
Assurance of Software Quality

SEI Curriculum Module SEI-CM-7-1.1 (Preliminary)

July 1987

Bradley J. Brown
Boeing Military Airplane Company

Software Engineering Institute
Carnegie Mellon University

This work was sponsored by the U.S. Department of Defense.
Approved for public release. Distribution unlimited.

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by Carnegie
Mellon University under contract with the United States Department of Defense.

The SEI Education Program is developing a wide range of materials to support software engineering education. A
curriculum module identifies and outlines the content of a specific topic area, and is intended to be used by an instructor
in designing a course. A support materials package includes materials helpful in teaching a course. Other materials
under development include textbooks and educational software tools.

SEI educational materials are being made available to educators throughout the academic, industrial, and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

SEI curriculum modules may be copied or incorporated into other materials, but not for profit, provided that appropriate
credit is given to the SEI and to the original author of the materials.

Requests for additional information should be addressed to the Director of Education, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

Comments on SEI materials are solicited, and may be sent to the Director of Education, or to the module author.

Bradley J. Brown
Manager, Software Quality Assurance
Boeing Military Airplane Company
P.O. Box 7730 M\S 32-24
Wichita, Kansas 67217

Copyright © 1987 by Carnegie Mellon University

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position.
It is published in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler
SEI Joint Program Office

ESD Report Number: ESD-TR-87-125

Assurance of Software Quality

Contents

Capsule Description 1

Philosophy 1

Objectives 1

Prerequisite Knowledge 2

Module Content 3

Outline 3

Annotated Outline 3

Teaching Considerations 11

Exercises 11

Bibliographies 13

Books 13

Papers 13

SEI-CM-7-1.1 (Preliminary) iii

Assurance of Software Quality

Module Revision History

Version 1.1 (July 1987) format changes for title page and front matter
Version 1.0 (April 1987) original version

iv SEI-CM-7-1.1 (Preliminary)

Assurance of Software Quality

fied requirements.Capsule Description
A module on Assurance of Software Quality is re-

This module presents the underlying philosophy and quired in addition to the other modules treating soft-
associated principles and practices related to the as- ware development because of the unique functional
surance of software quality. It includes a description role inherent in the assurance of software quality.
of the assurance activities associated with the phases Most of the activities and functions in the software
of the software development life-cycle (e.g., require- development process are product oriented and, as
ments, design, test, etc.). such, are nearly isolated from other activities and

functions in the software development process. As-
surance of software quality, on the other hand, is a
process oriented function which is inherently in-
volved with every activity and function of the soft-Philosophy
ware development process.

This module presents the concepts underlying the as-
surance of software quality as a function of the soft-
ware development process. Specifically, this mod-
ule provides: Objectives

1. a basic understanding of the concept of qual-
A student who has worked through this moduleity as it relates to software
should be able to:2. an explanation of the concept of software

1. explain the concept of assurance of softwarequality assurance as it relates to the software
quality, and discuss the relationship of soft-development process
ware quality assurance to the phases of the3. an overview of the industry and government
software development processstandards related to software

2. discuss methods related to assurance of qual-4. an examination of processes related to soft-
ity of software productsware defect reporting, resolution, and anal-

3. describe the concept of traceability, identifyysis
traceable products, and discuss schemes for5. an explanation of requirements traceability
implementing and using traceabilityand correlation, and the use of traceability to

4. define the characteristics of software non-demonstrate of satisfaction of requirements
conformance reporting, identify related in-6. an examination of methods used to docu-
formation analysis, and discuss non-ment assurance activities
conformance resolution including corrective

7. an examination of the social factors involved action as to the cause of the non-
in influencing the actions of persons despite conformance
an adversarial relationship

5. demonstrate awareness of the social factors
This module provides the concepts underlying the predominant in system non-conformance
development, implementation, and maintenance of a resolution and corrective action, and know
software quality assurance program which assures how to achieve cooperation in spite of an ad-
that the process used in the development of software versarial relationship
results in a product which complies with the speci- 6. identify the components of software docu-

SEI-CM-7-1.1 (Preliminary) 1

Assurance of Software Quality

mentation and related data, and specify con- 7. basic statistical methods
trol mechanisms for achieving the appropri- 8. technical communication, including interper-
ate quality sonal and writing skills

7. be familiar with project, industry, and gov-
ernmental standards, and understand their re-
lationship to the software development proc-
ess

8. discuss the components of a software quality
assurance program, and understand how to
align those components to a software devel-
opment program with allowance for size,
complexity, and other constraining factors
associated with the program

9. demonstrate awareness of the social factors
involved in implementing and maintaining a
software quality assurance program

Since the actions associated with the assurance of
software quality are highly dependent on the charac-
teristics of the underlying software development pro-
gram, this module cannot provide individual meth-
ods related to implementation or maintenance of a
software quality assurance program. Instead, this
module provides the concepts which serve as the
basis for assurance of software quality and which
provide the general knowledge required to develop
specific software development project assurance
methods.

Prerequisite Knowledge

Since the assurance of software quality is concerned
with assuring the quality of the entire software de-
velopment process, a general knowledge of the soft-
ware development process is necessary to under-
stand the relationship of software quality assurance
functions to their associated software development
functions. The minimum required knowledge
should include a basic knowledge of:

1. software requirements definition and repre-
sentation

2. software design methods and resulting docu-
mentation and data, specifically including
maintenance and enhancement methods

3. software code representations and con-
straints

4. inspection, walkthrough, review, and audit
conduct

5. test methods, including test case assessment

6. configuration management and configuration
control

2 SEI-CM-7-1.1 (Preliminary)

Assurance of Software Quality

Module Content

VIII. Corrective Action as to CauseOutline
1. Identifying the Requirement for Corrective

ActionI. Introduction
2. Determining the Action to be Taken1. The Philosophy of Assurance
3. Implementing the Corrective Action2. The Meaning of Quality
4. Documenting the Corrective Action3. The Relationship of Assurance to the Software

Life-cycle 5. Periodic Review of Actions Taken
II. Tailoring the Software Quality Assurance IX. Traceability

Program
X. Records

III. Reviews
XI. Software Quality Program Planning

1. Walkthrough
XII. Social Factors

2. Inspection
1. Accuracy

3. Configuration Audits
2. Authority

IV. Evaluation
3. Benefit

1. Software Requirements
4. Communication

2. Preliminary Design
5. Consistency

3. Detailed Design
6. Retaliation

4. Coding and Unit Test

5. Integration and Testing

6. System Testing
Annotated Outline7. Types of Evaluations

V. Configuration Management
I. Introduction

1. Maintaining Product Integrity
1. The Philosophy of Assurance

2. Change Management
The concept of Assurance of Software Quality is3. Version Control based on the principle of establishing good software

4. Metrics engineering practices and monitoring adherence to
those practices throughout the software development5. Configuration Management Planning
life-cycle. This results, to a large extent, in giving

VI. Error Reporting control of the software development process priority
over control of the software product. It must be1. Identification of Defect
understood that quality cannot be the assigned func-2. Analysis of Defect
tion of any one person or organization; rather, it

3. Correction of Defect must be the primary responsibility of every person
involved in the development of a product. The role4. Implementation of Correction
of Software Quality Assurance, then, is to influence

5. Regression Testing everyone to perform their function in a quality man-
ner. The basis for this philosophy is that the consis-6. Categorization of Defect
tent use of a quality process will result in a quality7. Relationship to Development Phases product.

VII. Trend Analysis
2. The Meaning of Quality1. Error Quantity

A precise definition of quality is not important in2. Error Frequency
order to understand the concept of software quality

3. Program Unit Complexity assurance. For the purpose of this module, quality
is the presence of desired characteristics and the ab-4. Compilation Frequency
sence of undesirable characteristics in the product or

SEI-CM-7-1.1 (Preliminary) 3

Assurance of Software Quality

process. The preceding statement is not intended to A technical review is a disciplined group process
be a definition of quality for use in all cir- focused toward an extensive examination of a product
cumstances; it provides a basis for understanding or process. It derives a large portion of its efficacy
which is necessary in order to discuss the concept of from the combined expertise of the members of the
software quality assurance. group. A more extensive coverage of this subject can

be found in The Software Technical Review Process
The characteristics whose absence or presence module [Collofello86].
denote quality are completely dependent upon the

1. Walkthroughsituation surrounding each individual product. In
essence, quality is relative. It is conceivable that a

A walkthrough is usually an informal, somewhat un-situation could occur where meeting schedule is
disciplined, review of a software product; usuallymore important than whether the item works. In this
source code [Yourdon78].event, timeliness would be more important as a qual-

ity characteristic than would functionality. Al- 2. Inspection
though this may be an extreme example, the moral is

An inspection is a formal, disciplined review of allthat the actual quality characteristics are dependent
software products; not just source code [Fagan76],upon each unique situation, and that quality is not a
[Fagan86].concrete, immutable concept referring to some un-

changing characteristic.
3. Configuration Audits

3. The Relationship of Assurance to the Software
Final acceptance of a software product is frequentlyLife-cycle based on completing a set of configuration audits.
These audits ensure that the product has satisfac-The function of Software Quality Assurance inter-
torily met all of its applicable requirements.acts to some degree with each phase of every soft-

ware development process. Planning should occur a. Functionalin the initial phases of a software project and should
address the methods and techniques to be used in The primary purpose of the Functional Configu-
each phase. A description of every product resulting ration Audit is to ensure that the product that was
from a phase and the attributes desired of each prod- tested to demonstrate compliance with contract
uct should be defined in order to provide a basis for requirements is essentially the same as the prod-
objectively identifying satisfactory completion of uct that will be delivered. Conducting software
the phase. tests frequently takes months or even years, dur-

ing which time the software item being testedII. Tailoring the Software Quality Assurance may undergo revisions and modifications. The
Program Functional Configuration Audit should ensure

that none of these revisions adversely affects theEach software development effort is unique to some
results of previous tests.extent; even though some of the same methods and

techniques can be used frequently, some differences b. Physical
between projects will almost always exist. Some fac-
tors that have a large impact on the software quality The primary purpose of the Physical Configura-
assurance program are: tion Audit is to ensure that all of the requirements

of the contract have been satisfied, with special• schedule requirements
emphasis on the documentation and data delivery• available budget requirements. This audit usually is performed af-

• technical complexity of the software product ter the Functional Configuration Audit has dem-
onstrated that the item functions properly.• anticipated size of the software product

• relative experience of the labor pool IV. Evaluation
• available resources

An evaluation is usually performed by a single indi-
• contract requirements vidual and is intended to ensure compliance with all

applicable requirements for each software product. Al-These and other factors determine the nature of the
though evaluation of software products is actually asoftware quality assurance program. The initial plan-
software quality control function, it provides informa-ning of the software quality assurance program should
tion regarding the software development process thatidentify how each of these factors will affect the pro-
may not be obtained effectively in any other manner.gram and determine how the program will be tailored
The actual evaluation of the software products may beto function effectively as a result.
performed by any organization or individual within the
software development project. The following lists ofIII. Reviews
evaluations to be performed during each phase of soft-

4 SEI-CM-7-1.1 (Preliminary)

Assurance of Software Quality

ware development are only suggestions. The actual The activities and products of the coding and unit
products to be evaluated should be determined while test phase should be examined throughout the con-
planning the software quality assurance program. duct of this phase. This examination should consist

of the following evaluations:
1. Software Requirements

• all revised program plans
The activities and products of the software require- • source code
ments phase should be examined throughout the

• object codeconduct of this phase. This examination should
• software development foldersevaluate the following:
• unit test procedures• software development plan
• unit test results• software standards and procedures manual
• all revised description documents• software configuration management plan
• integration test procedures• software quality program plan
• software test procedure• Software requirements specification
• all revised manuals• interface requirements specification

• operational concept document 5. Integration and Testing

2. Preliminary Design The activities and products of the integration and
testing phase should be examined throughout theThe activities and products of the preliminary design
conduct of this phase. This examination should con-phase should be examined throughout the conduct of
sist of the following evaluations:this phase. This examination should consist of the

• all revised program plansfollowing evaluations:
• integration test resultsa. All revised program plans
• all revised description documents

b. software top level design document
• revised source code

c. software test plan
• revised object code

d. operator’s manual • revised software development files
e. user’s manual • software test procedures
f. diagnostic manual • all revised manuals
g. computer resources integrated support

6. System Testingdocument
The activities and products of the system testing3. Detailed Design
phase should be examined throughout the conduct of

The activities and products of the detailed design this phase. This examination should consist of the
phase should be examined throughout the conduct of following evaluations:
this phase. This examination should consist of the • all revised program plans
following evaluations:

• system test report
• all revised program plans

• all revised description documents
• software detailed design document

• revised source code
• interface design document

• revised object code
• database design document

• revised software development files
• software development files

• software product specification
• unit test cases

• version description document
• integration test cases

• all manuals
• software test description

7. Types of Evaluations• software programmer’s manual

• firmware support manual The following types of evaluations are based upon
those found in DOD-STD-2168 Software Quality• all revised manuals
Program [DoD87]. Some or all of these evaluations• computer resources integrated support docu- apply to every software product. The software qual-

ment ity assurance program plan should specify which
products are evaluated, and which evaluations are4. Coding and Unit Test

SEI-CM-7-1.1 (Preliminary) 5

Assurance of Software Quality

performed on those products. techniques are used, errors seem to be a fact of life.
Maintaining an effective error reporting system, how-• adherence to required format and documen-
ever, will help minimize the potential impact of soft-tation standards
ware errors. Every software development project

• compliance with contractual requirements should establish an error reporting system even if it
• internal consistency consists of notes scribbled on the back of a dinner nap-

kin. It takes valuable resources to detect each error,• understandability
but they are wasted if they must be used to locate an• traceability to indicated documents error that had been previously detected.

• consistency with indicated documents
An error reporting system should be tailored to the• appropriate requirements analysis, design,
needs of the software development project. Howevercoding techniques used to prepare item
simple or elaborate the system may be, it should ad-

• appropriate allocation of sizing, timing dress the following areas:
resources

1. Identification of Defect• adequate test coverage of requirements

Each defect identified should be described in clear,• testability of requirements
precise terms. This description should usually be of• consistency between data definition and use
the behavior of the system, although in some cases it

• adequacy of test cases, test procedures may be more efficient to describe the actual defect
• completeness of testing in the software product. In any case, the description

should be written to be understandable to persons• completeness of regression testing
somewhat unfamiliar with the specific software

V. Configuration Management product, and to be understandable after time has
passed. If appropriate care is taken in documenting

Software configuration management encompasses the errors, valuable data will be available in the future
disciplines and techniques of initiating, evaluating, and for analysis which could identify improved methods
controlling change to software products during and af- of developing or maintaining the software product.
ter the development process. It emphasizes the impor-
tance of configuration control in managing software 2. Analysis of Defect
production. The Software Configuration Management

The severity of the defect and the difficulty of cor-module [Tomayko86] provides detailed information
recting the defect should be documented to provide aregarding the principles and procedures of software
basis for determining resource allocation andconfiguration management. An effective configuration
scheduling defect correction priorities. Errors aremanagement should control changes for all software
frequently detected faster than they can be resolved,products on a software development project, including
and performing an initial defect analysis can providespecifically documentation, test reports, and software
valuable information to project management for es-error reports. Software configuration management pro-
tablishing priorities. Typically, the analysis can bevides the foundation for all of the rest of the activities
performed much more rapidly than can identifyingwhich occur during software development.
the actual correction and therefore should be consid-

Although the need for a formalized methodology for ered as an independent operation within the error
software configuration management may not be ap- reporting system.
parent on smaller projects, the need quickly becomes

3. Correction of Defectcrucial to success as the project grows even slightly in
size. A team of three people may be able to maintain Documenting the correction of the defect is impor-
an oral history of the project, a feat which is patently tant to maintain proper configuration accounting.
impossible for a team of thirty people. The description of the correction should include:

The functions of software configuration management • a narrative description of the correction
that provide a basis for assuring software quality are: • a list of program units affected

• the number, revision, and sections of all docu-1. Maintaining Product Integrity
ments affected2. Change Management

• any test procedures changed as a result of the
3. Version Control correction.
4. Metrics

4. Implementation of Correction
5. Configuration Management Planning

Updates to software are frequently performed inVI. Error Reporting blocks after a baseline has been established. What
this essentially means is that error corrections areUnfortunately, no matter what software engineering

6 SEI-CM-7-1.1 (Preliminary)

Assurance of Software Quality

identified by working with an engineering copy of which have been baselined, and even more complete
the software, and then are incorporated en masse for products which have been delivered to a cus-
into the official baselined version of the software tomer.
after a certain number of errors have been corrected.

VII. Trend AnalysisIdentification of which error was corrected in which
version of software is important. Recording the im- Analysis of trends in the performance of work can help
plementation of the correction makes this possible. to avoid the development of a non-conforming product.
The description of the implementation should in- Trend analysis is a passive activity in that it provides
clude: information indicating that corrective actions maybe

necessary, and in some cases may even suggest appro-• the version in which the correction was incor-
priate corrective actions, but does not affect the soft-porated
ware development process itself. Essentially, trend• the authority for incorporating the correction.
analysis essentially refers to a form of data analysis

5. Regression Testing where time is represented as one of the elements of a
report. The data that comprise the other elements of

Retesting the affected function is necessary after the the trend report determine the nature and ultimate util-
change is incorporated since as many as 20 percent ity of the report. Trend reports are extremely phase
of all corrections result in additional errors. Fre- dependent in that a report which is valuable while pre-
quently, additional functions will need to be tested paring requirement specifications may be useless dur-
to ensure that no latent defects were induced by the ing system testing. Some of the possible report types
correction. In the event that latent defects were in- are:
duced by the correction, one method of resolution
would be to treat them as new errors and initiate a 1. Error Quantity
new error report. The description of regression test-

Error quantity reports frequently plot the quantity ofing should include:
errors versus the time of initiation and the time of

• a list of test paragraphs/objectives retested closure. This report can be based on cumulative
• the version of software used to perform quantity or instantaneous quantity. Separating the

regression test errors into major functions or by responsible persons
can be useful in locating the source of unusual quan-• indication of successful/unsuccessful ac-
tities of errors. Statistical process control methodscomplishment of test.
can even be used to provide upper and lower

6. Categorization of Defect bounds, or critical limits, which can identify
whether further training of the responsible persons is

Errors can frequently be grouped into categories necessary or beneficial.
which will allow future data analysis of errors en-
countered. The most efficient time to categorize 2. Error Frequency
them is usually as they are resolved while the infor-

Error frequency charts report the quantity of errorsmation is still fresh. Possible classifications for er-
per unit of software product. The unit used may be aror categorization include:
section of a requirements specification, a test proce-• error type—requirements, design, code, test, dure paragraph, a source code program unit, or any

etc. other objectively identifiable component of a soft-
• error priority—no work around available, ware software. The utility of an error frequency

work around available, cosmetic. report is based on the Pareto Principle of non-
homogeneous error distribution. If errors are non-• error frequency—recurring, non-recurring.
homogeneously distributed in the product to be ex-

7. Relationship to Development Phases amined, then units with high detected error fre-
quencies will probably also have a larger than nor-The software error reporting system should be de-
mal number of latent errors.signed to change in complexity as the complexity of

the software development project changes. The con- 3. Program Unit Complexity
figuration control requirements for the products of

Various metrics have been developed for measuringeach phase increase with the maturity of that phase
the relative complexity of software source code anduntil, at phase completion, each product is placed
have been verified to have some correlation to errorunder rigid change control with requested changes
frequency, e.g., McCabe’s cyclomatic complexityrequiring a specified authorization prior to imple-
metric, or Halstead’s information metric. A com-mentation. The software error reporting system
plexity metric which has demonstrated a correlationshould also change in complexity to match the pro-
to error frequency could be used in the early phasesgram; the system should be simple for products un-
of a project to identify units of unusually high com-der engineering control, more complete for products
plexity as candidates for simplification through

SEI-CM-7-1.1 (Preliminary) 7

Assurance of Software Quality

redesign. greatest frequency. It might be desirable to estab-
lish a lower limit below which corrective action is

4. Compilation Frequency not required.

Compilation frequency is an example of a report c. Error magnitude
which, on the surface, may appear to be trivial.
DeMarco, however, indicates that for whatever A standard threshold can also be established on
reason—and there are identifiable reasons—program the basis of error magnitude. This would focus
units which are compiled frequently during design the corrective action resources on the errors
are also compiled frequently during integration and which have the largest impact on the project. An
system test. Therefore, a unit which has been com- example would be to set a requirement that, after
piled three standard deviations above the mean num- the start of system test, corrective action be man-
ber of compilations would be a prime candidate for datory for all errors which halt system test con-
evaluation as to the reason for the unusually high duct. The difficulty with a system of this type lies
compilation frequency. in the inherent subjectivity of determining error

magnitude.
VIII. Corrective Action as to Cause

d. Statistical sampling
The purpose of a corrective action system is to
eliminate recurring errors by correcting the problem A statistical sample of all errors could be selected
that caused the errors. Identifying the root cause of at random for required corrective action. The
recurring defects is frequently difficult, but unless a benefit of this method would be reduction in
concerted action is taken to correct the root cause that resource allocation required over that of compre-
was identified, the effort is in vain. An organized cor- hensive corrective action. This benefit may be
rective action system should provide for the following: false, however, in that the number of errors not

addressed and thus recur may require more
1. Identifying the Requirement for Corrective resources than would a more focused corrective

Action action system.

The initial activity of any corrective action system is 2. Determining the Action to be Taken
to determine when a corrective action would be

Determining the action to be taken to correct thebeneficial. Several methods are available for estab-
root cause of a recurring defect requires disciplinedlishing standard thresholds for non-conformances
analysis. Factors such as resource availability andprior to a required corrective action. Some of these
anticipated political resistance should be taken intomethods are as follows:
account during the assessment of the action to be

a. Comprehensive taken. Possible actions could consist of additional
training for the individuals involved, an improve-Performing comprehensive corrective action on
ment in unit test methods, or even scrapping the unitevery non-conformance is probably the simplest
and starting over from scratch.method. No real decision needs to be made other

than whether it is a non-conformance or not. The 3. Implementing the Corrective Action
main disadvantage of this method is the inappro-

Implementing the identified corrective action is of-priate allocation of resources. Not all non-
ten the responsibility of someone other than the per-conformances are of the same magnitude and not
son who identified the action. Proper coordinationall non-conformances have a recurring root cause;
should exist to ensure that the people involved un-they are frequently non-recurring minor errors.
derstand the purpose and expected benefit of im-However, depending on the criticality of the proj-
plementing the corrective action.ect, it may be desirable to at least examine every

error for potential corrective action.
4. Documenting the Corrective Action

b. Error frequency
A disciplined method of documenting corrective ac-
tions is necessary to ensure that the corrective actionThe frequency of errors within a unit of a soft-
system is effective. This method should ensure thatware project may be used as a basis for a standard
the errors for which corrective action is required arethreshold. Statistical process control techniques
identified, that the action to be taken is recorded,can be used to determine the number of errors
and that the implementation of the corrective actionpermissible before requiring corrective action. A
is documented. Provisions should also be consid-simpler method, however, is to list the units in
ered for establishing an end date for corrective ac-descending order by frequency of defects, then
tions of a temporal nature.start from the top of the list and work down. This

method ensures that corrective action resources
5. Periodic Review of Actions Takenare always focused on the errors having the

8 SEI-CM-7-1.1 (Preliminary)

Assurance of Software Quality

No one likes to perform corrective action, and if the function, assurance is not concerned with the software
identified corrective action is not embedded into an product per se, but with the process which produces
existing system, it is easy to fail to comply. In order that product. Since the software development process
for a corrective action system to be effective, it must is composed of humans, the interaction with that proc-
ensure that continued corrective action is maintained ess must therefore be through humans. Social factors
through a system of periodic review. Once the ac- are those concepts that must be considered when inter-
tion has been implemented, provisions should exist acting with humans in the role of assuring software
to review the action after a week or maybe a month quality.
has passed to ensure that the individuals responsible

1. Accuracyfor performing the action understand their responsi-
bilities and are maintaining the corrective action. Accuracy of data is of paramount importance when

presenting any information as a result of a softwareIX. Traceability
quality assurance activity. Credibility is difficult to

The principle of traceability is that every software achieve and can easily be lost through an inadvertent
product should be traceable back to the product from misstatement or a minor miscalculation. One of the
which it was derived. With effective traceability, it most frequent defenses used to avoid changing the
should be possible to identify the requirement or design status quo, and unfortunately a very effective one, is
decision from which each algorithm in the software that the data used to show the need for the change is
product was derived. Test procedures should be trace- inaccurate. This defense is often taken to the ex-
able to the requirement or design for which they dem- treme where a mistake in a presentation years ago is
onstrate product compliance. Traceability provides for used as a basis for saying that a current report is
ease in determining phase completion and product inaccurate. Under the pressure of a management
completeness. It supports the accomplishment of re- review there is no time to demonstrate whether the
views and evaluations, and provides for increased con- data is correct or not, and the credibility of the
fidence in the accuracy of requirements verification. organizations/people involved in the eyes of the
Also, effective traceability can assist in ensuring that management making the decisions is the determin-
test procedures are updated whenever errors are dis- ing factor in what those decisions are. Even though
covered which were undetected by the applicable pro- reports may frequently have to be prepared under a
cedure. tight schedule, always take time to ensure the data is

accurate.
X. Records

2. Authority
Maintaining an effective software quality assurance
program requires a disciplined method of handling the Individuals involved in assuring software quality
records processed—software error reports, product may be designated as having authority in some com-
evaluation checklists, configuration records, review re- pany procedure or policy statement, but the authority
ports, corrective action records, etc. Each record necessary to influence changes despite an adver-
should have a means of unique identification to ensure sarial relationship can rarely be enforced through
that it can be conveniently referenced. Retention re- management action. If the individuals involved are
quirements should be established for each type of not competent to influence changes or the organi-
record to ensure that they are stored in the appropriate zation involved has insufficient credibility to gain
manner and for the appropriate time necessary depend- management support—especially adversarial man-
ing on their criticality. agement support—then rarely can any amount of

high-level management direction or corporate policy
XI. Software Quality Program Planning avail.

Before starting a software project, and then throughout Each person has the authority that they are capable
all phases of the project, planning should be done to of assuming and for which they are willing to be
ensure that the needs of the project are addressed. responsible. Authority is gained through demon-
Every technique, method, record, and system should be strating one’s competence to the persons whom one
established as necessary to support the project and then is interested in influencing. This competence is not
discontinued when no longer necessary. A technique just a matter of credentials, but a matter of whether
that can be helpful in planning a software quality as- the changes are really beneficial to the company as a
surance program for a new project is to use an old plan whole or self serving to the person interested in get-
or a data item description for a plan as a checklist to ting them implemented.
ensure that all possible items are considered in the new
plan. 3. Benefit

XII. Social Factors An effective program for assuring software quality
will provide an overall benefit even though it will

Social factors play an important role in the application occasionally create temporary hardships for individ-
of quality assurance in a real world environment. As a

SEI-CM-7-1.1 (Preliminary) 9

Assurance of Software Quality

ual persons or organizations. It is important to em-
phasize the benefits which will result from each ac-
tion. It is also important that persons responsible for
software quality assurance be alert for opportunities
to help individual persons and organizations when-
ever possible. If the process of collecting data to
prepare a report results in the compilation of data
necessary to produce certain system documentation,
it might be beneficial to provide that data to the
organization responsible for preparing the documen-
tation, thus saving them duplication of effort. It is
important, however, to maintain objectivity so that
effective evaluations can be performed.

4. Communication

Assurance of Software Quality consists essentially
of communicating information. Every evaluation or
verification performed essentially consists of assimi-
lating information and providing feedback as a result
of that information; in other words, communication.
Many forms of communication are used, but the pri-
mary forms are speech and writing. It is important
that people who are responsible for assuring soft-
ware quality be proficient at communication.

5. Consistency

It is important that actions taken and decisions made
be consistent. If direction changes frequently, for
whatever reason, the persons responsible for follow-
ing that direction become confused and quickly
learn not to follow any direction unless it is what
they want. No procedure or policy regarding soft-
ware quality assurance should be set in place unless
the means and the desire exist to ensure that it is
adhered to consistently and for as long as is neces-
sary. Establishing standards and requirements and
then allowing them to be disregarded or ignored
damages the credibility of all standards and require-
ments.

6. Retaliation

A person responsible for assuring software quality
will frequently encounter personal abuse merely be-
cause of the responsibilities of the position. Many
opportunities are available to that person to retaliate
due to the inherent responsibilities of the position.
Although it is almost always difficult, retaliation
should always be avoided. Personal vendettas
usually result in tremendous losses to the company
or project and vastly outweigh whatever personal
satisfaction is gained. If revenge is frequently
sought, the persons involved will soon lose whatever
credibility they have and in so doing will destroy
their value to the company.

10 SEI-CM-7-1.1 (Preliminary)

Assurance of Software Quality

Teaching Considerations

record retest activities accomplished to demonstrateExercises
successful correction of the defect. The system
should also provide for error status reporting. Addi-These exercises will give the student a greater under-
tional refinements can be included, such as identifi-standing of the concepts underlying the assurance of
cation of errors in all software-related products (e.g.,software quality. Although they can be accomplish-
manuals, specifications) identification of the rooted individually, all of these exercises will benefit by
cause of the defect, and corrective actions toassociation with a non-trivial software development
eliminate the root cause.project that involves many students and that demon-

strates good software engineering principles. If the system is implemented with a software devel-
opment project, the student should prepare a sum-Reviews. Have the student establish a system for
mary report a suitable amount of time after the sys-performing walkthroughs and/or inspections on soft-
tem is in use, describing the difficulties encounteredware products. The system should define what prod-
in implementing the system and the location ofucts are to be examined and should include criteria
suspected inaccurate data within the system. If grad-for completing the reviews. The records used to
ing pressure or other motivational influences aredocument accomplishment of reviews should be de-
placed upon the software development project forveloped or described. The system should include
schedule accomplishment, etc., the student shouldprovisions for identifying non-conformances and
notice an associated influence on the accuracy of thepossibly even reassuring them. A method should ex-
software error data.ist to verify objectively the status of review conduct

and to ensure that all applicable products are re- Trend Analysis. Have the student develop a system
viewed. The review of revisions and updates should for data collection and analysis which will detect
be addressed. trends in the performance of work which could lead

to a non-conforming product. The method used toEvaluations. Have the student prepare an evalua-
verify the usefulness of the analysis in regard to cor-tion plan for a single software product, e.g., a Soft-
relation to software non-conformances should be ad-ware Requirements Specification. This plan should
dressed.address methods for objectively verifying the

presence or absence of the desired characteristics of An alternative would be to have the student identify
the product. The forms and records used to docu- various methods of data analysis which could be
ment accomplishment of the review should be devel- used for trend analysis. Emphasis could be placed
oped or described. Non-conformances should be ad- on using data other than software error data as the
dressed identified and possibly corrected. basis of the analysis.

Configuration Management. Have the student de- Corrective Action. Have the student establish a
scribe a system which would ensure that product in- methodology for determining the threshold for per-
tegrity and change control are maintained throughout missible non-conformances prior to required correc-
the software development process. This method tive action. A description of how non-conformances
should ensure that the appropriate change authoriza- are identified and tracked should be included. The
tion has been received prior to implementing the method should be objective, repeatable, and verifi-
change during each applicable phase of the software able. The student should also develop a way of veri-
development project. If desired, this system could fying that the proposed method correlates in some
be restricted in application to source code to limit way with defect frequency.
the magnitude of the system. This system should

As a more advanced exercise, have the student de-include records or forms used to document any veri-
velop the entire corrective action system. Reportsfication activities.
and forms should be prepared with procedures de-

Software Error Reporting. Have the student de- scribing their initiation and use. The system should
velop a system for collecting and reporting software include provisions for evaluating its relative efficacy
error data. The system should accurately identify and should provide supporting data for a cost/benefit
the software error, record the analysis of the cause of analysis.
the error, document the correction of the defect, and

Traceability. Have the student develop a standard

SEI-CM-7-1.1 (Preliminary) 11

Assurance of Software Quality

method for establishing traceability within a soft-
ware development project’s documentation and
products. The method should include provisions for
discrete identification of requirements and correla-
tion of requirements to their applicable references.
The method should provide for independent verifi-
cation of the accuracy of the various data products.

Records. Have the student develop a system for
identifying and controlling of records used for as-
surance of software quality. The system should en-
sure that the records are complete and accurate and
should address retention requirements and storage.

Software Quality Program Plan. Developing an
entire Software Quality Program Plan is an am-
bitious exercise, however, it could be accomplished
as an incremental, multi-semester, team project. The
initial team could develop the framework for the en-
tire plan and the detailed procedures for the Require-
ments Analysis phase. Successive teams could then
complete the detailed procedures for each of the suc-
cessive phases. Attention should be given configu-
ration management of the Software Quality Program
Plan document as a software product. Correlation
between the SQPP and the associated Software De-
velopment Plan, Software Configuration Manage-
ment Plan, and Software Test Plan should be main-
tained to prevent conflicting provisions or unneces-
sary duplication of provisions.

Human Factors. Have the student observe an on-
going software development project for the effect of
human factors on the project’s productivity. Have
the student conduct interviews and collect data (such
as memos) that indicate the influence of human fac-
tors on the project. A report should be prepared de-
scribing instances observed; if possible, have the stu-
dent evaluate possible methods of reducing adverse
effects caused by human factors. A hint is that
human factors can also be referred to occasionally as
politics.

12 SEI-CM-7-1.1 (Preliminary)

Assurance of Software Quality

Bibliographies

Books Papers

DeMarco78 Adrion82
DeMarco, T. Structure Analysis and System Adrion, W. R., M. A. Branstad, and
Specification. Yourdon Press, 1978. J. C. Cherniavsky. Validation, Verification, and

Testing of Computing Software. Computing Surveys
14, 2 (June 1982), 334-367.DeMarco82

DeMarco, T. Controlling Software Projects. Your- Abstract: Software quality is achieved through the
don Press, 1982. application of development techniques and the use

of verification procedures throughout the develop-This book is possibly one of the best treatises on the
ment process. Careful consideration of specificsubject of metrics, even though it never actually
quality attributes and validation requirements leadsuses the term metric. It also provides a realistic
to the selection of a balanced collection of review,perspective on the psychology of software project
analysis, and testing techniques for use throughoutmanagement.
the life cycle. This paper surveys current verifi-
cation, validation, and testing approaches and dis-

Evans84 cusses their strengths, weaknesses, and life-cycle
usage. In conjunction with these, the paper de-Evans, M. W. Productive Software Test
scribes automated tools used to implement valida-Management. John Wiley, 1984.
tion, verification, and testing. In the discusssion of
new research thrusts, emphasis is given to the con-Machiavelli13
tinued need to develop a stronger theoretical basis

Machiavelli, N. The Prince. Bantam Books, Inc., for testing and the need to employ combinations of
1981. First published in 1513. tools and techniques that may vary over each appli-

cation.This book presents several excellent concepts re-
lated to influencing people in spite of an adverse

Boger85relationship. It was written to explain how a prince
should control his principality, but with only a Boger, D. C., and N. R. Lyons. The Organization of
minor change in view point, it also provides a the Software Quality Assurance Process. Data Base
remarkably incisive commentary on interpersonal (USA) 16, 2 (Winter 1985), 11-15.
and interorganizational relationships.

Abstract: This paper discusses and analyzes ap-
proaches to the problem of software quality as-Myers79
surance. The approaches offered in the literature

Myers, G. J. The Art of Software Testing. John usually focus on designing in quality. This can be a
Wiley, 1979. productive approach, but there are also benefits to

be gained by establishing an independent qualityThis is a landmark book on the principles of soft-
assurance (QA) group to review all aspects of theware testing. The self-assessment given in the
software development process. This paper dis-foreword of the book provides real enlightenment
cusses the organization of such a group using theregarding the difficulty of developing comprehen-
function of an operations auditing group as asive test cases.
model.

Quirk85 Bowen80
Verification and Validation of Real-time Software.

Bowen, J. B. Standard Error Classification to Sup-W. J. Quirk, ed. Springer-Verlag, 1985.
port Software Reliability Assessment. Proc. AFIPS
1980 National Computer Conference. May, 1980.

Yourdon78
Abstract: A standard software error classificationYourdon, E. Structured Walkthroughs. Yourdon
is viable based on experimental use of differentPress, 1978.
schemes on Hughes Fullerton projects. Error clas-
sification schemes have prolifereated independently
due to varied emphasis on depth of casual

SEI-CM-7-1.1 (Preliminary) 13

Assurance of Software Quality

traceability and when error data was collected. A Abstract: This paper is a personal account of soft-
standard classification is proposed that can be ap- ware errors and how they could have been avoided.
plied to all phases of software development. It in- It provides detailed data that supports the impor-
cludes a major casual category for design errors. tance of reliable software techniques. The data
Software error classification is a prerequisite both represents 73 errors that occurred in a file manage-
for feedback for error prevention and detection, and ment system and its related interface programs.
for prediction of residual errors in operational soft- These errors fall into 13 groups. The relations be-
ware. tween each group and violation of software engi-

neering ideas supports the major conclusions that;
programmers should record and analyze their er-Buckley86
rors, and software engineering ideas reduce errors.Buckley, F. J. The Search for Software Quality, or

One More Trip Down the Yellow Brick Road. ACM
Collofello85Software Engineering Notes 11, 1 (1986), 16-18.
Collofello, J. S., and L. B. Balcom. A Proposed

Abstract: This paper takes a look at the current Causative Software Error Classification Scheme.
expressions of the need for increased Software Proc. 1985 AFIPS National Computer Conference.
Quality, and provides a transform for a portion of it AFIPS, July, 1985, 537-545.
into Software Productivity. Some of the quick re-
sponses to these concerns are examined and dis- Abstract: Various tools, techniques, and method-
carded, and an overall management approach to ologies have been developed by software engineers
meet these needs is prescribed. over the last 15 years. A goal of many of these

approaches is to increase product reliability and
A lighthearted view of the pitfalls of a naive ap- reduce its cost by decreasing the number and
proach to software quality assurance. Buckley severity of errors introduced by the software devel-
gives an almost cynical view of the role of software opment process. The collection of software error
quality assurance in relation to a software devel- data would appear to be a natural means for vali-
opment program. dation of these software engineering techniques.

Yet, current software error collection efforts have
Chusho83 had limited success in this area. A new causative

software error classification scheme is introducedChusho, T. Coverage Measure for Path Testing
in this paper to refine these data collection effortsBased on the Concept of Essential Branches. J. Info.
so that they can be better used in software engi-Processing 6, 4 (1983), 199-205.
neering validation studies.

Abstract: A new coverage rate based on essential
branches (full coverage of all branches) is proposed Collofello86
for efficient and effective software testing. The con-

Collofello, J. S. The Software Technical Reviewventional coverage measure for branch testing has
Process. Curriculum Module SEI-CM-3.1.0, Soft-defects such as overestimation of software quality
ware Engineering Institute, Carnegie-Mellon Uni-and redundant test data selection, because all
versity, Sept., 1986.branches are treated equally. In order to solve

these problems, concepts of essential branches and
nonessential branches for path testing are intro- Day85
duced. Essential branches and nonessential ones Day, R., and T. McVey. A Survey of Software
are called primitive and inheritor arcs, respectively, Quality Assurance in the Department of Defense
in a control flow graph of a tested program.

During Life-Cycle Software Support. Proc. IEEE
A reduction algorithm for transforming a control Conf. on Software Maintenance. IEEE Computer
flow graph to a directed graph with only primitive Society, Nov., 1985, 79-85.
arcs is presented and its correctness is proved.

Abstract: This paper summarizes the authors’ re-Furthermore, it is experimentally and theoretically
search into the state-of-the-practice of softwareascertained that the coverage measure on this
quality assurance (SQA) in software organizationsinheritor-reduced graph is nearly linear to the num-
throughout the Department of Defense (DoD). In-ber of test cases and therefore suitable for software
formation was obtained through personal visits to aquality assurance.
limited number of software facilities and by utilizing
a SQA questionnaire that was mailed to 27 DoDCiampi78
software organizations. Twenty questionnaires

Ciampi, P. L. Software Error Patterns—A Personal were returned from Army, Navy, Marine Corps, and
Case History. Proc. 3rd USA/JAPAN Computer Air Force organizations involved in the Life Cycle
Conference. Oct., 1978, 176-181. Software Support (LCSS) process. The survey de-

veloped information regarding such topics as:

14 SEI-CM-7-1.1 (Preliminary)

Assurance of Software Quality

staffing; personnel qualifications; quality standards fixed sample size testing and sequential testing are
used; SQA responsibilites; error data collection; considered.
adequacy of existing documentation; staff composi-
tion; distribution of SQA effort; and workforce mix. Fagan76
In addition, a list of SQA "Lessons Learned" was Fagan, M. E. Design and Code Inspections todeveloped from comments made by DoD quality

Reduce Errors in Program Development. IBM Sys-managers. The results of this study indicate a wide
tems J. 15, 3 (1976).variance in the application of SQA within the DoD.

This is the landmark paper on software inspections.
DoD87 It presents the basic methodology for a disciplined

approach to identifying and correcting defectsDefense System Software Quality Program. U.S.
through a visual examination of the product.Army Electronics Research and Development Com-

mand, 1987.
Fagan86

This Military Standard provides direction for estab- Fagan, M. E. Advances in Software Inspections.lishing software quality assurance programs for all
IEEE Trans. Software Eng. SE-12, 7 (1986).sponsored software development contracts spon-

sored by the Department of Defense. Abstract: This paper presents new studies and ex-
periences that enhance the use of the inspection
process and improve its contribution to develop-DownsS85
ment of defect-free software on time and at lowerDowns, T. A Review of Some of the Reliability Is-
costs. Examples of benefits are cited followed bysues in Software Engineering. J. Electrical and
descriptions of the process and some methods ofElectronic Eng. 5, 1 (March 1985), 36-48.
obtaining the enhanced results.

Abstract: This paper commences with a detailed Software Inspection is a method of static testing to
discussion of the problems and difficulties associ- verify that software meets its requirements. It en-
ated with software testing. It is shown that large gages the developers and others in a formal process
software systems are so complex that software com- of investigation that usually detects more defects in
panies are obliged to terminate the testing process the product—and at a lower cost—than does ma-
and release such systems with every expectation chine testing. Users of the method report very sig-
that the software still contains many errors. The nificant improvements in quality that are accom-
possibility of using statistical models as an aid to panied by lower development costs and greatly
deciding on the optimum time to release software is reduced maintenance efforts. Excellent results have
discussed and several such models are described. been obtained by small and large organizations in
The idea of "disciplined" programming as a means all aspects of new development as well as in mainte-
of reducing software error content is also de- nance. There is some evidence that developers who
scribed, and ancillary topics such as formal specifi- participate in the inspection of their own product
cations and program proofs are discussed. Other actually create fewer defects in future work. Be-
concepts, such as fault-tolerant software and soft- cause inspections formalize the development proc-
ware complexity measures, are also briefly de- ess, productivity and quality enhancing tools can be
scribed. Finally, the implications of the fact that adopted more easily and rapidly.
hardware is cheap and reliable and software is ex-
pensive and unreliable are discussed. It is argued

Fay85that many designs currently in use defy engineering
Fay, S. D., and D. G. Holmes. Help! I Have tocommon sense.
Update an Undocumented Program. Proc. IEEE
Conf. on Software Maintenance. Nov., 1985,Duran81
194-202.Duran, J. W., and J. J. Wiorkowski. Capture-

Recapture Sampling for Estimating Software Error Abstract: This paper discusses a method for docu-
Content. IEEE Trans. Software Eng. SE-7, 1 (Jan. menting and maintaining an undocumented pro-
1981), 147-148. gram. The paper provides guidance to junior per-

sonnel and management of areas that can alleviate
Abstract: Mills’ capture-recapture sampling meth- the situation.
od allows the estimation of the number of errors in

The paper specifically addresses:a program by randomly inserting known errors and
then testing the program for both inserted and in- • First Impressions
digenous errors. This correspondence shows how • Resources, Who and Whatcorrect confident limits and maximum likelihood es-

• Approachestimates can be obtained from the test results. Both

SEI-CM-7-1.1 (Preliminary) 15

Assurance of Software Quality

This is a list of section headings to give an outline• Schedule Assessment
of the content of a Software Quality Assurance

This paper is directed to those people in industry Plan. It provides some detail as to suggested con-
who are faced with documenting an undocumented tent of the sections.
program. However, it is also written with the hope
that this will give the person supervising the main-

McCall81tainer a clearer view of the help which can be given
McCall J., D. Markham, M. Stosick, andby providing the resources and time necessary to

maintain a program in the proper manner. R. McGindly. The Automated Measurement of
Software Quality. Proc. COMPSAC 81. IEEE,
1981, 52-58.Hamlet82

Hamlet, R. Program Maintenance: A Modest The- Abstract: This paper describes the use of auto-
ory. Proc. 15th Hawaii Intl. Conference on System mated tools to support the application of software
Sciences. Jan., 1982, 21-26. metrics. A prototype tool has been developed under

contract to US Air Force Rome Air DevelopmentAbstract: Design methods do not carry over into a
Center and US Army Computer Systems Commandprogram’s life once it is released. The subsequent
Army Institute for Research in Management Infor-"maintenance phase" is thought to dominate the
mation and Computer Science. A brief descriptioncost and poor quality of software. The only existing
of the concept of software quality metrics, the tool,maintenance theory is mini-development: programs
and its use during a large scale software develop-are changed in the same way they are designed,
ment is provided.beginning with requirements and proceeding to test-

ing. Maintenance programmers are impatient with
Morse86such a view, because the constraints under which

they work make it impractical. Morse, C. A. Software Quality Assurance.
Measurement and Control 19 (1986), 99-104.The world defines maintenance as an activity with

low unit cost, appropriate when development is too This paper introduces the subject of software qual-
expensive. Some facts about real maintenance need ity assurance to a wider audience of engineers so
explaining: they may appreciate why software quality assurance

1. Some people have a talent for it; others do has a place of importance in the software process
not. and therefore must be considered seriously for all

software projects.2. Some programs are much easier to main-
tain than others.

Perry853. Maintenance becomes progressively harder
to do as more is done, until finally any pro- Perry, D. E., and W. M. Evangelist. An Empirical
gram becomes unmaintainable. Study of Software Interface Faults. Proc. Intl. Symp.

on New Directions in Computing. IEEE Computer4. Testing of maintenance changes seems eas-
ier than initial development testing. Society, Trondheim, Norway, Aug., 1985, 32-38.

5. Maintenance documentation is different Abstract: We demonstrate through a survey of the
than design documentation. literature on software errors that the research com-

munity has paid little attention to the problem of
Herndon78 interface errors. The main focus of the paper is to

present the results of a preliminary empirical studyHerndon, M. A. Cost Effectiveness in Software Er-
of error reports for a large software system. Weror Analysis Systems. Proc. Second Software Life
determined that at least 66% of these errors aroseCycle Management Workshop. Aug., 1978.
from interface problems. The errors fell naturally

Abstract: Software error analysis systems must into fifteen separate categories, most of which were
have the capability of functioning as both a cost related to problems with the methodology.
effective and valuable managerial tool. To achieve
this capability, the design of the data collection Pope83
must reflect the individual project’s managerial Pope, A. B. Software Configuration Management: Aconcerns, and the resulting empirical analysis

Quality Assurance Tool. Proc. 1983 IEEE Engi-should be available for long term access.
neering Management Conference. Nov., 1983.

IEEE81 Abstract: The literature of computer system devel-
opment makes a strong case that many developmentANSI/IEEE Std. 730-1981, IEEE Standard for Soft-
failures or problems are caused by documentation.ware Quality Assurance Plans. American National
Many of these problems are the result of poorlyStandards Institute, 1981.

16 SEI-CM-7-1.1 (Preliminary)

Assurance of Software Quality

defined requirements which are changed without 909-916.
control. The original cost and schedule are based

Abstract: This paper describes a family of toolson developer perceptions as to the requirements
which not only supports software development, butand then changes are agreed to in an uncontrolled
also assures the quality of each software productmanner. Software Quality Assurance has the re-
from the requirements definition to the integratedsponsibility for ensuring complete requirements
system. It is based upon an explicit definition of thedefinitions as well as controlling changes to re-
design objects and includes: specification verifi-quirements and design; and tracking the resulting
cation; design evaluation; static program analysis;impact on cost and schedule. Software Configu-
dynamic program analysis; integration test audit-ration Management is the Quality Assurance tool
ing; and configuration management.for development project communications and track-

ing changes in cost and schedule.
Soi78
Soi, I. M., and K. Gopal. Error Prediction in Soft-Poston84
ware. Microelectronics and Reliability 18 (1978),Poston, R. M. Implementing a Standard Software
433-436.Quality Assurance Program. Proc. Third Software

Engineering Standards Application Workshop. Abstract: Errors are introduced in software at all
IEEE, 1984, 38-44. stages of the software production and the number of

errors found during the software development phaseAbstract: Software Quality Assurance Programs
affects significantly the cost of a project in terms ofrepresent one approach to improving product qual-
manpower and computer resources needed for cor-ity and increasing productivity. Software Quality
recting the errors. Early detection and correctionAssurance is defined in ANSI/IEEE 730 as the
of errors leads to substantial savings in cost. In thisplanned and systematic pattern of all actions neces-
paper, causes, classifications and statistical be-sary to assure that products will function as speci-
haviour exhibited by software errors have been dis-fied. This implies that an SQA Program will affect
cussed and a simple cost model which considers theeverything involved in the creation of software.
use of a tool or technique to detect additional errorsThis paper describes one approach to implementing
during the design phase and thereby save some ofan SQA Program. The approach has evolved over
the greater expense of correcting the errors duringseven different projects and has been only slightly
the test phase has been discussed. It has been em-modified on the last four projects.
phasized that inexpensive means of detecting and
preventing errors applied during requirementsThe approach presented in this paper is essentially
analysis and design could significantly reduce thefigure out what you want to do and then implement
cost of a project.it incrementally. This is a good approach as long as

one understands that the basic Software Quality As-
surance Program framework must still be deter- Stamm81
mined before implementation. Stamm, S. L. Assuring Quality, Quality Assurance.

Datamation ? (1981), 195-200.
Puhr83

This paper describes an integrated Software QualityPuhr-Westerheide, P., and B. Krzykacz. A Statis-
Assurance Program in use at General Electric’stical Method for the Detection of Software Errors.
Space Division.Proc. 3rd IFAC/IFIP Symp. on Software for Com-

puter Control. Oct., 1982, 383-386.
Tomayko86

Abstract: A statistical software error detection Tomayko, J. E. Software Configuration
method is presented that relies on some structural Management. Curriculum Module SEI-CM-4.1.0,
properties of the test object. The main idea is to Software Engineering Institute, Carnegie-Mellon
select test paths by means of transition probabilities University, Sept., 1986.between the nodes of the control flow graph so that
all paths have equal probabilities to be drawn. The

Walker79transition probabilities can be determined from the
control flow graph of a program in a simple way. Walker, M. G. Auditing Software Development
This selection process turns out to have good statis- Projects: A Control Mechanism for the Digital Sys-
tical properties. tems Development Methodology. Proc. COMPCON

79. IEEE, Spring, 1979, 310-314.
Sneed82

Abstract: This paper will introduce the audit as aSneed, H. M., and A. Merey. Automated Software control mechanism for the Computer Sciences Cor-
Quality Assurance. Proc. COMPSAC 82. 1985, poration (CSC) approach to system development.

SEI-CM-7-1.1 (Preliminary) 17

Assurance of Software Quality

The audit is performed on developing computer sys-
tems by a team independent of the developmental
project. The independent audit is a cardinal feature
of the Digital System Development Methodology
(DSDM) which is the methodology CSC employs to
engineer software systems. Audits are the most
powerful mechanism for control built into the
DSDM.

Yacobellis84
Yacobellis, R. H. Software and Development Proc-
ess Quality Metrics. Proc. 1st Data Engineering
Conf. IEEE Computer Society, 1984, 262-269.

Software projects that deliver a software or system
product and involve from 30 to several hundred de-
velopers, testers, and project managers are consid-
ered. A description is given of a framework for
gathering and reporting software and development
process quality metrics, as well as data engineering
issues related to data collection and report gener-
ation. The framework is described in project-
independent terms, and a methodology for applying
metrics to a given software project is included. A
key aspect of this application is the use of project
milestones predicted by a failure rate model.

Yamada86
Yamada, S., H. Narihisa, and H. Ohtera. Non-
homogeneous Software Error Detection Rate Model:
Data Analysis and Applications. RAIRO Rech.
Oper./Oper. Res. (France) 20, 1 (1986), 51-60.

Abstract: A software reliability growth model
called a nonhomogeneous error detection rate
model is reviewed and applied to an actual data set
of software failure occurrence time. In particular
optimal software release policies with both software
cost and software reliability requirements, i.e. cost-
reliability optimal release policies, are discussed
for the model. Using the numerical results of the
data analyses, the cost-reliability optimal software
release policy is illustrated.

18 SEI-CM-7-1.1 (Preliminary)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

