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Abstract 

 
Software components and the technology 

supporting component based software engineering 
contribute greatly to the rapid development and 
configuration of systems for a variety of application 
domains. Such domains go beyond desktop office 
applications and information systems supporting E-
Commerce, but include systems having real-time 
performance requirements and critical functionality. 
Discussed in this paper are the results from an 
experiment that demonstrates the ability to predict 
deadline satisfaction of threads in a real-time system 
where the functionality performed is based on the 
configuration of the assembled software components. 
Presented is the method used to abstract the large, 
legacy code base of the system software and the 
application software components in the system; the 
model of those abstractions based on available 
architecture documentation and empirically-based, 
runtime observations; and the analysis of the 
predictions which yielded objective confidence in the 
observations and model created which formed the 
underlying basis for the predictions. 
 

1. Introduction 

In this paper, we discuss an experiment that was 
performed on a commercial device that is a PowerPC 
based embedded system running the VxWorks real-
time operating system with many built-in monitoring 
and control interfaces. The purpose of this device is to 
perform real-time monitoring and control of equipment 
connected to those interfaces which are used in a 

variety of industrial settings. The device reacts to 
specific conditions detected through its monitoring 
interfaces based on settings configured through a 
unique combination of application software 
components available for the device. The specific 
conditions and accompanying reactions vary based 
upon its intended use and are specified using a 
configuration table.  

The application software on the device is designed 
to be highly configurable through the dynamic 
instantiation and composition of software components 
at runtime (during startup) as specified by the 
configuration table. However, the device’s system 
software was not specifically designed for 
predictability with respect to any one configuration, 
thus the only way to determine if a configuration will 
meet its performance specification is by physically 
measuring the device’s response times while running 
with a configuration. 

The purpose of this experiment was to determine if 
it was possible to predict the worst and average case 
latency of critical threads running on the device based 
upon settings in the configuration table, dependencies 
between components, and measurements of component 
worst and average case execution times. Ultimately, 
the goal is to predict the device’s response time for 
future configurations. However, this experiment was 
focused solely on the ability to predict the latency of 
critical threads, a first crucial step to achieve this goal. 

After an initial inspection of the software and 
accompanying documentation it was concluded that the 
experiment was going to require much more effort than 
initially anticipated. This conclusion was based upon 
the following initial findings: 
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1. The device’s system software was much larger 
than initially expected. The software source 
code, written in C and C++, is more than one 
million source lines of code. 

2. Documentation describing the software 
architecture, design and implementation was 
limited. 

3. While the device was designed to be highly 
configurable through the composition of 
software components, the rest of the system 
software that supports all of the other needed 
functionality was not component based thus 
complicating modeling. 

4. Modeling parts of VxWorks operating system 
had increased difficulty due to lack of detailed 
documentation and source code. 

 
The rest of this paper is structured as follows. 

Section 2 provides a brief background on our research 
and our approach to modeling and prediction. Section 3 
outlines the approach used to understand, model and 
predict the behavior of the system. Section 4 presents 
the prediction results. Section 5 discusses limitation 
and issues associated with our approach and Section 6 
summarizes our conclusions. 

2. Background  

The theories and concepts used in this experiment 
are based on our work in the Predictable Assembly 
from Certifiable Components (PACC) initiative at the 
Software Engineering Institute (SEI). PACC builds on 
software architecture technology, software component 
technology, and a growing body of theory for 
predicting the quality attributes of software systems 
(for example performance, security, safety). 
Architectural design constraints that satisfy the 
assumptions of quality attribute theories ("smart 
constraints") are enforced at construction time and run 
time by software component technology. Analysis is 
automated by automatic generation of analysis models 
from assembly specifications. The complexity of this 
automatic generation, and of the underlying analytic 
theories, is packaged in a reusable form called a 
reasoning framework. The resulting predictions have 
an established and verifiable statistical or formal basis 
for objective confidence.  

One of the core technologies developed by the 
PACC initiative are the performance reasoning 
frameworks, which are a combination of a property 
theory, an automated reasoning procedure, and a 
validation procedure that is used to predict assembly 
properties. These frameworks are founded on the 
principles of General Rate Monotonic Analysis 
(GRMA) [1] for predicting the average and worst-case 

latency of periodic and stochastic tasks in what is 
typified as embedded, real-time control systems. 

ABB Corporate Research (CRC) is the central 
research unit for ABB, conducting research in 
industrial areas including both power technology and 
automation technology. It works in partnership with 
ABB business units and leading universities to connect 
academic research and concrete product development 
through more applied industrial research, technology 
scouting and adaptation of technology to the needs of 
ABB business units. The SEI and CRC have 
previously performed successful work together in the 
area of component-base software, with a track record 
covering, among other things, predictable assembly. 

3. Approach 

Based upon an initial evaluation of the system 
software (discussed in the introduction), it was 
concluded that, for this experiment, a prediction model 
of the software for the entire system with all possible 
configurations could not be produced due to time and 
budget constraints. Thus, the experiment was scaled 
down to a manageable and relevant scope. 

As part of the methodology used to scale down the 
system, all software in the device was categorized into 
three primary software component abstractions: 

1. Software without source code such as the 
operating system VxWorks 

2. Application support software that provides: 
a. the ability to dynamically configure an 

application with specific functionality 
through the dynamic creation and 
composition of components at runtime 
(during startup) 

b. support functions to the system software 
components 

3. Application software components1  
Next, so as not to model every possible software 

component, the number of application software 
components was limited by defining only two 
candidate configurations which included two inputs 
with defined ranges and rates and one output. One 
configuration was a positive configuration that was 
known to be schedulable and the other one was a 
negative configuration that was known not to be 
schedulable. This approach allowed the determination 
of the component abstractions that would actually be 
instantiated on the system for either configuration. 
Then, using this information, the threads that would be 
running on the device could be determined. 

                                                 
1 These are not commercial of-the-shelf but in-house developed 
components. 
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Given that the goal for this experiment was to 
predict the worst-case and average-case latency of the 
application threads (which are responsible for the 
execution of the application software components), all 
other lower priority threads that would not interfere 
with the execution of the application threads were 
eliminated from the model.  

3.1. Finding Thread Dependencies 

In order to build a model of the system, detailed 
information about how threads communicate with each 
other was needed. Semaphores and shared memory are 
used as the primary mechanism for threads to 
communicate with each other. The semaphores are 
used as kickers, meaning a consuming thread blocks on 
a semaphore which is released by the producing thread 
once enough data has been produced. Some of the 
threads used message queues for communication. 
Dependencies between communicating threads were 
found by analyzing those threads that shared common 
semaphores and message queues. 

In order to locate the common semaphores, the 
tracing facilities of VxWorks were used to log every 
system call that operates on a semaphore. Tracing such 
calls (and therefore analyzing them) can be done using 
WindView, the Tornado logic analyzer for real-time 
applications [12]. These traces contain timestamp, type 
of access and the id of the thread using the semaphore. 

WindView traces of the running device 
configuration were analyzed using a custom parser to 
create a list of the threads that accessed a particular 
semaphore, and how it was accessed. For each 
semaphore in the system, the traces revealed the 
threads that took or released the semaphore and the 
associated access count. This information was further 
analyzed in order to find thread dependencies. A trace 
showing two threads, one taking and the other giving 
the same semaphore the same number of times 
suggests a thread dependency – one thread is most 
likely waiting for data from the other before it can do 
its job. A trace showing the same thread taking and 
giving the same semaphore signifies that the 
semaphore is used to protect a critical section of the 
code and is therefore not a communication dependency 
between threads. 

When a possible thread dependency had been 
identified it had to be verified. This was accomplished 
by checking the source code, reading available 
architecture documentation and interviewing the 
developers. Once a thread dependency had been 
verified, it was added to the core model as described in 
the Section 3.3. 

3.2. Measuring component execution time and 
application latency 

For each software component in the system, only 
two specific runtime characteristics were of interest: 
period and CPU execution time. Period is defined as 
the reoccurring interval of time at which the software 
component is scheduled to run. CPU execution time is 
defined as the total uninterrupted time the software 
component is being executed in the CPU during its 
period. 

VxWorks tracing facilities, whose output is 
viewable using the WindView tool, provided much of 
the needed insight to obtain this information. 
Specifically, WindView depicts running and blocked 
states on a per thread basis along with a variety of 
scheduling states. However, this information, absent of 
the context as to what the software components are 
doing at any moment in time, was not sufficiently 
accurate to determine periods and CPU execution 
times. 

Key in knowing this information was to learn the 
execution lifecycle of the application support threads 
and software components of interest (e.g., startup, 
steady state, reaction state, shutdown, etc.) and being 
able to identify those states within execution traces. 
Through interviews, it was learned that all threads in 
the system, in steady state, were designed to yield the 
CPU until such time that there was work for each 
thread to perform (either through timers, data arrivals, 
or other coordination mechanisms). This steady state 
activity was performed by a specific task body in each 
thread. 

 
// software component exec chain
…
for (;;) {

wvEvent(BEGIN,0,0);

while (next = nextSC()!=NULL) {
wvEvent(SC_BEGIN, 0, 0);
next->execute();
wvEvent(SC_END, 0, 0);

}

wvEvent(END,0,0);

if (signalled)
break;

waitForNextPeriod();
}
…

// Task A task body
…
for (;;) {

if (waitForResource(X) == OK)
{

wvEvent(BEGIN, 0, 0);
//
// perform task body work
//
wvEvent(END, 0, 0);

}
else

break;
}
…

Tagged Task body Tagged SC Execution Chain

// software component exec chain
…
for (;;) {

wvEvent(BEGIN,0,0);

while (next = nextSC()!=NULL) {
wvEvent(SC_BEGIN, 0, 0);
next->execute();
wvEvent(SC_END, 0, 0);

}

wvEvent(END,0,0);

if (signalled)
break;

waitForNextPeriod();
}
…

// Task A task body
…
for (;;) {

if (waitForResource(X) == OK)
{

wvEvent(BEGIN, 0, 0);
//
// perform task body work
//
wvEvent(END, 0, 0);

}
else

break;
}
…

Tagged Task body Tagged SC Execution Chain  
Figure 1. Example of how code was tagged 
 
Given that the task body was known, and that 

source code for these task bodies was available, each 
task body was tagged by inserting WindView user 
event markers in the source code. These markers 
delineated in the trace when a specific task body was 
actually running in the CPU and when that task body 
had yielded. Figure 1 illustrates how these markers are 
used to delineate these task body traces. 
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Figure 2. Period and CPU execution 

 
With these markers, the actual periods and CPU 

execution times for the thread could be measured. For 
thread periods (Ti

TB in Figure 2) the time interval 
between each BEGIN marker was used (or the 
immediately preceding RUNNING or READY state—
which ever occurred first). For CPU execution time 
(Ci

TB in Figure 2), time intervals of running states 
observed were accumulated between each BEGIN and 
END marker (while ignoring any READY or 
BLOCKED state time intervals occurring between 
those same markers). This approach only applied for 
those threads where source code was available. For all 
the remaining threads, which were the native 
VxWorks’ threads, the average periods ( VXT ) and 

CPU execution times ( VXC ) were estimates based on 
untagged observations. 

Similarly, WindView event markers (SC_BEGIN, 
and SC_END) were used to tag the execution of each 
of the software components (SC) assembled to carry 
out the application’s functionality. The only difference 
in this case was that only CPU execution time was 
measured for each individual software component 
( _*SCC  in Figure 3, where ‘*’ matches a specific 
software component). Figure 3 illustrates two 
sequential traces for an application thread task body 
(denoted by periods TB

iT and TB
iT 1+ ). Each trace shows 

that there were four software components executed 
(denoted SC_A through SC_D) by the task body during 
those periods. 

Period for software components was not needed 
since these software components were executed 
linearly in the context of the period of the application 
thread. 
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Figure 3. Software component execution chain 

 
Measurement Overhead and Verifying Execution 
Time 

WindView’s State Summary feature provides the 
total running, blocked, and ready time measures for all 
threads in the system. Using these independent 
summaries as a check, the total accumulated CPU 
execution time for a task body (CTB) computed using 
the event markers could be verified—that is CTB should 
be close to 100% of that reported by WindView. 
However, comparisons between these two measures 
were consistently off by 5 to 7%. 

The major source for this difference was the 
overhead introduced by the injection of the event 
markers into the task bodies. That is, CTB is the 
accumulation of the running states between the BEGIN 
and END markers (see Figure 2), however, there 
remains CPU execution time between the END and 
BEGIN sequences that is not accounted for—this is the 
average measurement overhead (CM ) that had to be 
included. 

One other minor source for this difference was that 
measures were captured during steady state. The 
system was already executing when collection of 
WindView traces commenced. Conversely, the system 
was also executing in steady state when collection 
ceased. As a result, not every task body trace 
conveniently started with a BEGIN marker or ended 
with an END marker. Any pre-BEGIN or post-END 
running states were discarded when computing CTB as 
these were not needed for software component 
measurements, but had to be accounted for when 
verifying the computations. 

To verify CTB of the marked task bodies against 
the total running states reported by WindView (CWV), 
the equation (1) was used. 

( )( )( )
WV

TBTBTB
delta

C
NCMCC 1+•++

=
  (1) 
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Here, CTB is increased by the total number of times 
the task body is executed (NTB) multiplied by the 
average CM  calculated (which was on the order of 
300ns) and is increased by one additional average task 
body execution (with overhead, hence ‘+1’ in equation 
(1)) which is added to account for any potentially 
discarded BEGIN and END state. This resulted in a 
delta of less than 1% of that reported by WindView 
and that computed for the task body—thus verifying 
the accounting for CTB.  

This same approach was also repeated for 
determining the overhead for executing the software 
components execution chain, also resulting in the same 
success. Overhead in executing the software 
component chain not only accounted for the injection 
of the event markers (SC_BEGIN and SC_END) but 
also the runtime executive loop that iterated through 
and executed the software component chain (right 
diagram in Figure 1). 

 
Observed Best, Average, and Worst-case Periods 
and CPU Execution Time 

The ability to predict the worst case latency of the 
application threads was predicated on the ability to 
know the worst case execution time of the threads and 
software components in the system. Although it was 
known that various effects (e.g., caching) inject non-
determinism into knowing the true worst-case 
execution time (WCET) [2], the approach used was to 
observe WCET over a fixed interval of time that 
matched the device’s testing methods and standards. 
This meant that the device was subjected to the 
maximum allowable data rates on all input channels for 
a fixed interval of time. 

At the conclusion of that testing period, threads 
were analyzed to compute best case, average case, and 
worst case periods and CPU execution times based on 
the tagged WindView traces captured. The analysis 
also included a histogram plot of the observed period 
and execution traces as a means to analyze the 
behavior of each of the threads and software 
components in the system. 

Figure 4 shows two examples of the roughly 500 
histograms generated from the traces (one a VxWorks 
thread, and the other a tagged thread, Task A). 
Histograms that exhibited one peak were indicative of 
threads that conformed to a simple, data-independent 
behavior while running in steady state. Other 
histograms that exhibited more than one peak were 
indicative of more complex, data-dependent behavior 
that warranted further investigation (see below). For 
example, the VxWork thread (top in Figure 4) is the 
interrupt handler for input data. It was learned through 
interviews, that the two peaks seen in the histogram for 

the period are representative of the two different type 
of input data rates supported by the configured device, 
channel 1 (left peak) and channel 2 (right peak). 
Likewise, it was further determined that the Task_A 
thread (bottom in Figure 4) handled the processing of 
those channels and did behave differently depending if 
the data was from channel 1 (left peak) or for channel 2 
(right peak). 
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Figure 4. Period and Execution Histograms 
 
 
 

Application Latency 
Lastly, the application threads (responsible for 

iterating and executing the software component chains) 
were measured using event markers according to the 
same approach for measuring the system threads. Only 
in this case, the ability to measure the latency of the 
application thread was the focus. 

Figure 2 also illustrates how these markers are 
used to delineate these application thread task body 
traces for latency in WindView. For application thread 
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latency (Wi
TB) the time interval between each Ti

TB and 
the next END marker was used. 

3.3. Modeling 

The end goal of the modeling effort was to create a 
performance model that supported predicting worst-
case latency of the application threads in the device. 
Performance modeling can be accomplished by 
identifying the sources of events and the responses to 
them [13, 14]. These events can be external (e.g., 
arrival of a data packet) or internal (e.g., timer 
expiration). A response is the work carried out by the 
system as a reaction to an event. Responses are 
composed of actions, which are portions of code that 
execute at a fixed priority level and have no 
synchronization with other parts of the system [1]. In 
most large systems, and especially in component-based 
ones, responses are implemented as a composition of 
components that interact with each other using both 
synchronous (call-return) and asynchronous (event-
based) communication. Figure 5 shows the component 
and connector view of an example of such a response.  

Legend

 
Figure 5. Response with asynchronous 

communication 
 
Since performance analysis methods require that 

the responses be expressed as a sequence of actions 
with no internal concurrency, responses that in the 
software architecture look like the one in Figure 5 need 
to be flattened in the performance model. This process 
is not trivial, especially when the response includes 
asynchronous communication, which creates 
concurrency within the response. In this example, 
based on the priorities and connector types, the 
corresponding response to an event on A’s “go” in 
the performance model would be <A, B, D, C>. 

Creating a performance model is an expensive task 
that requires expertise [4]. In addition, small changes 
in the design of the system may have greater impact on 
the performance model, incurring additional 
maintenance costs. For example, changing the priority 
of component B in Figure 5 from 8 to 2 changes the 
response in the performance model to <A, D, B, C>. 
The effort required for performance modeling and 
analysis can be reduced by using a reasoning 

framework, a combination of theory, an interpretation 
that can translate designs into attribute specific analysis 
models, and an evaluation procedure to compute 
predictions [3]. 

LambdaWBA is a reasoning framework that predicts 
worst-case latency using RMA [1]. It includes an 
automated interpretation that transforms a design 
model into a performance model suitable for analysis 
with RMA. The evaluation of the model is done using 
MAST [6], a tool that implements an RMA technique 
for analyzing tasks with varying priorities [5]. 

Considering the aforementioned reasons, the 
modeling effort was focused on creating a model of the 
software architecture instead of directly creating a 
performance model. In that way, changes due to the 
different configurations and even the evolution of the 
application support software could be handled at a 
higher level of abstraction. 

The model was created using the Construction and 
Composition Language (CCL), a language for 
specifying components and their assemblies [7]. 
Components in CCL have sink pins through which they 
receive stimuli from other components. Upon receiving 
a stimulus, the reaction associated with the sink pin is 
executed. In order to interact with other components, 
reactions can in turn emit stimuli through the 
component’s source pins. Reactions can be threaded if 
they execute in their own thread context, or unthreaded 
if they execute in the caller’s thread context. In order to 
support different modes of component interaction (call-
return, event-based), pins can be either synchronous or 
asynchronous. The following code snippet shows the 
specification in CCL for the type of component B in 
Figure 5. 

Component ComponentB() { 
 sink asynch receive(); 
 source synch put(); 
 threaded react theReaction (receive, 
                                put) {} 
} 
This code defines a component type ComponentB 

with an asynchronous sink pin receive, a synchronous 
source pin put, and a threaded reaction theReaction in 
which both pins participate. Even though CCL allows 
specifying data signatures in pins and state machines in 
reactions, the model was kept at this level of detail, a 
level sufficient for performance analysis. Component 
instances are then assembled together by connecting 
pins as shown in the following code. 

 clock:tick ~> A:go; 
 A:send ~> { B:receive, D:receive } 
 B:put ~> C:get; 

Thus far, the CCL code shown describes the 
components and their composition. However, in order 
to do performance analysis additional information is 
needed, namely, event interarrival distributions ( VXT  
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and TBT ), CPU execution time distributions 

( VXC , TBC , and _*SCC ), priorities, and deadlines. This 
information can be added to the specification via the 
CCL annotation mechanism. For sources of events, the 
event interarrival distribution is specified with the 
following annotation on the source pin, where the 
value of eventDistribution in this case indicates a 
constant interarrival time of 100 units. 

annotate clock:tick {"lambda*",  
        const string eventDistribution = 
                "C(100)" } 

Optionally, the deadline for the response to that 
event can be specified. If omitted, it is assumed to be at 
the end of the period for periodic events. 

annotate clock:tick {"lambda*", 
            const float deadline = 90.0 } 

Threaded reactions must be annotated with their 
priority as in this example. 

annotate B:theReaction {"Pin", 
            const int priority = 8 } 

Each sink pin will trigger some component code to 
be executed, so their execution time must be specified. 
In this example, the execution time has a general 
distribution with known minimum, average, and 
maximum. 

annotate A:go {"lambda*", 
        const string execTime = 

"G(9.5, 10.0, 10.5)" } 
 

Building the Model 
The model for the device was divided in four modules: 

• Core model 
• Configuration model 
• Core execution times 
• Configuration execution times 
 
The core model contains the specification of the 

part of the system that is common to all configurations, 
which includes interrupt handlers, data distribution 
services, and other supporting functions. The 
configuration model contains the assembly of software 
components that carry out the specific functions that a 
given configuration provides. All the execution time 
annotations for both parts of the model are kept in 
separate modules so that the model can be reused for 
different target hardware. 

The core model was the one that required the most 
effort to create, mainly because it was not component 
based and documentation describing the software 
architecture, design, and implementation was limited. 
An initial model was created using one model 
component for each thread in the system. For those few 
threads whose triggering events were known (e.g., 
interrupt handlers), specific sources of events were 
created. For the rest of the threads, the initial approach 

was to model them as driven by timers whose periods 
were set according to the measured period of the 
thread. This resulted in a very flat model with no 
dependencies and little causality, similar to the one 
shown in Figure 6, albeit much larger. 

 

 
Figure 6. Initial model with few thread 

dependencies 
 
Using the thread dependency information mined 

with the approach described in Section 3.1, it was 
possible to refine the model by combining several 
seemingly independent threads into one response 
composed of multiple model components.  

Threads having the same period were likely to 
have dependencies among them and therefore, they 
were further investigated. Figure 7 shows that 
components C2, C4, and C5 from the model in Figure 
6 were combined in one response modeling the 
discovered dependencies. However, Figure 7 also 
shows that component C3 was kept as a separate 
response because no real dependency was found, and 
despite having the same period, the offset or phase of 
this component was different than for the rest of the 
components having the same period. 
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Figure 7. Model with components combined into 

responses 
 

In most cases, a one to one mapping from threads 
to components was created. However, in a few cases, 
the histograms of interarrival times and CPU execution 
times showed two behaviors. When two distinct 
statistical modes were observed in the interrarival 
times, it was concluded that the component was being 
triggered by two different sources of events (see Int5 
period in Figure 4). Similarly, when the execution time 
histogram showed two distinct statistical modes, it 
meant that the component was taking two different 
execution paths, possibly performing two different 
functions (see Task_A execution in Figure 4). In this 
case, the thread was modeled as two separate 
components. In all cases, confirmation for the 
modeling decision was sought either by code 
inspection and/or from the system developers. 

Thus far, all the interaction between the 
components in the model had been asynchronous. In 
some parts of the system, a greater fidelity of the 
model was achieved by breaking up some monolithic 
components into several components with synchronous 
interactions, reflecting the calls to specific functions 
performed within one thread. 

The other part of the model, the configuration 
model, was in the most part generated automatically 
from the configuration table. This is important because 
this part of the model not only changes from product to 
product, but also has the largest number of 
components. The CCL code modeling all the instances 
and their connections was automatically generated 
using the information in the configuration. There was 

one small fraction of this model that was not 
automatically generated. This portion of the model had 
to do with protected access to a shared repository that 
is done at the beginning and end of each application 
response. Although this was written manually in this 
experiment, it would be possible to generate this as 
well. 

 
Using the Model 
The model of the architecture was analyzed using the 
LambdaWBA reasoning framework. LambdaWBA is fully 
integrated into the PACC Starter Kit (PSK) [8], so 
once the model is created and all the required 
annotations are in place, predicting the worst-case 
latency is just a matter of selecting the performance 
analysis option on the CCL specification created 
during the modeling process. 

The same specification can be used to predict 
different scenarios or operation modes, for example to 
predict latency when data is read from one input 
channel and when data is read from both input 
channels. This is accomplished by using scenario 
annotations in the model. 

annotate channel1:data { "scenario",  
            const int scenario = SCN_MODE1} 

This annotation indicates that the source pin 
channel1:data will emit events only when the scenario 
SCN_MODE1 is selected for analysis. Pins can 
participate in more than one scenario and if they do not 
have a scenario annotation, they are assumed to 
participate in all the scenarios. 

When the analysis with LambdaWBA is invoked, 
the reasoning framework performs the interpretation, 
creating a performance model that is then translated to 
the specific syntax of MAST for final evaluation. The 
results of the evaluation include the best and worst 
latencies for each of the responses modeled in the 
system. Additionally, those responses that do not meet 
their deadline are visually flagged with red color. 

As a worst-case reasoning framework, LambdaWBA 
will compute the worst-case using the worst-case 
execution time for each component and accounting for 
the worst preemption and blocking effects by other 
threads. Since it is unlikely that all these worst cases 
will happen simultaneously, the predicted worst-case 
latency may be very difficult to reproduce in testing, 
making it difficult to gauge the accuracy of the model. 
Section 4 describes the results of the prediction and 
how alternative prediction methods where used to 
judge the correctness of the model. 

4. Prediction Results 

In this experiment, the system was considered 
schedulable if the predicted worst-case latency for each 
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of the application threads would occur before the end 
of the thread’s period. If all threads were schedulable, 
then the prediction result was presented by LambdaWBA 
in the affirmative. As discussed in this section, the 
system as configured was predicted and shown to be 
schedulable. However, additional insight was needed 
to ascertain to the ‘goodness’ of the predictions 
themselves, as well as the approach (i.e., the 
measurements, model, and tools) that was used to 
make that prediction. This was accomplished in two 
ways: a comparison of the predicted worst-case latency 
to that actually observed in the system; and a 
comparison of the average-case latency predicted to 
that actually observed. 
 
Schedulability Analysis: Worst Case Latency for 
Application Threads 
Predictions for and observations of worst-case 
latencies are shown in Table 1. Based on the WCET 
measured for the threads in the device ( TBCmax , VXCmax , and 

_*
max
SCC ) and the model of thread priorities and their 

inter-dependencies, LambdaWBA predicted that 
application thread, Task A’s, worst case latency would 
be just over 2.7ms and that application Task B would 
be just over 4.6ms. Given that both of these predictions 
are less than the deadline (3ms and 8ms respectively) 
for each of these threads, the system was considered 
schedulable. 
 

Table 1. Predicted and observed WC latency 
using WCET  

Thread Deadline Predicted 
WC Latency 

Observed 
WC Latency 

Task A 3000µs 2764.50µs 1357.13µs 
Task B 8000µs 4635.00µs 1797.58µs 

 
At first glance, this was certainly good news—that 

is, based on the WCET for all components and a task 
phasing which exhibit the worst preemption and 
blocking among threads the device would be (and was) 
schedulable. However, as noted above, to actually 
achieve such conditions in the actual device and 
observe all these most unfortunate conditions at once 
would be difficult to achieve. Had LambdaWBA 
produced the predictions in the table or any higher 
predictions less than the deadline, the system would 
have been considered schedulable nonetheless. 

A more likely explanation of the wide gap 
between the predicted and observed worst case latency 
in the device is that the actual CPU execution times 
being experienced by the threads in the system most of 
the times were closer to the average case execution 
times (ACET) than WCET. A second prediction was 
generated with LambdaWBA, however this time the 

ACETs ( TBC , VXC , and _*SCC ) were used as a basis 
for the predictions. The second predictions are shown 
in Table 2. 

 
Table 2. Predicted and observed WC latency 

using ACET 
Thread Deadline Predicted 

WC Latency 
Observed 
WC Latency 

Task A 3000µs 2415.90µs 1357.13µs 
Task B 8000µs 2893.80µs 1797.58µs 

 
As expected the predicted worst case latency was 

closer to that observed in the device supporting the 
notion that the threads were operating closer to their 
ACET most of the time, instead of the more unlikely 
situation predicted as shown in Table 1, which requires 
that the threads and components exhibit their WCET 
all at the same time. 

The last test attempted for this device’s 
configuration was a negative test—that is, if 
LambdaWBA predicted that the device, as configured, 
was not schedulable then the device should be 
observed to fail. One of the software components in the 
chain was a component introduced as a control 
(SC_CTRL). In the positive configuration, this 
software component was known to burn approximately 

CTRLSCC _ = 166.01µs of CPU execution time. In the 
negative configuration, the same software component, 
was reconfigured to increase its CPU execution time 
by 13 to CTRLSCC _ = 2158.16µs. This value when 
combined with the remaining software components 
should put the device just over the deadline for the 
application thread causing the device to fail. 
LambdaWBA reported that utilization was too high and 
that the negative configuration was not schedulable. 
When the device was tested in the lab using the control 
component in the negative configuration, it did fail. 

LambdaWBA passed both the positive and negative 
configuration tests. Additionally, this success was an 
early indicator that the model produced was capturing 
the behavior of the device as learned through available 
documentation, measurement, inter-dependency 
analysis and supporting investigation. Additional 
analysis of the model was needed to make any 
objective conclusions as to the goodness of the model 
and the accuracy of the reasoning framework to make 
predictions based on that model.  
 
Average Case Actual vs. Predicted 
After looking at the results using the ACET for worst-
case latency prediction, the hypothesis was formed that 
if the model was an accurate representation of the 
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device, average-case latency ( TBW ) prediction would 
be close to average-case latencies observed in the 
device. The reasoning framework LambdaABA [10], 
which preceded LambdaWBA, predicts average-case 
latency by first transforming the design model to a 
performance model with linear transactions and then 
using discrete event simulation to evaluate it. 
LambdaABA has been objectively validated to produce 
predictions with less than 1% error, at least 80% of the 
time [11]. LambdaABA can use different discrete-event 
simulators to evaluate the model; in this case, SIM-
MAST was used [9]. The predicted and observed 
average-case latencies, TBW , shown in Table 3, were 
very close (around 1% MRE2), providing evidence that 
the model was indeed a good model of the actual 
system. 
 
Table 3. Predicted and observed average latency 
Thread Deadline Predicted 

Average 
Case 

Observed 
Average 
Case 

MRE 

Task A 3000µs 686.33µs 691.53µs 0.8% 
Task B 8000µs 530.35µs 537.26µs 1.3% 

 
Confidence Intervals 
Statistically, results from LambdaWBA (schedulability 
pass/fail) and LambdaABA (MRE) provided initial 
indicators as the correctness of model created as a 
result of this experiment. This, in of itself, is not 
necessarily sufficient to provide concrete empirical 
evidence as to the ‘goodness’ of this model. 
Confidence intervals were selected as the approach to 
provide that objective confidence given the 
encouraging MREs that were being produced as a 
result of the average-case predictions in the previous 
section. Furthermore, in order to produce the 
confidence intervals, additional observations of the 
device would be needed. If the interval produced was 
within a narrow range for a large population of those 
observations, this would attest to the repeatability of 
the behavior modeled and increase the confidence in 
the results produced by this experiment. 

Two different instances of the device were 
stressed and measured over the course of a few days to 
obtain the additional observations. To shorten the time 
required to capture and analyze these results, two 
devices were situated in two different laboratories by 
two different teams using the same measurement 
procedure and device configuration. In total, 29 sets of 
observations were recorded and coalesced between the 
two devices. Each set of observations consisted of 

                                                 
2 Magnitude of Relative Error 

statistical measures for period, CPU execution time, 
and latency (best-, average-, and worst-case as 
discussed in Section 3) for 72 threads and 109 software 
components. 

The average-case latency MRE from each set was 
computed from the data for each of the application 
threads. This resulted in 29 sample MREs comparing 
predicted average-case latency with observed average-
case latency for Task A and 29 samples for Task B. 
Each of the 29 samples used in computing the 
confidence interval passed the Shapiro-Wilks3 test for 
normality. This was an important step, as the tool used 
for computing the confidence interval, StInt.exe 
[15], is based on the assumption that the data (the 
MREs in this case) fit a normal (Gaussian) distribution. 

To compute the interval, the population percentage 
was fixed (ρ = 0.99), and two target confidence levels 
were selected (γ = 0.95 and 0.99). This meant that we 
were looking for γ confidence in the upper bound on 
the expected MRE for future observations and that we 
expect ρ of those future observations to be less than 
that upper bound. The resulting upper bound (Ub 
MRE) confidence intervals are show in Table 4. 

 
Table 4. Prediction confidence intervals 

Thread Population 
(ρ) 

Ub MRE 
where 
 γ = 0.95 

Ub MRE 
where 
γ = 0.99 

Task A 99% 8.75% 9.42% 
Task B 99% 6.03% 6.44% 

 
Consider Task_A, in 99% of future observations 

for average-case latency, the MRE (predicted v. actual) 
will be no greater than 9.42% and that there is 99% (γ 
= 0.99) confidence in that upper bound. Selecting a 
slightly less confidence level, 95%, the upper bound 
MRE will be 8.75% for Task_A. 

From the statistical result generated from 
LambdaWBA and LambdaABA, including the negative 
configuration tests, and the repeatability of the 
observed results from average-case latency testing 
which formed the basis of the confidence intervals, the 
model was sound for the configuration of the device 
used in this experiment. 

5. Limitations & Issues  

Software Architecture and Design 
There were some difficulties associated with modeling 
certain parts of the application support software due to 
                                                 
3 The Shapiro-Wilks' W test is used in testing for normality. If the W 
statistic is significant, then the hypothesis that the respective 
distribution is normal should be rejected. [Shapiro, Wilk, & Chen, 
1968]. 
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its architecture and design. This primarily was due to 
the use of few designs patterns that can not be modeled 
accurately for the purposes of prediction. Some issues 
encountered where: 

 
1. Dynamic thread priority changes 
2. Polling threads. Threads that poll have a 

nondeterministic execution time and also tend to 
waste CPU cycles 

3. Non-Deterministic phasing among threads and 
consistency of phasing between device restarts 

4. Threads with varying execution times which are 
actually performing more than one task 

5. Tasks being shared by a group of threads. This 
causes the execution time of these threads to be 
nondeterministic. 

6. Non-harmonic scheduling among threads 
 
In these cases, the best possible approximations 

were made; however, these approximations do have a 
negative impact on the accuracy of the prediction 
model which may account for the 10% upper bound 
MRE for average-case latency predictions. Correcting 
these issues in the device’s system software will 
improve the real-time response of the software and the 
model’s prediction results. 

 
 
Measurement 
The software components used in this device are 
somewhat special as they tend to only have a single 
path of execution. This unique attribute makes it much 
easier to determine the WCET of the components due 
to the absence of multiple paths of execution within the 
component. Measurement observations were used to 
estimate the average and worst case execution times. 
These observations include any observed caching 
effects as well any measurement errors. The true 
accuracy of this approach is unknown because little 
effort was put into determining the true number of 
observations needed to obtain an accurate result. Thus, 
the determination of the sample size was, for the most 
part, ad hoc. However, in this case, given that 
components only have a single path of execution, the 
errors associated with this approach are most likely 
minimal. Work is ongoing in this area to improve and 
quantify the accuracy of this approach. 
 
End-To-End Latency 
There is an obvious difference between the latency of 
application threads and end-to-end latency for the 
device itself. Thread latency only covers the time it 
takes to execute the internal function logic. End-to-end 
latency includes thread latency plus the time it takes to 
collect and process an input before it reaches the 

application, and the time it takes for the thread’s 
response, if required, to be presented on the output 
channel. From a perspective external to the device, the 
aspects of internal functions are of little interest. It 
does not matter how the device manages to perform its 
control and/or monitoring function, as long as it does it 
on time. Ultimately, the ability to predict end-to-end 
latency is needed. 

 The first step in predicting end-to-end latency is 
the ability to predict the latency of the application 
threads. For this experiment, the worst-case and 
average-case latencies of the application threads were 
predicted. Using this information it can be determined 
whether or not an application thread will meet its 
deadline. By design, if an application thread cannot 
meet its deadline the device will not be able to meet its 
end-to-end response time. Thus, further calculations 
are needed to predict the end-to-end response time for 
the application threads that meet their internal 
deadlines. In the next phase of this experiment, the 
prediction of end-to-end latency will be addressed. 

6. Conclusion 

The work presented in this paper shows that it is 
possible to use an empirical approach to start imposing 
predictability of real-time behavior into highly 
configurable software, designed without a focus on 
predictability. The approach is based on white-box 
measuring of runtime behavior and limited 
architectural knowledge that does not require full scale 
architecture documentation. Empirical data combined 
with real time theory can be used to predict the real-
time behavior with objective confidence. 

This method can be used as a fast start when 
architecture documentation is limited, particularly for 
legacy systems that have evolved over long periods of 
time. It is possible to adjust the coverage and accuracy 
which implies the possibility to work iteratively. By 
looking at dynamic behavior such as semaphore usage 
patterns and observed thread execution times it is 
possible to point out key areas where further detailed 
system information is needed. Furthermore, by 
comparing predicted and observed thread response 
time, it is possible to refine the knowledge of the 
system behavior as well as verify the understanding of 
it. As a bonus, the method can indicate design 
limitations which affect the overall determinism of a 
system’s behavior which can bring focus to well 
targeted architecture improvements. 

In a domain of large and complex legacy systems 
having real-time critical functionality, not always built, 
a priori, with predictability as a top requirement, the 
empirical approach demonstrated in this paper shows 
promise for a wide application area, where architecture 
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documentation is limited, complete source code review 
and architecture reverse engineering is impractical but 
the source code is available and tooling exists to get 
needed insight. 
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