. Quere,

Abstract: This paper examines timing constraints and J. Souquieres. “SPES: A Specification and
as features of real-time systems. It investigates the Transformation System.” Proc. 2nd AFCET Soft-various constructs required in requirements lan-

ware Eng. Conf. Oxford, England: North Oxfordguages to express timing constraints and considers
Academic, 1984, 145-151.how automatic test systems can validate systems

that include timing constraints. Specifically, fea- Abstract: The aim of the SPES project is to con-
tures needed in test languages to validate timing struct and transform formal specifications of com-
constraints are discussed. One of the distinguishing puter problems, in a methodical way. The structure
aspects of three tools developed at GTE used expresses relations between data and results,
Laboratories for real-time systems specification and within modules called texts. The structure is de-
testing is in their extensive ability to handle timing scribed using abstract types. Transformations ap-
constraints. Thus, the paper highlights the timing plied to the specification make it possible top mod-
constraint features of these tools. ify it, with a view to building a program. This ap-

proach, which applies a user assistance system, isConsiders timing constraints in telephone dialing.
illustrated with a simple example.

Describes a system to assist the software developerEhrig85
in the construction of a specification and in theEhrig, H., and B. Mahr. Fundamentals of Algebraic
transformation of the specification into a program.Specification I: Equations and Initial Semantics.

Berlin: Springer-Verlag, 1985.
Freeman84

A comprehensive study of equational algebraic Freeman, F., and Wasserman, A. I., eds. Tutorial onspecification of data types. A book for the special-
Software Design Techniques, 4th ed.. Silver Spring,ist, but has a very useful bibliography.
Md.: IEEE Computer Society Press, 1984.

A collection of papers that relate primarily to soft-
ware design, but a number of significant contribu-
tions to specification methodology are also in-
cluded. Good browsing.

SEI-CM-8-1.0 Draft For Public Review 15

Formal Specification of Software

fication language for conventional information sys-Furtado85
tems to adapt it to the context of the electronic of-Furtado, A. L., and T. S. E. Maibaum. “An Informal
fice. Should be read.Approach to Formal (Algebraic) Specifica-tions.”

Computer J. 28 (1985), 59-67.
Goguen86

Abstract: Formal techniques exist for the crucial J. A. Goguen. “One, None, a Hundred Thousand
specification phase in the design of systems, includ- Specification Languages.” Proc. IFIP World Con-ing database applications. We briefly indicate the

gress 1986. Amsterdam: North-Holland, 1986,potential benefits of the so-called abstract data type
995-1003.discipline and show how it might be made more

palatable to the non-mathematician. This is done Abstract: Many different languages have been pro-
through the mechanism of traces. This tool is used posed for specification, verification, and design in
both as a mechanism for modelling (in an ex- computer science; moreover, these languages are
ecutable manner) the application and as a basis for based upon many different logical systems. In an
a methodology which can be used in the develop- attempt to comprehend this diversity, the theory of
ment of a formal algebraic specification. institutions formalizes the intuitive notion of a

"logical system". A number of general linguisticA very readable introduction to the use of traces of
features have been defined "institutionally" and areoperations as a basis for reasoning about
available for any language based upon a suitableinformation-control systems.
institution. These features include generic modules,
module hierarchies, "data constraints" (for data

Furtado86 abstraction) and multiplex institutions (for combin-
Furtado, A. L., and E. J. Neuhold. Formal Tech- ing multiple logical systems). In addition, institu-
niques for Data Base Design. Berlin: Springer- tion morphisms support the transfer of results (as

well as associated artifacts, such as theoremVerlag, 1986.
provers) from one language to another. More gen-

A monograph that exposes designers of information erally, institutions are intended to support as much
system specifications to new developments in data computer science as possible independently of the
abstraction and data modeling. One of the few pub- underlying logical system.
lications in this area that considers control as well.

This viewpoint extends from specification languagesShould at least be examined.
to programming languages, where, in addition to
the programming-in-the-large features mentionedGehani86 above, it provides a precise basis for a "wide

Gehani, N., and A. D. McGettrick, eds. Software spectrum" integration of programming and specifi-
Specification Techniques. Wokingham, England: cations. A logical programming language is one
Addison-Wesley, 1986. whose statements are sentences in an institution,

whose operational semantics is based upon deduc-
A collection of 21 papers, most of which have con- tion in that institution, giving a "closed world" for a
tributed significantly to shaping the field of soft- program. This notion encompasses a number of
ware specification. Some are listed individually in modern programming paradigms, including func-
this bibliography, but the others should also be ex- tional, logic, and object-oriented, and has been use-
amined. ful in unifying these paradigms, by unifying their

underlying institutions, as well as in providing them
Gibbs83 with sophisticated facilities for data abstraction and

programming-in-the-large.Gibbs, S., and D. Tsichritzis. “A Data Modeling Ap-
proach for Office Information Systems.” ACM A wide-ranging but somewhat technical paper.
Trans. Office Info. Syst. 1 (1983), 299-319. Contains useful references to Goguen’s earlier work

on data abstraction and specification languages.Abstract: A data model for representing the struc-
The references to OBJ2 are particularly relevant.ture and semantics of office objects is proposed.

The model contains features for modeling forms,
documents, and other complex objects; these fea- Gries81
tures include a constraint mechanism based on trig- Gries, D. The Science of Programming. New York:
gers, templates for presenting objects in different Springer-Verlag, 1981.
media, and unformatted data types such as text and

The first part of this book is an excellent source foraudio. The representation of common office objects
material on logic. Gries follows the philosophy thatis described. User-level commands may be trans-

lated to operations within the model. a program and its specification, in the form of asser-
tions, should be developed side by side. This can

Discusses features that need to be added to a speci- work very well for programming-in-the-small.

16 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

sions, and a summary of the current status of theGriswold81
Larch project. The second part of this paper is aGriswold, R. E., D. R. Hanson, and J. T. Korb.
reference manual. A companion paper includes an“Generators in Icon.” ACM Trans. Prog. Lang. and
extensive set of examples.Syst. 3 (1981), 144-161.
Larch is a two-tiered specification language consist-Abstract: Icon is a new programming language
ing of components that are, respectively, independ-that includes a goal-directed expression evaluation
ent of and dependent on, the programming languagemechanism. This mechanism is based on
used for the implementation. This paper defines thegenerators—expressions that are capable of pro-
independent components.ducing more than one value. If the value produced

by a generator does not lead to a successful result,
Guttag86bthe generator is automatically activated for an al-

ternate value. Generators form an integral part of Guttag, J. V., and J. J. Horning. “A Larch Shared
Icon and can be used anywhere. In addition, they Language Handbook.” Science of Comp. Program-
form the basis for the string scanning facility and ming 6 (1986), 135-157.
subsume some of the control expressions found in

Abstract: This handbook consists of a collection ofother languages. Several examples are given.
traits written in the Larch Shared Language, and is

This paper introduces the Icon concept of intended as a companion to the "Report on the
generators and gives examples of their application. Larch Shared Language". It should serve three dis-
It should be examined. tinct purposes: Provide a set of components that

can be directly incorporated into other specifica-
tions; Provide a set of models upon which otherGuttag85
specifications can be based; and help people to bet-Guttag, J. V., J. J. Horning, and J. M. Wing. “The
ter understand the Larch Shared Language by pro-Larch Family of Specification Languages.” IEEE
viding a set of illustrative examples.Software 2, 5 (Sept. 1985), 24-36.
Companion article to [Guttag86a].Abstract: Larch specifications are two-tiered.

Each one has a component written in an algebraic
Hayes87language and another tailored to a programming

language. Hayes, I., ed. Specification Case Studies. Englewood
Cliffs, N. J.: Prentice-Hall, 1987.An introduction to the specification language Larch.

Should be read, at least for an understanding of the A collection of specification case studies expressed
two-tiered approach to specification. The two- in the Z specification language. This language,
tiered approach permits Larch to be used for the which is based on set theory, was introduced by
specification of both abstract data types and data Abrial [Abrial80], but is still evolving. The Z nota-
transformers, and, with somewhat less success, even tion is very compact, which may detract from
information systems. readability. A good source of projects.

Guttag86a Heininger80
Guttag, J. V., and J. J. Horning. “Report on the Heininger, K. L. “Specifying Software Requirements
Larch Shared Language.” Science of Comp. Pro- for Computer Systems: New Techniques and their
gramming 6 (1986), 103-134. Application.” IEEE Trans. Software Eng. SE-6

(1980), 2-13.Abstract: Each member of the Larch family of for-
mal specification languages has a component de- Abstract: This paper concerns new techniques for
rived from a programming language and another making requirements specifications precise, con-
component common to all programming languages. cise, unambiguous, and easy to check for complete-
We call the former interface languages, and the lat- ness and consistency. The technique is well-suited
ter the Larch Shared Language. for complex real-time software systems; they were

developed to document the requirements of existingThis paper presents version 1.1 of the Larch Shared
flight software for the Navy’s A-7 aircraft. TheLanguage. It has two major sections. The first part
paper outlines the information that belongs in a re-starts with a brief introduction to the Larch Project
quirements document and discusses the objectivesand the Larch family of languages, and continues
behind the techniques. Each technique is describedwith an informal presentation of most of the fea-
and illustrated with examples from the A-7 docu-tures of the Larch Shared Language. It concludes
ment. The purpose of the paper is to introduce thewith a brief discussion of how we expect Larch
A-7 document as a model of a disciplined approachShared Language Specifications to be used, a dis-
to requirements specification; the document iscussion of some of the more important design deci-

SEI-CM-8-1.0 Draft For Public Review 17

Formal Specification of Software

available to anyone who wishes to see a fully Abstract: Recently there has been a great deal of
worked-out example of the approach. theoretical interest in formal specifications. How-

ever, there has not been a corresponding increase
This paper emphasizes the specification of perfor- in their use for software development. Meanwhile,
mance properties. The techniques are related to the there has been significant convergence among for-
specification of of flight software for the A-7E air- mal specification methods intended for practical
craft. use.

The Larch project is developing tools and tech-Henderson86 niques intended to aid in the productive use of for-
Henderson, P. “Functional Programming, Formal mal specifications. This talk presents the combi-
Specifications, and Rapid Prototyping.” IEEE Trans. nation of ideas, both old and new, that we are cur-
Software Eng. SE-12 (1986), 241-250. rently exploring.

One reason why our previous specification methodsAbstract: Functional programming has enormous
were not very successful was that we tried to make apotential for reducing the high cost of software de-
single language serve too many purposes. To focusvelopment. Because of the simple mathematical
the Larch project, we made some fairly strong as-basis of functional programming it is easier to de-
sumptions about the problem we were addressing.sign correct programs in a purely functional style

than in a traditional imperative style. We argue Each Larch specification has two parts, written in
here that functional programs combine the clarity different languages. Larch interface languages are
required for the formal specification of software de- used to specify program units (e.g., procedures,
sign with the ability to validate the design by execu- modules, types). Their semantics is given by trans-
tion. As such they are ideal for rapidly prototyping lation to predicate calculus. Abstractions appear-
a design as it is developed. We give an example ing in interface specifications are themselves speci-
which is larger than those traditionally used to ex- fied algebraically, using the Larch Shared Lan-
plain functional programming. We use this example guage.
to illustrate a method of software design which ef-

A series of examples will be used to illustrate theficiently and reliably turns an informal description
use of the Larch Shared Language and theof requirements into an executable formal specifi-
Larch/CLU interface language. The talk will con-cation.
clude with notes on the key design choices for each

The intent of Henderson’s paper is to support the of the languages, and for the method of combining
view that functional programs are their own specifi- the two parts of a specification.
cations, and that functional programming should

A fine introduction to the two-tiered specificationtherefore become a primary tool in the software de-
language Larch, with a discussion of formal specifi-velopment process.
cations in general included as a bonus.

Hoare78
Jardine84Hoare, C. A. R. “Communicating Sequential
Jardine, D. A., and A. R. Reuber. “InformationProcesses.” Comm. ACM 21 (1978), 666-677.
Semantics and the Conceptual Schema.” Inform. Sys.

Abstract: This paper suggests that input and output 9 (1984), 147-156.
are basic primitives of programming and that
parallel composition of communicating sequential Abstract: The semantics of various proposals for
processes is a fundamental program structuring Conceptual Schema languages are compared and
method. When combined with a development of contrasted. Concepts are defined using logic and
Dijkstra’s guarded command, these concepts are class theory notation, so that terminology is
surprisingly versatile. Their use is illustrated by reduced to a common basis. A basis for handling
sample solutions of a variety of functional program- temporal aspects of an Information System is pro-
ming exercises. vided.

A classic paper on parallel programming. Contains A survey of methodologies for the specification of
interesting examples, including a solution for the information systems. The authors conclude that
dining philosophers problem. temporal effects do not require any special treat-

ment.

Horning85
Jones78Horning, J. J. “Combining Algebraic and Predicative
Jones, C. B. “The Metalanguage: A ReferenceSpecifications in Larch.” In Proc. TAPSOFT ’85,
Manual.” In The Vienna Development Method: TheVol. 2. Berlin: Springer-Verlag, 1985, 12-26.
Meta-Language, D. Bjorner and C. B. Jones, eds.Springer-Verlag Lecture Notes in Computer Science,

No. 186.

18 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

In many cases, when a specification completely de-Berlin: Springer-Verlag, 1978, 218-277. Springer-
fines the relations to be computed, there is no syn-Verlag Lecture Notes in Computer Science, No. 61.
tactic distinction between specification and pro-

Abstract: The recent work of the Vienna Labora- gram. Moreover the same mechanism that is used
tory on the subject of semantic definitions has used to execute logic programs, namely automated
the "denotational semantics" approach. Although deduction, can also be used to execute logic specifi-
this is a clear break with the earlier abstract inter- cations. The only difference between a complete
preter approach, the newer meta-language has tried specification and a program is one of efficiency. A
to preserve and even improve upon the readability program is more efficient than a specification.
of the earlier "VDL" notation. The meta-language

Kowalski argues that a complete logical specifica-described here has been used in the definitions of
tion is indistinguishable from a logical program; thelarge programming languages and systems. This
only observable difference is one of efficiency.paper is not a tutorial; rather it provides a refer-
However, most specifications are incomplete in oneence document for the meta-language.
way or another.

The reference manual for the Vienna Development
Method.

Leveson87
Leveson, N. G., and J. L. Stolzy. “Safety AnalysisKemmerer85 Using Petri Nets.” IEEE Trans. Software Eng. SE-13

Kemmerer, R. A. “Testing Formal Specifications to (1987), 386-397.
Detect Design Errors.” IEEE Trans. Software Eng.

Abstract: The application of Time Petri net model-SE-11 (Jan. 1985), 32-43.
ing and analysis techniques to safety-critical real-

Abstract: Formal specification and verification time systems is explored and procedures described
techniques are now used to increase the reliability which allow analysis of safety, recoverability, and
of software systems. However, these approaches fault-tolerance.
sometimes result in specifying systems that cannot

Discusses specification of real-time systems inbe realized or that are not usable. This paper dem-
which safety, recoverability, and fault-toleranceonstrates why it is necessary to test specifications
have to be provided. A readable paper.early in the software life cycle to guarantee a sys-

tem that meets its critical requirements and that
also provides the desired functionality. Definitions Liskov79
to provide the framework for classifying the validity Liskov, B. H., and V. Berzins. “An Appraisal of Pro-
of a functional requirement with respect to a formal gram Specifications.” In Research Directions inspecification are also introduced. Finally, the de-

Software Technology, P. Wegner, ed. Cambridge,sign of two tools for testing formal specifications is
MA: MIT Press, 1979, 276-301. Reprinted indiscussed.
[Gehani86], 3-23.

Provides operational specifications in terms of an
A survey, to about 1978, of different approaches toabstract machine for the library example. Examines
the specification of data types and data trans-both rapid prototyping and symbolic execution.
formers, with some discussion of parallel programs.

Kowalski85
Liskov86Kowalski, R. “The relation between logic program-
Liskov, B., and J. Guttag. Abstraction and Specifi-ming and logic specification.” In Mathematical
cation in Program Development. New York:Logic and Programming Languages, C. A. R. Hoare
McGraw-Hill, 1986.and J. C. Shepherdson, eds. Englewood Cliffs, N. J.:

Prentice-Hall, 1985, 11-27. A textbook on the use of the CLU programming
language, which provides facilities for operationalAbstract: Formal logic is widely accepted as a pro-
specifications in the development of software.gram specification language in computing science.
There is also a brief introduction to the Larch speci-It is ideally suited to the representation of knowl-
fication language, which has a more abstract orien-edge and the description of problems without
tation.regard to the choice of programming language. Its

use as a specification language is compatible not
only with conventional programming languages but Manna81
also with programming languages based entirely on Manna, Z., and A. Pnueli. “Verification of Concur-
logic itself. In this paper I shall investigate the rent Programs: The Temporal Framework.” In The
relation that holds when both programs and pro- Correctness Problem in Computer Science, Boyer,
gram specifications are expressed in formal logic. R. S., and J. S. Moore, eds. Academic Press, Lon-

don, 1981, 215-273.

SEI-CM-8-1.0 Draft For Public Review 19

Formal Specification of Software

Abstract: This is the first in a series of reports Matsumoto84
describing the application of Temporal Logic to the Matsumoto, Y. “Some Experiences in Promoting
specification and verification of concurrent pro- Reusable Software: Presentation in Higher Abstract
grams. Levels.” IEEE Trans. Software Eng. SE-10 (1984),
We first introduce Temporal Logic as a tool for 502-513.
reasoning about sequences of states. Models of

Abstract: In the Toshiba software factory, qualityconcurrent programs based both on transition
control and productivity improvements are primarygraphs and on liner-text representations are
concerns. Emphasis is placed on reusing existingpresented and the notions of concurrent and fair
software modules that have been proven correctexecutions are defined.
through actual operation. To achieve a substantial

The general temporal language is then specialized degree of reuse, the software design process is
to reason about those execution states and execu- viewed at several levels of abstraction. In this
tion sequences that are fair computations of concur- paper, these levels of abstraction are defined, and
rent programs. Subsequently, the language is used examples of the specification for these defined
to describe properties of concurrent programs. levels are given. This paper proposes a

"presentation" of each existing module at theThe set of interesting properties is classified into
highest level of abstraction. Traceability betweenInvariance (Safety), Eventuality (Liveness) and
the presentation and the reusable program modulesPrecedence (Until) properties. Among the
which implement it is established to simplifyproperties studied are: Partial Correctness, Global
reusability. The paper concludes with an exampleInvariance, Clean Behavior, Mutual Exclusion,
showing reuse of a presentation for a different ap-Deadlock Absence, Termination, Total Correctness,
plication.Intermittent Assertions, Accessibility, Starvation

Freedom, Responsiveness, Safe Liveness, Absence This is ancillary reading. The software develop-
of Unsolicited Response, Fair Responsiveness and ment process is examined from the perspective of
Precedence. the software factory, but the adaptation of this mate-

rial for classroom use would take considerable time.In the following reports of this series we use the
temporal formalism to develop proof methodologies
for proving the properties discussed here. Naur82

Naur, P. “Formalization in Program Development.”Although this paper concentrates on verification,
BIT 22 (1982), 437-453.the early parts provide a useful introduction to tem-

poral logic and to the issues of functional program- Abstract: The concepts of specification and for-
ming. malization, as relevant to the development of pro-

grams, are introduced and discussed. It is found
Manna85 that certain arguments given for using particular

modes of expression in developing and proving pro-Manna, Z., and R. Waldinger. The Logical Basis for
grams correct are invalid. As illustration a formal-Computer Programming, Vol. 1: Deductive
ized description of Algol 60 is discussed and foundReasoning. Reading, Mass.: Addison-Wesley, 1985.
deficient. Emphasis on formalization is shown to

A thorough exploration of some basic data have to have harmful effects on program develop-
types—such as non-negative integers, trees, lists, ment, such as neglect of informal precision and
and sets—as mathematical theories. Although the simple formalizations. A style of specifications
style is rather dry, this book can be recommended as using formalizations only to enhance intuitive un-
a gentle introduction to logic as it applies to soft- derstandability is recommended.
ware specification.

A thoughtful critique of too formal an approach to
specifications. It is most important to understand

Martin85 that Naur is not opposed to all formalizations, but
Martin, J., and C. McClure. Diagramming Tech- only to those that obscure meaning. Essential read-
niques for Analysts and Programmers. Englewood ing to maintain one’s perspective.
Cliffs, N. J.: Prentice-Hall, 1985.

Olive86Diagrams provide an excellent means of communi-
Olive, A. “A Comparison of the Operational andcation between the software specifier and the client.
Deductive Approaches to Conceptual InformationHowever, a badly designed diagram can be a

hindrance rather than an aid. This compendium of Systems Modeling.” Proc. IFIP World Congress
diagramming techniques and tools emphasizes the 1986. Amsterdam: North-Holland, 1986, 91-96.
difference between good and poor diagrams. This

Abstract: Conceptual information systems model-book must be examined.

20 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

ing languages can be classified in terms of the ap- implemented with the conventional assumption that
proach taken to model the dynamic aspect. Two a module consists of one or more subroutines, will
basic approaches, operational and deductive have be less efficient in most cases. An alternative ap-
emerged up to now. They are characterized in this proach to implementation which does not have this
paper using a common first order logic framework. effect is sketched.
This provides a basis for comparison and evalu-

A classic paper on data abstraction as the basis foration. Both approaches are then compared in a
modularization. The main example may be dated,number of issues. We have found that deductive
but the substance of the paper is not. Essentiallanguages show a number of advantages, which
reading.might make further development efforts worthwhile.

Aspects requiring research work are also pointed
out. Parnas77

D. L. Parnas. “The Use of Precise Specifications inThe title conveys the contents very well.
the Development of Software.” Proc. IFIP World
Congress 1977. Amsterdam: North-Holland, 1977,

Olle82 861-867.
Olle, T. W., H. G. Sol, and A. A. Verrijn-Stuart, eds.

Abstract: This paper describes the role of formalInformation System Design Methodologies: A Com-
and precise specifications in the methodological de-parative Review. Amsterdam: North-Holland, 1982.
velopment of software which we know to be correct.

A collection of papers dealing with the specification The differences between the general use of the word
and design of an information system for an IFIP "specification" and the engineering use of that term
Working Conference. are discussed. The software development tasks that

we are undertaking require a "divide and conquer"
approach that can only succeed if we have a preciseOlle83
way of describing the subproblems. It is shown howOlle, T. W., H. G. Sol, and C. J. Tully, eds.
predicate transformers and abstract specificationsInformation System Design Methodologies: A Fea- can be used when design decisions are made. Two

ture Analysis. Amsterdam: North-Holland, 1983. examples of the use of abstract specifications are
described and detailed specifications are included.A continuation of the study of information system

specification methodologies begun in [Olle82]. Contains a definition of specifications, a list of
reasons for having specifications, and a list of

Olle86 reasons for having precise abstract specifications.
Essential reading.Olle, T. W., H. G. Sol, and Verrijn-Stuart, A. A.,

eds. Information System Design Methodologies:
Improving the Practice. Amsterdam: North- Partsch83
Holland, 1986. Partsch, H., and R. Steinbruggen. “Program Trans-

formation Systems.” ACM Computing Surveys 15Another collection of papers dealing with the speci-
(1983), 199-236.fication and design of an information system for the

IFIP Working Conference. Abstract: Interest is increasing in the transfor-
mational approach to programming and in mechan-
ical aids for supporting the program developmentParnas72
process. Available aids range from simple editor-Parnas, D. L. “On the Criteria to be Used in Decom-
like devices to rather powerful interactive transfor-posing Systems Into Modules.” Comm. ACM 15
mation systems and even to automatic synthesis(1972), 1053-1058.
tools. This paper reviews and classifies transfor-
mation systems and is intended to acquaint theAbstract: This paper discusses modularization as a
reader with the current state of the art and providemechanism for improving the flexibility and com-
a basis for comparing the different approaches. Itprehensibility of a system while allowing the shor-
is also designed to provide easy access to specifictening of its development time. The effectiveness of
details of the various methodologies.a "modularization" is dependent upon the criteria

used in dividing the system into modules. A system
This survey on the transformational development ofdesign problem is presented and both a convention-
programs from specifications should definitely beal and unconventional decomposition are described.
examined.It is shown that the unconventional decompositions

have distinct advantages for the goals outlined. The
criteria used in arriving at the decompositions are
discussed. The unconventional decomposition, if

SEI-CM-8-1.0 Draft For Public Review 21

Formal Specification of Software

work in the development of big software systems.Partsch86
The problems faced in developing large softwarePartsch, H. “Transformational Program Develop-
include starting from fuzzy and incomplete require-ment in a Particular Problem Domain.” Science of
ments, enforcing a methodology on the developers,Comp. Programming 7 (1986), 99-241.
coordinating multiple programmers and managers,
achieving desired reliability and performance in theDevelops a suite of programs for the application
system, managing a multitude of resources in adomain of context-free languages by transformation
meaningful way, and completing the system within aof specifications. The transformations are carried
limited time frame. We look at some of the trends inout in the CIP wide-spectrum language (see
requirement specification, life cycle modeling, pro-[Bauer81]). The 110 references are invaluable.
gramming environments, design tools, and other
software engineering areas for tackling above prob-Peterson81 lems. We suggest several phase-independent and

Peterson, J. L. Petri Net Theory and the Modeling of phase-dependent techniques for programming in the
Systems. Englewood Cliffs, N. J.: Prentice-Hall, large. It is shown how research in automatic pro-
1981. gramming, knowledge-based systems, metrics, and

programming environments can make a significant
A very readable introduction to Petri nets, with a difference in our ability to develop large systems.
good selection of examples of their application.

An excellent survey of the entire development proc-
ess of large software systems. Should be read forRamamoorthy78
its emphasis on a proper infrastructure for the devel-Ramamoorthy, C. V., and H. H. So. “Software re-
opment task.quirements and specifications: status and

perspectives.” In Tutorial: Software Methodology,
Reisig85C. V. Ramamoorthy and R. T. Yeh, eds. Silver
Reisig, W. Petri Nets: An Introduction. Berlin:Spring, Md.: IEEE Computer Society Press, 1978,
Springer-Verlag, 1985.43-164.

An excellent introduction to Petri nets with a goodAbstract: This report surveys the techniques, lan-
selection of examples of their application. Tends toguages and methodologies that have been and are
be more formal than [Peterson81].being investigated for the specification of software

throughout all phases of development from the early
conception stage to the detailed design stage. The Rombach87
vast scope of techniques can only be understood by H. Dieter Rombach. Software Specification: A
providing a framework so that they can be Framework. Curriculum Module SEI-CM-11, Soft-
categorized. We suggest a classification scheme ware Engineering Institute, Carnegie Mellon Univer-based on the software system life cycle hoping that

sity, Pittsburgh, Pa., Oct. 1987.the purpose, content and requirements of a partic-
ular technique can be justified and evaluated. Sum-

Schwartz87mary descriptions of significant individual tech-
niques are included to supplement the overall cate- Schwartz, M. D., and N. M. Delisle. “Specifying a
gory description. Lift Control System with CSP.” In Proc. 4th Inter-

national Workshop on Software Specification andBesides being an inventory of what has been done,
Design, Harandi, M. T., ed. Silver Spring, Md.:the report is intended to provide a perspective of the

area. Within our framework, we hope to spot those IEEE Computer Society Press, 1987, 21-27.
aspects and problems that have not been addressed

Abstract: CSP is a language and mathematical the-adequately and suggest relevant concepts and ideas
ory that is well suited for specifying the functionalthat may be used to tackle these problems and solve
behavior of embedded computer systems applica-them, ultimately.
tions. Using a lift control system as an example, we

An early survey of specification methodologies. illustrate a technique for writing specifications in
CSP. We start by formalizing the problem state-Should still be examined, but is less important since
ment as predicates that define the legitimate se-the appearance of [Birrell85].
quences of events. Next, we define a CSP process
that is capable of generating all legitimate se-Ramamoorthy86
quences of events. This CSP process is an ex-Ramamoorthy, C. V., V. Garg, and A. Prakash. ecutable model that can be tested and later trans-

“Programming in the Large.” IEEE Trans. Software formed into an efficient implementation.
Eng. SE-12 (1986), 769-783.

This paper presents a specification of the elevator
Abstract: Ad hoc programming techniques do not problem. The main emphasis is on the specification

22 Draft For Public Review SEI-CM-8-1.0

Formal Specification of Software

ecutable. The strengths and weaknesses of this ap-of a single elevator, but a system of elevators is also
proach are discussed, and also the prospects for thebriefly discussed.
use of purely functional languages in production
programming.Shaw81

Shaw, M., ed. Alphard: Form and Content. New An exposition of the functional language Miranda,
York: Springer-Verlag, 1981. in which recursion equations are combined with

some notation from set theory. This set notation
A collection of papers dealing with Alphard, a lan- allows the functional programming language
guage for specification and programming. The Miranda also to be regarded as a specification lan-
specification of data types in Alphard is in terms of guage.
an abstract model.

Veloso85
Specs87 Veloso, P. A. S., and A. L. Furtado. “Towards
Harandi, M. T., ed. Proc. 4th International Work- simpler and yet complete formal specifications.” In
shop on Software Specification and Design. Silver Information Systems: Theoretical and Formal
Spring, Md.: IEEE Computer Society Press, 1987. Aspects, A. Sernadas, J. Bubenko, and A. Olive, eds.

Amsterdam: North-Holland, 1985, 175-198.A collection of case studies that solve four specifi-
cation problems set by the workshop organizers in

Abstract: A methodology for the formal specifi-advance of the workshop. Three of the problems
cation of data base applications is proposed, whichhave been adopted by the SEI as standard examples.
is constructive and leads to simpler and shorterEssential reading.
specifications by giving a separate treatment to cer-
tain general assumptions.

Standard83
Given two states of an information system that isANSI/IEEE Standard 729-1983. “Glossary of Soft-
defined in Prolog. A plan generator determines theware Engineering Terminology.” In Software Engi-
sequence of events that is to lead from one state toneering Standards. New York: The Institute of the other.

Electrical and Electronics Engineers, 1984.

The initial definition of specification in the module Wing87
philosophy section is taken from this glossary. Wing, J. M. “A Larch specification of the library

problem.” In Proc. 4th International Workshop on
Turner85 Software Specification and Design, Harandi, M. T.,
Turner, D. A. “Functional Programs as Executable ed. Silver Spring, Md.: IEEE Computer Society
Specifications.” In Mathematical Logic and Pro- Press, 1987, 34-41.
gramming Languages, C. A. R. Hoare and

Abstract: A claim made by many in the formalJ. C. Shepherdson, eds. Englewood Cliffs, N. J.: specification community is that forcing precision in
Prentice-Hall, 1985, 29-54. the early stages of program development can

greatly clarify the understanding of a client’s prob-Abstract: To write specifications we need to be
lem requirements. We help justify this claim via anable to define the data domains in which we are
example by first walking through a Larch specifi-interested, such as numbers, lists, trees and graphs.
cation of Kemmerer’s library problem and then dis-We also need to be able to define functions over
cussing the questions that arose in our process ofthese domains. It is desirable that the notation
formalization. Following this process helped revealshould be higher order, so that function spaces can
mistakes, premature design decisions, ambiguities,themselves be treated as data domains. Finally,
and incompleteness in the informal requirements.given the potential for confusion in specifications
We also discuss how Larch’s two-tiered specifica-involving a large number of data types, it is a prac-
tion method influenced our modifications to and ex-tical necessity that there should be a simple syntac-
trapolations from the requirements.tic discipline that ensures that only well typed ap-

plications of functions can occur. An illustration of the two-tiered approach of Larch
by means of an example, an information system thatA functional programming language with these
specifies the operation of a library.properties is presented and its use as a specification

tool is demonstrated on a series of examples. Al-
though such a notation lacks the power of some Yourdon86
imaginable specification languages (for example, in Yourdon, E. Structured Walkthroughs, 3rd ed.. New
not allow existential quantifiers), it has the advan- York: Yourdon Press, 1986.tage that specifications written in it are always ex-

SEI-CM-8-1.0 Draft For Public Review 23

Formal Specification of Software

A thorough guide to the organization and manage-
ment of walkthroughs, which are applicable in the
validation of specifications.

Zave84
Zave, P. “The Operational Versus the Conventional
Approach to Software Development.” Comm. ACM
27 (1984), 104-118.

Abstract: The conventional approach to software
development is being challenged by new ideas,
many of which can be organized into an alternative
decision structure called the "operational" ap-
proach. The operational approach is explained and
compared to the conventional one.

Argues for problem-oriented specifications that are
executable by a suitable interpreter and then trans-
formed into efficient implementations.
"Conventional approach" refers to informal, natural
language requirements definitions. Zave’s argu-
ments agree with the SF philosophy of specification
expressed in [Berztiss86b].

Zave86
Zave, P., and W. Schell. “Salient Features of an Ex-
ecutable Specification Language and its
Environment.” IEEE Trans. Software Eng. SE-12
(1986), 312-325.

Abstract: This paper presents the executable speci-
fication language PAISLey and its environment as a
case study in the design of computer languages. It
is shown that PAISLey is unusual (and for some
features unique) in having the following desirable
features: 1) there is both synchronous and asyn-
chronous parallelism free of mutual-exclusion prob-
lems, 2) all computations are encapsulated, 3) spec-
ifications in the language can be executed no matter
how incomplete they are, 4) timing constraints are
executable, 5) specifications are organized so that
bounded resource consumption can be guaranteed,
6) almost all forms of inconsistency can be detected
by automated checking, and 7) a notable degree of
simplicity is maintained. Conclusions are drawn
concerning the differences between executable
specification languages and programming lan-
guages, and potential uses for PAISLey are given.

An introduction to PAISLey, a language for the
specification of control systems. PAISLey specifi-
cations are operational—they are implementation-
independent models of how to solve a
problem—rather than non-constructive. This paper
should be read for a discussion of the differences
between the two types of specifications.

24 Draft For Public Review SEI-CM-8-1.0

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

