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Introduction 

Most machine learning (ML) projects focus on “accuracy” for model evaluation. While accuracy is useful 
for knowing how well a model performs on a test dataset at the time of model development, there are 
other significant implications in assessing the utility and usability of a machine learning model. Key 
considerations include robustness, resilience, calibration, confidence, alignment with evolving user 
requirements, and fit for mission and stakeholder needs as part of integrated system, among others. In this 
paper, we explore what it means to measure beyond accuracy and define critical considerations for the 
test and evaluation of machine learning and, more broadly, artificial intelligence (AI) systems. After 
defining key measurement considerations, the AI engineering community will be better equipped to 
develop and implement comprehensive and applied methods for the evaluation of models as well as 
possible metrics for more realistic and real-world model evaluation. 

 

Current Assessment Practices for AI Systems 

Modern AI systems, many of which are built using machine learning, are a departure from static software 
systems that yield deterministic results. In contrast to analytical systems that follow explicit “instructions” 
given by a programmer and can be reduced and decomposed, AI systems are empirical, opaque, and 
unpredictable — they behave based on what they “learn” from data or experience (Russel & Norvig, 
2021). Because AI systems often model real-world relationships, they must be adaptable to changing 
inputs and shifting correlations. 

The characteristic differences between traditional software and AI lead to a series of open questions 
around the design and implementation of AI. For example, AI systems can evolve and change behavior 
over time. How can we ensure that AI systems are still doing what they are supposed to do? How can we 
certify that they are safe and reliable? Many current AI and ML methods are data intensive; continuous 
updates to data, while necessary, can impact architectural concerns such as prediction accuracy and 
latency (Ozkaya, 2020). Technical debt, driven by data dependencies, accumulates rapidly, silently, and at 
the system level (Sculley et al., 2015). What practical mechanisms exist to evaluate the state of a system 
when using large and evolving data sets? Further, exhaustive testing is currently not possible for systems 
that learn and adapt. How do we change approaches to test and evaluation to be more risk-, resilience-, 
and process- focused rather than exhaustive? 

A common practice for engineering AI systems is to select, optimize, and measure one or more metrics 
throughout the development pipeline. Common metrics, where applicable, include accuracy, precision, 
recall, ROC curves, confusion matrices, mean squared error (MSE), and/or mean absolute error (MAE) 
(Handelman et al., 2019). While the optimization of metrics in software development is not unique to AI, 
AI is exceptionally good at performing optimizations. Although properly defined and comprehensive 
metrics can yield impressive quantitative results, excessive optimization of inadequate metrics can result 
in manipulation, gaming, and/or a focus on short-term quantities, in addition to other potential negative 
consequences (Thomas & Uminsky, 2020). Utilizing incomplete and/or misleading metrics to test and 
evaluate AI systems is therefore fraught with risk. 

Today, questions around the design, development, implementation, and sustained management of AI are 
examined across a variety of fields including software engineering, human-centered design, computer 
science, and systems engineering. We believe that to build AI as well as it can be done, a whole-systems 
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approach is needed. As stated by Ackoff and Wardman (2016), “when you take a system apart, it loses all 
of its essential properties.” In this paper, we outline holistic considerations for testing and evaluation and 
aim to extend beyond common practice by capturing cross-disciplinary perspectives on AI engineering, 
acknowledging the volatility of relying heavily on metrics, and addressing the unique challenges of 
working with numerous evolving, interconnected system components. 

 

Characteristics of AI Systems 

AI Engineering is a field of research and practice that combines cross-disciplinary perspectives to create 
AI systems in accordance with human needs for stakeholder outcomes. When thinking about 
measurement of systems, it’s important to start with defining the attributes of a system that are desired. 
Here, we draw on the three pillars of AI Engineering to guide our thinking on test and evaluation strategy: 

1. Human-Centered AI: Implementing AI in context requires a deep understanding of the 
individuals that intend to use and interact with the system. From a human-centered perspective, 
systems should be evaluated to assess the alignment with humans, their behaviors, and values, as 
well as the utility of systems to achieve stakeholder-driven outcomes. 

2. Scalable AI: Many current AI and ML methods are compute-intensive, expensive, and time-
consuming to develop, necessitating consideration of how to scale AI and ML techniques to real-
world size and complexity. In the context of scalability, evaluation lenses could include how AI 
infrastructure, data, and models may be reused across problem domains and deployments and 
increase performance to support operational needs. Another evaluation lens could include how 
effectively a system scales up to support more needs at the enterprise level or scale down to 
enable capabilities in edge contexts. 

3. Robust and Secure AI: AI and ML introduce new system failure modes, vulnerabilities, and 
attack vectors and change over time. Assurance is needed that systems will work as expected 
when faced with uncertainty or threat. The Robust and Secure AI pillar provides the context for 
how we develop and test AI systems to ensure resilience across contexts and when encountering 
new phenomena over time. 

With these pillars in mind, we examine core considerations that AI engineers and AI engineering teams 
must take into account when developing test and evaluation strategies for AI systems. Due to the 
prevalence of ML systems in use today, we will provide many of the considerations in the context of ML. 

 

Considerations in Assessing AI Systems 

1. What are the intentions of your testing? 

While many of the questions listed below are not unique to AI systems in the abstract, each becomes 
unique when attempting to answer them in the context of AI systems. Unlike in traditional software, the 
answers to each of these questions are typically less definitive due to the non-deterministic nature of AI. 
An AI system may perform as expected given one input but behave in an unintended manner on a similar 
input; testing cannot be exhaustive due to the singular nature of any one data point. As a result, there is a 
limit to the possible coverage of testing in the context of AI systems. 

A helpful starting point for AI engineers is to consider what possible sources of uncertainty exist in a 
system of interest. In image classification, for instance, the system makes class predictions with varying 
degrees of confidence, but typically only the prediction with the highest confidence is returned to the end-
user. Additional information about uncertainty is helpful during the testing process. Some classes may be 
hard to distinguish between, even for humans, in which case the model’s limitations mirror human 
performance. Other mix-ups, for instances between classes that look completely dissimilar, could be 
indicative of more critical model deficiencies. 



[Distribution Statement A] Approved for public release and unlimited distribution. 3 

Brainstorming potential sources of risk can be another informative practice. What are the potential 
negative and positive outcomes that the system can produce? How can you evaluate for these incomes, 
both indirectly and directly? T&E allows for a thorough exploration of the model’s behavior before it is 
deployed and is an opportunity to measure and mitigate sources of risk. This practice is important because 
it upholds the principles of ethical AI, but it also may be a requirement if a governing entity requires 
regulatory or legal tests. 

Overall, as AI engineers start their exploration into assessment of systems, there are many directions they 
could go in and realistically, they have both limited time and resources. Setting intentions and learning 
goals around T&E can help teams to prioritize what they are investing resources into at different times 
and ensure they are getting actionable information from the testing that is done. 

 

2. What logistical challenges do you need to consider? 

Developing a well-documented plan for handling the logistical challenges of T&E for AI systems is 
another task that is necessary to perform early on. Evaluations can be performed at a variety of levels. AI 
systems require traditional software T&E-style verification that code is performing properly and is free of 
bugs; this form of testing can be performed by standard software developers. However, aspects of AI 
systems that require expertise, such as interpreting the meaning of increased uncertainty in deployment or 
recognizing the emergence of new classes, may require specialized team members to be involved in the 
evaluation. Outlining all relevant evaluation concerns and assembling a diverse team to tackle T&E tasks 
spanning different risk levels and content areas is a crucial step in producing a robust T&E strategy. 

Due to the cyclical, interconnected nature of ML lifecycle phases, issues discovered through T&E can 
have wide-reaching affects for ML systems and plans to mitigate these impacts will likely require 
communication across phases. The development of ML systems has been mapped to various lifecycle 
frameworks. Andrew Ng, for instance, educates practitioners to follow a four-part ML lifecycle that 
includes: (1) Scoping the project, (2) Collecting data (3) Training a model, and (4) Deploying in 
production (DeepLearningAI, 2021). Garcia et al. (2018) contends that the ML lifecycle consists of 
context, defined as “all the information surrounding the use of data in an organization,” plus three phases: 
(1) Pipeline Development, (2) Training, and (3) Inference. While differences in proposed frameworks 
exist, what is true across frameworks is that the ML lifecycle consists of numerous phases intertwined via 
feedback loops. 

Although testing is often represented as a distinct phase of the AI system lifecycle, we advocate that T&E 
is most effective when integrated throughout all phases. When implementing AI systems, teams of 
humans must engage in continuous oversight and frequently reflect on the questions: What are we doing? 
Why are we doing it, and for whom? (Barmer et al., 2021). Accounting for T&E considerations across 
every stage of AI system development and deployment supports the rapid, iterative development of 
robust, ethical mission capabilities (JAIC, 2020). Selecting metrics that accurately assess the system’s 
ability to fulfill mission goals and using these metrics throughout training, for instance, will guide the 
system towards meeting stakeholder needs. A common misconception is that testing is overly time-
consuming, while the process of fixing errors, especially late in system development, is what actually 
absorbs time (Kohavi et al., 2009). Developing a culture of frequent testing and a practice of addressing 
errors as they arise is an effective method for catching issues early on and preventing a build-up of 
problems. As stated by Thomke (2020), “Culture—not tools and technology— prevents companies from 
conducting the hundreds, even thousands, of tests they should be doing annually and then applying the 
results.” 

In settings where personnel across the pipeline work together closely, building T&E into all stages of 
development is realizable. However, when different stakeholders are siloed across the pipeline, such as 
designers, data scientists, software engineers, machine learning researchers, and operations teams, 
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challenges communicating between roles can be a source of ML “mismatch” (Lewis et al., 2021). 
Facilitating effective communication across roles on AI teams and throughout organizations to ensure that 
errors and problems found during T&E are addressed properly is a challenge, especially when elements of 
the ML pipeline may be handled by different organizations or teams. Methods for addressing errors in 
T&E may include system rollback (especially in high-risk, mission-critical contexts) or revising the 
training dataset to account for new information about model performance (Dunnmon et al., 2021). 

Constraints on communication and/or access to information across development and deployment pipeline 
stages should also be accounted for. For example, if provenance or other details about the training data 
are not accessible by the T&E team this can make it difficult to detect bias and uncertainty. Determining 
and documenting what aspects of the model and pipeline are within the scope of testing, and in turn what 
issues and topics can realistically be addressed, is an important step in fleshing out a T&E strategy. 
Limitations on T&E personnel's access to data or training/deployment specifics can be significant 
obstacles that may require modifications to team structures and/or documentation procedures. 

 

3. What are your biggest sources of risk? 

In the context of AI-enabled systems, it’s important to frame risk, or the possibility of suffering loss, in 
the context of the role that AI is performing within the system (Dzombak et al., 2021; Dorofee et al., 
1996). For instance, if an AI component stops working or begins to operate poorly, how will this impact 
the system’s overall ability to perform its task? What does poor operation look like and how can it be 
measured? Enumerating potential threats to the system, the likelihood of each threat occurring, and the 
impact of each of these threats early on will provide the T&E team with an estimate of risk that can guide 
the focus of testing (Alberts & Dorofee, 2010). 

Traditional methods for estimating the impact of loss (Kambic et al., 2020; Tucker, 2020) can be applied 
to AI systems, but estimating the likelihood of loss in the context of AI is an open challenge. Nascent 
methods for determining the quantitative likelihood of loss can be pulled from an emerging body of work 
related to AI threat modeling and vulnerabilities (Biggio & Roli, 2018; Beieler, 2019; Householder et al., 
2020a; Householder et al., 2020b; MITRE, 2020). In the absence of quantitative estimates, qualitative 
assessments from domain experts can be leveraged to gauge the relative importance of threats. 

Since AI systems have the potential to be used for different tasks, understanding the specific use-cases for 
which the system will be employed can sharpen the objectives of risk-related testing. For example, 
consider an overhead object detection system that can identify vehicles of interest to military personnel. 
This system could be used for at least two different tasks with differing parameters: (1) reconnaissance, a 
mission that is limited in time and scope, or (2) surveillance, a longer-term mission with less time 
pressure. The rate of false positives is a critical metric for the reconnaissance use-case because spurious 
hits could overwhelm an analyst using the system in a time-critical context. On the other hand, the rate of 
false negatives is pressing for the surveillance task because the user has time to review detections and 
requires thorough coverage of possible incidents. Considering the specific use-case for a system can 
determine which metrics are most relevant. 

 

4. What is the meaning behind your metrics? 

A challenge in interpreting and selecting metrics for T&E is determining their meaning and impact in 
context. Donella Meadows (1998) stated: “Indicators arise from values (we measure what we care about) 
and they create values (we care about what we measure)”. What is the overall value provided by the AI 
system and what kinds of measurements can be used to assess progress towards providing this intended 
value? What impact will prioritizing certain metrics have on the system development? Often, teams 
implement the measurement systems that they have knowledge of, whether or not they provide the needed 
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meaning. In AI systems, garnering meaning from metrics is complicated by factors such as system 
complexity, risk, and audience. 

AI systems have exceptionally powerful optimization capabilities, therefore the optimization of metrics 
that do not align with intended values can build systems with impressive test results but produce 
behaviors that are both unintentional and consequential. For example, Facebook’s goal is to drive social 
connection and their corresponding metrics for measuring connection include time spent on the platform, 
the number posts users interact with, and how many ads users click on. In the process of optimizing these 
metrics, their algorithm learned to show users posts that upset or anger them. While the engagement 
metrics may have improved, their progress towards the goal ultimately suffered. This example 
demonstrates how defining system goals and choosing metrics for T&E that truly support these values is 
critical. 

While intended system value may be clear, goals towards achieving this value, as well as the metrics for 
measuring progress towards goals, can be competing or misaligned. For instance, a facial recognition 
system will likely have to make tradeoffs between achieving high efficiency and fairness across protected 
groups. Tradeoffs may involve other ethical issues such as privacy, transparency, and accountability 
(Amarasinghe et al., 2021). Identifying and assessing tradeoffs between metrics is a challenge which 
remains ongoing throughout the ML system lifecycle. 

Assurance that metrics are calculated accurately is a prerequisite to deriving meaning from your 
measurements. Standard metrics such as accuracy or false positive rates are relatively easy to verify, 
especially in the presence of clear ground-truth labels. Confidence scores, on the other hand, are a more 
complex and often unverified metric. While confidence scores can be a valuable source of information 
about model performance during T&E, these estimates are only useful if they have been calibrated to 
suggest the true correctness likelihood (Guo et al., 2017). Mechanisms for producing front-facing metrics, 
such as confidence scores, must be validated prior to deployment to ensure that end-users are given 
precise information when interacting with the system. 

When interpreting performance metrics for non-technical audiences specifically, another set of challenges 
and opportunities arise. Scores such as F1 or AUC ROC can be difficult to interpret without a technical 
background in AI; how can these metrics be translated into plain English in the context of the problem at 
hand? Meaning must be derivable from system metrics not only by ML practitioners, but by other key 
collaborators involved in designing and reviewing the system. Efforts must also be made to avoid 
information overload by condensing relevant information and presenting results in a clear, simple, and 
balanced manner that is accessible for non-technical stakeholders (IDF, 2020). 

Additionally, it’s important to consider what metrics requirements really mean and how they align with 
project objectives. For instance, if a decision threshold was used, how can this cutoff be justified and was 
this decision appropriate for the goal? Fan and Lin (2007) discuss how performance metrics can be 
improved by changing decision thresholds. Modifying thresholds, however, can result in a selection rate 
that does not make sense for your problem. Perspectives from domain experts, where applicable, can help 
shape discussions around metric expectations and parameters including threshold. 

 

5. How are you dealing with scale and the level of complexity in your system? 

A significant challenge facing AI system developers today is how to create systems that can operate 
across a variety of domains and use cases. Success is hard enough to achieve when operating AI systems 
in closely controlled development and laboratory environments, and even more challenging when 
considering scale and system complexity. 

Achieving the development and deployment of robust and secure AI systems requires the creation of new 
T&E strategies that take scope into account. To thoroughly evaluate system performance, T&E teams 



[Distribution Statement A] Approved for public release and unlimited distribution. 6 

must acknowledge that an AI system will not exist in a vacuum; consider how the system operates and 
what kinds of interactions will take place between the system and sub-systems or contextual systems of 
interest. What inputs will the system receive and what outputs are expected? What impact will faulty 
results or predictions have on downstream components? How does the system respond to invalid inputs? 
This context can inform expectations about system behavior and sources of potential risk and, in turn, 
guide the selection of appropriate metrics and methods for addressing these requirements. 

Furthermore, it’s important to consider and routinely reevaluate the setting(s) in which the AI system will 
be employed and what use in these environments entails. What differences there are between your local 
test environment and global implementation contexts? In deployment, a system may require different 
computer resources to meet increased demand or operate on a delayed retraining schedule. Likewise, the 
system may encounter different real-world relationships between inputs and outputs, unexpected input 
data, or distinct types of end-users. To prepare for diverse use-cases, training and testing data must 
address a variety of real-world scenarios. 

That being said, comprehensive coverage is likely unattainable. For complex systems, it’s impossible to 
generate a complete list of scenarios in which the system may fail (Doshi-Velez & Kim, 2017). Instead of 
working towards a “perfect” system, T&E teams can build confidence in an AI system through rigorous 
testing, evaluation, verification and validation (TEV&V) incorporated throughout the system’s lifecycle. 
While in traditional software operational metrics are the primary concern for system monitoring, in the 
realm of AI engineering performance metrics are also important (Huyen, 2022). Monitoring a system in 
deployment contexts and tracking new behavior such as data drift will provide teams with the 
information, they need to retrain a system to meet emerging needs and to tune performance expectations 
to reflect new requirements. 

 

6. How are you evaluating implications for humans and unintended consequences?  

To ensure that a system is responsible and equitable, it must be vetted during T&E for unintended and/or 
negative consequences on the humans who will be impacted by the system. Across all phases of AI 
system development, it’s important to keep in mind who will be engaging with the system, directly or 
indirectly, and what they will potentially gain or lose through their interactions. If the system is designed 
to support or replace an existing process, tests that reflect existing expectations and best practices in 
deployment should be developed alongside domain experts. What pain-points for the user within the 
current system, and to what degree will the new system improve upon or change how such issues 
manifest? Likewise, what potentially negative tradeoffs exist in the new system and how will they impact 
the user? 

ML models learn the relationships explicitly or implicitly embedded within their (often historical) training 
dataset; as a result, they have the potential to pick up on undesirable correlations between inputs and 
outputs. The existence of unintended relationships between features in the training dataset can cause the 
model to “learn” the wrong thing altogether. Geirhos et al. (2021) describes one such example in which 
an image classifier identifies cows based on the presence of grass in the image; while the model achieved 
high performance accuracy, the model failed on examples in which a cow was pictured in a new setting. 
When working with human-related inputs, such as in facial recognition systems, correlations can include 
racial or gender bias, among other demographic disparities. Unintentional correlations in training data can 
have real-world impacts; New Jersey’s pretrial risk assessment algorithm, for instance, was trained on 
data that “reflects racial and ethnic disparities in policing, charging, and judicial decisions” and, as a 
result, made decisions that “perpetuate racial inequalities” with regards to detainment (Simonite, 2020). 

Analyzing training data directly is a powerful method for detecting and preventing biases and other 
unwanted correlations; the REVISE tool (Wang et al, 2020), for example, presents techniques for 
identifying and mitigating a variety of biases in visual datasets. The Gender Shades project provides an 
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illustrative example of how comparing model performance across different demographics of subjects can 
reveal underlying system biases (Buolamwini & Gebru, 2018). The detection and mitigation of bias is a 
crucial concern for AI systems working with human subjects, but systems designed for other input types 
can also exhibit biases, such as producing better results for certain languages or geographic inputs than 
others. Careful analysis of training, evaluation, and testing data in the early stages of model development 
is a crucial preventative measure towards smart testing and evaluation. Repeated analysis across stages, 
especially if data is collected in deployment and used to retrain the model, is another important quality 
check. Explainability techniques can also be used to periodically probe the model and determine which 
features are the most important factors in determining system outputs. Auditing of a system before its 
adoption is critical to prevent unwanted consequences. 

An important caveat to consider throughout bias mitigation efforts is the risk of accidentally masking 
unfair behavior through selected metrics. The Propublic Machine Bias study (Angwin et al., 2016) 
provides a case study of how metrics measured on data “slices” can conceal discriminatory model 
behavior. In the study, researchers examined a “fair” model for predicting crime recidivism that received 
similar accuracies across different racial groups. Upon closer examination, however, researchers 
discovered that Black defendants were twice as likely to be falsely identified as recidivists, while White 
defendants were twice as likely to be falsely identified as non-recidivists. The decision to use accuracy 
alone to identify bias resulted in real-world racially discriminatory practices; this study illustrates the 
importance of conducting in-depth analysis of model behavior instead of settling for surface-level results. 

 

Iterating on your T&E strategy  

Documentation of your T&E strategy during the early phases of planning will prove critical as you iterate 
on the approach. After a first attempt at evaluation, it’s important to reconsider what the main tradeoffs 
are within the evaluation strategy and determine if there are any important system or model attributes that 
are currently unaccounted for. Throughout the lifecycle of the model or system, different needs may 
appear as data inputs and/or expected outputs change. Proper monitoring of the system (often considered 
the final stage of the ML pipeline) is necessary to recognize changes such as data drift or concept drift. 
Information gleaned about current project needs through monitoring can be used to ensure that the T&E 
procedure covers relevant risks and concerns. 

For instance, imagine an ML speech-to-text model for making song requests as part of a music streaming 
system. Developers focus on training and testing a model that achieves high accuracy on speech samples 
from young users, as this is the platform’s target demographic. The system performs well for the first six 
months but sees an increase in middle-aged users in the second half of the year and a corresponding drop 
in average accuracy. While the initial goal for T&E was to ensure that the system achieved high accuracy 
for young users, the top priority will now likely shift towards achieving acceptable accuracy across varied 
ages. Dataset curation for both training and testing must grow to include samples from middle-aged 
speakers and, in anticipation for future new users, developers should consider including a larger range of 
speech samples across different demographics (e.g., age, dialect). 

Other possible changing project needs could include increased or decreased scale, the emergence of 
adversaries, or the introduction of a new class. T&E considerations will likely fluctuate in priority 
depending on these needs. Keeping inventory of which aspects of the system are thoroughly tested as well 
as topics for future testing will be crucial to developing and maintaining a robust and up-to-date strategy. 

 

Conclusion 

In conclusion, testing for accuracy alone is not enough to assess the correctness or quality of a ML model. 
To engineer robust and secure, scalable, and human-centered AI systems T&E needs to account for 
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potential sources of risk and uncertainty early on and incorporate testing measures that address these 
concerns across all stages of development and deployment. This approach differs from typical AI T&E 
approaches that view testing as a distinct stage in a linear pipeline and instead opts for a holistic vision of 
testing that considers the connections between phases of the model lifecycle. Since comprehensive testing 
is impossible for AI systems, it’s important to determine the intentions behind testing and to make 
informed tradeoffs. Maintaining documentation of process, iterating on T&E strategies in response to 
emerging requirements, and developing diverse teams to handle varied testing responsibilities are 
practices that can improve both the depth and breadth of testing. As AI engineering best practices 
continue to evolve, the delta between traditional systems and AI systems will be further explored and 
addressed. 
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