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A Bit of Context

Software architecture is an important abstraction that helps organizations satisfy a wide 
range of business and mission goals.

• Our team has decades of experience creating and applying architecture approaches to 
a wide range of government and commercial systems

• We primarily deal with large-scale changes to existing systems (e.g., modernization)
• A common impediment is that architecture and design documentation is often missing 

or out of date

When architecture and design information differ from code, we generally
• Trust the code
• Lose the ability to apply architectural analyses (e.g., diagnosing root causes or the 

implications of a potential change)
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Common Challenges 

"I need to ..."
• Move this monolith to the cloud
• Decide whether to modernize a system or start over
• Grab this bit of functionality for use in a new product
• Replace that bit of functionality with a newer version from another vendor
• Determine whether what my contractor delivered will be maintainable

Recently, an organization wanted to isolate a mission capability from its underlying 
hardware platform in preparation for moving it to a new platform.  Their contractor's 
response – an estimate of 14,000 staff hours (development only).  
Is this reasonable?
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How Can AI for Software Engineering Help?

We are motivated to help create a new generation of automation for architects that helps 
bridge the gap between architecture abstractions and code.  We are encouraged by 
potential applications of AI to

• Detect design abstractions, allowing us to 
- Recover "as implemented" designs
- Check that implementation conform to "as intended" designs

• Refactor code to improve its design
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Detecting Design Abstractions

Machine learning classification is a 
promising approach to recognizing the 
presence of design abstractions from 
source code

• Growing successes in the literature
• Imperfect matches are wanted
• Our feature engineering is based on 

combinations of structural dependencies 
and context paths
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Allamanis, Barr, Devanbu, & Sutton. A Survey of Machine Learning for Big Code and Naturalness. ACM Comput. Surv. 51, 4 (2018).
Zanoni, Fontana, & Stella. On applying machine learning techniques for design pattern detection. J. Syst. Softw. 103, C (2015).
Alon, Zilberstein, Levy, & Yahav. code2vec: learning distributed representations of code. Proc. ACM Program. Lang. 3, POPL (2019).
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Initial Progress

random guessingMVC Design Constructs
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Intended Application - Automated Conformance Checker
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Refactoring Code to Improve Its Design

Search-based software engineering approaches have shown promise in improving code 
quality across a codebase.

Our goal is to apply these approaches to recommend refactorings that achieve project-
specific goals (specifically: isolating functionality for harvesting or replacement).

• Multi-objective algorithms like NSGA-II fit naturally with the need to accommodate 
design trade-offs

• Pareto-optimal solutions are acceptable in this domain
• Reasonable efficiency on large search spaces (code size and refactoring options)

Harman & Tratt. Pareto Optimal Search Based Refactoring at the Design Level. GECCO 2007.
Mkaouer, Kessentini, Bechikh, Cinnéide, & Deb. On the Use of Many Quality Attributes for Software Refactoring: A 
Many-Objective Search-Based Software Engineering Approach. Empir. Softw. Eng. (2015). 

Ouni, Kessentini, Sahraoui, Inoue, & Deb. Multi-Criteria Code Refactoring Using Search-Based Software 
Engineering: An Industrial Case Study. ACM Trans. Softw. Eng. Methodol. (2016).
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Problem Framing

Basis: Only certain software dependencies 
interfere with our goals.
Approach: Focus search on solutions that 
reduce those dependencies.

• Counting those dependencies is an 
objective basis for fitness.

• Reducing scope of search (by 1 to 4 
orders of magnitude) promotes 
scalability.
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Problematic Couplings

Problematic 
couplings are 
software 
dependencies that 
interfere with 
achieving a specific 
goal.

Source: All project data from github.com/open-source
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Early Refactoring Recommendations

Local search with a single fitness function
• Illustrative of what we're working towards
• Not yet what we'd consider a "good" 

solution, but encouraging
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Over Time, Gaps Seem Inevitable

When software structure 
differs significantly from 
what is needed, the pace 
of change and innovation 
slows down.
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Different AI Approaches Solve Complementary Problems
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Deeper Integration Seems Promising, As Well

Our vision is to combine these two ideas to 
• Search for refactorings that correct detected non-conformances (new trigger for search 

with a narrower scope)
• Preserve existing design abstractions during refactoring (new search constraints based 

on abstractions)
• Search for opportunities to introduce abstractions (new fitness functions, likely requiring 

greater developer interaction)
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Layers of Challenges

Detecting design constructs requires a search for 
relationships across multiple code elements.

Instantiation of a design construct is often context 
dependent.

Assessing suitability of design constructs in a specific context 
requires assessing the design trade-offs among competing goals.

Design changes are motivated and justified by business needs.

Core Technical 
Challenge

System Context 
Influences Use

Business Context 
Influences Priorities
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