Milcom 2015 Track 4 - System Perspectives

Cyber-Foraging for Improving Survivability of
Mobile Systems

Sebastian Echeverria*, Grace A. Lewis’, James Root!, Ben Bradshaw’
TCarnegie Mellon Software Engineering Institute
Pittsburgh, PA USA
{secheverria, glewis, jdroot, bwbradshaw} @sei.cmu.edu
*Universidad de los Andes
Santiago, Chile

Abstract—Cyber-foraging is a technique for dynamically aug-
menting the computing power of resource-limited mobile devices
by opportunistically exploiting nearby fixed computing infras-
tructure. Cloudlet-based cyber-foraging relies on discoverable,
generic, forward-deployed servers located in single-hop proximity
of mobile devices. In particular, we define tactical cloudlets
as the infrastructure to support computation offload and data
staging at the tactical edge. However, the characteristics of
tactical environments, such as dynamic context, limited comput-
ing resources, disconnected-intermittent-limited (DIL) network
connectivity, and high levels of stress pose a challenge for the
continued operations of mobile systems that leverage cloudlets in
tactical environments. This paper presents an architecture and
experimental results that demonstrate that cyber-foraging using
tactical cloudlets increases the survivability of mobile systems,
defined as the capability of a system to be able to continue
functioning in spite of adversity.

I. INTRODUCTION

Cyber-foraging is an area of work within mobile cloud
computing that leverages external resources (i.e., cloud servers,
or local servers called surrogates) to augment the computation
and storage capabilities of resource-limited mobile devices
while extending their battery life [1]. There are two main forms
of cyber-foraging. One is computation offload, which is the
offload of expensive computation in order to extend battery
life and increase computational capability. The second is data
staging to improve data transfers between mobile devices and
the cloud by temporarily staging data in transit.

Cloudlet-based cyber-foraging relies on discoverable,
generic, forward-deployed servers located in single-hop prox-
imity of mobile devices [2]. We further define ractical
cloudlets as cloudlets that support computation offload and
data staging at the tactical edge [3]. However, the characteris-
tics of tactical environments, such as dynamic context, limited
computing resources, disconnected-intermittent-limited (DIL)
network connectivity, and high levels of stress pose a challenge
for the continued operations of mobile systems that leverage
cloudlets in tactical environments.

Battery savings and better response times (lower latency)
are demonstrated benefits of cyber-foraging and contributors
to mission success [3]. However, mission success also requires
cloudlet-deployed capabilities to be available when they are
required, despite the challenges of tactical environments.

This paper presents our implementation of tactical cloudlets
with a specific focus on survivability, defined as the capability
of a system to continue functioning in spite of adversity. Sec-
tion II presents a summary of related work in cyber-foraging
and software systems survivability. Section III presents the
architecture of our tactical cloudlet implementation. Section
IV focuses on the tactical cloudlet features that promote
survivability of mobile systems in the field. Finally, Section V
concludes the paper and outlines next steps.

II. RELATED WORK
A. Cyber-Foraging

We recently conducted a systematic literature review (SLR)
on architectures for cyber-foraging systems that identified 57
primary studies and a total of 60 cyber-foraging systems
in these studies (52 computation offload and 8 data staging
systems) [4]. The SLR showed that there is indeed active work
in this area but also that there is (1) a lack of understanding
of system qualities attributes beyond energy, performance,
network usage, and fidelity of results, and (2) a lack of focus
on system-level concerns that are required when moving from
experimental prototypes to operational systems such as ease
of distribution and installation, survivability and security. The
goal of the work presented in this paper is to fill in some of
these gaps.

As far as the use of cyber-foraging and cloudlets in tactical
environments, there is indeed a motivation for their use as
outlined in [5]. Satyanarayanan et al propose proximate, VM-
based cloudlets as a way to overcome the lack of a reliable,
high-bandwidth, end-to-end network, which is difficult to
guarantee in hostile environments. More specifically, there is
recent work in deploying cloudlet-like servers at the tactical
edge to support mobile devices. Wang et al [6] propose the
use of mobile micro-clouds and in particular mobility-induced
service migration so that computation can follow its mobile
users. Sookoor et al [7] propose the use of smartphones as data
collection platforms that leverage mobile high-performance
computers deployed on humvees for data processing. This
work focuses on optimal selection of the processing node
based on minimizing job completion time. Even though com-
putation migration and optimal cloudlet selection are two fea-
tures that are implemented in our tactical cloudlets to promote

93%1146#&%9@9%&1%&{%&&9:@%%‘éibﬁﬁ&mn Libraries. Downloa&ét?o% April 30,2021 at 01:57:33 UTC from IEEE Xplore. Restrictions apply.

Milcom 2015 Track 4 - System Perspectives

survivability, the uniqueness of our work is the combination of
lightweight versions of these features with additional cloudlet
management capabilities that in addition support very simple
cloudlet deployment in the field.

B. Software Systems Survivability

Survivability is traditionally defined in military systems as
the capability to avoid or withstand the interaction between
a system and a given hostile environment [Richards2007].
More specifically, the Air Force Cyber Vision 2025 document
[8] lists survivability as an enduring principle and defines it
in terms of fitness/readiness, awareness, anticipation, speed
(responsiveness), agility, and evolvability. While this is only
one definition of survivability, it is an example of the many
system attributes that fall under the category of survivability.

Survivability of software systems is viewed differently
among research and practice communities, but in general it
refers to the capability of a system to be able to continue
functioning in spite of adversity. For example:

o The Self-Healing Systems (Autonomic Computing) com-
munity defines survivability as the capability of a system
to continue functioning in spite of system disruptions.
More specifically, self-healing is the capability to dis-
cover, diagnose, and react to system disruptions with the
goal of maximizing availability, survivability, maintain-
ability, and reliability of a system [9].

o The Security community defines survivability as the ca-
pability of a system to continue functioning in spite of
faults caused by cyber-attacks and to continue to provide
essential services, even if in degraded mode [10].

o The Software Architecture community views survivability
as a system quality that is related to other system qual-
ities such as dependability, availability, reliability, fault-
tolerance, and trustworthiness [11]. The goal of work in
this area is to define architectural elements that promote
survivability of software systems.

Our work takes the view of the software architecture com-
munity, which is to define architectural elements that promote
survivability. In particular, it is aligned with Thuraisingham et
al who simply define survivability as being able to adapt to
changing environments [12].

ITII. TACTICAL CLOUDLETS

Forward-deployed, discoverable, virtual-machine-based tac-
tical cloudlets can be hosted on vehicles or other platforms to
provide infrastructure to offload computation, provide forward
data-staging for a mission, perform data filtering to remove
unnecessary data from streams intended for dismounted users,
and serve as collection points for data heading for enterprise
repositories. The forward-deployed, single-hop proximity to
mobile devices promotes energy efficiency as well as lower
latency (faster response times) [3].

The architecture for our tactical cloudlet implementation is
presented in Figure 1. The main elements of the architecture
are:

e Client: Mobile device running Android 4.x that hosts
three main components:

— Cloudlet-Ready App(s): Mobile apps that are set up
to offload computation or data to a cloudlet.

— Cloudlet Client GUI: Mobile app that is used to
access the app store capability described in Section
IV-A.

— Cloudlet Client Lib: Library that is used by the two
components above to discover cloudlets, retrieve data
from cloudlets, and offload computation or data. It
interacts with the Cloudlet Host using HTTP.

e Cloudlet Host: Linux server that runs a tactical cloudlet.
The main components are:

— PyCloud Lib: Python component that implements the
core cloudlet functionality.

— Cloudlet API: Python component that is used by the
Cloudlet Client Lib to start Services as Service VMs.

— Cloudlet Manager: Python web application that is
used by an administrator to manage Services (along
with their VM Images) and Cloudlet-Ready Apps.

— Service Repository: Each capability that is made
available to mobile apps is considered a Service
(Section IV-A). Each service has associated metadata
(Service Metadata), the actual capabilities packaged
as VM disk and memory images (VM Images), and
one or more Cloudlet-Ready Apps that can use the
capability.

e Admin (PC): Browser that is used to access the Cloudlet
Manager web application.
The implementation and additional documentation for tac-
tical cloudlets is available on GitHub at https://github.com/
SEI-AMS/pycloud.

IV. TACTICAL CLOUDLET FEATURES THAT PROMOTE
SURVIVABILITY

Sheard states that implementing survivability in a soft-
ware system requires knowledge of known or predictable
threats [13]. Banjeree et al state that survivability deals with
three basic kinds of threats: attacks, failures, and accidents
[14]. However, systems in tactical environments have to deal
with an additional threat which is the environment itself. To
account for the characteristics of tactical environments we
mapped these characteristics to system requirements and then
to cloudlet features described in the following subsections.

A. Pre-Provisioned Cloudlets with App Store

In previous work [3] we presented several options for
cloudlet provisioning and selected to combine pre-provisionng
(Cached VM) with app store capabilties (Cloudlet Push). This
combination leads to lower energy consumption on the mobile
device during provisioning, places less requirements on mobile
devices, and simplifies provisioning in tactical environments.
The following characteristics provide the rationale for meeting
system requirements:

o Capabilities as Services: Based on the definition of a

service in the context of service orientation, each Service

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloa&éd?(% April 30,2021 at 01:57:33 UTC from IEEE Xplore. Restrictions apply.

Client (Android 4.x)

Milcom 2015 Track 4 - System Perspectives

'Cloudlet Host {Linux — Ubuntu 12.04)

Service Repository

Cloudlet-Ready
App [Java] =nput data= — P
I (Android App) I

Port Fwd. (User Networking) |

QEMU-KVM Instance
Service VM

~ + =p Application Server

SSH Server
(OpenSSH)

VM Images Cloudlet-Ready App
(Filesystem) Packages
(Filesystem)

Cloudlet Metadata

Cloudlet Client
Library [Java]
(Android Library)

(—————
Cloudlet Server IP AddressiPort - Discovery Service

>

| (Avahi Daemon)

| libvirtd

H:) {MohgoDB)
1

Service
VM
Metadata

Cloudlet-
Ready App

Service

Metadata
Metadata

| |
‘ Service 1D Cloudlet AP
Cloudlet-Ready Applicafion [Python]
Service IP Address/Part (Fylons
e \ i Application)
oudlet Clien ! | ol cemu-im
GUI [Java] ! o e
Android A ! Pycloud Library [Python] =
(PP) ! Paste Y ry [Python]
____________________ | HTTP
| Server $ gvncviewer
Admin (PC) i
! Cloudlet Manager
| [Python]
Browser Adm"T Roquts! | (Pylons
Admln‘Response Application)
|
|
|
| |
| |
e S - - -
Legend
———)
: 1 —_— — > -
‘L } call Nen- Read/ Mok
______ al- Blacking ea HTTP TCPIP
i R Wi Query-Repl
System Custom Runtime é’:s?r;lz File P;::::‘;: ! et Call e (;Z:zc:r{:;)y

Boundary ‘Component

Component

Repository

Fig. 1. Tactical Cloudlet Architecture

VM provides a self-contained capability and exposes a
simple interface. Service Metadata is used by the cloudlet
discovery protocol to inform mobile devices of available
capabilities (Section IV-C).

Virtual Machines as Service Containers: VMs can be
started and stopped as needed based on number of active
users (which is typically bounded in tactical environments
because group size is known) therefore providing scala-
bility and elasticity to efficiently support as many active
users as possible.

Request-Response Nature of Interactions Between Clients
and Cloudlets: In the case of computation offload, tactical
cloudlets are best fit for applications based on stateless,
request-response, client/server interactions. This type of
interaction enables easy detection of failed communica-
tion between mobile devices and cloudlets, as well as
minimal effect on mobile devices if computation needs

to be restarted or migrated.

B. Standard Packaging of Service VMs

To support ease of deployment and re-deployment of
cloudlets, there is a standard format for Service VMs so these
can be easily loaded from the cloudlet disk drive, an enterprise
Service VM repository, a thumb drive (if allowed), or a mobile
device connected via USB to the cloudlet. The file format is
.csvm, which is a .tar.gz file that contains a JSON file with
Service metadata, and two image files (disk and state) that
compose the VM Image associated to the Service.

e Service Metadata

Service ID (string): unique identifier

Service Port (integer): port on which the server inside
the VM is listening

Version (string): version number

Description (string): text description

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloa&éd?c;sl April 30,2021 at 01:57:33 UTC from IEEE Xplore. Restrictions apply.

Milcom 2015 Track 4 - System Perspectives

— Tags (string): tags used by service queries

— Number of Clients Supported (integer): number of
clients that the server is designed to support

— Minimum Memory (MB) (decimal): minimum
amount of RAM required to run properly

— Ideal Memory (MB) (decimal): ideal amount of
RAM

e VM Image: two image files — one for the disk image
and one for the state/memory image — that contain a
suspended Service VM and are used to create Service
VM Instances

— Disk Image file (.qcow2): qcow?2 file containing an
image of the hard drive of a Service VM

— VM State Image file (.Igs): VM state image in the
format that libvirt.save() generates when saving a
memory image. It includes the description of the VM
that was suspended and the memory state of the VM.

C. Optimal Cloudlet Selection

In a cyber-foraging scenario, there may be more than one
cloudlet available for use. In this case, it would be useful
to know the characteristics of the available cloudlets so that
the “best” cloudlet for a Cloudlet-Ready App can be used.
To achieve this, we extended our cloudlet discovery protocol
so that cloudlet metadata can be used by the Cloudlet Client
Lib to execute an algorithm that selects the “best” available
cloudlet. One of the goals of the architecture and implemen-
tation is to be able to easily change cloudlet metadata as well
as the algorithm for cloudlet selection.

The discovery protocol used by our tactical cloudlets uses
Zeroconf (www.zeroconf.org), which in turn uses DNS Service
Discovery (DNS-SD) along with Multicast DNS. DNS-SD
uses DNS queries and replies in a specific format defined
for service discovery. A multicast address is used in order
to allow a client to request a specific service without knowing
the TP addresses of the available cloudlets (equivalent to
a more focused broadcast request). The Zeroconf discovery
protocol is limited in the type and size of the information
that can be returned. In particular, broadcast information is
static. The data that is needed by Cloudlet-Ready Apps to
evaluate cloudlets, such as CPU, memory, disk space, is data
that must be dynamically collected/calculated by the server
and therefore difficult to broadcast with Zeroconf. To address
this, we added an HTTP GET request for metadata that is
invoked after a cloudlet has been discovered. The cloudlet
responds with JSON-formatted metadata. The process steps
are:

1) When the cloudlet starts, its Discovery Service (the
Avahi Daemon in our implementation) joins a particular
Multicast IP Address as a listener (Cloudlet Multicast
IP). Note that this is only done when the cloudlet is
started regardless of how many discovery queries are
received.

2) When the application using the cloudlet client library
wants to discover cloudlets, it sends a DNS-SD query for

cloudlet services through Multicast DNS to the Cloudlet
Multicast IP address.

3) The query reaches the Discovery Service of all cloudlets

in the network through Multicast DNS.

4) Each Discovery Service replies with a DNS-SD response

indicating the IP and port of its cloudlet.

5) The client requests cloudlet metadata through an HTTP

GET request to each cloudlet that it has discovered.

6) Each cloudlet collects the required metadata and replies

to the HTTP request with the information.

The cloudlet metadata model consists of a number of objects
that are transmitted in JSON format and can be used by a
mobile device to select an optimal cloudlet for offloading:

¢ CPU metadata (assumes all cores are equal)

— cpu.usage (float, in %): % of CPU in use on the
cloudlet, as a whole

— cpu.maxCores (int): number of cores in the system

— cpu.speed (double, MHz): frequency that the cores
are working at

— cpu.cache (int, KBs): the amount of cache per core

¢ Memory metadata

— memory.maxMemory (int, bytes): total amount of
physical memory on the cloudlet

— memory.freeMemory (int, bytes): amount of free
memory on the cloudlet

The first ranking algorithm we implemented is called
CPUBasedRanker. It evaluates the cloudlet metadata to cal-
culate the percentage of CPU power available to execute the
offloaded code. This is done using the formula below which
represents the percentage of CPU available on the cloudlet at
that particular moment.

(100.0 % cpu.mazCores) — cpu.usage

We performed experiments to evaluate the behavior of
the CPUBasedRanker. These were performed on 3 machines
acting as cloudlets, with the following characteristics:

o Cloudlet 1: i7-4700MQ @ 2.40GHz, 32 GB, 0.1% base

CPU load, 1.5 GB base mem usage. Ubuntu 12.04.4 LTS.
o Cloudlet 2: Core 2 Q9550 @ 2.83Ghz, 4 GB, 0.2% base
CPU load, 1.1 GB base mem usage. Ubuntu 14.04 LTS.

e Cloudlet 3: Core 2 Q9550 @ 2.83Ghz, 32 GB, 0.1%
base CPU load, 0.7 GB base mem usage. Ubuntu 14.04
LTS.

The purpose of the experiments was to evaluate the response
time of a request to a cloudlet and test if the algorithm
correctly selected the less loaded cloudlet for each scenario.
We used three test apps: FACE-OPENCV (face recogni-
tion), SPEECH (speech recognition) and OBJECT (object
recognition). Results are shown in Table I. App-Ready Time
measures the roundtrip request-response time in seconds of
the first request, including the setup of the Service VM on
the cloudlet. Average Response Time measures the average
roundtrip request-response time in miliseconds of each sub-
sequent request (all the Service VMs are capable of handling
multiple users). Each row corresponds to a different scenario in

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloa&% April 30,2021 at 01:57:33 UTC from IEEE Xplore. Restrictions apply.

Milcom 2015 Track 4 -

which the three cloudlets in the network are working under dif-
ferent loads. Table I shows that the CPUBasedRanker indeed
always selects the cloudlet with the lowest load. However, it
not always selects the cloudlet that would deliver the smallest
response time because not all the cloudlets in our experiments
are equal. Cloudlet 1 is the most powerful cloudlet and has the
smallest app-ready and response times. Data from additional
experiments showed that even at higher loads Cloudlet 1 would
still have smaller app-ready and response times than Cloudlets
2 and 3. Therefore, the CPUBasedRanker is ideal only if all
cloudlets have the same characteristics.

This led us to another approach for a ranking algorithm
which is to calculate a value that measures the overall per-
formance of the cloudlet. which is not to calculate a single
overall performance value, but to calculate a value for CPU
power or memory only, in order to measure the computa-
tional performance or the memory performance of the system,
respectively. Because a Cloudlet-Ready App can choose the
selection algorithm to use, it could select based on the feature
that is more useful for its particular needs. As such, we could
have the following ranking algorithms:

o CPUPerformanceRanker: This could be done with an
over-simplification: measuring performance using the
CPU frequency as a proxy. Though this is not very accu-
rate, it could be used as a rough comparison. A simple
formula that could be used to calculate the available CPU
performance of a cloudlet is

((100.0 * cpu.maxCores) — cpu.usage) * cpu.speed
This is the same formula used to calculate the percentage
of available CPU performance in the CPUBasedRanker,
but using that percentage to calculate the “available
speed” for the offloaded code.

o MemoryPerformanceRanker: Information on free
memory and CPU cache could be combined to measure
the avalable memory performance of a cloudlet. The
following formula could be used, in which A and B
are constants that could be calculated to give different
weights to cache and RAM memory:

(cpu.cache x cpu.maxCores) x A +
memory. freeMemory * B

D. Cloudlet Management Component

The Cloudlet Manager shown in Figure 1 is a lightweight,
web-based interface that enables easy deployment and rede-
ployment of capabilities. It provides the following functional-
ity:

e Service VM creation, edit and deletion

e Service VM import and export

o Service VM Instance start, stop and migration

¢ Cloudlet-Ready App repository (i.e., app store)

E. Cloudlet Handoff/Migration

A characteristic of cloudlets in resource-constrained en-
vironments is that (1) they can be mobile because they
could reside on vehicles and (2) clients can easily become

System Perspectives

disconnected due to mobility and to intermittent network con-
nectivity. A strategy to deal with these problems is to enable
manual handoff of data and computation between cloudlets
that are within range of each other. Manual handoff would
enable scenarios in which a user is migrating capabilities from
a fixed cloudlet to a mobile cloudlet to support field operations,
as well as reintegration back to the fixed cloudlet. Our tactical
cloudlet implementation uses QEMU+KVM through libvirtd,
as shown in Figure 1. The migration process leverages libvirtd
to control the migration of a Service VM. The steps of the
migration process are:

1) The Cloudlet Server (pycloud) sends Service VM In-
stance Metadata to the Remote Cloudlet Server.

2) The Remote Cloudlet Server (pycloud) adds the Ser-
vice VM Instance Metadata to its list of Service VM
Instances in the Service Repository.

3) The Cloudlet Server pauses (suspends) the Service VM
Instance so that the disk image is not changed while it
is being sent.

4) The Cloudlet Server sends the Service VM Instance disk
image file to the Remote Cloudlet Server.

5) The Remote Cloudlet Server points (rebases) the Service
VM Instance Disk Image File to the path of the Service
base VM image file on that Remote Cloudlet.

6) The Cloudlet Server calls the libvirtd function to migrate
the VM (XML description and state of the VM, and
memory).

7) The Remote Libvirt Daemon receives and stores the VM.

8) The Cloudlet Server notifies the Remote Cloudlet Server
that the migration has finished.

9) The Remote Cloudlet Server resumes the migrated Ser-
vice VM Instance.

To test migration times we used two of the test apps from
Section IV-C — SPEECH and OBJECT — plus a third app
called FLUID which is a fluid simulation app. The reason
for including FLUID is because it is a continuous interaction
app rather than a request-response app so we could see the
effects of migration on this type of application. Migration
was performed between Cloudlet 1 and Cloudlet 3 as defined
in Section IV-C. Both cloudlets were connected to the same
switch with a 1Gbps link. The roundtrip time for a ping
between the two machines is on average 0.2 ms. Service VM
Instance image file sizes and average migration times for the
test applications are shown in Table II. Note that the VM disk
image is not a full image, but a qcow2 Service VM instance
image that only contains the differences between the disk im-
age of the Service and the current running instance. Migration
time is measured from the moment that the migration button
is pushed in the Cloudlet Manager until the Service VM is
running again on the Remote Cloudlet Server.

The VM image file sizes are approximately the same,
as well as the VM migration times. For the SPEECH and
OBIJECT apps that have a request-response interaction with the
cloudlet the user simply experiences a longer response time if
executing the application at the moment of migration. For the

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloa&éd?(ﬁ April 30,2021 at 01:57:33 UTC from IEEE Xplore. Restrictions apply.

Milcom 2015 Track 4 - System Perspectives

TABLE I
CLOUDLET SELECTION AND EXECUTION DATA
CPU Load (%) FACE-OPENCV SPEECH OBJECT
Avg Avg Avg
Selected App Resp. Selected App Resp. Selected App Resp.
Ready . Ready . Ready .
Cloudlet .-) Time Cloudlet Time (s) Time Cloudlet Time (s) Time
Cloudlet 1 Cloudlet 2 Cloudlet 3 (ms) (ms) (ms)
0 50 95 1 3.41 11 1 3.37 3,083 1 3.07 1,815
50 0 95 2 15.65 9 2 20.09 5374 2 21.21 3,649
50 95 0 3 18.13 18 3 19.73 4,575 3 16.00 3,970
0 95 50 1 2.67 10 1 2.65 3,054 1 3.13 2,066
95 0 50 2 14.99 10 2 1896 4,049 2 20.81 3,844
95 50 0 3 24.84 9 3 19.17 5,017 3 15770 4,170
TABLE II and development center. This material has been approved for
VM MIGRATION DATA public release and unlimited distribution (DM-0002371).
Service VM Service VM Average REFERENCES
Instance Disk Instance . . .
App . Migration Time
Image Size Men}ory Image (s) [1] M. Satyanarayanan, “Pervasive computing: vision and challenges,” Per-
(MB) Size (MB) sonal Communications, IEEE, vol. 8, no. 4, pp. 10-17, Aug 2001.
SPEECH 8.6 492 6.33 [2] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
OBJECT 8.7 442 6.23 VM-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
FLUID 13 919 5.47 vol. &, no. 4, pp. 14-23, 2009.

FLUID application which constantly receives data from the
cloudlet (continuous interaction) the app freezes momentarily
during the migration. The migration times for FLUID are
slightly better than for the other cases, even though FLUID
has the largest VM image sizes. This may be caused by the
way in which the memory state is transferred, which is done
directly by the libvirt daemons without creating a saved state
file. The information in the FLUID memory state may be
easier to compress or to efficiently transfer than for the other
apps thus decreasing the migration times slightly.

V. CONCLUSIONS AND NEXT STEPS

The paper presents an architecture and experimental results
that demonstrate that cyber-foraging using tactical cloudlets
increases the survivability of mobile systems, defined as the
capability of a system to be able to continue functioning in
spite of adversity. The characteristics of tactical environments
were mapped to system requirements for survivability and then
to tactical cloudlet features. The next steps in this area of our
research are to (1) develop and evaluate a set of rankers for
different service characteristics, and (2) add capabilities for
automated migration that would enable load balancing, similar
to what is done in cloud data centers for resource optimization,
or to enable migration to a more powerful or nearby cloudlet
to improve response time and provide continued operations.
Other areas of our research are exploring trusted identities for
secure communications and the use of tactical cloudlets for
efficient data staging.

ACKNOWLEDGMENT

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research

[3]1 G. Lewis, S. Echeverria, S. Simanta, B. Bradshaw, and J. Root, “Tactical
cloudlets: Moving cloud computing to the edge,” in Military Communi-
cations Conference (MILCOM), 2014 IEEE, Oct 2014, pp. 1440-1446.

[4] G. A. Lewis, P. Lago, and G. Procaccianti, “Architecture strategies for
cyber-foraging: Preliminary results from a systematic literature review,”
in Software Architecture. Springer International Publishing, 2014, pp.
154-169.

[5] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and
K. Ha, “The role of cloudlets in hostile environments,” Pervasive
Computing, IEEE, vol. 12, no. 4, pp. 40-49, Oct 2013.

[6] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. Leung,
“Mobility-induced service migration in mobile micro-clouds,” in Mil-
itary Communications Conference (MILCOM), 2014 IEEE, Oct 2014,
pp. 835-840.

[71 T. Sookoor, D. Doria, D. Bruno, D. Shires, B. Swenson, and L. Pollock,
“Offload destination selection to enable distributed computation on
battlefields,” in Military Communications Conference (MILCOM), 2014
IEEE. 1EEE, 2014, pp. 841-848.

[8] M. T. Maybury, “Cyber vision 2025, United States Air Force Cy-
berspace Science and Technology Vision, Tech. Rep. AF/ST TR 12-01,
2012.

[9] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and

research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp.

14:1-14:42, May 2009.

A. Serageldin, A. Krings, and A. Abdel-Rahim, “A survivable critical

infrastructure control application,” in Proceedings of the Eighth Annual

Cyber Security and Information Intelligence Research Workshop, ser.

CSIIRW ’13. New York, NY, USA: ACM, 2013, pp. 34:1-34:4.

M. Pokharel, S. Lee, and J. S. Park, “Disaster recovery for system

architecture using cloud computing,” in Applications and the Internet

(SAINT), 2010 10th IEEE/IPSJ International Symposium on, July 2010,

pp. 304-307.

B. Thuraisingham and J. Maurer, “Information survivability for evolv-

able and adaptable real-time command and control systems,” Knowledge

and Data Engineering, IEEE Transactions on, vol. 11, no. 1, pp. 228-

238, Jan 1999.

S. Sheard, “11.2. 2 a framework for system resilience discussions,” in

INCOSE International Symposium, vol. 18, no. 1. Wiley Online Library,

2008, pp. 1243-1257.

S. Banerjee, C. A. Mattmann, N. Medvidovic, and L. Golubchik,

“Leveraging architectural models to inject trust into software systems,”

in Proceedings of the 2005 Workshop on Software Engineering for

Secure Systems&Mdash;Building Trustworthy Applications, ser. SESS

’05. New York, NY, USA: ACM, 2005, pp. 1-7.

[10]

(11]

[12]

[13]

[14]

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloa&éd?(ﬁ April 30,2021 at 01:57:33 UTC from IEEE Xplore. Restrictions apply.

