
Copper Manual
Introduction
Usage
Options

Introduction
The general goal of Copper is to verify that an implementation conforms to its specification. The
implementation is always a C program and hence quite standard. However, Copper can be used to play
around with several kinds of specifcations and notions of conformance. For a quick overview of how to start
using Copper, check out the tutorial.

Usage
Copper is a command line tool. It is invoked with a set of options and input file names. The input files are
either pre-processed C files with extension .pp or specification files with extension .spec. The C files must be
pre-processed with CIL. The specification files must obey this grammar. The most basic way to run Copper
is as follows:

 copper --default --specification <specification name> <filenames>

The above invocation will cause Copper to check simulation conformance between the FSP specification
identified by "specification name" and the program defined by the input C files. To verify SE-LTL
specifications, use the following command line:

 copper --default --ltl --specification <specification name> <filenames>

Other common types of verification tasks are: (1) checking trace containment between a program and an
FSP specification, and (2) checking for the unreachability of ERROR states in an FSP specification. These
are achieved, respectively, by the following two command lines:

 copper --default --trace --specification <specification name> <filenames>

 copper --default --reach --specification <specification name> <filenames>

In reality, "--default" is just a synonym for the following set of options which, most often, appear to work best
in practice:

 --useAllSpecs --ceShowAll --stat --cegar --symbolic

The general usage of Copper is:

 copper <option | filename> <option | filename> ...

In general, anything on the command line that begins with a minus sign is treated as an option. Everything
else is treated either as an argument of the preceeding option or a filename. Later options take precedence
over earlier ones whenever applicable. Thus, "--trace --reach" is equivalent to "--reach". Thus, "--default"
should be one of the first options you supply to Copper. We now describe the set of all available Copper
options in more detail. Options are grouped together into broad categories. Options within the same category

www.sei.cmu.edu 1 of 23

file:///Users/lb/Desktop/copper/manual-1.0.html#Copper-Manual-Top

are more closely related to each other than options belonging to a different category.

Options
In the following we write "by default" to mean the situation when no command line options are supplied to
Copper, and not the situtation when the option "--default" is provided. The following options affect the global
behavior of Copper.

--help or -h: Generate this help message and exit.
--specification <name>: The name of the specification to be verified.
--copperHome <copper home directory>: Home directory of the copper distribution. This value
overwrites the COPPER environment variable, if set.
--parse: Only parse input files and exit.
--echo: Print characters as they are being parsed. This is helpful for debugging parse errors.
--stat: Display statistics at the end. Implied by "--default".
--verbose <level>: Set the verbosity level. Default is 2.
--timeLimit <number>: Time limit in seconds. Default value is 10000 hours.

The following options control the type of verification to be carried out. By default, Copper checks simulation
between the C program and the specification.

--reach: Check ERROR state reachability instead of simulation.
--trace: Check trace containment instead of simulation.
--ltl: Do SE-LTL model checking.
--deadlock: Do deadlock detection.
--assert: Check iteratively for reachability of assertions of the form "assert(0)" in the program. In each
iteration, Copper checks for the possible reachability of one such assertion.

In the rest of this document, we refer to trace containment, ERROR state reachability, and the detection of
assertion failure collectively as "safety" verifications since all of them boil down to model checking safety
properties. The following options control the verification mechanism used by Copper. By default, Copper
uses a HORNSAT based model checker for simulation and safety verification, and an explicit state model
checker for SE-LTL model checking and deadlock detection.

--explicit: Use explicit state model checking instead of HORNSAT for verification.
--symbolic: Use symbolic predicate abstraction to reduce the number of theorem prover calls. Implied
by "--default". Use only for safety verification and SE-LTL model checking.
--bp: Generate boolean programs via abstraction and use BDDs for verification. Use only for safety
verification and SE-LTL model checking.

The following options control the type of Assume-Guarantee reasoning done by Copper. By default, Copper
does not perform Assume-Guarantee reasoning. Also, Assume-Guarantee reasoning is only supported
for simulation, safety verification, and deadlock detection.

--ag: Do assume-guarantee reasoning with learning for verification.
--agc1a: Use circular rule 1A for assume-guarantee style reasoning.
--noAGReuse: Do not reuse counterexamples to candidate queries. This may increase the number of
candidate queries.
--agOpt: Assume-guarantee reasoning with minimal assumption alphabet.
--agLazy: Assume-guarantee reasoning with lazy alphabet extension.

The following options control the degree of inlining used by Copper. By default, Copper inlines according to
the "inline" directives in the specification files.

--inline: Inline all library routines whose code is available.
--pds: Use pushdown system models instead of inlining. Only use for safety verification and do not
combine with "--bp".

www.sei.cmu.edu 2 of 23

The following options control the initial set of "seed" predicates used by Copper. Seed predicates are
essentially branch conditions from which other predicates are inferred at various control flow points by
propagating weakest preconditions. By default, there are no initial seed predicates and the only initial
predicates are those appearing in the specification.

--autoPred: Automatically add all branches in the code as seed predicates.
--specSeed: Obtain initial seed predicates from spec files.

The following options control the abstraction refinement used by Copper. By default, Copper does no
refinement and will terminate with the model checking result on the first abstract model.

--cegar: Do abstraction refinement without predicate optimization. Implied by "--default".
--optPred: Do pseudo-boolean constraint based predicate optimization.
--greedy: Do greedy predicate optimization. In some cases, this leads to quicker termination compared
to "--optPred".
--usefulPred: Use only useful predicates for predicate discovery. A useful predicate is one appearing
in a "predicate" directive in the specification files. This option enables the user to guide abstraction
refinement by only allowing Copper to pick new "seed" predicates from those specified in the
"predicate" directives. However, this mechanism is only useful if the user has some idea about the
kinds of "seed" predicates on which the program's correctness is based.
--ceDag <number>: Use this many counterexamples in each iteration for refinement. Default is 1. If the
argument after "--ceDag" is "n" then Copper generates "n" counterexamples during model checking
and checks each of them for validity. If even one counterexample is found to be valid, Copper
terminates with that real "bug". Otherwise, if all the counterexamples are found to be spurious, Copper
refines the abstraction to eliminate all of them. Larger values of "n" may lead to quicker termination,
but also to increased resource consumption.
--predLoop <number>: Number of times to go through a loop during predicate discovery. Default value
is 1. Larger values will lead to more predicates being inferred from the same set of "seed" predicates,
and hence a more precise model and more effective abstraction refinement. However, this may also
lead to increased resource consumption.

The following options control the theorem prover used by Copper. The default theorem prover is Simplify.

--cprover: Use CProver as the theorem prover. This is the only appropriate option if you want support
for full bit-level semantics and all C operators.
--cvc: Use CVC as the theorem prover. Only available on Linux.
--ics: Use ICS as the theorem prover. Only available on Linux.
--svc: Use SVC as the theorem prover. Only available on Linux.
--cvcl: Use CVC Lite as the theorem prover. Only available on Linux.
--vampyre: Use Vampyre as the theorem prover. This is experimental and only available on Linux.
--cogent: Use Cogent as the theorem prover. This is experimental.
--TPCache: Cache theorem prover queries and their results. This could increase memory requirement.
--TPCacheSize <size>: The size of the theorem prover cache. The cache is cleared if this size is
exceeded. Default is 1000.

The following options control the SAT solvers used by Copper. By default, Copper uses ZChaff.

--sato: Use Sato as the SAT solver.
--grasp: Use FGrasp as the SAT solver.
--chaff: Use ZChaff as the SAT solver.

The following options control the information displayed as part of the counterexamples. By default, only the
sequence of the control locations from the program that appear in the counterexample are displayed.

--ceShowAct: Show actions when displaying counterexamples.
--ceShowCons: Show propositional constraints when displaying counterexamples.

www.sei.cmu.edu 3 of 23

--ceShowAll: Show actions and propositional constraints when displaying counterexamples. Implied by
"--default".

These options control various statespace reduction techniques used by Copper for efficient verification:

--silentTrans: Don't eliminate silent transitions. By default, Copper eliminates silent transitions before
model checking to make verification more efficient. A silent transition is defined to be one that does not
change the value of any specification proposition, and is not labeled by any specification action.
Eliminating silent transitions leads to a type of partial-order reduction by avoiding many possible thread
interleavings during model checking.
--noParAssign: Disable parallel assignments. By default, Copper transforms a sequence of simple
assignments into a single semantically equivalent parallel assignment. A parallel assignment is
essentially a set of assignments executed concurrently. For example Copper translates the following
sequence of assignments "temp = x; x = y; y = temp" into the parallel assignment "x = y || y = x || temp
= x". Be aware that parallel assignments may lead to unsound results when the specification has
propositions, and should be disabled in such cases.
--simParAssign: Use naive (but correct, even with pointers) strategy for parallelizing assignments.
--eager: Complete abstraction before model checking. The default is to abstract lazily on-the-fly during
model checking.

The following options achieve miscellaneous purposes.

--checkCE: Check validity of counterexample if not doing abstraction refinement. This enables you to
detect if the counterexample found by verifying the first abstract model is valid or spurious.
--useAllSpecs: Inline all library routine specifications. Overrides the default rule that only library
specifications that contain synchronization or global specification actions are inlined. Implied by "--
default".
--invariant: Compute invariants via static analysis. Invariants are used for subsequent abstraction and
verification.
--pointers: Handle aliasing due to pointers.
--noSyntactic: No syntactic checks before calling theorem prover.
--assign: Assignment actions are not replaced by epsilons.
--return: Return actions are not replaced by epsilons.

The following options control the aspects of Copper related to proof generation.

--proof: Generate proofs when the specification is found to be valid. Use only for safety verification and
SE-LTL model checking.

The following options control the aspects of Copper related to proof-carrying code. For these options to
work, a version of gcc that generates PowerPC binaries must be installed as "gcc-ppc". Also, the target C
program must be called "pcc-test.c".

--pcc: Generate and prove verification conditions for a specific procedure in "pcc-test.c", which must
be annotated with invariants. An invariant is simply a side-effect free C expression and is specified
using the distinguished procedures "__begin__" and "__inv__". Specifically, a control flow point "Loc" is
annotated with an invariant "X" by inserting the code "__begin__(); __inv__(X);" just before "Loc". It is
recommended that you have as many control flow points annotated with invariants as possible. In
particular, every loop in the control flow graph of the relevant procedure must contain at least one
control flow point annotated with an invariant. Otherwise, Copper will not terminate. In practice, Copper
first compiles "pcc-test.c" into PowerPC assembly using "gcc-ppc" and then generates and proves the
verification conditions on the assembly level.
--pccProc <procedure_name>: Procedure to check with "--pcc". Default is "main". Use only in
combination with "--pcc".
--noPccAsm: Skip compiling "pcc-test.c" to assembly. Use an existing assembly program, which must
be called "pcc-test.s" and must have been generated previously by Copper using "--pcc". Use only in
combination with "--pcc".

www.sei.cmu.edu 4 of 23

Copper Tutorial
Copper is a software model checker. It enables you to verify properties against C source code. Copper is also
fairly versatile about the kinds of claims it can check. On one hand, it can look for simple errors such as
assertion violations . On the other hand, you can use Copper to check more complicated specifications
expressed as finite state machines or linear temporal logic formulas. Copper also supports the verification of
multi-threaded programs where the threads communicate with each other via shared variables, or
handshakes, or both. Finally, while Copper uses explicit-state verification by default, it can be used to perform
symbolic BDD-based verifiction by techniques described in the section on "Symbolic Verification".

However, Copper also has some limitations. In particular, Copper does not support non-integral basic data
types such as floats and doubles. It treats all variables of such unsupported types as integers. Copper also
treats pointers in an unsound manner. In practice, this means that the result of running Copper on a pointer-
manipulating program cannot be trusted in general. However, Copper is still useful as a bug-finding tool on
such programs. In addition, Copper treats integers as unbounded quantities by default. Allowing unbounded
integers is, in general, unsound because integers are represented as bit-vectors in practice. This is usually not
a big issue, but can be avoided by techniques described later in the section on "Bit-Vector Semantics". Finally,
Copper is unable to handle recursive programs by default since it uses inlining. Techniques to verify recursive
programs with Copper are described later in the section on "Recursion".

We recommend that you have Copper installed and setup to use this tutorial to its fullest potential. We use the
well-known Dining Philosophers problem as a running example for learning how to use Copper. The Dining
Philosophers problem consists of n philosophers and n forks placed alternately around a table. Thus, there is
exaclty one fork between two successive philosphers and exactly one philosopher between two successive
forks. We first model check philosophers and forks individually. Later on, we model check an assembly
consisting of two philosophers and two forks.

Modeling a Philosopher
Each philosopher repeats the following steps ad-infinitum:

1. Picks up the fork to his right
2. Picks up the fork to his left
3. Eats
4. Puts down the fork to his left
5. Puts down the fork to his right
6. Goes back to Step 1

Then the following C procedure models a philosopher:

void philosopher()
{
 int eating;
 eating = 0;
 while(1) {
 pick_left();
 pick_right();
 eating = 1;
 if(eating != 1) assert(0);
 eating = 0;
 put_left();

www.sei.cmu.edu 6 of 23

 put_right();
 }
 }

Note that we have used a variable eating to indicate whether the philosopher is currently eating or not. In
addition, we have introduced an assertion for describing how Copper can be used to find assertion violations.
Copper only supports assertions of the form assert(0). Thus, we assert any condition cond as if(!cond)
assert(0).

Specifying Procedures
In practice, almost all programs we verify are incomplete. In other words, there are procedures (typically,
library routines) called by the target program for which we don't have the source code. In the philospher
example above, the procedures for acquiring and releasing forks are examples of such undefined procedures.
Copper provides a mechanism for specifying the behavior of undefined procedures in terms of finite state
machines, also known as Labeled Transition Systems (LTSs). During verification, these procedure
specifications are used by Copper to construct appropriate models which are subsequently analyzed. We now
describe the process of specifying LTSs, followed by the mechanism for associating these LTSs with
procedures.

LTS Syntax

Copper uses an FSP-like notation to specify LTSs. It does not support the full FSP syntax. On the other hand,
it supports certain features that are not available in FSP. More details can be found in the grammar for the
LTS syntax. Below, we show an LTS, followed by its expression in Copper's notation:

S1 = (call_foo -> S2),
S2 = (return {$0 == 10} -> STOP | return {$0 == 20} -> STOP).

The name of a state machine is the name of its initial state. The transitions of the state machine are labelled
with actions. We use actions to capture externally observable behavior, such as acquiring and releasing
resources, sending messages, returning values, etc. Actions form the basis of synchronization between
concurrently executing threads of a program. Actions, along with constraints on data variables, also serve as
the building blocks of program specifications. The transition from the initial state (S1) is labelled by an action
call_foo. Such actions, with only names, are also called basic actions.

IMPORTANT: The name of a state machine must always begin with a capital letter. This is followed by zero or
more letters and digits. These and other details can be found in the specification grammar.

Return actions

We extend the FSP notation to express a special class of actions called return actions. Return actions are of
the form return {expression} or return {} where the former expresses the return of an integer value and the
latter expresses returning a void value. In a return action of the form return {expression}, the expression
represents a condition satisfied by the return value. The return value itself is represented by the dummy
variable $0. For instance, the action return {$0 < 5} represents the return of an integer value that is strictly

www.sei.cmu.edu 7 of 23

less than 5.

Linking LTSs and Procedures

Returning to our philosopher example, we now wish to specify the behaviors of the undefined procedures.
First, we wish to specify that the procedure pick_left performs the action pick_left and returns a void value.
To do this, we first write down an LTS that encapsulates the desired behavior:

PickLeft = (pick_left -> return {} -> STOP).

Note that two or more actions in a row imply the existence of an unspecified state between every pair of
consecutive actions. Thus, in the above, there is an unspecified state between the actions pick_left and
return{}. Next, we associate the procedure pick_left with the LTS PickLeft:

procedure pick_left { abstract { 1, PickLeft }; }

Note the keywords procedure and abstract. The block keyword procedure indicates that we are going to say
something about a C procedure. It is followed by the name of the procedure and then by a set of statements
enclosed within a pair of curly braces. Each such statement typically consists of a statement keyword followed
by other terms. The procedure whose name follows procedure is often referred to as the scope procedure.
The abstract keyword indicates that we are expressing an abstraction relation between the scope procedure
and an LTS. An abstract statement consists of two elements: (1) a guard which is a C expression constraining
the calling context, and (2) the LTS to be associated. These two elements are enclosed by curly braces and
separated by commas.

In the example above, the guard is 1 and the LTS is PickLeft. Note that 1 denotes True according to C
semantics. This means that, according to the above abstraction, the LTS PickLeft specifies the behavior of
the procedure pick_left under all calling contexts. In general, Copper allows dummy variable $1, $2, etc. to be
used in guards, where $i refers to the i-th argument of the scope procedure. Thus, the following specification
means that the behavior of procedure foo is modeled by the LTS Foo1 when foo is callled with a non-zero
argument and by the LTS Foo2 otherwise.

procedure foo { abstract { ($1 != 0), Foo1 }; }
procedure foo { abstract { ($1 == 0), Foo2 }; }

Of course, we would also have to define the LTSs Foo1 and Foo2 separately. In addition, the procedure
foo would always have to be invoked with at least one argument. Multiple procedure blocks can be combined
into one as long as they have the same scope procedure. Also the order of statements within a procedure
block is irrelevant. Thus, the above two procedure blocks together is equivalent to the following single
procedure block:

procedure foo {
 abstract { ($1 != 0), Foo1 };
 abstract { ($1 == 0), Foo2 };
}

Copper requires that the guards of abstraction statements for any scope procedure be mutually disjoint and
complete (i.e. cover all possibilities of argument valuations). This is necessary to enable Copper to
unambiguously identify the applicable abstraction in any given calling context of the scope procedure. We now
specify the behaviors of the remaining undefined procedures in our philosopher example:

PickRight = (pick_right -> return {} -> STOP).
procedure pick_right { abstract { 1, PickRight }; }

PutLeft = (put_left -> return {} -> STOP).
procedure put_left { abstract { 1, PutLeft }; }

www.sei.cmu.edu 8 of 23

PutRight = (put_right -> return {} -> STOP).
procedure put_right { abstract { 1, PutRight }; }

IMPORTANT: So far, we have associated every procedure with an LTS that simply performs an action and
returns a void value. In practice, this is so common that Copper provides a shortcut without having to write any
specifications. Specifically, suppose we want to associate a procedure foo with an LTS that peforms bar and
returns. We can do this by simply replacing every call to foo in the program with a call to a special procedure
__COPPER_HANDSHAKE__ with the argument "bar". Thus, in our philosopher example, we can replace the
call to pick_left() with __COPPER_HANDSHAKE__("pick_left") and so on for the other procedure calls.
Remember this is just a shortcut. You can always use LTSs, or specify some procedures using LTSs and
others using __COPPER_HANDSHAKE__, as we have done in philosopher.pp and philosopher.spec.

Specifying Programs
It is now time to specify the entire program that we want to verify. In our case the program is sequential, i.e. it
has a single thread consisting of the procedure philosopher. We first describe how to write down claims (or
properties) that we want to verify. We next show how to associate claims with programs. The nature of a claim
depends on the kind of property we wish to check. Currently, Copper supports the following types of
verification:

1. Simulation conformance between a program and an LTS specification.
2. Trace containment between a program and an LTS specification.
3. A program contains no trace that would cause an LTS specification to reach an ERROR state.
4. A program satisfies a linear temporal logic specification.
5. A program does not violate an assertion.
6. A program does not deadlock.

LTS Claims

In the case of checking simulation, trace containment or ERROR state reachability, the claim is simply an LTS.
For instance, suppose we want to ensure that the philosopher always performs the actions pick_left and
put_left alternately, starting with pick_left. Then we can check that it is simulated by the following
specification LTS:

PhilSpec1 = (pick_left -> put_left -> PhilSpec1).

IMPORTANT: Simulation can be viewed as tree containment, and hence is stronger than trace containment
when the specification is non-deterministic. For deterministic specifications, simulation and trace containment
are equivalent. Thus, for the above specification, we can check trace containment instead of simulation.

Note that the LTS PhilSpec1 only refers to the actions pick_left and put_left and is blind to all other actions.
Thus, the trace T1 = (pick_left , pick_right , put_left) does not violate PhilSpec1. But suppose that we also
want to ensure that the philosopher does not perform a pick_right between a pick_left and put_left. Clearly,
the specification PhilSpec1 is incorrect. However, we can obtain a correct specification by simply extending
the alphabet of the specification with pick_right as follows:

PhilSpec2 = (pick_left -> put_left -> PhilSpec2) + { pick_right }.

In general, you can extend the alphabet of any state machine by adding a plus sign and a list of actions
enclosed within curly braces at the end of the description of the initial state of that state machine. Now, the
specification no longer ignores pick_right and therefore is violated by the trace T1 defined above. Indeed,
while our philosopher satisfies PhilSpec1 it fails PhilSpec2.

ERROR State Reachability
www.sei.cmu.edu 9 of 23

file:///Users/lb/Desktop/copper/philosopher.pp
file:///Users/lb/Desktop/copper/philosopher.spec

Observe that the trace T1 is a specific violation of the more general specification PhilSpec2. In practice, we
are often interested in the presence of such specific "buggy" behaviors in programs. Copper provides a direct
mechanism for such bug-hunting via ERROR state reachability. In this mechanism, we write down an LTS
specification, such that any "buggy" trace takes you from the initial state to a state whose name begins with
"ERROR". For instance, suppose that in the case of the philosopher, two successive occurences of pick_left
without an intermediate put_left is undesirable. We can specify this with the following LTS:

PhilSpec3 = (pick_left -> pick_left -> ERROR3) + { put_left }.

We then check if our program contains the undesirable behavior via ERROR state reachability using the above
specification. In essence, when doing ERROR state reachability, Copper checks if the program contains a
trace that corresponds to some path in the specification from the initial state to an ERROR state. Such traces,
by definition, exhibit program bugs.

LTL Claims

Copper supports temporal logic claims expressed in State/Event Linear Temporal Logic (SE-LTL). The syntax
of SE-LTL is similar to that of LTL, except that the atomic formulas are either actions or expressions involving
program variables. In addition, SE-LTL supports the standard logical operators of conjunction (&), disjunction
(|) and negation (!), as well as the next-time (#X), until (#U), globally (#G), eventually (#F) and release (#R)
temporal operators. The syntax of SE-LTL follows that of LTL. An expression atomic formula is treated exactly
as a proposition. Thus, it satisfies an infinite trace if and only if it holds on the first state of the trace. In
contrast, an action atomic formula satisfies an infinite trace if and only if it is the first action to occur on the
trace. The semantics of the logical and temporal operators is exactly the same as in the case of LTL. For
example, suppose we want to check that whenever the philosopher is eating, it eventually always releases its
left fork. This is specified by the following Copper claim:

ltl PhilSpec4 { #G ([P0::eating == 1] => #F put_left); }

Similarly, the claim that every occurrence of pick_left is eventually followed by another occurence of pick_left
is expressed by the following claim:

ltl PhilSpec5 { #G (pick_left => (#X (#F pick_left))); }

Note that the #X operator is important in the above claim to ensure that every pick_left is eventually followed
by a different occurrence of pick_left. If we had omitted the #X operators, the claim would always be trivially
satisfied. Also, when writing down SE-LTL claims, data constraints are always enclosed within square braces,
but actions are not. Further details about the SE-LTL can be found in the specification grammar. Note that in
PhilSpec4, the occurrence of "eating" is preceeded by "P0::". Intuitively, this means that this claim refers to
the variable "eating" of the first (and this case, only) thread of our program. The significance of this notation
will become clearer in the next section, where we define the process of associating claims with programs.

IMPORTANT: When checking for assertion violations and possible deadlocks, the specifications are implicitly
defined and hence do not need to be specified.

Connecting Programs and Claims

The following program block associates each of the Philosopher claims defined above with the Philosopher
program.

program philosopher {
 specification abs_1, {1}, PhilSpec1;
 specification abs_2, {1}, PhilSpec2;
 specification abs_3, {1}, PhilSpec3;
 specification abs_4, {1}, PhilSpec4;
 specification abs_5, {1}, PhilSpec5;

www.sei.cmu.edu 10 of 23

}

This looks a lot like a procedure block but there are some crucial differences. First, it begins with the keyword
program instead of procedure. This is followed by a list of procedure names. Intuitively these are the names of
the procedures which execute in parallel and constitute the program. In the above block this list has a single
procedure name viz. philosopher, signifying that our program has just one thread that executes philosopher.
Following the list of procedure names we have a sequence of specifications enclosed in curly braces. A
specification begins with the specification keyword, and has three other elements. The first is the name of the
specification. This is used by Copper to identify the target specification, and hence the target program, to be
validated. The second is a list of guards, one for each thread of the program. Each guard in the list expresses
the beginning state of the corresponding thread. In the above block, the list has just one element that
expresses the starting context of philosopher. Note that the list of guards is enclosed within curly braces. The
third and final element is the name of the LTS which specifies the program.

IMPORTANT: Local and global variables must be referred to in specification files by prefixing them with an
appropriate process identifier. This is important for disambiguation because Copper can verify concurrent
programs and the same variable may appear in multiple threads. The general variable format is Pn::v where n
is the thread number and v is the variables name. The threads are numbered in the order in which they
appear in the program declaration, starting with zero. For example consider the following program
declaration:

program foo,foo,bar { ... }

Then we refer to variable v of the first thread (foo) as P0::v, to variable v of the second thread (foo) as P1::v
and to variable v of the third thread (bar) as P2::v.

IMPORTANT: The list of guards element of a specification is particularly important when checking claims that
involve program variables. During verification, all variables are assumed to have non-deterministic values in
the initial state. This causes problems for simple claims like "x is always >= 0," for which Copper will report a
counter-example in which the claim does not hold in the initial state. In such cases, the list of guards should
be used to restrict Copper to exploration of cases in which the guards are satisfied. For example, by supplying
{P0::x == 0} as a list of guards for a specification, Copper will only consider cases in which x initially has a
value of 0.

Comments

You can use either C-style or C++ style comments in specification files.

/* this is a comment */
// so is this one

Running Copper
We are now ready to run Copper. First save the C program (which must be preprocessed using CIL) in a file
whose name must end with ".pp", say philosopher.pp. Next save the specifications in another file whose name
ends with ".spec", for example philosopher.spec. Finally run Copper. To check simulation between the
program and PhilSpec1 use the following command line:

$ copper --default --specification abs_1 philosopher.pp philosopher.spec

Copper tries to validate the specification with name abs_1 which involves the claim PhilSpec1. The --default
option instructs Copper to use the default set of options. For details on other options that Copper can accept,
look at the user's manual. If all goes well, Copper should be able to successfully verify the specification and
produce an output (here's how you should read Copper's output) that ends with something like this:

www.sei.cmu.edu 11 of 23

file:///Users/lb/Desktop/copper/philosopher.pp
file:///Users/lb/Desktop/copper/philosopher.spec
file:///Users/lb/Desktop/copper/philosopher.1.txt

conformance relation exists !!
specification abs_1 is valid ...

To check trace containment with PhilSpec1, we use the additional option --trace as follows:

$ copper --default --specification abs_1 philosopher.pp philosopher.spec --trace

Once again, Copper proves trace containment and indicates this by the following output:

conformance relation exists !!
specification abs_1 is valid ...

Now, we move on to the second claim PhilSpec2, which we expect to fail. Indeed, running Copper with:

$ copper --default --specification abs_2 philosopher.pp philosopher.spec --trace

yields an output that contains a counterexample and the following indication of failure:

conformance relation does not exist !!
specification abs_2 is invalid ...

The next claim PhilSpec3 is one of ERROR state reachability, and can be checked with the following:

$ copper --default --specification abs_3 philosopher.pp philosopher.spec --reach

Note that we use the option --reach instead of --trace and as expected Copper succeeds in proving that the
claim holds on the program. Finally, we check the remaining two SE-LTL claims using the --ltl option.

$ copper --default --specification abs_4 philosopher.pp philosopher.spec --ltl
$ copper --default --specification abs_5 philosopher.pp philosopher.spec --ltl

As expected, both claims are found to hold. Finally, we can show that the assertion in philosopher can never
be violated using the --assert option. Note that even though the specification for assertion violations is defined
implicitly, we still have to mention an specification name to identify the program in which we wish to look for
assertion violations. We achieve this via a "dummy" claim which, in our specification, looks like:

program philosopher { specification abs_6, {1}, DefaultSpec; }

We then supply the name of the specification (abs_6 in this case) to Copper as follows:

$ copper --default --specification abs_6 philosopher.pp philosopher.spec --assert

We note that DefaultSpec is a special LTS pre-defined by Copper and hence we recommend its use for
dummy claims. Similarly, dummy claims are also used for deadlock detection, as presented in the next
section.

IMPORTANT: Assertion violations provide a mechanism for checking the reachability of a certain program
location. Simply insert an assert(0) at that location and then check for assertion violations.

Reading Copper's Output

The execution of Copper is an iterative process since Copper attempts to verify increasingly refined models of
its target program. If Copper terminates successfully, near the very end of the output you should find a line that
says "conformance relation exists !!" or "conformance relation does not exist !!". The first alternative
indicates that Copper found the claim being checked to hold on the target program. The second case indicates

www.sei.cmu.edu 12 of 23

file:///Users/lb/Desktop/copper/philosopher.2.txt
file:///Users/lb/Desktop/copper/philosopher.2.ce
file:///Users/lb/Desktop/copper/philosopher.spec

that the target claim does not hold on the target program. In the second situation, the output also contains a
counterexample just above the "conformance relation does not exist !!". Since Copper executes iteratively,
it may print out several counterexamples while it runs. The last counterexample displayed by Copper is the one
that actually shows the failure of the target claim. This counterexample starts with:

<<< BEGIN CONCRETE COUNTEREXAMPLE >>>

and ends with:

<<< END CONCRETE COUNTEREXAMPLE >>>

The body of the counterexample consists of an alternating sequence of states and actions, beginning and
ending with a state. Actions are simply sandwiched between two lines that consist of a sequence of plus signs.
For instance, the action pick_left is displayed as follows:

+++
 pick_left
+++

In contrast, a state is more complicated and consists of three distinct elements. The first element is sequence
of control locations, one for each thread. The location for any thread corresponds to the statement that thread
is about to execute. The second element is a set of data constraints indicating values of various propositions
appearing in the specification. The second element is separated from the first by a line consisting of the pound
or hash sign. The third element is an assignment to various program variables indicating their current values.
The third element is separated from the second by a line consisting of the equals sign. For instance, consider
the following state that appears in the output showing a deadlock in a system consisting of two philosopher
threads and two fork threads (this example is described in more detail in the next section):

[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:0:0]
[<<-1>> P1::temp_var_16 = __COPPER_HANDSHAKE__ ("pick_right_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:2]
###
===
(P1::eating = 0)(P0::eating = 0)

The first four lines show the statements that the four program threads (in the order they appear after the
program keyword) are about to execute. The next line separates the first element from the second. After that,
we immediately have the separator line between the second and third elements of the state. This is because
the second element of the state is empty since, for deadlock detection, the specification has no propositions.
Finally, we have the third element of the state which shows that the variables eating of the first two threads
each have the value zero.

Modelling Philosophers and Forks
We now verify an assembly consisting of two philosophers and two forks. The key questions is: how the four
threads communicate with each other. Copper supports a very general communication mechanism where
threads can exchange data via global variables (as in threads) and also synchronize with each other by
handshaking on a common action (as in CSP processes). Handshaking means that whenever a thread
performs an action, say foo, it must do so jointly with all other threads that also have foo in their alphabets. If
any of these other threads is unable to perform foo (from whatever state that thread is currently in), then foo
cannot occur. We use the following convention when modeling our assembly:

The philosopher procedures are called phil1 and phil2, while the fork procedures are called fork1 and
fork2.
Phil1 has fork1 to his right and fork2 to his left. Hence, phil2 has fork2 to his right and fork1 to his left.

www.sei.cmu.edu 13 of 23

file:///Users/lb/Desktop/copper/dp.2.txt

We model the picking and putting down of forks by actions of the form pick_x_y and put_x_y where x
could be left or right and y could be 1 or 2. Thus, the action pick_right_2 models phil2 picking up his
right fork, which is fork2.

With this convention, the following procedures model the philosophers and the forks:

void phil1()
{
 int eating;
 eating = 0;
 while(1) {

__COPPER_HANDSHAKE__("pick_left_1");

__COPPER_HANDSHAKE__("pick_right_1");
 eating = 1;
 if(eating != 1) assert(0);
 eating = 0;

__COPPER_HANDSHAKE__("put_left_1");

__COPPER_HANDSHAKE__("put_right_1");
 }
}

void phil2()
{
 int eating;
 eating = 0;
 while(1) {

__COPPER_HANDSHAKE__("pick_left_2");

__COPPER_HANDSHAKE__("pick_right_2");
 eating = 1;
 if(eating != 1) assert(0);
 eating = 0;

__COPPER_HANDSHAKE__("put_left_2");

__COPPER_HANDSHAKE__("put_right_2");
 }
}

/* fork 1 */
void
fork1()
{

do_fork1();
}

/* fork 2 */
void
fork2()
{

do_fork2();
}

Of course we also need the following spepcification to define the procedures called by fork1 and fork2:

DoFork1 = (pick_right_1 -> put_right_1 -> DoFork1 | pick_left_2 -> put_left_2 -> DoFork1).
procedure do_fork1 { abstract { 1 , DoFork1 }; }
DoFork2 = (pick_right_2 -> put_right_2 -> DoFork2 | pick_left_1 -> put_left_1 -> DoFork2).
procedure do_fork2 { abstract { 1 , DoFork2 }; }

Note that the forks are shared resources and hence can be possessed by at most one philosopher at any time.
This is reflected by the definitions of do_fork1 and do_fork2 above. Look at files dp-2.pp and dp-2.spec for
the complete program and specification. The claim we are interested to check is that both philosophers can
never be eating at the same time. It is expressed as follows:

ltl DpSpec1 { #G [(P0::eating == 0) || (P1::eating == 0)]; }

We now run Copper:

$ copper --default --specification abs_1 dp-2.pp dp-2.spec --ltl

As expected, Copper succeeds in proving the claim. Note that we had to restrict the initial state of the program
since local variables can have any value at the beginning and the claim would fail immediately if we do not
restrict the initial values of P0::eating and P1::eating. We can now check for possible deadlocks in our
assembly as follows:

$ copper --default --specification abs_2 dp-2.pp dp-2.spec --deadlock

As expected, Copper succeeds in finding a deadlock and even provides a counterexample that shows how a
deadlock can occur. As in the case of assertion violations, we use a dummy claim for finding deadlocks since
the actual claim is implicitly defined but we still have to specify the threads of the program and their initial
states.

www.sei.cmu.edu 14 of 23

file:///Users/lb/Desktop/copper/dp-2.pp
file:///Users/lb/Desktop/copper/dp-2.spec
file:///Users/lb/Desktop/copper/dp.2.txt
file:///Users/lb/Desktop/copper/dp.2.ce

Miscellaneous Topics
We now describe some important issues related to Copper that we referred to earlier.

Symbolic Verification

As mentioned before, Copper uses explicit-state verification by default. It can be made to perform symbolic
BDD-based model checking via the command line option "--bp". In case you are curious, "bp" stands for
"Boolean Program", which is what Copper uses as an intermediate representation during symbolic verification.
Since later options override earlier ones, be sure that "--bp" occurs after "--default" in your command line.

Bit-Vector Semantics

Copper uses the Simplify theorem prover by default, which treats integers as unbounded quantities. If you
want bit-vector semantics use the command line option "--cprover". This forces Copper to use the Cprover
theorem prover, which treats integers as 32-bit wide vectors, instead of Simplify. Be warned, however, that
using Cprover typically makes Copper run much more slowly.

Recursion

By default, Copper inlines everything into one procedure, and hence is uanble to handle recursion. Use the "--
pds" option to verify recursive programs. Again, "pds" stands for "Push-Down System" which is what Copper
uses as an intermediate representation while verifying recursive programs. Copper only supports claims that
have finite trace counterexamples (i.e., safety claims) when verifying recursive programs. In particular, this
includes trace containment, ERROR state reachability and assertion violations, but excludes simulation, non-
safety SE-LTL claims, and deadlock detection. Copper cannot verify recursive programs symbolically so do
not combine "--pds" with "--bp".

In addition to abstract, there are several other keywords that can be used in procedure blocks for performing
specific tasks. We now mention a few important ones.

Supplying predicates

The user can manually supply predicates to guide Copper's predicate abstraction. Often this is useful when
Copper fails to discover a satisfactory set of predicates in a reasonable amount of time. Predicates are
supplied on a per-procedure basis. In this regard, an important restriction is that all user-supplied predicates
for a procedure foo must be syntactically equivalent to some branch condition in foo. Otherwise that predicate
is simply ignored by Copper. For example consider the following C procedure:

int foo()
{
 int x = 5;
 if(x < 10) return -1;
 else return 0;
}

Suppose we want to prove using Copper that foo is correctly specified by the following LTS:

FOO = (return {$0 == -1} -> STOP).

Normally we would do this by simply asking Copper to perform automated abstraction refinement (using the --
optPred option). However suppose we have a good idea about the predicates necessary for Copper to
complete successfully. For example, in this case (x < 10) is the required predicate (note that this corresponds
to a branch condition in foo). Then we can simply tell Copper to use this predicate by using the predicate
keyword. The following procedure block shows how to do this:

www.sei.cmu.edu 15 of 23

procedure foo { predicate (x < 10); }

Copper looks for branch statements in foo which have the branch condition (x < 10). If it finds any such
branch, it uses the corresponding branch condition as a seed predicate. Otherwise it ignores the user supplied
predicate. Multiple predicates can be supplied in one statement using a comma-separated list or they can be
supplied via multiple predicate statements. Also, the order in which predicates are supplied is irrelevant. For
example the two following procedure blocks each have the same effect as the procedure block above:

procedure foo {
 predicate (y == 10) , (w == 5) , (z +w > 20) , (x < 10) , (x+y != 5);
}

procedure foo {
 predicate (x+y != 5);
 predicate (z+w > 20) , (y == 10);
 predicate (x < 10) , (w == 5);
}

Inlining Procedures

Suppose procedure foo calls procedure bar. Normally Copper does not inline bar within foo even if the code
for bar is available. It has to be told explicitly to do this via the inline keyword. Here's a procedure block that
demonstrates how to do this. Once again inlining has to be done on a procedure-to-procedure basis. For
example the following procedure block does not cause bar to be inlined within some other procedure baz.

procedure foo { inline bar; }

Questions and Comments
At this point, you should be more or less familiar with Copper. However we are sure there will be many
questions and suggestions. Please feel free to email us and we will do our best to respond promptly and
correctly. Have fun with Copper !!

www.sei.cmu.edu 16 of 23

mailto:info@sei.cmu.edu?Subject=Copper

Copper Grammar for Specification Files
Comments are C/C++ style
Basics
Expressions
Additional Information About C Procedures
FSP Productions
LTL Productions
Top-Level Specification Productions

Comments are C/C++ style
comment : /* ... */ | // ...

Basics
identifier : lower_id | upper_id | dummy_var

int_constant : integer constant

string_literal : string literal

lower_id : identifier beginning with lower-case letter

upper_id : identifier beginning with upper-case letter

dummy_var : dummy variable beginning with a "$"

Expressions
primary_expression
 : identifier
 | int_constant
 | string_literal
 | "(" expression ")"

postfix_expression
 : primary_expression
 | postfix_expression "[" expression "]"
 | postfix_expression "(" ")"
 | postfix_expression "(" argument_expression_list ")"
 | postfix_expression "." identifier
 | postfix_expression "->" identifier
 | postfix_expression "++"
 | postfix_expression "--"

argument_expression_list
 : assignment_expression
 | argument_expression_list "," assignment_expression

www.sei.cmu.edu 17 of 23

unary_expression
 : postfix_expression
 | "++" unary_expression
 | "--" unary_expression
 | unary_operator cast_expression
 | "sizeof" unary_expression
 | "sizeof" "(" type_name ")"

unary_operator : "&" | "*" | "+" | "-" | "~" | "!"

cast_expression
 : unary_expression
 | "(" type_name ")" cast_expression
 | "(" type_name ")" list_initializer

multiplicative_expression
 : cast_expression
 | multiplicative_expression "*" cast_expression
 | multiplicative_expression "/" cast_expression
 | multiplicative_expression "%" cast_expression

additive_expression
 : multiplicative_expression
 | additive_expression "+" multiplicative_expression
 | additive_expression "-" multiplicative_expression

shift_expression
 : additive_expression
 | shift_expression "<<" additive_expression
 | shift_expression ">>" additive_expression

relational_expression
 : shift_expression { $$ = $1; }
 | relational_expression "<" shift_expression
 | relational_expression ">" shift_expression
 | relational_expression "<=" shift_expression
 | relational_expression ">=" shift_expression

equality_expression
 : relational_expression
 | equality_expression "==" relational_expression
 | equality_expression "!=" relational_expression

and_expression
 : equality_expression
 | and_expression "&" equality_expression

exclusive_or_expression
 : and_expression
 | exclusive_or_expression "^" and_expression

inclusive_or_expression
 : exclusive_or_expression
 | inclusive_or_expression "|" exclusive_or_expression

logical_and_expression
 : inclusive_or_expression

www.sei.cmu.edu 18 of 23

 | logical_and_expression "&&" inclusive_or_expression

logical_or_expression
 : logical_and_expression
 | logical_or_expression "||" logical_and_expression

conditional_expression
 : logical_or_expression
 | logical_or_expression "?" ":" conditional_expression
 | logical_or_expression "?" expression ":" conditional_expression

assignment_expression
 : conditional_expression
 | unary_expression assignment_operator assignment_expression

assignment_operator : "=" | "*=" | "/=" | "%=" | "+=" | "-=" | "<<=" | ">>=" | "&=" | "^=" | "|="

expression
 : assignment_expression
 | expression "," assignment_expression

constant_expression : conditional_expression

Additional Information About C Procedures

procedure_name : postfix_expression

component
 /*single name*/
 : procedure_name
 /*two names - second name to be substituted - ignore this for now*/
 | procedure_name "|" procedure_name

component_list
 /*name*/
 : component
 /*list*/
 | component_list "," component

inline_list
 /*name*/
 : procedure_name
 /*list*/
 | inline_list "," procedure_name

program_info
 : "program" component_list "{" program_decls "}"
 | "program" component_list "{" "}"

program_decls
 : program_decl
 | program_decls program_decl

program_decl
 : "specification" identifier "," "{" argument_expression_list "}" "," process_id ";"
 | "specification" identifier "," "{" argument_expression_list "}" "," ltl_formula_name ";"

www.sei.cmu.edu 19 of 23

procedure_info
 : "procedure" procedure_name "{" procedure_decls "}"
 | "procedure" procedure_name "{" "}"

procedure_decls
 /*pred*/
 : predicate_decl
 /*pred_list*/
 | procedure_decls predicate_decl
 /*fair_loop*/
 | fair_loop_decl
 /*fair_loop_list*/
 | procedure_decls fair_loop_decl
 /*aux*/
 | auxiliary_decl
 /*aux_list*/
 | procedure_decls auxiliary_decl
 /*inline*/
 | inline_decl
 /*inline_list*/
 | procedure_decls inline_decl
 /*alias*/
 | alias_decl
 /*alias_list*/
 | procedure_decls alias_decl
 /*abstract*/
 | abstract_decl
 /*abstract_list*/
 | procedure_decls abstract_decl
 /*context*/
 | context_decl
 /*context_list*/
 | procedure_decls context_decl

predicate_decl : "predicate" predicate_list ";"

fair_loop_decl : "fair_loop" predicate_list ";"

auxiliary_decl : "auxiliary" predicate_list ";"

predicate_list
 /*pred*/
 : conditional_expression
 /*list*/
 | predicate_list "," conditional_expression

inline_decl : "inline" inline_list ";"

alias_decl : "alias" alias_item_list ";"

alias_item_list
 : alias_item
 | alias_item_list "," alias_item

alias_item
 : "{" conditional_expression "," points_to_list "}"

www.sei.cmu.edu 20 of 23

points_to_list
 /*name*/
 : conditional_expression
 /*list*/
 | points_to_list "," conditional_expression

abstract_decl
 : "abstract" abstract_item_list ";"

abstract_item_list
 : abstract_item
 | abstract_item_list "," abstract_item

abstract_item
 : "{" conditional_expression "," process_id "}"

context_decl : "context" int_constant ";"

FSP Productions
process_id : upper_id

action_label
 /*id*/
 : lower_id
 /*normal return*/
 | "return" "{" conditional_expression "}"
 /*void return*/
 | "return" "{" "}"
 /*assign*/
 | "{" conditional_expression "=" "[" conditional_expression "]" "}"
 /*broadcast*/
 | lower_id "!!" "[" predicate_list "]"
 /*void send*/
 | lower_id "!" "[" "]"
 /*send*/
 | lower_id "!" "[" predicate_list "]"
 /*void receive*/
 | lower_id "?" "[" "]"
 /*receive*/
 | lower_id "?" "[" predicate_list "]"

action_label_list
 : action_label
 | action_label_list "," action_label

action_labels
 /*action*/
 : action_label

process_definition
 : process_id "=" process_body "."
 | process_id "=" process_body "+" "{" action_label_list "}" "."

process_body
 /*local*/

www.sei.cmu.edu 21 of 23

 : local_process
 /*list*/
 | local_process "," local_process_defs

local_process_defs
 /*local*/
 : local_process_def
 /*list*/
 | local_process_defs "," local_process_def

local_process_def : process_id "=" local_process

local_process
 /*stop*/
 : "STOP"
 /*id*/
 | process_id
 /*choice*/
 | "(" process_choice ")"

process_choice
 /*action*/
 : action_prefix
 /*choice*/
 | process_choice "|" action_prefix

action_prefix : prefix_actions PTR_OP local_process

prefix_actions
 /*action*/
 : action_labels
 /*prefix*/
 | prefix_actions "->" action_labels

prop_label
 : process_id "=" "{" predicate_list "}" "{" predicate_list "}" ";"
 | process_id "=" "{" predicate_list "}" "{" "}" ";"
 | process_id "=" "{" "}" "{" predicate_list "}" ";"

fsp_definition
 /*process*/
 : process_definition
 /*propositional_labeling*/
 | prop_label

LTL Productions
ltl_formula_name : upper_id primary_ltl_formula
 : "[" conditional_expression "]"
 | action_label
 | "(" ltl_formula ")"

unary_ltl_formula
 : primary_ltl_formula
 | "!" unary_ltl_formula
 | "#X" unary_ltl_formula
 | "#G" unary_ltl_formula

www.sei.cmu.edu 22 of 23

 | "#F" unary_ltl_formula

and_ltl_formula
 : unary_ltl_formula
 | and_ltl_formula "&" unary_ltl_formula

or_ltl_formula
 : and_ltl_formula
 | or_ltl_formula "|" and_ltl_formula

until_ltl_formula
 : or_ltl_formula
 | until_ltl_formula "#U" or_ltl_formula

release_ltl_formula
 : until_ltl_formula
 | release_ltl_formula "#R" until_ltl_formula

implies_ltl_formula
 : release_ltl_formula
 | release_ltl_formula "=>" implies_ltl_formula

ltl_formula : implies_ltl_formula

ltl_formula_def : "ltl" ltl_formula_name "{" ltl_formula ";" "}"

Top-Level Specification Productions
ext_def_list
 /*fsp*/
 : fsp_definition
 /*list_fsp*/
 | ext_def_list fsp_definition
 /*ltl*/
 | ltl_formula_def
 /*list_ltl*/
 | ext_def_list ltl_formula_def
 /*program*/
 | program_info
 /*list_program*/
 | ext_def_list program_info
 /*procedure*/
 | procedure_info
 /*list_procedure*/
 | ext_def_list procedure_info

spec_translation_unit : ext_def_list

www.sei.cmu.edu 23 of 23

	manual
	Local Disk
	Copper User Manual

	tutorial
	Local Disk
	Copper Tutorial

	spec-grammar
	Local Disk
	Copper Specification Grammar

/* philosopher 1 */
void phil1()
{
 int eating;
 eating = 0;
 while(1) {
 __COPPER_HANDSHAKE__("pick_left_1");
 __COPPER_HANDSHAKE__("pick_right_1");
 eating = 1;
 if(eating != 1) assert(0);
 eating = 0;
 __COPPER_HANDSHAKE__("put_left_1");
 __COPPER_HANDSHAKE__("put_right_1");
 }
}

/* philosopher 2 */
void phil2()
{
 int eating;
 eating = 0;
 while(1) {
 __COPPER_HANDSHAKE__("pick_left_2");
 __COPPER_HANDSHAKE__("pick_right_2");
 eating = 1;
 if(eating != 1) assert(0);
 eating = 0;
 __COPPER_HANDSHAKE__("put_left_2");
 __COPPER_HANDSHAKE__("put_right_2");
 }
}

/* fork 1 */
void fork1()
{
 do_fork1();
}

/* fork 2 */
void fork2()
{
 do_fork2();
}

DoFork1 = (pick_right_1 -> put_right_1 -> DoFork1 | pick_left_2 -> put_left_2 -> DoFork1).
procedure do_fork1 { abstract { 1 , DoFork1 }; }
DoFork2 = (pick_right_2 -> put_right_2 -> DoFork2 | pick_left_1 -> put_left_1 -> DoFork2).
procedure do_fork2 { abstract { 1 , DoFork2 }; }

program phil1,phil2,fork1,fork2 {
 specification abs_1,{P0::eating == 0,P1::eating == 0,1,1},DpSpec1;
 specification abs_2,{1,1,1,1},DefaultSpec;
}

ltl DpSpec1 { #G [(P0::eating == 0) || (P1::eating == 0)]; }

<<< BEGIN CONCRETE COUNTEREXAMPLE >>>
[<<-1>> {P0::eating = 0} <<[]>>:65535:255]
[<<-1>> {P1::eating = 0} <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===

+++
		P0::epsilon
+++
[<<-1>> branch (1) <<[]>>:65535:255]
[<<-1>> {P1::eating = 0} <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> {P1::eating = 0} <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P1::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> branch (1) <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		P1::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_15 = __COPPER_HANDSHAKE__ ("pick_left_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		P2::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_15 = __COPPER_HANDSHAKE__ ("pick_left_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:0]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		P3::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_15 = __COPPER_HANDSHAKE__ ("pick_left_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:0]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:0]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		pick_left_2
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_15 = __COPPER_HANDSHAKE__ ("pick_left_2") <<[]>>:0:0]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:0]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		P1::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_16 = __COPPER_HANDSHAKE__ ("pick_right_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:0]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		pick_left_1
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:0:0]
[<<-1>> P1::temp_var_16 = __COPPER_HANDSHAKE__ ("pick_right_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:2]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_11 = __COPPER_HANDSHAKE__ ("pick_right_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_16 = __COPPER_HANDSHAKE__ ("pick_right_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:2]
###
===
(P0::eating = 0)(P1::eating = 0)
<<< END CONCRETE COUNTEREXAMPLE >>>

COPPER version 2.0 ...
Command Line: copper --default --specification abs_2 dp-2.pp dp-2.spec --deadlock
Simplify process started ...
parsing preprocessed C file dp-2.pp ...
parsing specification file dp-2.spec ...
control locations created ...
skip locations eliminated ...
useless branch locations eliminated ...
procedures inlined ...
number of locations before parallelization = 10 ...
number of locations after parallelization = 9 ...
proc manager for phil1 created ...
component for phil1 created ...
number of locations before parallelization = 10 ...
number of locations after parallelization = 9 ...
proc manager for phil2 created ...
component for phil2 created ...
number of locations before parallelization = 3 ...
number of locations after parallelization = 3 ...
proc manager for fork1 created ...
component for fork1 created ...
number of locations before parallelization = 3 ...
number of locations after parallelization = 3 ...
proc manager for fork2 created ...
component for fork2 created ...
relevant propositions computed ...
inputs processed ...
checking DefaultSpec {Deadlock} temp_var_7
starting iteration number 1 ...
model extracted in 3.7 milliseconds ...
implementation machine extracted in 4.0 milliseconds ...
global states : (11 11 4 4) = 1936
number of reachable states = 13 ...
[<<-1>> {P0::eating = 0} <<[]>>:65535:255]
[<<-1>> {P1::eating = 0} <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> branch (1) <<[]>>:65535:255]
[<<-1>> {P1::eating = 0} <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> {P1::eating = 0} <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
+++
		P1::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> branch (1) <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
+++
		P1::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_15 = __COPPER_HANDSHAKE__ ("pick_left_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
+++
		P2::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_15 = __COPPER_HANDSHAKE__ ("pick_left_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:0]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
+++
		P3::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_15 = __COPPER_HANDSHAKE__ ("pick_left_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:0]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:0]
###
===
+++
		pick_left_2
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_15 = __COPPER_HANDSHAKE__ ("pick_left_2") <<[]>>:0:0]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:0]
###
===
+++
		P1::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_16 = __COPPER_HANDSHAKE__ ("pick_right_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:0]
###
===
+++
		pick_left_1
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:0:0]
[<<-1>> P1::temp_var_16 = __COPPER_HANDSHAKE__ ("pick_right_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:2]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_11 = __COPPER_HANDSHAKE__ ("pick_right_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_16 = __COPPER_HANDSHAKE__ ("pick_right_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:2]
###
===
global counter example dag computed ...
Deadlock freedom checked in 12.9 milliseconds ...
Cprover formula has 220 variables and 551 clauses ...
Cprover formula has 315 variables and 685 clauses ...
Cprover formula has 507 variables and 1031 clauses ...
<<< BEGIN CONCRETE COUNTEREXAMPLE >>>
[<<-1>> {P0::eating = 0} <<[]>>:65535:255]
[<<-1>> {P1::eating = 0} <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===

+++
		P0::epsilon
+++
[<<-1>> branch (1) <<[]>>:65535:255]
[<<-1>> {P1::eating = 0} <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> {P1::eating = 0} <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P1::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> branch (1) <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		P1::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_15 = __COPPER_HANDSHAKE__ ("pick_left_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:65535:255]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		P2::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_15 = __COPPER_HANDSHAKE__ ("pick_left_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:0]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:65535:255]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		P3::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_15 = __COPPER_HANDSHAKE__ ("pick_left_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:0]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:0]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		pick_left_2
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_15 = __COPPER_HANDSHAKE__ ("pick_left_2") <<[]>>:0:0]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:0]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		P1::epsilon
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_16 = __COPPER_HANDSHAKE__ ("pick_right_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:0]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		pick_left_1
+++
[<<-1>> P0::temp_var_10 = __COPPER_HANDSHAKE__ ("pick_left_1") <<[]>>:0:0]
[<<-1>> P1::temp_var_16 = __COPPER_HANDSHAKE__ ("pick_right_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:2]
###
===
(P0::eating = 0)(P1::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_11 = __COPPER_HANDSHAKE__ ("pick_right_1") <<[]>>:65535:255]
[<<-1>> P1::temp_var_16 = __COPPER_HANDSHAKE__ ("pick_right_2") <<[]>>:65535:255]
[<<-1>> P2::temp_var_8 = do_fork1 () <<[]>>:0:2]
[<<-1>> P3::temp_var_9 = do_fork2 () <<[]>>:1:2]
###
===
(P0::eating = 0)(P1::eating = 0)
<<< END CONCRETE COUNTEREXAMPLE >>>
conformance relation does not exist !!
specification abs_2 is invalid ...
total global time = 92.5 milliseconds
total cpu time = 70.0 milliseconds
total input processing time = 18.6 milliseconds
total Buchi automaton construction time = 0.0 milliseconds
total implementation machine extraction time = 4.0 milliseconds
total verification time = 12.9 milliseconds
total proof generation time = 0.0 milliseconds
total abstraction refinement time = 51.9 milliseconds
total CE generation time = 11.0 milliseconds
total CE verification time = 0.0 milliseconds
total predicate abstraction refinement time = 0.0 milliseconds
total LTS abstraction refinement time = 0.0 milliseconds
total number of eliminating combinations = 0
max number of eliminating combinations for a CE = 0
max size of eliminating combination = 0
max size of tried combination = 0
number of iterations = 1
number of predicate iterations = 1
number of lts iterations = 0
number of seed branches : 0
number of explored states : 1936
number of theorem prover calls = 2
number of formulas found in cache = 0
number of formulas stored in cache = 2
number of membership calls to MAT = 0
number of MAT membership cache misses = 0
number of candidate calls to MAT = 0
assumption alphabet size = 0
optimal assumption alphabet size = 0
assumption alphabet ratio = 0.000000
total certificate CNF size = 0
total certificate resolution file size = 0
total certificate packed resolution file size = 0
total certificate zipped resolution file size = 0
total witness file size = 0
total witness zipped file size = 0
total certificate zipped file size = 0
Simplify process destroyed ...
terminating normally ...

COPPER version 2.0 ...
Command Line: copper --default --specification abs_1 philosopher.pp philosopher.spec
Simplify process started ...
parsing preprocessed C file philosopher.pp ...
parsing specification file philosopher.spec ...
control locations created ...
skip locations eliminated ...
useless branch locations eliminated ...
procedures inlined ...
number of locations before parallelization = 10 ...
number of locations after parallelization = 9 ...
proc manager for philosopher created ...
component for philosopher created ...
relevant propositions computed ...
inputs processed ...
checking PhilSpec1 {simul} temp_var_8
starting iteration number 1 ...
model extracted in 0.4 milliseconds ...
implementation machine extracted in 0.8 milliseconds ...
global states : (1048576) = 1048576
simulation checked in 3.5 milliseconds ...
conformance relation exists !!
specification abs_1 is valid ...
total global time = 45.3 milliseconds
total cpu time = 10.0 milliseconds
total input processing time = 36.0 milliseconds
total Buchi automaton construction time = 0.0 milliseconds
total implementation machine extraction time = 0.8 milliseconds
total verification time = 3.5 milliseconds
total proof generation time = 0.0 milliseconds
total abstraction refinement time = 0.0 milliseconds
total CE generation time = 0.0 milliseconds
total CE verification time = 0.0 milliseconds
total predicate abstraction refinement time = 0.0 milliseconds
total LTS abstraction refinement time = 0.0 milliseconds
total number of eliminating combinations = 0
max number of eliminating combinations for a CE = 0
max size of eliminating combination = 0
max size of tried combination = 0
number of iterations = 1
number of predicate iterations = 1
number of lts iterations = 0
number of seed branches : 0
specification details : 2 states 2 transitions
number of explored states : 1048576
number of theorem prover calls = 2
number of formulas found in cache = 0
number of formulas stored in cache = 2
number of membership calls to MAT = 0
number of MAT membership cache misses = 0
number of candidate calls to MAT = 0
assumption alphabet size = 0
optimal assumption alphabet size = 0
assumption alphabet ratio = 0.000000
total certificate CNF size = 0
total certificate resolution file size = 0
total certificate packed resolution file size = 0
total certificate zipped resolution file size = 0
total witness file size = 0
total witness zipped file size = 0
total certificate zipped file size = 0
Simplify process destroyed ...
terminating normally ...

<<< BEGIN CONCRETE COUNTEREXAMPLE >>>
[<<-1>> {P0::eating = 0} <<[]>>:65535:255]
###
===

+++
		P0::epsilon
+++
[<<-1>> branch (1) <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = pick_left () <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = pick_left () <<[]>>:0:0]
###
===
(P0::eating = 0)
+++
		pick_left
+++
[<<-1>> P0::temp_var_10 = pick_left () <<[]>>:0:2]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_11 = __COPPER_HANDSHAKE__ ("pick_right") <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		pick_right
+++
[<<-1>> P0::temp_var_11 = __COPPER_HANDSHAKE__ ("pick_right") <<[]>>:0:0]
###
===
(P0::eating = 0)
<<< END CONCRETE COUNTEREXAMPLE >>>

COPPER version 2.0 ...
Command Line: copper --default --specification abs_2 philosopher.pp philosopher.spec --trace
Simplify process started ...
parsing preprocessed C file philosopher.pp ...
parsing specification file philosopher.spec ...
control locations created ...
skip locations eliminated ...
useless branch locations eliminated ...
procedures inlined ...
number of locations before parallelization = 10 ...
number of locations after parallelization = 9 ...
proc manager for philosopher created ...
component for philosopher created ...
relevant propositions computed ...
inputs processed ...
checking PhilSpec2 {trace} temp_var_8
starting iteration number 1 ...
model extracted in 0.2 milliseconds ...
implementation machine extracted in 0.5 milliseconds ...
global states : (1048576) = 1048576
[<<-1>> {P0::eating = 0} <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> branch (1) <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = pick_left () <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = pick_left () <<[]>>:0:0]
###
===
+++
		pick_left
+++
[<<-1>> P0::temp_var_10 = pick_left () <<[]>>:0:2]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_11 = __COPPER_HANDSHAKE__ ("pick_right") <<[]>>:65535:255]
###
===
+++
		pick_right
+++
[<<-1>> P0::temp_var_11 = __COPPER_HANDSHAKE__ ("pick_right") <<[]>>:0:0]
###
===
reachability checked in 8.0 milliseconds ...
Cprover formula has 220 variables and 551 clauses ...
Cprover formula has 315 variables and 685 clauses ...
<<< BEGIN CONCRETE COUNTEREXAMPLE >>>
[<<-1>> {P0::eating = 0} <<[]>>:65535:255]
###
===

+++
		P0::epsilon
+++
[<<-1>> branch (1) <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = pick_left () <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = pick_left () <<[]>>:0:0]
###
===
(P0::eating = 0)
+++
		pick_left
+++
[<<-1>> P0::temp_var_10 = pick_left () <<[]>>:0:2]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_11 = __COPPER_HANDSHAKE__ ("pick_right") <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		pick_right
+++
[<<-1>> P0::temp_var_11 = __COPPER_HANDSHAKE__ ("pick_right") <<[]>>:0:0]
###
===
(P0::eating = 0)
<<< END CONCRETE COUNTEREXAMPLE >>>
conformance relation does not exist !!
specification abs_2 is invalid ...
total global time = 57.5 milliseconds
total cpu time = 20.0 milliseconds
total input processing time = 13.2 milliseconds
total Buchi automaton construction time = 0.0 milliseconds
total implementation machine extraction time = 0.5 milliseconds
total verification time = 8.0 milliseconds
total proof generation time = 0.0 milliseconds
total abstraction refinement time = 30.6 milliseconds
total CE generation time = 6.3 milliseconds
total CE verification time = 0.0 milliseconds
total predicate abstraction refinement time = 0.0 milliseconds
total LTS abstraction refinement time = 0.0 milliseconds
total number of eliminating combinations = 0
max number of eliminating combinations for a CE = 0
max size of eliminating combination = 0
max size of tried combination = 0
number of iterations = 1
number of predicate iterations = 1
number of lts iterations = 0
number of seed branches : 0
number of explored states : 1048576
number of theorem prover calls = 2
number of formulas found in cache = 0
number of formulas stored in cache = 2
number of membership calls to MAT = 0
number of MAT membership cache misses = 0
number of candidate calls to MAT = 0
assumption alphabet size = 0
optimal assumption alphabet size = 0
assumption alphabet ratio = 0.000000
total certificate CNF size = 0
total certificate resolution file size = 0
total certificate packed resolution file size = 0
total certificate zipped resolution file size = 0
total witness file size = 0
total witness zipped file size = 0
total certificate zipped file size = 0
Simplify process destroyed ...
terminating normally ...

COPPER version 2.0 ...
Command Line: copper --default --abstraction abs_5 philosopher.pp philosopher.spec --ltl --noParAssign
Simplify process started ...
parsing preprocessed C file philosopher.pp ...
parsing specification file philosopher.spec ...
control locations created ...
skip locations eliminated ...
useless branch locations eliminated ...
procedures inlined ...
proc manager for philosopher created ...
component for philosopher created ...
relevant propositions computed ...
********* begin buchi automaton *********
number of Buchi states: 3 ...
label 0: !((P0::eating == 1))
label 1:
label 2: !((P0::eating == 1)) pick_left
initial states: 1 2
0 -> 0
1 -> 1
1 -> 2
2 -> 0
number of Buchi transitions: 4 ...
accept: 0
scc: 0
scc: 1
scc: 2
********** end buchi automaton **********
Buchi automaton constructed ...
inputs processed ...
checking PhilSpec5 {LTL} phil_prog
starting iteration number 1 ...
model extracted in 1.5 milliseconds ...
implementation machine extracted in 1.8 milliseconds ...
global states : (1048576) = 1048576
[<<-1>> {P0::eating = 0} <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> branch (1) <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_8 = pick_left () <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_8 = pick_left () <<[]>>:0:0]
###
===
+++
		pick_left
+++
[<<-1>> P0::temp_var_8 = pick_left () <<[]>>:0:2]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_9 = pick_right () <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
------------------- begin loop ------------------
[<<-1>> P0::temp_var_9 = pick_right () <<[]>>:1:0]
###
===
+++
		pick_right
+++
[<<-1>> P0::temp_var_9 = pick_right () <<[]>>:1:2]
###
===
+++
		P0::epsilon
+++
[<<-1>> {P0::eating = 1} <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> {P0::eating = 0} <<[]>>:65535:255]
###
[(P0::eating == 1)]
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = put_left () <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = put_left () <<[]>>:2:0]
###
===
+++
		put_left
+++
[<<-1>> P0::temp_var_10 = put_left () <<[]>>:2:2]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_11 = put_right () <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_11 = put_right () <<[]>>:3:0]
###
===
+++
		put_right
+++
[<<-1>> P0::temp_var_11 = put_right () <<[]>>:3:2]
###
===
+++
		P0::epsilon
+++
[<<-1>> branch (1) <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_8 = pick_left () <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_8 = pick_left () <<[]>>:0:0]
###
===
+++
		pick_left
+++
[<<-1>> P0::temp_var_8 = pick_left () <<[]>>:0:2]
###
===
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_9 = pick_right () <<[]>>:65535:255]
###
===
+++
		P0::epsilon
+++
-------------------- end loop -------------------
global counter example dag computed ...
LTL Formula checked in 25.9 milliseconds ...
Cprover formula has 553 variables and 1417 clauses ...
Cprover formula has 553 variables and 1417 clauses ...
Cprover formula has 666 variables and 1610 clauses ...
Cprover formula has 779 variables and 1803 clauses ...
Cprover formula has 892 variables and 1996 clauses ...
Cprover formula has 892 variables and 1996 clauses ...
Cprover formula has 1033 variables and 2249 clauses ...
Cprover formula has 1149 variables and 2447 clauses ...
Cprover formula has 1265 variables and 2645 clauses ...
Cprover formula has 1381 variables and 2843 clauses ...
Cprover formula has 1497 variables and 3041 clauses ...
Cprover formula has 1497 variables and 3041 clauses ...
Cprover formula has 1613 variables and 3239 clauses ...
Cprover formula has 1729 variables and 3437 clauses ...
Cprover formula has 1845 variables and 3635 clauses ...
Cprover formula has 2013 variables and 3933 clauses ...
Cprover formula has 2132 variables and 4136 clauses ...
Cprover formula has 2251 variables and 4339 clauses ...
<<< BEGIN CONCRETE COUNTEREXAMPLE >>>
[<<-1>> {P0::eating = 0} <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> branch (1) <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_8 = pick_left () <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_8 = pick_left () <<[]>>:0:0]
###
===
(P0::eating = 0)
+++
		pick_left
+++
[<<-1>> P0::temp_var_8 = pick_left () <<[]>>:0:2]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_9 = pick_right () <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
------------------- begin loop ------------------
[<<-1>> P0::temp_var_9 = pick_right () <<[]>>:1:0]
###
===
(P0::eating = 0)
+++
		pick_right
+++
[<<-1>> P0::temp_var_9 = pick_right () <<[]>>:1:2]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> {P0::eating = 1} <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> {P0::eating = 0} <<[]>>:65535:255]
###
[(P0::eating == 1)]
===
(P0::eating = 1)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = put_left () <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_10 = put_left () <<[]>>:2:0]
###
===
(P0::eating = 0)
+++
		put_left
+++
[<<-1>> P0::temp_var_10 = put_left () <<[]>>:2:2]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_11 = put_right () <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_11 = put_right () <<[]>>:3:0]
###
===
(P0::eating = 0)
+++
		put_right
+++
[<<-1>> P0::temp_var_11 = put_right () <<[]>>:3:2]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> branch (1) <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_8 = pick_left () <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_8 = pick_left () <<[]>>:0:0]
###
===
(P0::eating = 0)
+++
		pick_left
+++
[<<-1>> P0::temp_var_8 = pick_left () <<[]>>:0:2]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
[<<-1>> P0::temp_var_9 = pick_right () <<[]>>:65535:255]
###
===
(P0::eating = 0)
+++
		P0::epsilon
+++
-------------------- end loop -------------------
<<< END CONCRETE COUNTEREXAMPLE >>>
conformance relation does not exist !!
abstraction abs_5 is invalid ...
total global time = 800.1 milliseconds
total cpu time = 490.0 milliseconds
total input processing time = 134.0 milliseconds
total Buchi automaton construction time = 113.8 milliseconds
total implementation machine extraction time = 1.8 milliseconds
total verification time = 25.9 milliseconds
total proof generation time = 0.0 milliseconds
total abstraction refinement time = 633.4 milliseconds
total CE generation time = 22.5 milliseconds
total CE verification time = 0.0 milliseconds
total predicate abstraction refinement time = 0.0 milliseconds
total LTS abstraction refinement time = 0.0 milliseconds
total number of eliminating combinations = 0
max number of eliminating combinations for a CE = 0
max size of eliminating combination = 0
max size of tried combination = 0
number of iterations = 1
number of predicate iterations = 1
number of lts iterations = 0
number of seed branches : 0
number of explored states : 7
number of theorem prover calls = 8
number of formulas found in cache = 0
number of formulas stored in cache = 8
number of membership calls to MAT = 0
number of MAT membership cache misses = 0
number of candidate calls to MAT = 0
assumption alphabet size = 0
optimal assumption alphabet size = 0
assumption alphabet ratio = 0.000000
total certificate CNF size = 0
total certificate resolution file size = 0
total certificate packed resolution file size = 0
total certificate zipped resolution file size = 0
total witness file size = 0
total witness zipped file size = 0
total certificate zipped file size = 0
Simplify process destroyed ...
terminating normally ...

void philosopher()
{
 int eating;
 eating = 0;
 while(1) {
 pick_left();
 __COPPER_HANDSHAKE__("pick_right");
 eating = 1;
	if(eating != 1) assert(0);
 eating = 0;
 __COPPER_HANDSHAKE__("put_left");
 put_right();
 }
}

//specifying procedures
PickLeft = (pick_left -> return {} -> STOP).
procedure pick_left { abstract { 1, PickLeft}; }
PutRight = (put_right -> return {} -> STOP).
procedure put_right { abstract { 1, PutRight}; }

//LTS claims
PhilSpec1 = (pick_left -> put_left -> PhilSpec1).
PhilSpec2 = (pick_left -> put_left -> PhilSpec2) + { pick_right }.
PhilSpec3 = (pick_left -> pick_left -> ERROR3) + { put_left }.

/* LTL claims */
ltl PhilSpec4 { #G ([P0::eating == 1] => #F put_left); }
ltl PhilSpec5 { #G (pick_left => (#X (#F pick_left))); }

program philosopher {
 specification abs_1, {1}, PhilSpec1;
 specification abs_2, {1}, PhilSpec2;
 specification abs_3, {1}, PhilSpec3;
 specification abs_4, {1}, PhilSpec4;
 specification abs_5, {1}, PhilSpec5;
}

/* dummy claim for assertion violation */
program philosopher {
 specification abs_6, {1}, DefaultSpec;
}

