
 Page 1

Using the OPEN Process Framework to Produce a
Situation-Specific Requirements Engineering Method

D. Zowghi1, D.G. Firesmith2 and B. Henderson-Sellers1
1University of Technology, Sydney, PO Box 123, Broadway,
NSW 2007 Australia ({didar,brian}@it.uts.edu.au)
2SEI, Carnegie Mellon University, Pittsburgh, PA, USA
(dgf@sei.cmu.edu)

Abstract
Since it is not possible to identify or to create a single method that is appropriate for all

situations, the need for a focussed requirements engineering method (REM) necessitates the
search for a mechanism that will support the flexible creation of a number of tailored REMs
from a single base. Using a repository of reusable method components, it is possible to use the
techniques espoused by the method engineering community to construct an appropriate REM
that is well-suited to the particular system or application development endeavour under
consideration. One particular example is used to illustrate this approach – that of the OPEN
Process Framework (or OPF).

Keywords:

Method engineering; requirements engineering; process construction; OPEN

Submission category: Regular paper

 Page 2

1. Introduction
“A process model is an abstract definition of an actual or proposed process” [8]. A

process model, also called a method here, provides the “textbook description” of all the
elements that should be enacted on a real project. That enacted process model is called the
process and is the focus of, for instance, software process improvement (SPI).

Here we focus on a process model/method for requirements engineering. Expanding on
the above definition, we can say that a Requirements Engineering Method (REM) is a
structured and coherent set of tasks, procedures, work products, policies, organisational
structures and technologies needed to identify, analyse, specify, validate and manage a high
quality set of requirements. In practice, Requirements Engineering (RE) is an iterative
process, whereby requirements emerge and evolve in an iterative incremental rather than a
sequential manner [11]. A complete REM description should include statements about what
tasks are carried out, the structuring or scheduling of these tasks, who is responsible for each
task, the inputs and outputs to/from the tasks and the tools used to support the method when it
is enacted as a process for a particular project [35].

In the RE literature, different definitions have been given for this method and its tasks. In
some cases, an REM is defined at a very fine level of detail and the steps in the method must
be carried out (enacted) exactly as described. However, this form of process model
description usually applies to very simple processes; for more complex processes, the
description is usually less detailed and it is up to the person or project team who are executing
or “enacting” the process to carry it out in their own environment. Furthermore, an REM
includes tasks involving individuals as well as groups and, as such, is inherently susceptible to
problems arising from human-related issues. It is thus difficult to write down a generic
sequential plan of tasks that adequately describes the endeavour-specific REM.

An REM typically begins with elicitation followed by modelling and analysis. The results
are then formalised as different kinds of requirements, which are documented into one or
more requirements specifications. This is followed by verification against characteristics of
good requirements (e.g., completeness, correctness, lack of ambiguity, and feasibility) as well
as by validation against stakeholder needs and desires. Management of requirements is
considered as a continuous activity throughout the development lifecycle, within which the
integrity and consistency of the requirements model are maintained. An REM thus exploits a
number of fundamental elements:

• RE tasks and techniques – Various techniques and procedures exist within RE
research and practice for each of the tasks in the RE method [9].

• RE tools – In order to perform RE tasks effectively, a number of commercially
available tools have been developed (e.g. DOORS, RequisitePro, CaliberRM, and
CORE).

• Organisation and people – RE is carried out by teams of people playing various roles
that have to be coordinated and managed within an effective organisational structure
[22,25].

• Programmatic factors – Different tasks of an RE method must be shaped in such a
way as to properly take into account the size of software, its complexity and the
context where software is supposed to be sold and used [1].

Viewing the development of requirements work products (e.g., system and software
requirements specifications) from a process viewpoint helps to identify the different

 Page 3

dimensions of RE and the problems that need to be addressed in order to establish effective
RE practices. Indeed, addressing the issues and challenges of REM is not a matter of
introducing a new tool and environment or merely selecting or devising a RE process model.
Instead, attention should be paid to the complex interplay between a number of
organisational, cultural, technological and economical factors impacting the RE process.

Very few organisations have an explicitly defined and standardized RE methods and
mostly define the product of the process, typically a software requirements specification SRS
[23]. Clearly, organisations will benefit from understanding their RE processes and defining
an REM that is appropriate to their organisational needs and specific software projects in
which they are engaged. Indeed, it is generally acknowledged [7,19] that, at least at the full
lifecycle granularity, it is not possible to identify or construct a single method that results in a
process that is appropriate for all situations. Consequently, the approach of method
engineering [3,4,17,24,28,29], as we shall demonstrate, offers valuable insights and tools by
which to create a tailored requirements engineering method that is highly suitable for the
specific, identified endeavour (e.g., project or programme of related projects). Here, we
encapsulate the ideas of method engineering (ME) within an object-oriented framework, the
OPF (OPEN Process Framework) [13]. The OPF is a standardized approach, originally
devised for full system lifecycle methodology creation [16], but here evaluated in terms of its
capability of offering adequate support for the creation of a requirements engineering method.
This set of guidelines presented here offers ME ideas on how to use/tailor a method
framework to produce a more generic RE method. These guidelines could equally be applied
to any method framework, any organisation and any project.

2. The OPEN Process Framework (OPF)
2.1 Introduction

The OPEN Process Framework (OPF) consists of three major parts (Figure 1):

OPF Metamodel

Repository of
method components

Construction & usage
guidelines

OPF Metamodel

Repository of
method components

Construction & usage
guidelines

Figure 1. The main elements of the OPF

• A metamodel defining the fundamental kinds of reusable method components and
how they are related to each other.

• A repository of reusable method components (actual descriptions of each kind of
reusable method component)

• Construction and usage guidelines on how to reuse the method components in the
repository to produce situation-specific processes.

These are described in the next three sub-sections.

 Page 4

2.2 The OPF Metamodel
The OPF metamodel provides a standard terminology and semantics for the elements in

the repository of free open source reusable method components. Based on the elements in the
metamodel (Figure 2), the method components fall into a small number of major groupings:

Figure 2. The major meta-elements of the OPF. All method components are generated as
instances of one of these meta-elements and documented in the repository.

• Work Products are method components that model anything of value (e.g., documents,
diagrams, applications, classes) produced by the collaboration of one or more producers
during the performance of one or more work units.

• Work Units are method components that model functionally cohesive operations that are
performed by producers during the delivery process. OPF recognizes the following three
kinds of work units:

• Activities, which are the highest-level of work units consisting of cohesive
collections of one or more tasks that are performed by one or more collaborating
producers when either producing a set of one or more related work products or when
providing one or more related services. For example, requirements engineering is an
OPF activity.

 Page 5

• Tasks, which are mid-level work units that model a functionally cohesive operation
that is performed by one or more producers. For example, requirements elicitation,
requirements analysis, requirements specification, requirements validation, and
requirements management are OPF’s primary requirements engineering tasks.

• Techniques are low-level work units that model the way that one or more tasks are
performed. For example, use case modelling would be a technique for engineering
functional requirements and hazard analysis would be a technique for engineering
safety requirements.

• Producers are method components that model anything that produces, either directly or
indirectly, versions of one or more work products. OPF recognizes the following kinds of
producers: organizations, teams, roles, tools and persons. For example, requirements
team and requirements engineer are two OPF producers.

• Languages, which are method components that model the languages used to document
work products. For example, UML could be used to document use case models and
Object-Z could be used to formally specify requirements.

• Endeavours, which are method components that model large-scale ventures undertaken
by collaborating producers during multiple stages to develop and/or maintain one or more
related applications. The OPF metamodel defines the following subclasses of endeavours
in the OPF repository: projects, programmes of related projects and enterprises. In the
REM, this gives a contextual setting only.

• Stages, which model formally identified time periods or points in time that provide
organization to the work units of the delivery process. Typical kinds of stage are cycles,
phases, builds and milestones. For example, you could define a milestone marking when
the requirements for a development iteration will be complete, under configuration
control and frozen.

• Work Performances, which are method components that model work units as performed
by producers.

2.3 OPF Repository of Method Components
The OPF contains a repository of free, open source reusable method components. These

are used by following the tenets of Method Engineering [3,24]. In this approach, a
“personalized” method is created for a specific organization, a specific division or a specific
project by bottom-up construction from a number of these method components [4], here
identified by the OPF metamodel and using the construction and usage guidelines (Section
2.4) in order to aid the actual construction of the REM.

In Section 2.2, only the types of the method components are listed. For use on an actual
project, each of these types and subtypes is used to generate (by instantiation) a wide range of
actual work products, techniques, activities, roles etc. Those relevant to the construction of an
REM are summarized below.

 Page 6

The only relevant OPF Activity is, naturally, that of Requirements Engineering, although
there are subclasses of RE such as RE for developing a system, RE for developing a software
application and RE for developing the reusable requirements for a specific application
domain. Requirements engineering typically involves teams and roles performing
requirements tasks in an iterative, incremental, parallel, and time-boxed manner. From the
OPF repository, method components can be identified for each of these1. Useful RE Tasks
include

• Stakeholder profiling is the task during which the representatives of all major
stakeholders of customer organization’s current business enterprise of the are studied,
modeled, and analyzed.

• Customer analysis is the task during which the current business enterprise of the
customer organization is studied, modelled and analyzed.

• Competitor analysis is the task during which competing businesses of the current
business enterprise of the customer organization are identified, profiled, studied, and
analyzed.

• Market analysis is the task during which the current or planned marketplaces in
which the business enterprise of the customer organization are identified, studied,
modelled, and analyzed.

• User analysis is the task during which the current and future intended user
organizations of the application(s) of the customer organization’s business enterprise
are identified, studied, modelled, and analyzed.

• Business visioning is the task during which the customer organization’s vision of
their [re]engineered business enterprise is produced and documented.

• Application visioning is the task during which the customer organization’s vision of
a new or updated application is produced and documented.

• Requirements elicitation is the task during which raw new potential requirements
for the business enterprise are identified and captured.

• Requirements analysis is the task during which elicited and reused requirements for
the business enterprise are studied, modelled, refined, prioritized, scheduled, and
traced.

• Requirements specification is the task during which requirements, requirement
diagrams, and requirements models for the business enterprise are documented in
requirements specifications and related documents.

1 For further details see [12] and http://www.donald-firesmith.com/HowToUse/REPF.html].

 Page 7

• Requirements reuse is the task during which reusable requirements and
requirements-related analyses are identified, evaluated for relevancy, and where
appropriate reused (possibly with modification).

• Requirements management is the task during which the storage, access, approval,
publication, and tracing of requirements work products are managed.

• Technology analysis is the task during which the potential technologies for future
applications are identified, analyzed, and documented

• Requirements prototyping is the task during which one or more prototypes are
produced in order to identify and iterate requirements

To facilitate these Tasks, there are many possible documented Techniques. Some of the
most useful are:

• Abstraction – to ensure the correct level of detail in the requirements

• Brainstorming – to rapidly identify stakeholders and their requirements

• Documentation standards – to create requirements specifications of high quality

• Documentation templates – to generate skeleton requirements specifications

• Gap analysis – to analyse differences between capabilities of current application and
the needs of future versions

• Inspection checklists – to evaluate the quality of the RE work products

• Interviews – for eliciting requirements from stakeholders

• Joint application development (JAD) – to elicit requirements by the involvement of
stakeholders, especially customer representatives

• Prototyping – to create user interfaces initially to get an early customer reaction

• Questionnaires – to elicit stakeholder needs and requirements

• Reference requirements – to be used as a standard and baseline across multiple
endeavours

• Requirements patterns – to find standardized solutions to commonly occurring RE
problems

• Storyboarding – to elicit and understand user requirements

Typical Work Products for the REM include:

• Software Requirements Specification (SRS) – documents a cohesive set of
requirements, possibly including their associated models, diagrams, and ancillary
information

• Use case diagram – depicts functionality expressed in terms of use cases

 Page 8

• Class diagram – depicts definitions of objects (classes)/concepts and their inter-
relationships

• State transition diagram – depicts for a single entity or class the various states it can
be in and how changes of state can be triggered

A language is set of terms combined with associated syntax and semantic rules that are
used to produce one or more work products. Whereas programmers are primarily concerned
with various kinds of implementation languages, requirements engineers and their technical
writers use the following kinds of languages to implement requirements work products:

• Natural languages - such as English, although often ambiguous, are most often used
to specify textual requirements,.

• Modelling languages - such as the Unified Modeling Language (UML) and the Object
Modelling Language (OML), can be used to produce requirements diagrams and
associated graphical models.

• Specification languages - such as Z and Object-Z, are sometimes used to specify
requirements more formally and so that they can be verified using tools such as
theorem provers or model checkers.

There are many relevant producers defined in the OPF repository of method fragments.
These include:

• Business architect, who rearchitects the business by creating new business models,
processes, organizational structures, and recommends new applications.

• Business strategist, who leads the business strategy team, analyzes the customer
organization, analyzes the market, and produces the business vision.

• Customer representative, who helps produce the business vision, provides
requirements, and prioritizes the requirements from a business perspective.

• Digital brand strategist, who produces any requirements relating to digital branding.

• Domain expert (in the business domain, market, and application domain), who
provides requirements, verifies the analysis, and provides recommendations regarding
the business and application vision statements.

• Process engineer, who helps produce the requirements engineering process and
evaluates the actual performance of the process.

• Project manager, who evaluates, approves, and manages the scope of the
requirements.

• Requirements engineer, who leads the requirements team and performs most of the
requirements tasks.

• Security analyst, who helps elicit, analyze and specify security requirements.

• Software architect, who helps prioritize requirements from an implementation
perspective.

 Page 9

• System architect, who helps prioritize requirements from an implementation
perspective.

• Technical leader, who evaluates and prioritizes the requirements from an
implementation standpoint.

• Technical writer, who produces and maintains the requirements documents.

• Technology strategist, who analyzes the relevant technologies and their trends and
helps establish any technology constraints.

• Test engineer, who ensures that all requirements can be validated (e.g., they are
testable) and who acts as a liason to the various teams performing testing.

• User analyst, who analyzes users and user organizations.

• User representative, who helps analyze the user organizations and provides
requirements from a user perspective.

Some teams for these producers are Business strategy team, Technology strategy team,
Requirements team, Strategy inspection team, Requirements inspection team, Architecture
team, Management team, and Quality team.

2.4 Construction and Usage Guidelines
There are several kinds of guidelines needed to engineer a project-specific method. These

include, inter alia, method construction guidelines, tailoring guidelines and, less relevant
here, extension guidelines – which assist the method engineer in modifying the metamodel
itself. (Tailoring guidelines, which support minor modifications to the method once
constructed also have less immediate impact on the topic of this paper.). Other important
elements (not discussed further here) include sequencing rules, which can be expressed using
pre- and post-conditions on (particularly) Tasks [14] and/or by ensuring the process and
product perspectives are adequately connected [4].

A construction guideline helps method engineers both to instantiate (when necessary) the
development process framework (metamodel) to create method components and also to select
the best method components (from the Repository) in order to create the method itself
[4,13,28,37]. Specifically, guidance is provided on the selection of appropriate work
products, producers and work units as well as advising on how to allocate tasks and associated
techniques to producers and how to group the tasks into workflows, activities etc. Finally,
developmental stages (including phases and lifecycles) are chosen.

A commonly used, pragmatic approach to method construction is the following. Pick the
work products you are willing to spend money on to create. Pick the appropriate tasks and
techniques to produce them. Pick the appropriate producers to perform them, using tools
where appropriate. Pick milestones and inch pebbles to schedule them and add to appropriate
phases. Check for consistency. Document the method. Verify the method with stakeholders
for acceptability and feasibility. Train teams in the method. Use the process. Iterate as
appropriate. However, this needs experience. As an aid to helping the development team pick
the best set of method fragments, the OPF suggests the use of a matrix [16] to describe this
multi-faceted connexion between any pair of kinds of method fragment (e.g. Team and Task;
Team and Role). Each matrix specifies the possibility value for each pair (e.g. each method

 Page 10

component derived from the Team and Task metaclasses) either on a five-point scale [16] or,
as here, as a binary value (Y/N).

3. Method Engineering Process
From a practical point of view, industrializing the above process of component selection

involves an identification of the people involved. It is important that both management and
development team representatives (the whole team if possible) be involved in creating the
REM. Clearly, those involved need to have adequate skills that they can utilize in the
selection of method components and their integration together. As well as project managers
and requirements engineers, it may be beneficial to have an (internal or external) method
engineer on the method engineering team.

Ralyté and Rolland [28] introduce a “Method Engineering Process Model (MEPM)” to
construct the overall process with a complementary assembly process model (APM) for
guiding the selection of appropriate method components; while Brinkkemper et al. [5]
propose the use of a “method engineering language” that will assist in formalizing
descriptions and usage of the various method components. Henderson-Sellers and Serour
[18] propose a Trans-IT process which identifies method components specifically relevant to
the introduction and inculcation of a software development process into an organization.
Some of the more important elements of the method engineering process are discussed in the
following subsections.

3.1 Determine Method Needs
The first step in producing an organization-specific requirements engineering method is

for the members of the organizational method team to determine the goals and needs for their
organizational method, of which requirements engineering is a critical part. These include
robustness, repeatability, feasibility with respect to the organisational culture, measurable
outcome, easy to learn, easy to follow, flexible. It is critical to understand the existing culture
and the alternatives that may be perceived by both management and staff [32]. This study
produces a documented statement of the specific needs of the organization and/or project
team.

3.2 Learn OPEN Basics
The second step in producing an REM is for the members of the organizational method

team to familiarize themselves with the OPEN Process Framework (OPF) in general and with
the generic default OPF requirements engineering process framework (i.e., the subset of the
OPF related to requirements engineering) in particular. They can begin by skimming the
most recent OPEN books [13], skimming the overview webpages of the official OPEN
website (http://www.open.org.au), and looking at the relevant webpages of the selected OPF
tool (in this case, the OPEN Process Framework website2, which provides over 1,000 free

2 http://www.donald-firesmith.com

 Page 11

open source reusable OPF compliant method components). While doing this, the members of
the method team should learn the concepts, terminology, and relationships between these
concepts that are captured by the OPEN metamodel (e.g., what are the basic kinds of method
components and how they relate to each other). They should also learn about the relevant
reusable OPF method components (e.g., requirements engineering tasks, techniques, work
products, roles). They should also familiarize themselves with the relevant OPEN method
engineering tasks that they will be performing when producing their organizational-specific
method-engineering framework for requirements engineering.

3.3 Select Method Components
The OPF contains numerous method components, not all are relevant to requirements

engineering. Even the default requirements engineering subset of the OPF probably contains
other related reusable method components that are not relevant to needs of any given
organization, especially if that organization is limiting the type of endeavours it has in mind.
The following steps should be followed for selecting the method components:

Step 1. Make a copy of the OPF generic default requirements engineering process
framework as the initial draft version3 of the organizational RE process framework.

Step 2. Use the output of the preceding Determine Process Needs task to decide which (if
any) of the default method components in the organizational RE method component
repository are either irrelevant or inappropriate to the needs of organization.

Step 3. Go through the list of currently available reusable method components, type-by-
type, and component-by-component, and delete any method components that do not belong.
The construction and usage guidelines (Section 2.4) may be helpful here.

Step 4. Just to be completely safe, also check the complete OPF to ensure that no useful
cost effective method components were inadvertently left out when the OPF generic default
RE process framework was created. This could be done using, for example, contingency
factors (after [36])

Note that this is currently a manual task, the success of which will depend on the
experience, skills, thoroughness and the care of the method engineers that perform it.

3.4 Extend the Process Framework Repository
The OPF repository is relatively large and complete, because it is based on the premise

that it is easier to delete what you do not need from the repository than to add what you do
need, especially if you are under typical project time and resource constraints. Nevertheless,
it remains possible that the draft organizational RE method created thus far using only
reusable method components from the OPF is incomplete. Now is the time to add any special
method components that your organization might need in its organizational RE method. If

3 http://www.donald-firesmith.com

 Page 12

these method components are not proprietary, you may also consider sharing them with the
OPEN Consortium so that OPF can be updated with them and there will be fewer problems
maintaining the organizational RE process framework if the OPF can be kept consistent with
it.

3.5 Tailor the Method Components
Although the organizational REM now contains all of the appropriate method

components, this does not mean that these method components are yet finished. They may
need to be tailored in several ways. For example, the method component itself may be too
large and complex for the needs of the organization. Excessive elements of these components
may need to be removed. For example, the table of contents of documentation work products
may contain sections that are inappropriate and should be removed. Similarly, the
requirements team may contain too many roles, have too many objectives, or perform too
many tasks.

3.6 Document the Method
Since the constructed method is to become the organization-specific or project-specific

requirements method to be followed during RE, it is important that it is adequately
documented and made available to all stakeholders (e.g., the members of the team as well as
to all levels of management).

One way of ensuring that the documented method is maintained is to store it in some kind
of database that can be used not only to generate the constructed method from its method
components but also to undertake some checking for consistency. For example, it is important
that any work product produced as part of the REM is either consumed in another part of the
REM, delivered to other parts of the software development (e.g. design, test) or is delivered to
the client.

3.7 Train the Staff
For the REM to be used successfully, all members of all teams must have buy-in and,

potentially, “ownership” [32]. Training staff about the new method can often be one of the
most risky components of this whole approach (see [14]) since the introduction of a new and
innovative approach to an existing culture can often lead to resistance from the individuals
concerned [2]. Staff need to be convinced that the introduction of the REM will be beneficial
to them personally as well as to the organization for which they work. In addition, they must
see that senior management are supplying sufficient resources and permitting them sufficient
time to undertake the new learning experience [20,34].

Only when the development team members feel comfortable with their understanding of
the new method is it appropriate to mandate the method [33]. Once such commitment has
been gained from the development team, its use is likely to thrive. Without it, the project will
surely fail [31].

3.8 Evaluation and Improvement of the Process
Process evaluation is a notoriously challenging research issue. Even success and failure

are hard to define, being perceived differently by different parties [31].

For many organizations, it is not method adoption that it critical to their overall success
but their success in creating a culture in which software process improvement (SPI) is the
norm. To identify successes in SPI, it is common to utilize one of the existing capability
assessment frameworks such as SPICE (Software Process Improvement and Capability

 Page 13

dEtermination) [21] or the SEI’s the Capability Maturity Model (CMM) [27] and, more
recently, the CMMI [6].

In summary, then, the REM needs to be carefully maintained, sustained and improved as
time progresses and the management and team members become increasingly adept in its use.

4. A Partial Example
Here we can give an example of how the above could produce an endeavour-specific RE

method. Since we are creating a REM, then there is only a single method component that is
relevant in the category of OPF’s Activities viz. Requirements Engineering. Within that
activity, many tasks need to be enacted by many teams, roles and people. Some possible
linkages between teams and tasks4 are given in Table 3 and between teams and roles in Table
4. For each team in the matrix, we list vertically all the possible Task (Table 3) or Roles
(Table 4) and then ask whether the task/role is relevant to each team in turn (Y/N). This gives
a first cut at the most appropriate method fragments to use and also identifies any unnecessary
tasks/roles since these are indicated by a blank line in the final matrix. In these tables, we do
not use the full five-value range discussed above, but merely a binary Y/N (blank means N). It
is found from experience that this is adequate for the first adoption of an ME approach. With
more experience, a more sophisticated use of the deontic matrices will become possibly, using
all five deontic values.

Table 3 Deontic matrix to link RE Teams and Tasks

Associated
Tasks

Team

 Business
strategy

Technology
strategy

Requirements Architecture Customer
representatives

Business
visioning

Y

Competitor
analysis

Y

Customer
analysis

Y

Market analysis Y

Requirements
analysis

Y Y Y Y

4 Here we use the naming style of http://www.donald-firesmith.com rather than the style in the
OPEN books in which OPF Tasks have imperative verb phrase names.

 Page 14

Requirements
elicitation

Y Y

Requirements
management

Y Y Y

Requirements
prototyping

 Y

Requirements
specification

Y Y

Requirements
reuse

Y Y Y

Stakeholder
profiling

Y

Technology
analysis

 Y

User analysis Y

Table 4 Deontic matrix to link Teams and their associated Roles

Associated
Roles

Team
A

Team
B

Team
C

Team D Team
E

Team
F

Team
G

Team
H

Business
architect

Y Y

Business
strategist

Y Y
ind.

Y

Customer
representative

Y Y Y Y

Database
architect

 Y

Digital brand
strategist

Y Y
ind. (if
relevant)

Domain expert Y Y Y
ind.

Y

Hardware
architect

 Y

Metrics analyst Y

Method Y Y Y

 Page 15

engineer

Project
manager

 Y

Quality
engineer

 Y Y

Requirements
engineer

Y Y Y Y
ind.

Security analyst Y Y Y

Security
architect

 Y

Software
architect

 Y Y

System
architect

 Y Y Y

Technical
leader

 Y Y

Technical
writer

Y Y Y Y Y

Technology
strategist

 Y

Test engineer Y Y Y

User analyst Y Y

User
representative

Y Y

Key to Teams: Team A = Business strategy team; Team B = Technology strategy team;
Team C = Requirements team; Team D = Strategy inspection team; Team E = Requirements
inspection team; Team F = Architecture team; Team G = Management team; Team H =
Quality team.

ind. means Independent

Initially, the matrix is filled in from past experience: that of the process engineer, project
manager, the team members and the external method engineer. As experience builds up, it
becomes possible to create a database of past knowledge from which it is easier and more
reliable to draw a first estimate of the likely linkages that will work for that organizational
context. In time, it is anticipated that tools will be constructed to assist in this stage[26].

5. Discussion and Future Work
Davis and Zowghi [10] state that the purpose of requirements is to raise the likelihood

that the right system will be built, i.e., that the system when built satisfies its intended
customers and addresses their needs to an acceptable degree. It may be argued that the

 Page 16

purpose is more short term, e.g., that its purpose is to ensure communication among all
stakeholders, provide designers and testers with an oracle, guide project managers in
allocation of resources, serve as a basis for requirements evolution and so on. However, Davis
and Zowghi argue that each of these short term objectives are important only because of their
strong correlation to the real purpose of requirements, i.e., to raise the likelihood that the right
system will be built. They further state that a “good” requirements practice is one that either
reduces the cost of the development project or increases the quality of the resulting product
when used in specific situations. Few requirements practices have been validated as “good” in
practice, and those that have, rarely if ever, describe the specific situations where they are
effective. However, we do have a variety of sources of requirements practices for which the
authors do claim goodness. For example, Sommerville and Sawyer’s [35] Good Practice
Guide, Weigers [38] provides a chapter on good practices, and the Robertsons’ book [30]
discusses Mastering the requirements process.

Following construction of the REM and its utilization on a project, it is important to
follow up and enquire about its effectiveness in practice Some early results on exploring the
effectiveness of OPF are reported in a series of papers including [31-33] from two industry
case studies. While these papers focussed on the success or failure indicators, primarily in
terms of people, culture and organization, there are other questions that could be asked in any
future evaluation survey. These include:

How big was the job? (person days)

How easy/hard was it to use OPEN?

How quick was it to construct the tailored process – was it overly labour intensive?

Which parts could benefit from automation?

Was the method component repository complete?

Were method components adequate?

Were the method components adequately documented?

Can you evaluate the quality of the method component repository?

Can you evaluate the quality of the ensuing REM?

Did the approach permit or support process improvement?

Has the ME approach turned out to be cost effective?

Is an ME approach practical in an industry setting?

We plan to undertake such surveys with companies adopting the OPF- and ME-based
approach to requirements engineering. The results of these surveys will be the subject of a
later paper.

6. Conclusion
Since it is not possible to identify or to create a single method that is appropriate for all

situations, the need for an REM necessitates the search for a mechanism that will support the
flexible creation of a number of tailored REMs from a single base – here a repository of
method components, based on that of the OPEN Process Framework and the techniques of

 Page 17

method engineering, is used to illustrate how a project-specific REMs can be generated,
applied and maintained.

References
1. Boehm, B.W. and Papaccio, P.N., 1988, Understanding and controlling software costs, IEEE Trans
of Software Engineering, 14(10), 1462-1477

2. Bridges, W., 1995, Managing Transitions, Making the most of change, Nicholas Brealey Publishing,
UK.

3. Brinkkemper, S., 1996, Method engineering: engineering of information systems development
methods and tools, Inf. Software Technol., 38(4), 275-280.

4. Brinkkemper, S., Saeki, M. and Harmsen, F., 1998, Assembly techniques for method engineering,
Procs. CAiSE’98, LNCS 1413, Advanced Information Systems Engineering (ed. B. Pernici and C.
Thanos), Springer-Verlag, Berlin, 381-400

5. Brinkkemper, S., Saeki, M. and Harmsen, F., 2001, A method engineering language for the
description of systems development methods (extended abstract), CAiSE 2001 (eds. K.R. Dittrich, A.
Geppert and M.C. Norrie), LNCS 2068, Springer-Verlag, Berlin, 473-476

6. CMU, 2002, Capability Maturity Model Integration (CMMI-SE/SW/IPPD/SS) Version 1.1,
CMU/SEI-2002-TR-011 and CMU/SEI-2002-TR-012

7. Cockburn, A., 2000, Selecting a project’s methodology, IEEE Software, 17(4), 64-71

8. Curtis, B., Kellner, M.I. and Over, J., 1992, Process modelling, Comm. ACM, 35(9), 75-90

9. Davis, A.M., 1993, Software Requirements: Analysis and Specification, Prentice Hall, second
Edition, 1993.

10. Davis A.M., Zowghi D., 2005,“Good requirements practices are neither necessary nor sufficient ”,
Viewpoints, Requirements Engineering Journal, Vol 10. available online 8th October 2004

11. Firesmith, D.G., 2002a, Requirements engineering, J. Object Technology, 1(4), 93-103

12. Firesmith, D.G., 2002b, Requirements engineering, J. Object Technology, 1(5), 83-94

13. Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN Process Framework. An Introduction,
Addison-Wesley

14. Goldberg, A. and Rubin, K., 1995, Succeeding with Objects, Addison-Wesley

15. Graham, I., 1995, A non-procedural process model for object-oriented software development,
Report on Object Analysis and Design, 1(5), 10-11

16. Graham, I., Henderson-Sellers, B., and Younessi, H., 1997, The OPEN Process Specification,
Addison-Wesley, 314pp

17. Henderson-Sellers, B., 2003, Method engineering for OO system development, Comm. ACM,
46(10), 73-78

18. Henderson-Sellers, B. and Serour, M., 2000, Creating a process for transitioning to object
technology, Proceedings Seventh Asia--Pacific Software Engineering Conference. APSEC 2000, IEEE
Computer Society Press, Los Alamitos, CA, USA, 436-440

19. Hruby, P., 2000, Designing customizable methodologies, JOOP, December 2000, 22-31

20. Humphrey, W.S., 2000, Introduction to the Team Software Process, Addison Wesley

21. ISO/IEC, 1998, TR15504, Information technology – software process assessment, in 9 parts,
International Standards Organization, Geneva, Switzerland

22. Jirotka, M. and Goguen, J., 1994, Requirements Engineering social and technical issues, Academic
Press

 Page 18

23. Kotonya, G. and Sommerville, I., 1997, Requirements Engineering processes and techniques, Wiley

24. Kumar, K. and Welke, R.J., 1992, Methodology engineering: a proposal for situation-specific
methodology construction, in Challenges and Strategies for Research in Systems Development (eds.
W.W. Cotterman and J.A. Senn), J. Wiley, Chichester, 257-269

25. Macaulay, L., 1996, Requirements Engineering, Springer

26. Nguyen, V.P. and Henderson-Sellers, B., 2003, Towards automated support for method engineering
with the OPEN Process Framework}, Procs. Seventh IASTED International Conference on Software
Engineering and Applications (ed. M.H Hamza), ACTA Press, Anaheim, CA, USA, 691-696

27. Paulk, C., Weber, C.V., Garcia, S., Chrissis, M.B. and Bush, M., 1993, Key Practices of the
Capability Maturity Model, Version 1.1, CMU/SEI?93?TR?25, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, USA

28. Ralyté, J. and Rolland, C., 2001a, An assembly process model for method engineering, in K.R.
Dittrich, A. Geppert and M.C. Norrie (Eds.) Advanced Information Systems Engineering), LNCS2068,
Springer, Berlin, 267-283.

29. Ralyté, J. and Rolland, C., 2001b, An approach for method engineering, Procs. 20th Int. Conf on
Conceptual Modelling (ER2001), LNCS 2224, Springer-Verlag, Berlin, 471-484

30. Robertson, J., and S. Robertson, 1999, Mastering the Requirements Process, Addison Wesley

31. Serour, M.K. and Henderson-Sellers, B., 2002, The role of organizational culture on the adoption
and diffusion of software engineering process: an empirical study, The Adoption and Diffusion of IT in
an Environment of Critical Change (eds. D. Bunker, D. Wilson and S. Elliot), IFIP/Pearson, Frenchs
Forest, Australia, 76-88

32. Serour, M.K. and Henderson-Sellers, B., 2004, Introducing agility: a case study of situational
method engineering using the OPEN Process Framework, Procs. 28th Annual International Computer
Software and Applications Conference. COMPSAC 2004, IEEE Computer Society Press, Los Alamitos,
CA, USA, 50-57

33. Serour, M., Henderson-Sellers, B., Hughes, J., Winder, D. and Chow, L., 2002, Organizational
transition to object technology: theory and practice, Object-Oriented Information Systems (eds. Z.
Bellahsène, D. Patel and C. Rolland), LNCS 2425, Springer-Verlag, Berlin, 229-241

34. Serour, M.K., Dagher, L., Prior, J. and Henderson-Sellers, B., 2004, OPEN for agility: an action
research study of introducing method engineering into a government sector, Procs. 13th Int. Conf. on
Information Systems Development. Advances in Theory, Practice and Education (eds. O. Vasilecas, A.
Caplinskas, W. Wojtkowski, W.G. Wojtkowski, J. Zupancic and S. Wrycza), Vilnius Gediminas
Technical University, Vilnius, Lithuania, 105-116

35. Sommerville I. and Sawyer P., 1997, Requirements Engineering, a good practice guide, Wiley

36. ter Hofstede, A.H.M. and T.F. Verhoef, 1997. On the feasibility of situational method engineering.
Information Systems. 22(6/7), 401-422

37. van Slooten, K., Hodes, B., 1996, Characterizing IS development projects, in Procs. IFIP TC8
Working Conf. on Method Engineering: Principles of method construction and tool support (eds. S.
Brinkkemper, K. Lyytinen, R. Welke) Chapman&Hall, Great Britain, 29-44

38. Wiegers, K., 2003, Software Requirements, Microsoft Press

	Using the OPEN Process Framework to Produce a Situation-Specific Requirements Engineering Method
	Abstract
	Introduction
	The OPEN Process Framework (OPF)
	Method Engineering Process
	A Partial Example
	Discussion and Future Work
	Conclusion
	References

