
1Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Can AI Close the Design-Code
Abstraction Gap?

James Ivers, Ipek Ozkaya, and Robert L. Nord
{jivers, ozkaya, rn}@sei.cmu.edu

2Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Copyright 2019 Carnegie Mellon University and IEEE.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM19-1197

3Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

A Bit of Context

Software architecture is an important abstraction that helps organizations satisfy a wide
range of business and mission goals.

• Our team has decades of experience creating and applying architecture approaches to
a wide range of government and commercial systems

• We primarily deal with large-scale changes to existing systems (e.g., modernization)
• A common impediment is that architecture and design documentation is often missing

or out of date

When architecture and design information differ from code, we generally
• Trust the code
• Lose the ability to apply architectural analyses (e.g., diagnosing root causes or the

implications of a potential change)

4Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Common Challenges

"I need to ..."
• Move this monolith to the cloud
• Decide whether to modernize a system or start over
• Grab this bit of functionality for use in a new product
• Replace that bit of functionality with a newer version from another vendor
• Determine whether what my contractor delivered will be maintainable

Recently, an organization wanted to isolate a mission capability from its underlying
hardware platform in preparation for moving it to a new platform. Their contractor's
response – an estimate of 14,000 staff hours (development only).
Is this reasonable?

5Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

How Can AI for Software Engineering Help?

We are motivated to help create a new generation of automation for architects that helps
bridge the gap between architecture abstractions and code. We are encouraged by
potential applications of AI to

• Detect design abstractions, allowing us to
- Recover "as implemented" designs
- Check that implementation conform to "as intended" designs

• Refactor code to improve its design

6Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Detecting Design Abstractions

Machine learning classification is a
promising approach to recognizing the
presence of design abstractions from
source code

• Growing successes in the literature
• Imperfect matches are wanted
• Our feature engineering is based on

combinations of structural dependencies
and context paths

source
code

code
representations

static structurescontext paths

abstraction
gap

design
constructs

filter pipe

design
fragment

pipeline

Allamanis, Barr, Devanbu, & Sutton. A Survey of Machine Learning for Big Code and Naturalness. ACM Comput. Surv. 51, 4 (2018).
Zanoni, Fontana, & Stella. On applying machine learning techniques for design pattern detection. J. Syst. Softw. 103, C (2015).
Alon, Zilberstein, Levy, & Yahav. code2vec: learning distributed representations of code. Proc. ACM Program. Lang. 3, POPL (2019).

7Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Initial Progress

random guessingMVC Design Constructs

8Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Intended Application - Automated Conformance Checker

Source
Code

Intended
Designs

Canonical
Design

Knowledge

Extract
Design
From
Code

Conformance
Checker

Adaptive
Filtering TriageRa

w
N

on
co

nf
or

m
an

ce
s

Fi
lte

re
d

N
on

co
nf

or
m

an
ce

s

De
sig

n
Fr

ag
m

en
ts

9Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Refactoring Code to Improve Its Design

Search-based software engineering approaches have shown promise in improving code
quality across a codebase.

Our goal is to apply these approaches to recommend refactorings that achieve project-
specific goals (specifically: isolating functionality for harvesting or replacement).

• Multi-objective algorithms like NSGA-II fit naturally with the need to accommodate
design trade-offs

• Pareto-optimal solutions are acceptable in this domain
• Reasonable efficiency on large search spaces (code size and refactoring options)

Harman & Tratt. Pareto Optimal Search Based Refactoring at the Design Level. GECCO 2007.
Mkaouer, Kessentini, Bechikh, Cinnéide, & Deb. On the Use of Many Quality Attributes for Software Refactoring: A
Many-Objective Search-Based Software Engineering Approach. Empir. Softw. Eng. (2015).

Ouni, Kessentini, Sahraoui, Inoue, & Deb. Multi-Criteria Code Refactoring Using Search-Based Software
Engineering: An Industrial Case Study. ACM Trans. Softw. Eng. Methodol. (2016).

10Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Problem Framing

Basis: Only certain software dependencies
interfere with our goals.
Approach: Focus search on solutions that
reduce those dependencies.

• Counting those dependencies is an
objective basis for fitness.

• Reducing scope of search (by 1 to 4
orders of magnitude) promotes
scalability.

11Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Problematic Couplings

Problematic
couplings are
software
dependencies that
interfere with
achieving a specific
goal.

Source: All project data from github.com/open-source

12Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Early Refactoring Recommendations

Local search with a single fitness function
• Illustrative of what we're working towards
• Not yet what we'd consider a "good"

solution, but encouraging

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

0 5 10 15 20 25 30 35 40 45 50

Pr

ob
le

m
at

ic
 C

ou
pl

in
gs

Refactorings

13Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Over Time, Gaps Seem Inevitable

When software structure
differs significantly from
what is needed, the pace
of change and innovation
slows down.

14Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Different AI Approaches Solve Complementary Problems

15Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Deeper Integration Seems Promising, As Well

Our vision is to combine these two ideas to
• Search for refactorings that correct detected non-conformances (new trigger for search

with a narrower scope)
• Preserve existing design abstractions during refactoring (new search constraints based

on abstractions)
• Search for opportunities to introduce abstractions (new fitness functions, likely requiring

greater developer interaction)

16Can AI Close the Design-Code Abstraction Gap?
© 2019 Carnegie Mellon University

Layers of Challenges

Detecting design constructs requires a search for
relationships across multiple code elements.

Instantiation of a design construct is often context
dependent.

Assessing suitability of design constructs in a specific context
requires assessing the design trade-offs among competing goals.

Design changes are motivated and justified by business needs.

Core Technical
Challenge

System Context
Influences Use

Business Context
Influences Priorities

	Can AI Close the Design-Code Abstraction Gap?
	Slide Number 2
	A Bit of Context
	Common Challenges
	How Can AI for Software Engineering Help?
	Detecting Design Abstractions
	Initial Progress
	Intended Application - Automated Conformance Checker
	Refactoring Code to Improve Its Design�
	Problem Framing
	Problematic Couplings
	Early Refactoring Recommendations
	Over Time, Gaps Seem Inevitable
	Different AI Approaches Solve Complementary Problems
	Deeper Integration Seems Promising, As Well
	Layers of Challenges

