

Predicting the Behavior of a Highly Configurable Component Based Real-
Time System

Scott A. Hissam1, Gabriel A. Moreno1, Daniel Plakosh1,

 Isak Savo2, Marcin Stelmarczyk2

1 Software Engineering Institute (SEI)
Carnegie Mellon University

4500 Fifth Avenue, Pittsburgh, PA 15213-2612
{shissam, gmoreno, dplakosh} @sei.cmu.edu

2 ABB Corporate Research, Forskargränd 7, SE-721 78 Västerås, Sweden

{isak.savo, marcin.stelmarczyk}@se.abb.com

Abstract

Software components and the technology

supporting component based software engineering
contribute greatly to the rapid development and
configuration of systems for a variety of application
domains. Such domains go beyond desktop office
applications and information systems supporting E-
Commerce, but include systems having real-time
performance requirements and critical functionality.
Discussed in this paper are the results from an
experiment that demonstrates the ability to predict
deadline satisfaction of threads in a real-time system
where the functionality performed is based on the
configuration of the assembled software components.
Presented is the method used to abstract the large,
legacy code base of the system software and the
application software components in the system; the
model of those abstractions based on available
architecture documentation and empirically-based,
runtime observations; and the analysis of the
predictions which yielded objective confidence in the
observations and model created which formed the
underlying basis for the predictions.

1. Introduction

In this paper, we discuss an experiment that was
performed on a commercial device that is a PowerPC
based embedded system running the VxWorks real-
time operating system with many built-in monitoring
and control interfaces. The purpose of this device is to
perform real-time monitoring and control of equipment
connected to those interfaces which are used in a

variety of industrial settings. The device reacts to
specific conditions detected through its monitoring
interfaces based on settings configured through a
unique combination of application software
components available for the device. The specific
conditions and accompanying reactions vary based
upon its intended use and are specified using a
configuration table.

The application software on the device is designed
to be highly configurable through the dynamic
instantiation and composition of software components
at runtime (during startup) as specified by the
configuration table. However, the device’s system
software was not specifically designed for
predictability with respect to any one configuration,
thus the only way to determine if a configuration will
meet its performance specification is by physically
measuring the device’s response times while running
with a configuration.

The purpose of this experiment was to determine if
it was possible to predict the worst and average case
latency of critical threads running on the device based
upon settings in the configuration table, dependencies
between components, and measurements of component
worst and average case execution times. Ultimately,
the goal is to predict the device’s response time for
future configurations. However, this experiment was
focused solely on the ability to predict the latency of
critical threads, a first crucial step to achieve this goal.

After an initial inspection of the software and
accompanying documentation it was concluded that the
experiment was going to require much more effort than
initially anticipated. This conclusion was based upon
the following initial findings:

Euromicro Conference on Real-Time Systems

1068-3070/08 $25.00 © 2008 IEEE

DOI 10.1109/ECRTS.2008.7

57

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 14:49:38 UTC from IEEE Xplore. Restrictions apply.

1. The device’s system software was much larger
than initially expected. The software source
code, written in C and C++, is more than one
million source lines of code.

2. Documentation describing the software
architecture, design and implementation was
limited.

3. While the device was designed to be highly
configurable through the composition of
software components, the rest of the system
software that supports all of the other needed
functionality was not component based thus
complicating modeling.

4. Modeling parts of VxWorks operating system
had increased difficulty due to lack of detailed
documentation and source code.

The rest of this paper is structured as follows.

Section 2 provides a brief background on our research
and our approach to modeling and prediction. Section 3
outlines the approach used to understand, model and
predict the behavior of the system. Section 4 presents
the prediction results. Section 5 discusses limitation
and issues associated with our approach and Section 6
summarizes our conclusions.

2. Background

The theories and concepts used in this experiment
are based on our work in the Predictable Assembly
from Certifiable Components (PACC) initiative at the
Software Engineering Institute (SEI). PACC builds on
software architecture technology, software component
technology, and a growing body of theory for
predicting the quality attributes of software systems
(for example performance, security, safety).
Architectural design constraints that satisfy the
assumptions of quality attribute theories ("smart
constraints") are enforced at construction time and run
time by software component technology. Analysis is
automated by automatic generation of analysis models
from assembly specifications. The complexity of this
automatic generation, and of the underlying analytic
theories, is packaged in a reusable form called a
reasoning framework. The resulting predictions have
an established and verifiable statistical or formal basis
for objective confidence.

One of the core technologies developed by the
PACC initiative are the performance reasoning
frameworks, which are a combination of a property
theory, an automated reasoning procedure, and a
validation procedure that is used to predict assembly
properties. These frameworks are founded on the
principles of General Rate Monotonic Analysis
(GRMA) [1] for predicting the average and worst-case

latency of periodic and stochastic tasks in what is
typified as embedded, real-time control systems.

ABB Corporate Research (CRC) is the central
research unit for ABB, conducting research in
industrial areas including both power technology and
automation technology. It works in partnership with
ABB business units and leading universities to connect
academic research and concrete product development
through more applied industrial research, technology
scouting and adaptation of technology to the needs of
ABB business units. The SEI and CRC have
previously performed successful work together in the
area of component-base software, with a track record
covering, among other things, predictable assembly.

3. Approach

Based upon an initial evaluation of the system
software (discussed in the introduction), it was
concluded that, for this experiment, a prediction model
of the software for the entire system with all possible
configurations could not be produced due to time and
budget constraints. Thus, the experiment was scaled
down to a manageable and relevant scope.

As part of the methodology used to scale down the
system, all software in the device was categorized into
three primary software component abstractions:

1. Software without source code such as the
operating system VxWorks

2. Application support software that provides:
a. the ability to dynamically configure an

application with specific functionality
through the dynamic creation and
composition of components at runtime
(during startup)

b. support functions to the system software
components

3. Application software components1
Next, so as not to model every possible software

component, the number of application software
components was limited by defining only two
candidate configurations which included two inputs
with defined ranges and rates and one output. One
configuration was a positive configuration that was
known to be schedulable and the other one was a
negative configuration that was known not to be
schedulable. This approach allowed the determination
of the component abstractions that would actually be
instantiated on the system for either configuration.
Then, using this information, the threads that would be
running on the device could be determined.

1 These are not commercial of-the-shelf but in-house developed
components.

58

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 14:49:38 UTC from IEEE Xplore. Restrictions apply.

Given that the goal for this experiment was to
predict the worst-case and average-case latency of the
application threads (which are responsible for the
execution of the application software components), all
other lower priority threads that would not interfere
with the execution of the application threads were
eliminated from the model.

3.1. Finding Thread Dependencies

In order to build a model of the system, detailed
information about how threads communicate with each
other was needed. Semaphores and shared memory are
used as the primary mechanism for threads to
communicate with each other. The semaphores are
used as kickers, meaning a consuming thread blocks on
a semaphore which is released by the producing thread
once enough data has been produced. Some of the
threads used message queues for communication.
Dependencies between communicating threads were
found by analyzing those threads that shared common
semaphores and message queues.

In order to locate the common semaphores, the
tracing facilities of VxWorks were used to log every
system call that operates on a semaphore. Tracing such
calls (and therefore analyzing them) can be done using
WindView, the Tornado logic analyzer for real-time
applications [12]. These traces contain timestamp, type
of access and the id of the thread using the semaphore.

WindView traces of the running device
configuration were analyzed using a custom parser to
create a list of the threads that accessed a particular
semaphore, and how it was accessed. For each
semaphore in the system, the traces revealed the
threads that took or released the semaphore and the
associated access count. This information was further
analyzed in order to find thread dependencies. A trace
showing two threads, one taking and the other giving
the same semaphore the same number of times
suggests a thread dependency – one thread is most
likely waiting for data from the other before it can do
its job. A trace showing the same thread taking and
giving the same semaphore signifies that the
semaphore is used to protect a critical section of the
code and is therefore not a communication dependency
between threads.

When a possible thread dependency had been
identified it had to be verified. This was accomplished
by checking the source code, reading available
architecture documentation and interviewing the
developers. Once a thread dependency had been
verified, it was added to the core model as described in
the Section 3.3.

3.2. Measuring component execution time and
application latency

For each software component in the system, only
two specific runtime characteristics were of interest:
period and CPU execution time. Period is defined as
the reoccurring interval of time at which the software
component is scheduled to run. CPU execution time is
defined as the total uninterrupted time the software
component is being executed in the CPU during its
period.

VxWorks tracing facilities, whose output is
viewable using the WindView tool, provided much of
the needed insight to obtain this information.
Specifically, WindView depicts running and blocked
states on a per thread basis along with a variety of
scheduling states. However, this information, absent of
the context as to what the software components are
doing at any moment in time, was not sufficiently
accurate to determine periods and CPU execution
times.

Key in knowing this information was to learn the
execution lifecycle of the application support threads
and software components of interest (e.g., startup,
steady state, reaction state, shutdown, etc.) and being
able to identify those states within execution traces.
Through interviews, it was learned that all threads in
the system, in steady state, were designed to yield the
CPU until such time that there was work for each
thread to perform (either through timers, data arrivals,
or other coordination mechanisms). This steady state
activity was performed by a specific task body in each
thread.

// software component exec chain
…
for (;;) {

wvEvent(BEGIN,0,0);

while (next = nextSC()!=NULL) {
wvEvent(SC_BEGIN, 0, 0);
next->execute();
wvEvent(SC_END, 0, 0);

}

wvEvent(END,0,0);

if (signalled)
break;

waitForNextPeriod();
}
…

// Task A task body
…
for (;;) {

if (waitForResource(X) == OK)
{

wvEvent(BEGIN, 0, 0);
//
// perform task body work
//
wvEvent(END, 0, 0);

}
else

break;
}
…

Tagged Task body Tagged SC Execution Chain

// software component exec chain
…
for (;;) {

wvEvent(BEGIN,0,0);

while (next = nextSC()!=NULL) {
wvEvent(SC_BEGIN, 0, 0);
next->execute();
wvEvent(SC_END, 0, 0);

}

wvEvent(END,0,0);

if (signalled)
break;

waitForNextPeriod();
}
…

// Task A task body
…
for (;;) {

if (waitForResource(X) == OK)
{

wvEvent(BEGIN, 0, 0);
//
// perform task body work
//
wvEvent(END, 0, 0);

}
else

break;
}
…

Tagged Task body Tagged SC Execution Chain
Figure 1. Example of how code was tagged

Given that the task body was known, and that

source code for these task bodies was available, each
task body was tagged by inserting WindView user
event markers in the source code. These markers
delineated in the trace when a specific task body was
actually running in the CPU and when that task body
had yielded. Figure 1 illustrates how these markers are
used to delineate these task body traces.

59

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 14:49:38 UTC from IEEE Xplore. Restrictions apply.

TB

N

i

TB
i

TB

N

C
C

TB

∑
== 1

BEGIN END BEGIN END BEGIN

blocked
ready
running

event marker
semaphore take
semaphore give

Legend

∑
=

=
in

j
j

TB
iC

1
χ

where:
ni = number of running states between a

BEGIN END pair observed
NTB = number BEGIN BEGIN pairs (or

number of Ti
TB) observed

TB
iW TB

iW 1+
TB

iT TB
iT 1+

TB

N

i

TB
i

TB

N

T
T

TB

∑
== 1

TB

N

i

TB
i

TB

N

W
W

TB

∑
== 1

1χ 2χ 3χ

TB

N

i

TB
i

TB

N

C
C

TB

∑
== 1

BEGIN END BEGIN END BEGIN

blocked
ready
running

event marker
semaphore take
semaphore give

Legend blockedblocked
readyready
runningrunning

event markerevent marker
semaphore takesemaphore take
semaphore givesemaphore give

Legend

∑
=

=
in

j
j

TB
iC

1
χ

where:
ni = number of running states between a

BEGIN END pair observed
NTB = number BEGIN BEGIN pairs (or

number of Ti
TB) observed

TB
iW TB

iW 1+
TB

iT TB
iT 1+

TB

N

i

TB
i

TB

N

T
T

TB

∑
== 1

TB

N

i

TB
i

TB

N

W
W

TB

∑
== 1

1χ 2χ 3χ

Figure 2. Period and CPU execution

With these markers, the actual periods and CPU

execution times for the thread could be measured. For
thread periods (Ti

TB in Figure 2) the time interval
between each BEGIN marker was used (or the
immediately preceding RUNNING or READY state—
which ever occurred first). For CPU execution time
(Ci

TB in Figure 2), time intervals of running states
observed were accumulated between each BEGIN and
END marker (while ignoring any READY or
BLOCKED state time intervals occurring between
those same markers). This approach only applied for
those threads where source code was available. For all
the remaining threads, which were the native
VxWorks’ threads, the average periods (VXT) and

CPU execution times (VXC) were estimates based on
untagged observations.

Similarly, WindView event markers (SC_BEGIN,
and SC_END) were used to tag the execution of each
of the software components (SC) assembled to carry
out the application’s functionality. The only difference
in this case was that only CPU execution time was
measured for each individual software component
(_*SCC in Figure 3, where ‘*’ matches a specific
software component). Figure 3 illustrates two
sequential traces for an application thread task body
(denoted by periods TB

iT and TB
iT 1+). Each trace shows

that there were four software components executed
(denoted SC_A through SC_D) by the task body during
those periods.

Period for software components was not needed
since these software components were executed
linearly in the context of the period of the application
thread.

TB

N

j

ASC
j

ASC

N
C

TB

∑
== 1

_

_

χ
running
event marker

Legend

TB
iT

TB
iT 1+

SC-BEGIN
SC-END

ASC
i

_χ

ASC
i

_
1+χ

SC_A

SC-END

BSC
i

_χ

BSC
i

_
1+χ

SC_B

SC-BEGIN
SC-END

CSC
i

_χ

CSC
i

_
1+χ

SC_C

SC-END

DSC
i

_χ

DSC
i

_
1+χ

SC_D

TB

N

j

ASC
j

ASC

N
C

TB

∑
== 1

_

_

χ
running
event marker

Legend
runningrunning
event markerevent marker

Legend

TB
iT

TB
iT 1+

SC-BEGIN
SC-END

ASC
i

_χ

ASC
i

_
1+χ

SC_A

SC-END

BSC
i

_χ

BSC
i

_
1+χ

SC_B

SC-BEGIN
SC-END

CSC
i

_χ

CSC
i

_
1+χ

SC_C

SC-END

DSC
i

_χ

DSC
i

_
1+χ

SC_D

Figure 3. Software component execution chain

Measurement Overhead and Verifying Execution
Time

WindView’s State Summary feature provides the
total running, blocked, and ready time measures for all
threads in the system. Using these independent
summaries as a check, the total accumulated CPU
execution time for a task body (CTB) computed using
the event markers could be verified—that is CTB should
be close to 100% of that reported by WindView.
However, comparisons between these two measures
were consistently off by 5 to 7%.

The major source for this difference was the
overhead introduced by the injection of the event
markers into the task bodies. That is, CTB is the
accumulation of the running states between the BEGIN
and END markers (see Figure 2), however, there
remains CPU execution time between the END and
BEGIN sequences that is not accounted for—this is the
average measurement overhead (CM) that had to be
included.

One other minor source for this difference was that
measures were captured during steady state. The
system was already executing when collection of
WindView traces commenced. Conversely, the system
was also executing in steady state when collection
ceased. As a result, not every task body trace
conveniently started with a BEGIN marker or ended
with an END marker. Any pre-BEGIN or post-END
running states were discarded when computing CTB as
these were not needed for software component
measurements, but had to be accounted for when
verifying the computations.

To verify CTB of the marked task bodies against
the total running states reported by WindView (CWV),
the equation (1) was used.

()()()
WV

TBTBTB
delta

C
NCMCC 1+•++

=
 (1)

60

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 14:49:38 UTC from IEEE Xplore. Restrictions apply.

Here, CTB is increased by the total number of times
the task body is executed (NTB) multiplied by the
average CM calculated (which was on the order of
300ns) and is increased by one additional average task
body execution (with overhead, hence ‘+1’ in equation
(1)) which is added to account for any potentially
discarded BEGIN and END state. This resulted in a
delta of less than 1% of that reported by WindView
and that computed for the task body—thus verifying
the accounting for CTB.

This same approach was also repeated for
determining the overhead for executing the software
components execution chain, also resulting in the same
success. Overhead in executing the software
component chain not only accounted for the injection
of the event markers (SC_BEGIN and SC_END) but
also the runtime executive loop that iterated through
and executed the software component chain (right
diagram in Figure 1).

Observed Best, Average, and Worst-case Periods
and CPU Execution Time

The ability to predict the worst case latency of the
application threads was predicated on the ability to
know the worst case execution time of the threads and
software components in the system. Although it was
known that various effects (e.g., caching) inject non-
determinism into knowing the true worst-case
execution time (WCET) [2], the approach used was to
observe WCET over a fixed interval of time that
matched the device’s testing methods and standards.
This meant that the device was subjected to the
maximum allowable data rates on all input channels for
a fixed interval of time.

At the conclusion of that testing period, threads
were analyzed to compute best case, average case, and
worst case periods and CPU execution times based on
the tagged WindView traces captured. The analysis
also included a histogram plot of the observed period
and execution traces as a means to analyze the
behavior of each of the threads and software
components in the system.

Figure 4 shows two examples of the roughly 500
histograms generated from the traces (one a VxWorks
thread, and the other a tagged thread, Task A).
Histograms that exhibited one peak were indicative of
threads that conformed to a simple, data-independent
behavior while running in steady state. Other
histograms that exhibited more than one peak were
indicative of more complex, data-dependent behavior
that warranted further investigation (see below). For
example, the VxWork thread (top in Figure 4) is the
interrupt handler for input data. It was learned through
interviews, that the two peaks seen in the histogram for

the period are representative of the two different type
of input data rates supported by the configured device,
channel 1 (left peak) and channel 2 (right peak).
Likewise, it was further determined that the Task_A
thread (bottom in Figure 4) handled the processing of
those channels and did behave differently depending if
the data was from channel 1 (left peak) or for channel 2
(right peak).

fre
q.

fre
q.

fre
q.

fre
q.

seconds seconds

seconds seconds

sT Int µ6.3755 =

sT Int µ1.10405
max =

sT Int µ3.05
min =

sC Int µ1.165 =

sC Int µ5.65
max =

sC Int µ3.05
min =

msT TaskA 0.500=

msT TaskA 6.1050max =

msT TaskA 7.1min =

sCTaskA µ9.24=

sCTaskA µ4.47max =

sCTaskA µ1.10min =

fre
q.

fre
q.

fre
q.

fre
q.

seconds seconds

seconds seconds

sT Int µ6.3755 =

sT Int µ1.10405
max =

sT Int µ3.05
min =

sC Int µ1.165 =

sC Int µ5.65
max =

sC Int µ3.05
min =

sT Int µ6.3755 =

sT Int µ1.10405
max =

sT Int µ3.05
min =

sC Int µ1.165 =

sC Int µ5.65
max =

sC Int µ3.05
min =

msT TaskA 0.500=

msT TaskA 6.1050max =

msT TaskA 7.1min =

sCTaskA µ9.24=

sCTaskA µ4.47max =

sCTaskA µ1.10min =

msT TaskA 0.500=

msT TaskA 6.1050max =

msT TaskA 7.1min =

sCTaskA µ9.24=

sCTaskA µ4.47max =

sCTaskA µ1.10min =

Figure 4. Period and Execution Histograms

Application Latency
Lastly, the application threads (responsible for

iterating and executing the software component chains)
were measured using event markers according to the
same approach for measuring the system threads. Only
in this case, the ability to measure the latency of the
application thread was the focus.

Figure 2 also illustrates how these markers are
used to delineate these application thread task body
traces for latency in WindView. For application thread

61

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 14:49:38 UTC from IEEE Xplore. Restrictions apply.

latency (Wi
TB) the time interval between each Ti

TB and
the next END marker was used.

3.3. Modeling

The end goal of the modeling effort was to create a
performance model that supported predicting worst-
case latency of the application threads in the device.
Performance modeling can be accomplished by
identifying the sources of events and the responses to
them [13, 14]. These events can be external (e.g.,
arrival of a data packet) or internal (e.g., timer
expiration). A response is the work carried out by the
system as a reaction to an event. Responses are
composed of actions, which are portions of code that
execute at a fixed priority level and have no
synchronization with other parts of the system [1]. In
most large systems, and especially in component-based
ones, responses are implemented as a composition of
components that interact with each other using both
synchronous (call-return) and asynchronous (event-
based) communication. Figure 5 shows the component
and connector view of an example of such a response.

Legend

Figure 5. Response with asynchronous

communication

Since performance analysis methods require that

the responses be expressed as a sequence of actions
with no internal concurrency, responses that in the
software architecture look like the one in Figure 5 need
to be flattened in the performance model. This process
is not trivial, especially when the response includes
asynchronous communication, which creates
concurrency within the response. In this example,
based on the priorities and connector types, the
corresponding response to an event on A’s “go” in
the performance model would be <A, B, D, C>.

Creating a performance model is an expensive task
that requires expertise [4]. In addition, small changes
in the design of the system may have greater impact on
the performance model, incurring additional
maintenance costs. For example, changing the priority
of component B in Figure 5 from 8 to 2 changes the
response in the performance model to <A, D, B, C>.
The effort required for performance modeling and
analysis can be reduced by using a reasoning

framework, a combination of theory, an interpretation
that can translate designs into attribute specific analysis
models, and an evaluation procedure to compute
predictions [3].

LambdaWBA is a reasoning framework that predicts
worst-case latency using RMA [1]. It includes an
automated interpretation that transforms a design
model into a performance model suitable for analysis
with RMA. The evaluation of the model is done using
MAST [6], a tool that implements an RMA technique
for analyzing tasks with varying priorities [5].

Considering the aforementioned reasons, the
modeling effort was focused on creating a model of the
software architecture instead of directly creating a
performance model. In that way, changes due to the
different configurations and even the evolution of the
application support software could be handled at a
higher level of abstraction.

The model was created using the Construction and
Composition Language (CCL), a language for
specifying components and their assemblies [7].
Components in CCL have sink pins through which they
receive stimuli from other components. Upon receiving
a stimulus, the reaction associated with the sink pin is
executed. In order to interact with other components,
reactions can in turn emit stimuli through the
component’s source pins. Reactions can be threaded if
they execute in their own thread context, or unthreaded
if they execute in the caller’s thread context. In order to
support different modes of component interaction (call-
return, event-based), pins can be either synchronous or
asynchronous. The following code snippet shows the
specification in CCL for the type of component B in
Figure 5.

Component ComponentB() {
 sink asynch receive();
 source synch put();
 threaded react theReaction (receive,
 put) {}
}
This code defines a component type ComponentB

with an asynchronous sink pin receive, a synchronous
source pin put, and a threaded reaction theReaction in
which both pins participate. Even though CCL allows
specifying data signatures in pins and state machines in
reactions, the model was kept at this level of detail, a
level sufficient for performance analysis. Component
instances are then assembled together by connecting
pins as shown in the following code.

 clock:tick ~> A:go;
 A:send ~> { B:receive, D:receive }
 B:put ~> C:get;

Thus far, the CCL code shown describes the
components and their composition. However, in order
to do performance analysis additional information is
needed, namely, event interarrival distributions (VXT

62

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 14:49:38 UTC from IEEE Xplore. Restrictions apply.

and TBT), CPU execution time distributions

(VXC , TBC , and _*SCC), priorities, and deadlines. This
information can be added to the specification via the
CCL annotation mechanism. For sources of events, the
event interarrival distribution is specified with the
following annotation on the source pin, where the
value of eventDistribution in this case indicates a
constant interarrival time of 100 units.

annotate clock:tick {"lambda*",
 const string eventDistribution =
 "C(100)" }

Optionally, the deadline for the response to that
event can be specified. If omitted, it is assumed to be at
the end of the period for periodic events.

annotate clock:tick {"lambda*",
 const float deadline = 90.0 }

Threaded reactions must be annotated with their
priority as in this example.

annotate B:theReaction {"Pin",
 const int priority = 8 }

Each sink pin will trigger some component code to
be executed, so their execution time must be specified.
In this example, the execution time has a general
distribution with known minimum, average, and
maximum.

annotate A:go {"lambda*",
 const string execTime =

"G(9.5, 10.0, 10.5)" }

Building the Model
The model for the device was divided in four modules:

• Core model
• Configuration model
• Core execution times
• Configuration execution times

The core model contains the specification of the

part of the system that is common to all configurations,
which includes interrupt handlers, data distribution
services, and other supporting functions. The
configuration model contains the assembly of software
components that carry out the specific functions that a
given configuration provides. All the execution time
annotations for both parts of the model are kept in
separate modules so that the model can be reused for
different target hardware.

The core model was the one that required the most
effort to create, mainly because it was not component
based and documentation describing the software
architecture, design, and implementation was limited.
An initial model was created using one model
component for each thread in the system. For those few
threads whose triggering events were known (e.g.,
interrupt handlers), specific sources of events were
created. For the rest of the threads, the initial approach

was to model them as driven by timers whose periods
were set according to the measured period of the
thread. This resulted in a very flat model with no
dependencies and little causality, similar to the one
shown in Figure 6, albeit much larger.

Figure 6. Initial model with few thread

dependencies

Using the thread dependency information mined

with the approach described in Section 3.1, it was
possible to refine the model by combining several
seemingly independent threads into one response
composed of multiple model components.

Threads having the same period were likely to
have dependencies among them and therefore, they
were further investigated. Figure 7 shows that
components C2, C4, and C5 from the model in Figure
6 were combined in one response modeling the
discovered dependencies. However, Figure 7 also
shows that component C3 was kept as a separate
response because no real dependency was found, and
despite having the same period, the offset or phase of
this component was different than for the rest of the
components having the same period.

63

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 14:49:38 UTC from IEEE Xplore. Restrictions apply.

Figure 7. Model with components combined into

responses

In most cases, a one to one mapping from threads
to components was created. However, in a few cases,
the histograms of interarrival times and CPU execution
times showed two behaviors. When two distinct
statistical modes were observed in the interrarival
times, it was concluded that the component was being
triggered by two different sources of events (see Int5
period in Figure 4). Similarly, when the execution time
histogram showed two distinct statistical modes, it
meant that the component was taking two different
execution paths, possibly performing two different
functions (see Task_A execution in Figure 4). In this
case, the thread was modeled as two separate
components. In all cases, confirmation for the
modeling decision was sought either by code
inspection and/or from the system developers.

Thus far, all the interaction between the
components in the model had been asynchronous. In
some parts of the system, a greater fidelity of the
model was achieved by breaking up some monolithic
components into several components with synchronous
interactions, reflecting the calls to specific functions
performed within one thread.

The other part of the model, the configuration
model, was in the most part generated automatically
from the configuration table. This is important because
this part of the model not only changes from product to
product, but also has the largest number of
components. The CCL code modeling all the instances
and their connections was automatically generated
using the information in the configuration. There was

one small fraction of this model that was not
automatically generated. This portion of the model had
to do with protected access to a shared repository that
is done at the beginning and end of each application
response. Although this was written manually in this
experiment, it would be possible to generate this as
well.

Using the Model
The model of the architecture was analyzed using the
LambdaWBA reasoning framework. LambdaWBA is fully
integrated into the PACC Starter Kit (PSK) [8], so
once the model is created and all the required
annotations are in place, predicting the worst-case
latency is just a matter of selecting the performance
analysis option on the CCL specification created
during the modeling process.

The same specification can be used to predict
different scenarios or operation modes, for example to
predict latency when data is read from one input
channel and when data is read from both input
channels. This is accomplished by using scenario
annotations in the model.

annotate channel1:data { "scenario",
 const int scenario = SCN_MODE1}

This annotation indicates that the source pin
channel1:data will emit events only when the scenario
SCN_MODE1 is selected for analysis. Pins can
participate in more than one scenario and if they do not
have a scenario annotation, they are assumed to
participate in all the scenarios.

When the analysis with LambdaWBA is invoked,
the reasoning framework performs the interpretation,
creating a performance model that is then translated to
the specific syntax of MAST for final evaluation. The
results of the evaluation include the best and worst
latencies for each of the responses modeled in the
system. Additionally, those responses that do not meet
their deadline are visually flagged with red color.

As a worst-case reasoning framework, LambdaWBA
will compute the worst-case using the worst-case
execution time for each component and accounting for
the worst preemption and blocking effects by other
threads. Since it is unlikely that all these worst cases
will happen simultaneously, the predicted worst-case
latency may be very difficult to reproduce in testing,
making it difficult to gauge the accuracy of the model.
Section 4 describes the results of the prediction and
how alternative prediction methods where used to
judge the correctness of the model.

4. Prediction Results

In this experiment, the system was considered
schedulable if the predicted worst-case latency for each

64

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 14:49:38 UTC from IEEE Xplore. Restrictions apply.

of the application threads would occur before the end
of the thread’s period. If all threads were schedulable,
then the prediction result was presented by LambdaWBA
in the affirmative. As discussed in this section, the
system as configured was predicted and shown to be
schedulable. However, additional insight was needed
to ascertain to the ‘goodness’ of the predictions
themselves, as well as the approach (i.e., the
measurements, model, and tools) that was used to
make that prediction. This was accomplished in two
ways: a comparison of the predicted worst-case latency
to that actually observed in the system; and a
comparison of the average-case latency predicted to
that actually observed.

Schedulability Analysis: Worst Case Latency for
Application Threads
Predictions for and observations of worst-case
latencies are shown in Table 1. Based on the WCET
measured for the threads in the device (TBCmax , VXCmax , and

_*
max
SCC) and the model of thread priorities and their

inter-dependencies, LambdaWBA predicted that
application thread, Task A’s, worst case latency would
be just over 2.7ms and that application Task B would
be just over 4.6ms. Given that both of these predictions
are less than the deadline (3ms and 8ms respectively)
for each of these threads, the system was considered
schedulable.

Table 1. Predicted and observed WC latency
using WCET

Thread Deadline Predicted
WC Latency

Observed
WC Latency

Task A 3000µs 2764.50µs 1357.13µs
Task B 8000µs 4635.00µs 1797.58µs

At first glance, this was certainly good news—that

is, based on the WCET for all components and a task
phasing which exhibit the worst preemption and
blocking among threads the device would be (and was)
schedulable. However, as noted above, to actually
achieve such conditions in the actual device and
observe all these most unfortunate conditions at once
would be difficult to achieve. Had LambdaWBA
produced the predictions in the table or any higher
predictions less than the deadline, the system would
have been considered schedulable nonetheless.

A more likely explanation of the wide gap
between the predicted and observed worst case latency
in the device is that the actual CPU execution times
being experienced by the threads in the system most of
the times were closer to the average case execution
times (ACET) than WCET. A second prediction was
generated with LambdaWBA, however this time the

ACETs (TBC , VXC , and _*SCC) were used as a basis
for the predictions. The second predictions are shown
in Table 2.

Table 2. Predicted and observed WC latency

using ACET
Thread Deadline Predicted

WC Latency
Observed
WC Latency

Task A 3000µs 2415.90µs 1357.13µs
Task B 8000µs 2893.80µs 1797.58µs

As expected the predicted worst case latency was

closer to that observed in the device supporting the
notion that the threads were operating closer to their
ACET most of the time, instead of the more unlikely
situation predicted as shown in Table 1, which requires
that the threads and components exhibit their WCET
all at the same time.

The last test attempted for this device’s
configuration was a negative test—that is, if
LambdaWBA predicted that the device, as configured,
was not schedulable then the device should be
observed to fail. One of the software components in the
chain was a component introduced as a control
(SC_CTRL). In the positive configuration, this
software component was known to burn approximately

CTRLSCC _ = 166.01µs of CPU execution time. In the
negative configuration, the same software component,
was reconfigured to increase its CPU execution time
by 13 to CTRLSCC _ = 2158.16µs. This value when
combined with the remaining software components
should put the device just over the deadline for the
application thread causing the device to fail.
LambdaWBA reported that utilization was too high and
that the negative configuration was not schedulable.
When the device was tested in the lab using the control
component in the negative configuration, it did fail.

LambdaWBA passed both the positive and negative
configuration tests. Additionally, this success was an
early indicator that the model produced was capturing
the behavior of the device as learned through available
documentation, measurement, inter-dependency
analysis and supporting investigation. Additional
analysis of the model was needed to make any
objective conclusions as to the goodness of the model
and the accuracy of the reasoning framework to make
predictions based on that model.

Average Case Actual vs. Predicted
After looking at the results using the ACET for worst-
case latency prediction, the hypothesis was formed that
if the model was an accurate representation of the

65

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 14:49:38 UTC from IEEE Xplore. Restrictions apply.

device, average-case latency (TBW) prediction would
be close to average-case latencies observed in the
device. The reasoning framework LambdaABA [10],
which preceded LambdaWBA, predicts average-case
latency by first transforming the design model to a
performance model with linear transactions and then
using discrete event simulation to evaluate it.
LambdaABA has been objectively validated to produce
predictions with less than 1% error, at least 80% of the
time [11]. LambdaABA can use different discrete-event
simulators to evaluate the model; in this case, SIM-
MAST was used [9]. The predicted and observed
average-case latencies, TBW , shown in Table 3, were
very close (around 1% MRE2), providing evidence that
the model was indeed a good model of the actual
system.

Table 3. Predicted and observed average latency
Thread Deadline Predicted

Average
Case

Observed
Average
Case

MRE

Task A 3000µs 686.33µs 691.53µs 0.8%
Task B 8000µs 530.35µs 537.26µs 1.3%

Confidence Intervals
Statistically, results from LambdaWBA (schedulability
pass/fail) and LambdaABA (MRE) provided initial
indicators as the correctness of model created as a
result of this experiment. This, in of itself, is not
necessarily sufficient to provide concrete empirical
evidence as to the ‘goodness’ of this model.
Confidence intervals were selected as the approach to
provide that objective confidence given the
encouraging MREs that were being produced as a
result of the average-case predictions in the previous
section. Furthermore, in order to produce the
confidence intervals, additional observations of the
device would be needed. If the interval produced was
within a narrow range for a large population of those
observations, this would attest to the repeatability of
the behavior modeled and increase the confidence in
the results produced by this experiment.

Two different instances of the device were
stressed and measured over the course of a few days to
obtain the additional observations. To shorten the time
required to capture and analyze these results, two
devices were situated in two different laboratories by
two different teams using the same measurement
procedure and device configuration. In total, 29 sets of
observations were recorded and coalesced between the
two devices. Each set of observations consisted of

2 Magnitude of Relative Error

statistical measures for period, CPU execution time,
and latency (best-, average-, and worst-case as
discussed in Section 3) for 72 threads and 109 software
components.

The average-case latency MRE from each set was
computed from the data for each of the application
threads. This resulted in 29 sample MREs comparing
predicted average-case latency with observed average-
case latency for Task A and 29 samples for Task B.
Each of the 29 samples used in computing the
confidence interval passed the Shapiro-Wilks3 test for
normality. This was an important step, as the tool used
for computing the confidence interval, StInt.exe
[15], is based on the assumption that the data (the
MREs in this case) fit a normal (Gaussian) distribution.

To compute the interval, the population percentage
was fixed (ρ = 0.99), and two target confidence levels
were selected (γ = 0.95 and 0.99). This meant that we
were looking for γ confidence in the upper bound on
the expected MRE for future observations and that we
expect ρ of those future observations to be less than
that upper bound. The resulting upper bound (Ub
MRE) confidence intervals are show in Table 4.

Table 4. Prediction confidence intervals

Thread Population
(ρ)

Ub MRE
where
 γ = 0.95

Ub MRE
where
γ = 0.99

Task A 99% 8.75% 9.42%
Task B 99% 6.03% 6.44%

Consider Task_A, in 99% of future observations

for average-case latency, the MRE (predicted v. actual)
will be no greater than 9.42% and that there is 99% (γ
= 0.99) confidence in that upper bound. Selecting a
slightly less confidence level, 95%, the upper bound
MRE will be 8.75% for Task_A.

From the statistical result generated from
LambdaWBA and LambdaABA, including the negative
configuration tests, and the repeatability of the
observed results from average-case latency testing
which formed the basis of the confidence intervals, the
model was sound for the configuration of the device
used in this experiment.

5. Limitations & Issues

Software Architecture and Design
There were some difficulties associated with modeling
certain parts of the application support software due to

3 The Shapiro-Wilks' W test is used in testing for normality. If the W
statistic is significant, then the hypothesis that the respective
distribution is normal should be rejected. [Shapiro, Wilk, & Chen,
1968].

66

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 14:49:38 UTC from IEEE Xplore. Restrictions apply.

its architecture and design. This primarily was due to
the use of few designs patterns that can not be modeled
accurately for the purposes of prediction. Some issues
encountered where:

1. Dynamic thread priority changes
2. Polling threads. Threads that poll have a

nondeterministic execution time and also tend to
waste CPU cycles

3. Non-Deterministic phasing among threads and
consistency of phasing between device restarts

4. Threads with varying execution times which are
actually performing more than one task

5. Tasks being shared by a group of threads. This
causes the execution time of these threads to be
nondeterministic.

6. Non-harmonic scheduling among threads

In these cases, the best possible approximations

were made; however, these approximations do have a
negative impact on the accuracy of the prediction
model which may account for the 10% upper bound
MRE for average-case latency predictions. Correcting
these issues in the device’s system software will
improve the real-time response of the software and the
model’s prediction results.

Measurement
The software components used in this device are
somewhat special as they tend to only have a single
path of execution. This unique attribute makes it much
easier to determine the WCET of the components due
to the absence of multiple paths of execution within the
component. Measurement observations were used to
estimate the average and worst case execution times.
These observations include any observed caching
effects as well any measurement errors. The true
accuracy of this approach is unknown because little
effort was put into determining the true number of
observations needed to obtain an accurate result. Thus,
the determination of the sample size was, for the most
part, ad hoc. However, in this case, given that
components only have a single path of execution, the
errors associated with this approach are most likely
minimal. Work is ongoing in this area to improve and
quantify the accuracy of this approach.

End-To-End Latency
There is an obvious difference between the latency of
application threads and end-to-end latency for the
device itself. Thread latency only covers the time it
takes to execute the internal function logic. End-to-end
latency includes thread latency plus the time it takes to
collect and process an input before it reaches the

application, and the time it takes for the thread’s
response, if required, to be presented on the output
channel. From a perspective external to the device, the
aspects of internal functions are of little interest. It
does not matter how the device manages to perform its
control and/or monitoring function, as long as it does it
on time. Ultimately, the ability to predict end-to-end
latency is needed.

 The first step in predicting end-to-end latency is
the ability to predict the latency of the application
threads. For this experiment, the worst-case and
average-case latencies of the application threads were
predicted. Using this information it can be determined
whether or not an application thread will meet its
deadline. By design, if an application thread cannot
meet its deadline the device will not be able to meet its
end-to-end response time. Thus, further calculations
are needed to predict the end-to-end response time for
the application threads that meet their internal
deadlines. In the next phase of this experiment, the
prediction of end-to-end latency will be addressed.

6. Conclusion

The work presented in this paper shows that it is
possible to use an empirical approach to start imposing
predictability of real-time behavior into highly
configurable software, designed without a focus on
predictability. The approach is based on white-box
measuring of runtime behavior and limited
architectural knowledge that does not require full scale
architecture documentation. Empirical data combined
with real time theory can be used to predict the real-
time behavior with objective confidence.

This method can be used as a fast start when
architecture documentation is limited, particularly for
legacy systems that have evolved over long periods of
time. It is possible to adjust the coverage and accuracy
which implies the possibility to work iteratively. By
looking at dynamic behavior such as semaphore usage
patterns and observed thread execution times it is
possible to point out key areas where further detailed
system information is needed. Furthermore, by
comparing predicted and observed thread response
time, it is possible to refine the knowledge of the
system behavior as well as verify the understanding of
it. As a bonus, the method can indicate design
limitations which affect the overall determinism of a
system’s behavior which can bring focus to well
targeted architecture improvements.

In a domain of large and complex legacy systems
having real-time critical functionality, not always built,
a priori, with predictability as a top requirement, the
empirical approach demonstrated in this paper shows
promise for a wide application area, where architecture

67

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 14:49:38 UTC from IEEE Xplore. Restrictions apply.

documentation is limited, complete source code review
and architecture reverse engineering is impractical but
the source code is available and tooling exists to get
needed insight.

References

[1] Klein, M.; Ralya, T.; Pollak, B.; Obenza, R.; &
Gonzalez Harbour, M. A Practitioner's Handbook for
Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems. Boston, MA: Kluwer
Academic Publishers, (1993).

[2] S.Basumallick and K.D.Nilsen. Cache Issues in

RealTime Systems. ACM SIGPLAN Workshop on
Language, Compiler, and Tool Support for Real-Time
Systems,
http://mack.ittc.ku.edu/basumallick94cache.html
(1994)

[3] Bass, L., Ivers, J., Klein, M., Merson, P. 2005.

Reasoning Frameworks. Technical Report CMU/SEI-
2005-TR-007, Software Engineering Institute -
Carnegie Mellon University, Pittsburgh, PA(2005).

[4] Woodside, M., Franks, G., and Petriu, D. C. 2007. The

Future of Software Performance Engineering. In 2007
Future of Software Engineering (May 23 - 25, 2007).
International Conference on Software Engineering.
IEEE Computer Society, Washington, DC, 171-187
(2007).

[5] Gonzalez Harbour, M., Klein, M. H., and Lehoczky, J.

P. 1994. Timing Analysis for Fixed-Priority
Scheduling of Hard Real-Time Systems. IEEE Trans.
Softw. Eng. 20, 1 (Jan. 1994), 13-28 (1994).

[6] M. Gonzalez Harbour, J.J. Gutierrez Garcia, J.C.

Palencia Gutierrez, J.M. Drake Moyano, MAST:
Modeling and Analysis Suite for Real Time
Applications, ECRTS, p. 0125, 13th Euromicro
Conference on Real-Time Systems (ECRTS'01),
(2001).

[7] K.Wallnau and J. Ivers. Snapshot of CCL: A language

for predictable assembly. Technical Note CMU/SEI-
2003-TN-025, Software Engineering Institute -
Carnegie Mellon University, Pittsburgh, PA, June
(2003).

[8] Ivers, J. and Moreno, G. A. Model-driven

Development with Predictable Quality. In Companion
to the 22nd Annual ACM SIGPLAN Conference on
Object Oriented Programming Systems and
Applications, OOPSLA '07. Montreal, Quebec,
Canada, October 21 - 25, (2007).

[9] P. López Martínez, SIM-MAST, Simulator of MAST
Models, Grupo de Computadores y Tiempo-Real,
Departamento de Electrónica y Computadores,
Universidad de Cantabria, Spain.
http://mast.unican.es/simmast/

[10] Hissam, S.; Hudak, J.; Ivers, J.; Klein, M.; Larsson,

M.; Moreno, G.; Northrop, L.; Plakosh, D.; Stafford,
J.; Wallnau, K.; & Wood, W. Predictable Assembly of
Substation Automation Systems: An Experiment
Report, Second Edition (CMU/SEI-2002-TR-031,
ADA418441). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, (2003).

[11] Moreno, G.; Hissam, S.; & Wallnau, K. Statistical

Models for Empirical Component Properties and
Assembly-Level Property Predictions: Toward
Standard Labeling. Proceedings of the 5th
International Workshop on Component-Based
Software Engineering, in conjunction with the 24th
International Conference on Software Engineering
(ICSE2002). Orlando, Florida, May 19-20, (2002).

[12] Wind River Systems, Inc., “Tornado Getting Started

Guide, 2.2, Windows Version”, Wind River Systems,
Inc., Alameda, CA, (2002).

[13] Dasdan, A., Ramanathan, D., and Gupta, R., A

Timing-Driven Design and Validation
Methodology for Embedded Real-Time Systems,
ACM Transactions on Design Automation of
Electronic Systems (TODAES), ACM Press 3, 4
(October 1998), 533-553, (1998).

[14] Thome, B., Glas, B., and Nahm, R.,Validation of Real-

Time Systems: From “Soft” to “Hard”, 1994 Tutorial
and Workshop Systems Engineering of Computer-
Based Systems. IEEE Conference Proceedings (May
24-27, 1994), 152-158, (1994).

[15] Hahn, G., Meeker, W., Statistical Intervals: A

Guide for Practitioners, New York: John Wiley &
Sons, Inc., 1991.

68

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 29,2020 at 14:49:38 UTC from IEEE Xplore. Restrictions apply.

