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Abstract 
Buffer overflows are the source of a vast majority of vulnerabilities in today’s software. 
Existing solution for detecting buffer overflow, either statically or dynamically, have 
serious drawbacks that hinder their wider adoption by practitioners. In this paper we 
present an automated overflow detection technique based on model checking and 
iterative refinement. We discuss advantages, and limitations, of our approach with respect 
to today’s existing solutions. We also describe how our approach may be implemented on 
top of a model checking technology being developed at the Software Engineering 
Institute (SEI). 

Introduction 
Software vulnerabilities [1, 2] are one of the major causes of concern in today’s 
information centric world. For example it is estimated [3] that “Hacker attacks cost the 
world economy a whopping $1.6 trillion in 2000” and that “US virus and worm attacks 
cost $10.7 billion in the first three quarters of 2001”. This problem is further highlighted 
by the increasing number of attacks that exploit such vulnerabilities. For example, “The 
CMU CERT Coordination Center reported 76,404 attack incidents in the first half of 
2003, approaching the total of 82,094 for all of 2002 in which the incident count was 
nearly four times the 2000 total. If anything, the CERT statistics may understate the 
problem, because the organization counts all related attacks as a single incident. A worm 
or virus like Blaster or SoBig, a self-replicating program that can infect millions of 
computers, is but one event.” 

Buffer overflows are widely recognized [17] to be the prime source of vulnerabilities in 
commodity software. For example, the CodeRed1 worm that caused an estimated global 
damage worth $2.1 billion in 2001 [3] exploited a buffer overflow in Windows. In 
addition, Wagner et al. [22] report, on the basis of CERT advisories, that “buffer overruns 
account for up to 50% of today’s vulnerabilities, and this ratio seems to be increasing 
over time.” 

                                                 
1 http://www.cert.org/advisories/CA-2001-19.html 
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Broadly speaking, a buffer overflow occurs when a piece of data D is written to a 
buffer B such that the size of D is greater than the legally allocated size of B. In the case 
of a type-safe language or a language with explicit bound checking (such as Java), this 
leads to an exception being thrown. Unfortunately, the vast majority of commercial and 
legacy software is written in unsafe languages (such as C or C++). Such languages allow 
buffers to be overflowed with impunity. 

Buffer overflows are typically used by attackers to execute arbitrary code (such as a 
shell) with administrative privileges. For example, a common strategy is to overwrite a 
program’s activation record (commonly called a stack smashing attack) in order to 
redirect its control flow to any desired point. As such, buffer overflows are extremely 
dangerous and can lead to catastrophic system compromises and failures. 

As mentioned before, the vast majority of commercial off-the-shelf (COTS)2 and 
legacy software involves unsafe programming languages and is therefore particularly 
vulnerable to buffer overflows. Unfortunately, our critical infrastructure is becoming 
increasingly dependent on legacy and COTS systems. For instance, only about 23% of 
the software in the Joint Strike Fighter (JSF) consists of new automatically generated 
code that we may reasonably assume to be free of buffer overflows. However, the 
remaining 77% of the JSF  software is an assembly of COTS components (12%), legacy 
code (30%), multi-used systems (23%) and manually written (12%) programs [3], 
developed in large part using languages that have no intrinsic safeguard against buffer 
overflows. Thus, an overwhelming majority of the JSF software is prone to buffer 
overflow vulnerabilities.  Other instances of systems relying on COTS software include 
the voice switching systems of the White House and the NSANet [3]. More importantly, 
this situation is only going to worsen in the days to come. It is therefore imperative that 
we develop effective tools that can detect, and aid in fixing, buffers overruns in large 
software systems written in unsafe languages. 

Buffer Overflow Detection: Existing Approaches 
Given its significance, it is not surprising that considerable effort has been devoted 
toward the development of buffer overflow detection systems. Nevertheless, a 
satisfactory solution to this problem remains elusive. In this section we will discuss 
existing automated techniques for overflow detection. Manual approaches are inherently 
non-scalable, therefore we focus on procedures that involve a fair amount of automation. 

A number of approaches that have been proposed to detect buffer overflows are type-
theoretic [18] in nature. Such techniques require that programs be written in a type-safe 
language and are hence not applicable to the vast body of (legacy as well as in-
production) systems that involve unsafe languages such as C or C++. Techniques based 
on simulation or testing are inexpensive and widely prevalent. However, they usually 
suffer from extremely low coverage and are typically unable to provide any reasonable 
degrees of assurance about critical software systems. 

Yet other buffer overflow detection schemes advocate a run-time or dynamic [19, 20, 
21] strategy. Such approaches incur performance penalties that are unacceptable in many 

                                                 
2 Strictly speaking, our technique only applies to COTS components for which source code is also 
available. 
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situations. Even when performance is not a serious issue, it is often imperative that we be 
assured of the correctness of a system before it is deployed since any failure in real-life 
would be catastrophic. Such guarantees can only be obtained via static approaches. 

More recently, a number of static approaches for buffer overflow detection have been 
proposed that rely on static analysis of programs. These approaches are usually based on 
converting the buffer overflow problem into a constraint solving problem, such as integer 
range checking [22] or integer linear programming [23]. Static analysis amounts, in 
principle, to a form of model checking [24] over the control flow graph of a program. 
However, a control flow graph is an extremely imprecise model. Therefore, in practice, 
static analysis is plagued by false positives. More specifically, every probable buffer 
overflow flagged by static analysis must be manually inspected to ensure that it 
corresponds to an actual problem and is not an artifact of the imprecise model which has 
no concrete realization. 

In practice, three drawbacks seriously limit the effectiveness of static analysis as an 
approach for buffer overflow detection. First, each bug report must be manually verified. 
Second, a large majority of problems reported by static analysis turn out to be false 
alarms. Finally, there is no automated procedure for getting rid of false alarms by 
constructing more precise models.  

Our buffer overflow detection technique is also static but is based on a paradigm called 
iterative refinement that overcomes each of the above shortcomings of static analysis. We 
will describe iterative refinement in detail shortly. But first we describe our model 
checking infrastructure on which we plan to develop the buffer overflow detection 
technology. 

The PACC Initiative 
The Predictable Assembly from Certifiable Components (PACC) [6] initiative at the SEI 
aims to predict the behavior of a component-based system prior to implementation, based 
on known properties of components. The vision of PACC is that software components 
have certified properties (for example, safety, reliability, and performance) and the 
behavior of systems assembled from components is predictable. To this end, PACC is 
developing a component specification language called Construction and Composition 
Language (CCL) [7], a run-time called Pin [10], and a set of reasoning frameworks [9], 
packaged together as a Prediction Enabled Component Technology (PECT) [8]. 

Currently, two reasoning frameworks are being developed by the PACC team. The 
performance family of reasoning frameworks [11] employs analytic theories such as rate 
monotonic analysis and real-time queuing theory for predicting run-time attributes related 
to system performance. Typical examples of such attributes are the average and worst-
case latencies of a system under various distributions of the arrival rate and execution 
times of jobs. The ComFoRT [12] reasoning framework uses software verification 
technology based on model checking [4] and automated abstraction-refinement to prove 
claims related to system reliability and safety. A significant advantage of both these 
reasoning frameworks is that they are static, and do not require a system to be executed 
for making any kind of prediction about its run-time behavior. 
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In the remainder of this paper we will establish strong connections between the model 
checking technology being developed as part of the ComFoRT reasoning framework and 
buffer overflow detection. In particular, we will show how the model checking 
infrastructure developed as part of ComFoRT can be leveraged to develop an effective 
overflow detection system. 

ComFoRT: Model Checking in PACC 
Model checking is an automated approach for exhaustively analyzing whether systems 
satisfy specific behavioral claims that express safety and reliability requirements. Due to 
its exhaustive nature, model checking is especially attractive for analyzing concurrent 
systems where the number of possible interleaving between various components is quite 
large, and yet must be explored. A distributed safety critical software system is a typical 
example of such a system. The ComFoRT reasoning framework packages the 
effectiveness of state-of-the-art model checking in a form that enables software 
developers to apply the analysis technique without being experts in its use. The key ideas 
behind ComFoRT are: 

• Safety and reliability claims about a target system are expressed using a state/event-
based temporal logic. The logic, called SE-LTL [13], was developed particularly for 
the purpose of specifying properties of software systems. An SE-LTL claim 
essentially encodes desirable (or undesirable) sequences composed of a combination 
of constraints on data and occurrence of events. Such claims may equivalently be 
expressed as finite state machines. 

• A CCL component specification, which also includes a relevant claim to be verified, 
is automatically interpreted into a concurrent program that can be input to a model 
checker. This program is written in a restricted form of ANSI-C along with finite 
state machine descriptions of certain library routines. 

• The concurrent program resulting from the interpretation is input to a model checker, 
Copper. The output of Copper is either yes, which means that the claim holds, or no, 
which means that it does not. If the result is no, then Copper also returns a 
counterexample, which is an actual execution of the program that violates the claim. 
The counterexample is reverse-interpreted to the original CCL form and returned as 
diagnostic feedback. 

Iterative Refinement 
The ability of Copper to verify claims on concurrent, and in general infinite-state, C 
programs is based on the iterative refinement paradigm. As mentioned before, iterative 
refinement addresses the three critical drawbacks of conventional static analysis of 
programs. It achieves this via an iterative procedure that can be described (please see 
Figure 1 for a pictorial description), in the context of Copper, as follows: 

1. Construct a finite state conservative concurrent model M of the target C program. 
Copper uses a technique called predicate abstraction to achieve this. 

2. Model check M against the desired claim. If M satisfies the claim, and since it is a 
conservative model, then so does the original C program. In this case, Copper exits 
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with a yes. Otherwise let CE be a counterexample to the claim with respect to the 
model M. 

3. Check if CE is also a counterexample with respect to the original C program. If so, 
then Copper exits with no and returns CE as the counterexample. Otherwise CE is 
said to be spurious since it is a behavior that does not belong to the original C 
program, but was only introduced in the model M by the abstraction process. 

4. Construct a more precise model M using the spurious CE. The new model is 
guaranteed not to contain CE as an admissible behavior. Repeat from step 2 above. 

 

 

 

 

 

 

 

 

 

In summary, iterative refinement improves upon static analysis by enabling automated 
verification of counterexample for spuriousness, and automated model refinement to 
eliminate spurious counterexamples. It is therefore extremely suitable for detecting 
violations of safety conditions in large-scale software systems in an automated and 
scalable manner. In particular, the absence of buffer overflows is a perfect example of a 
safety claim that is amenable to iterative refinement.  

Our Approach: PACC for Buffer overflow 
In general, model checking is an extremely attractive choice as a foundation for buffer 
overflow detection technology. The main reason behind this is that buffer overflow is 
concerned with a program’s control flow and simple relationships between its data. More 
specifically, in order to prove the absence of buffer overflow, we only need to show, for 
every control flow point where some data D is being written into a buffer B, that the 
allocated size of B is no less than the size of D. We do not need to be concerned about the 
properties of the data D itself. Such situations are most conducive for software model 
checking to succeed3. 

In contrast to dynamic approaches [29, 30, 31, 5], model checking is static. It therefore 
incurs no run-time overheads and requires no mechanisms for graceful recovery once an 
anomaly has been detected. This feature is particularly useful for mission-critical 
software whose correctness must be ensured before actual deployment. Finally, the 
capability of model checking to generate counterexamples is invaluable for producing 

                                                 
3 Indeed, model checking has been applied with considerable success toward the detection of software bugs 
(including security bugs) [25, 26, 27] in recent times. 
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diagnostic feedback4. However, in order to be fruitfully applied to infinite state systems, 
such as software, model checking must be combined with a technique such as iterative 
refinement. 

We therefore plan to apply iterative refinement for buffer overflow detection in C 
programs. More specifically, we will develop our overflow detection technology on top 
of the ComFoRT reasoning framework. Several features of ComFoRT make it a lucrative 
and advantageous choice for buffer overflow flaw detection in comparison to the tools 
and techniques presented above. First, ComFoRT includes powerful and automated 
abstraction-refinement techniques that allow it to model source code at the correct level 
of granularity. As mentioned before, all existing static overflow detection tools are 
limited by their ability to only model programs as their control flow graph. This makes 
them prone to an excessive number of false alarms and inhibits their wider adoption by 
practitioners. 

In addition, ComFoRT allows the verification of concurrent systems. This will allow 
our approach to detect buffer overruns in multi-threaded and distributed systems. Such 
vulnerabilities are expected to become increasingly more frequent, and threatening, in the 
days to come. They are also virtually impossible to detect using present day tools and 
algorithms that can only analyze components in isolation. 

Another important problem faced by existing buffer overflow detection systems is the 
inability to specify appropriate environments. This ultimately results in an increased 
number of false alarms. It is important to note that these false alarms are the result of 
imprecise modeling of environment as opposed to imprecise modeling of the program 
being analyzed. The ability to analyze concurrent systems will enable us to specify proper 
environments and eliminate this category of spurious counterexamples as well.  

Certifying Buffer Overflow Freedom 
For software systems that are mission-critical in nature, the ability to trust analysis results 
becomes imperative. This is no longer a trivial issue since the tools that analyze complex 
software have themselves become quite complicated. As part of both the performance 
and ComFoRT reasoning frameworks, we are developing validation techniques that 
enhance our ability to achieve increased confidence in our predictions. 

In the context of the ComFoRT reasoning framework, we are investigating techniques 
for combining certifying model checking [15] and proof carrying code [14]. The goal is 
to enhance the existing ComFoRT framework so that it outputs a proof certificate along 
with yes if a desired claim is found to hold. The validity of the proof certificate can be 
checked separately to assure the correctness of positive answer returned by ComFoRT.  

The power of this technique lies in the fact that it can be automated and applied to 
realistic software systems. In addition, certificates are tamper-proof. A valid proof 
certificate guarantees that the software system is provably secure, even if it was generated 
by an untrusted source and transmitted over an untrusted communication channel. We 

                                                 
4 Interestingly, this feature of model checking has also been successfully used to generate attack graphs 
[28] for intrusion detection in large-scale networks. 
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plan to extend this technique to generate trusted certificates for software certified to be 
free of buffer overflows. 

Challenges and Success Measures 
It is also important to discuss some of the challenges that must be overcome in order to 
adapt and apply successfully model checking technology to buffer overflow detection. An 
important challenge is scalability. Model checking is known to be hampered by the state-
explosion problem, in particular for concurrent systems whose number of reachable states 
increases exponentially with the number of components. We believe that powerful 
abstraction and compositional reasoning techniques, some of which were developed as 
part of ComFoRT, enable us to tackle this problem.  

The predicate abstraction implemented as part of ComFoRT has limited support for 
pointers. On the other hand, pointers are an integral part of the buffer overflow problem. 
We must therefore add improved pointer support to ComFoRT as part of the development 
of our buffer overflow detection tool. While the theory behind this step is fairly well-
know, its practical ramifications are yet to be completely understood. Finally, the 
abstraction refinement scheme implemented in ComFoRT is geared toward SE-LTL 
counterexamples. We must tailor this step for buffer overflows. Once again, this is 
theoretically straightforward but practically unchartered. 

As the old saying goes, nothing succeeds like success. Thus, the ultimate success story 
would be the fruitful demonstration of the effectiveness of our tool on a wide selection of 
representative examples. Some additional achievements would be: (a) a better 
understanding of the applicability of model checking for buffer overflow detection, and 
(b) a qualitative measure of the relative advantages of iterative refinement over traditional 
static analysis methods in the context of buffer overflow detection. 

Summary 
In summary, the goal of this effort is to develop a buffer overflow infrastructure that: 

• Models source code more precisely, yet scalably, than existing tools. This will reduce 
the amount of false alarms, and enable us to analyze larger program, fostering wider 
acceptance by practitioners. We believe that techniques such as iterative refinement 
and symbolic representations will help us in this direction. 

• Detects buffer overflows that arise only due to the interaction of multiple components 
and specifies appropriate environments. This is impossible using existing buffer 
overflow detection tools that analyze components in isolation. We believe that or use 
of model checking will provide us with the vital capability of finding distributed 
buffer overflows. 

• Certifies code to be free of buffer overflows. This is clearly an extremely powerful 
capability that is also lacking in existing tools. An important precondition for 
certification is that analysis must be conservative, i.e., if the analysis cannot find any 
problems, then there really are no problems. Fortunately, the abstraction techniques 
we use are conservative. 
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Conclusion 
Society is becoming ever increasingly reliant on software to manage critical 
infrastructure. Buffer overflows remain, and continue to grow in importance as, the major 
source of vulnerabilities in such software systems. Despite considerable effort, a 
satisfactory solution to the buffer overflow detection problem remains elusive. In this 
paper we have presented a static buffer overflow detection scheme based on model 
checking and iterative refinement. In particular, we believe that the model checking 
technology being developed as part of the PACC initiative at the SEI can be adapted to 
develop such a buffer overflow detection tool. Our tool will not only be able to analyze 
concurrent systems but will also be able to generate certificates that guarantee that the 
target program is free from buffer overflows. We believe that such a tool will go a long 
way in enhancing the state-of-the-art in our buffer overflow detection and certification 
technology. 
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