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ABSTRACT

Static analysis (SA) tools examine code for flaws without executing

the code, and produce warnings (“alerts”) about possible flaws. A

human auditor then evaluates the validity of the purported code

flaws. The effort required to manually audit all alerts and repair

all confirmed code flaws is often too much for a project’s budget

and schedule. An alert triaging tool enables strategically prioritiz-

ing alerts for examination, and could use classifier confidence. We

developed and tested classification models that predict if static anal-

ysis alerts are true or false positives, using a novel combination of

multiple static analysis tools, features from the alerts, alert fusion,

code base metrics, and archived audit determinations.We developed

classifiers using a partition of the data, then evaluated the perfor-

mance of the classifier using standard measurements, including

specificity, sensitivity, and accuracy. Test results and overall data

analysis show accurate classifiers were developed, and specifically

using multiple SA tools increased classifier accuracy, but labeled

data for many types of flaws were inadequately represented (if at

all) in the archive data, resulting in poor predictive accuracy for

many of those flaws.
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1 INTRODUCTION

Static analysis tools examine code for flaws, including those that

could lead to software security vulnerabilities, and produce diag-

nostic messages (“alerts”) indicating the location of the purported

flaw in the source code, the nature of the flaw, and often additional

contextual information. A human auditor then evaluates the valid-

ity of the purported code flaws. The effort required to manually

audit all alerts and repair all confirmed code flaws often exceeds the

project’s budget and schedule. Auditors need tools that allow them

to triage alerts, strategically prioritizing alerts for examination. This

paper describes research we conducted that developed classification

models to predict if static analysis alerts are true or false positives.

We created alert classification models using features derived from

multiple static analysis tools, code base metrics, and archived audit

determinations, and tested those models. The long-term goal of this

work is to develop an automated and accurate statistical classifier,

intended to efficiently use analyst effort and to remove code flaws.

“Alert fusion” refers to the practise of unifying alert information

from different tools which map to the same condition (e.g., SEI

CERT Coding Rule [6] (a.k.a. CERT rule) or Common Weakness

Enumeration (CWE [14])) in the same part of the code (e.g., same

line of same file). Fusion may be more or less precise, e.g., a par-

ticular CWE may occur in two different parts of the same line of

code. By fusing alerts from different tools and then creating classi-

fiers, this work attempts to gain an understanding of correlations

between static analysis tools and alert accuracy.

The four types of classification techniques we compare are Lasso

Logistic Regression, Classification and Regression Trees (CART),

Random Forest (RF), and Extreme Gradient Boosting (XGBoost).

These techniques assign membership to classes based on probabili-

ties, but they differ in implementation ease and their tendency to

over-fit to the training data set.

Our intended use of these classification techniques is to create

models to automatically classify alerts as expected-true-positive

(e-TP), expected-false-positive (e-FP), or indeterminate (I) based

on user-specified confidence levels. Using the results of a binary

classification model to classify alerts into three states based on user

specified criteria is novel.

The data used in this work consists of archives for 19 CERT-

audited codebases, plus data from 3 collaborating organizations

(anonymous by request) that audited their own codebases.

1.1 Related Work

Bessey et al. [2] found many issues with using static analysis in

practice, including tools ignoring constructs and thus producing

many false positive alerts, users wrongly labeling alerts they find

confusing as false, and user difficulty dealing with many alerts
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resulting in tools producing less (possibly-true) alerts about possible

defects than they could. Our work attempts to (eventually) help

users handle many alerts effectively.

Delaitre et al. found that static analysis tools on average find

about 20% of weaknesses in basic test cases without complexity.

They found that complex control flow or data flow constructs sig-

nificantly reduced the tools’ success rates, and identify flaws with

highest and fewest findings across a set of anonymized static anal-

ysis tools [3].

Since single static analysis tools have different coverage of code

flaws (warning about some but not others) [3] [2], multiple static

analysis tools may be used to find more code flaws [16]. This ap-

proach compounds the problem of generating too many alerts to

deal with, including too many false positives. Our work uses multi-

ple static analysis tools and addresses handling the many alerts.

Beller et al. found that few open-source projects have static

analysis tools integrated closely with their workflows, and most

of those projects don’t mandate that a codebase should be alert-

free [1].

There are few previously-published peer-reviewed papers that

classify or prioritize alerts from multiple static analysis tools to-

gether. Kong et al. [9] prioritize alerts using alert risk rating and

confidence (if an alert is reported by multiple tools the score is

raised), and provide experimental results from analyzing 3 code-

bases. They do not use features of the codebase to classify alerts,

and their method cannot analyze confidence factors that are slightly

complex, such as if a high likelihood of a true positive exists when

only Tool A and Tool C produce an alert but Tool B does not produce

an alert. Meng et al. [13] implement an approach to merge results

from multiple tools, and propose two policies to prioritize results.

Their prioritization simply orders alerts according to alert severity

and then a count of tools that produced alerts of that type for that

place in the code, and no analysis was done of correctness of the

alerts. Kremenek ranks alerts by correlating data per static analysis

tool, using features from the tools and from the codebases [11].

However, that method orders sets of alerts from different tools rela-

tively (all alerts from one tool are prioritized below all alerts from

another tool, not interspersed), and does not do alert fusion.

Our research builds on a technical report by some of our au-

thors [16], which collected comparative statistics about the accu-

racy of static analysis tools and the violations they flag, and devel-

oped statistically significant binary logistic regression models to

assess if an alert is a true or false positive for alerts that mapped to

three CERT rules [18] [6] [12]. CERT has developed a tool called

SCALe [19], which maps alerts to coding rules, and can order alerts

according to a per-rule metric. That metric is based on three expert-

determined values (static values for each coding rule), multiplied:

Severity ∗ Likelihood ∗ RemediationCost. No measure of the proba-

bility of the alert being correct (a true positive) is currently used in

that prioritization.

Heckman and Williams [7] did an extensive survey of meth-

ods that classify and prioritize actionable alerts, detailing 21 peer-

reviewed studies. Our project uses 5 of the approaches (alert type

selection, contextual information, data fusion, machine learning,

and mathematical and statistical models) discussed in the paper,

and doesn’t use the other 3 (dynamic detection, graph theory, and

model checking). Our project uses 2 of the artifact characteristics

categories (alert characteristics, code characteristics), and doesn’t

use the other 3 (source code repository metrics, bug database met-

rics, and dynamic analysis metrics). See Section 1.2 for explanation

of those choices. No previous work in their survey involves the

combination of multiple static analysis tools, the set of features

used, and competing classifiers as the work in our paper.

Heckman [8] adaptively ranked alerts using developer feedback

supressing false positives and fixing true positives, along with

application-specific data about the alert ranking factors (alert type

accuracy and code locality). Her model found 81% of true positive

alerts after investigating only 20% of the alerts.

Kremenek et al. [10] use a formula that adapts as human an-

alyzers inspect static analyzers’ outputs. This information could

be dynamically used to re-order alerts, as the human analyst com-

pletes checking each alert from the (current) top of the ordered set

of alerts. They observed a factor of 2-8 improvement over random-

ized ranking. Our work doesn’t use dynamic auditor feedback but

could incorporate that in future work.

Ruthruff et al. [17] built models to predict whether FindBugs

alerts are false positives, and if true, whether the defects would be

acted on by developers. Prediction was done using logistic regres-

sion analysis including metrics such as program size, file recent

change history, file age since release, and recent fault history. This

generated models more than 85% accurate at predicting false posi-

tives, and more than 70% accurate in identifying actionable alerts,

in a case study performed at Google. Our work uses some features

they did not, including use of multiple static analysis tools.

As part of this project, we developed and partially tested a

common auditing lexicon and set of auditing rules [20]. A com-

mon lexicon and auditing rules are necessary to ensure that au-

diting determinations are made consistently, and also to ensure

that audit archives contain enough precision for common devel-

opment/system changes to efficiently and correctly use previous

audit determinations. Although the auditing tool that we shared

with our collaborators did not have the full audit determination

lexicon described in the paper, our collaborators used (and helped

us develop) the determination lexicon and full set of auditing rules.

1.2 Approach

We use classification features found helpful in related research,

but with multiple static analysis tools. Our approach was further

shaped by our existing trove of audit archive data, available tools,

and wanting to minimize work required to integrate any more 1)

static analysis and 2) code metrics tools into SCALe (1-2 weeks 1-

engineer effort per tool, mostly tomap tool alert types to CERT rules

and to parse output). Also, we did not have access to code repository

data or bug databases for our audit archives. Our alert archives only

contained auditor determinations for CERT coding rules, so in this

work we only developed CERT rule classifiers. (Conversely, with

audit archives for CWEs, we could have developed CWE classifiers.)

Budget constraints limited the set of SCALe-integrated commercial

tools collaborators could use.

2 SYSTEM ARCHITECTURE

We developed static analysis alert prediction models using data

collected from manual audits of software projects. The high level
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workflow by which this data was collected and modelled for each

codebase, involves code analysis with tools, then data ingestion

and correlation in a database, followed by classifier development

and testing. First, the source code was inspected by a suite of static

analysis tools. Second, tool outputs (along with the original source)

was passed to an enhanced version of the SCALe tool. Enhanced

SCALe produces two artifacts: (1) static analysis alerts mapped

to SEI CERT Coding Rule violations, and (2) various source code

metrics. Next, mapped alerts were inspected by human auditors

to determine whether they were true or false positives. Audit de-

terminations, along with source code metrics, were processed into

a training dataset. Training data from all software projects was

combined together and used to construct prediction models.

2.1 Codebase Selection

The codebases used by this project come from a variety of sources.

Some codebases are proprietary and belong to “auditor-collaborators”

(henceforth called “collaborators”) who audited their own codebases

as part of their participation in this research. We asked collabora-

tors to select C-language codebases they currently use that they

wanted static analysis audits for, and that they could run at least two

SCALe-integrated static analysis tools on. The three collaborators

audited a total of 11 codebases.

We also used 19 CERT-audited codebases in C, C++, Java, and

Perl, leveraging existing audit data archives created over a course

of 8 years. Several open-source codebases are included, although

the majority of these codebases are proprietary and belong to “pre-

vious non-auditor participating organizations” (distinct from the

“collaborators” referenced above).

2.2 Static Analysis

Each codebase was inspected by a collection of static analysis tools,

including commercial and open-source tools. Each static analysis

tool produces a file containing a list of alerts for the codebase,

typically in a structured format (e.g., XML or JSON).
The set of tools applied is not consistent across codebases. Fun-

damentally, different programming languages have different appli-

cable static analysis tools. Additionally, individual codebases may

have characteristics that exclude the use of certain tools. For ex-

ample, a codebase may use a compiler that is incompatible with a

particular static analysis tool. Next, tool availability varied between

audits. This is in part due to the length of time over which the

audits were conducted. CERT acquired access to and expertise with

a growing set of tools over time. Moreover, our collaborators had

access to a limited set of tools.

2.2.1 Legal Issues and Per-Tool Data. Commercial static analysis

tools used in the project have terms of use that disallow publication

of tool performance and tool output. Therefore, we anonymize tool

names in this paper, as do other papers [3]. Similarly, we cannot

publish the dataset our classifiers were developed from and tested

on, because much of the data came from commercial tools and some

of the features used are unique to one of the commercial tools.

2.3 Enhanced SCALe

The Source Code Analysis Laboratory (SCALe) is a tool developed

by CERT for aggregating and evaluating static analysis alerts from

multiple tools. SCALe accepts a collection of structured alert files

from various static analysis tools, for a single codebase. The source

code files are also uploaded to SCALe. The alerts are converted

into a common data format. Moreover, each alert is mapped to a

CERT Secure Coding Rule. The goal of this processing is to facilitate

auditing of the alerts. An auditor does not have to inspect alerts

from multiple files in different formats. They can instead inspect

an aggregated list of alerts. The rule mapping serves to clarify the

nature of the potential flaw detected by the alert, and additionally

associates a rule-derived severity and priority with the flaw.

For this project, we made a number of enhancements to SCALe.

We incorporated a source code metrics module based on the open-

source Lizard tool [22]. This module measures a few common code

metrics for projects processed by SCALe, including cyclomatic com-

plexity and significant-lines-of-code (SLoC). This module currently

works with code in C, C++, and Java, but not Perl. We also added a

data sanitization module which is discussed in more detail below.

2.4 Auditing

The consolidated alerts were inspected by human auditors using the

SCALe application. This application displays the alerts in a filterable,

searchable table, and moreover allows an auditor to easily view the

source code associated with a given alert. Other alert properties,

such as the corresponding CERT rule, the severity, and the priority,

are also displayed, and can be used as filter parameters.

For a given alert, the auditor determined whether the diagnosed

code violated the CERT rule associated with the alert. The audi-

tor chose a determination of True, False, Suspicious, Ignore,
Dead Non-Library, or Unknown for the alert, using the SCALe ap-
plication. (Although enhanced-SCALe didn’t originally include a

marking for Dead Non-Library unreachable code, in response to
a collaborator’s question we kludged a combination of a flag and

the Ignore verdict to mean that.) For the purposes of this study,

verdicts of Suspicious, Ignore, Dead Non-Library, and Unknown
were interpreted as Indeterminate.

The auditors were drawn from experienced CERT personnel and

from collaborators. Collaborators underwent specialized training

on both the CERT rules and the auditing process. See Section 3 for

more information about this training process.

2.5 Data Preparation & Classifier Development

The audited alerts required some additional processing before being

used for classifier development.

Before receiving data from our collaborators, we were required

to provide a mechanism for removing sensitive infomation from the

audited alerts. For example, path and function names were consid-

ered to be sensitive by our collaborators. Therefore, we enhanced

SCALe to obfuscate sensitive fields using a salted SHA-256 hash. We

used hashing instead of outright omitting sensitive data, because

we needed the ability to group alerts based on their location, for

classifier development. Only collaborator data was hashed; data

collected by CERT auditors was not hashed.

The alert data underwent some additional processing before

being consumed by our statistical software. Alerts that occured

on the same line of the same file, and that mapped to the same

CERT Secure Coding Rule, were merged together. Suppose that
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two different tools detected the same problem with a line of source

code. In this case, the two alerts would be combined into a single

observation. Themerged alert has a ternary feature for each analysis

tool, with a value of 1 if the tool detected the issue, 0 if the tool did

not, and 2 if the tool was not run on the associated codebase.

A few other additional features were computed during this pro-

cessing phase, for example, the number of alerts in each file, the

number of alerts in each function, etc. These aggregated features

were added to each alert, when appropriate (e.g. if alert A occured

in a file F and function X , the alert counts for F and X would be

added as features to A).
See Table 1 for a complete description of the features associated

with each alert.

The prepared audit data was used to develop machine learn-

ing classifiers. We used the R environment to program and test

classifiers.

2.6 Envisioned Use

The envisioned use of the classifiers is in a software development

and/or software assurance system, automating use of the classi-

fiers to classify alerts as e-TP, I, and e-FP. The e-TP alerts would be

separately prioritized for code repair. The I alerts would be automat-

ically prioritized for manual auditing using a heuristic taking into

account classifier confidence, risk metric if the code flaw is true,

and a cost metric to fix the code flaw. The e-FP alerts’ data would be

used for further classifier development, and in the unlikely case that

all the I alerts get audit determinations then the e-FP alerts could

also be audited. Ideally, as described in related research, new alert

audit determinations would dynamically feed back into a classifier

prediction system to re-prioritize remaining alerts.

3 DATA QUALITY: COLLABORATOR

TRAINING

Auditing static analysis alerts is a highly technical task, requiring

skilled appraisers. For a given alert, an auditor must first understand

what behavior the alert detects. They must then be able to read

and understand the diagnosed source code, and determine if the

associated CERT Rule has been violated. This may require nontrivial

intraprocedural and interprocedural analysis.

In response to the complexity of this task, we developed a va-

riety of training materials, as well as auditor evaluation tools. In

order to obtain high quality data, we needed to ensure that our

auditor subjects made accurate, consistent determinations [20]. Our

training materials covered several subjects: the CERT rules, rules

for auditing, and usage of the SCALe application. Our principle

evaluation tool was an auditing exam. Although the exact mate-

rial developed for project collaborators is not publicly available,

much of that content evolved into an auditing rules paper [20], plus

slides [5] and a virtual machine (including test programs and static

analysis output) distributed in a hands-on auditing tutorial [4].

3.1 Coding Rules

In this study, auditors evaluated an alert based on the SEI CERT

Coding Rule associated with the alert. It was therefore critical that

auditors had a clear understanding of these rules before evaluating

an alert. We instructed our collaborators to focus on 8 SEI CERT

C Coding Rules (summarized in Table 2), and provided focused

training sessions on those 8 rules for two of our collaborators. Our

third collaborator had enough experience to forgo training.

3.2 Auditing Rules

Early on in the project, we realized that we did not have a suffi-

ciently clear definition of the auditing process. Therefore, it was

difficult to give our collaborators strong guidance on how to audit

alerts. To mitigate this, we developed a set of twelve auditing rules.

These rules aimed to help auditors make consistent determinations,

especially in complex or ambiguous auditing scenarios. Addition-

ally, the rules establish some basic assumptions that auditors should

make. For example, an auditor should assume, without strong evi-

dence to the contrary, that program inputs may be malicious.

Two collaborators were given on-site training covering the au-

diting rules, and the third collaborator was provided with materials

for self-training. See Table 3 for summary of the auditing rules we

provided. (We have developed a later version of these rules in [20].

The later version expanded the auditing rules’ scope to apply be-

yond CERT rules (e.g., applicable to CWEs) and to use more-precise

determination labels, e.g., Complex and Dependent.)

3.3 Using Tools: Enhanced-SCALe

All of our collaborators used an enhanced version of the SCALe au-

diting tool for evaluating static analysis alerts. We provided various

installation media, including source code distributions and virtual

machines, and provided documentation and support for the setup

and use of the application. Our on-site training sessions included

some instruction on use of the enhanced SCALe application.

4 RESULTS

4.1 Audited Data Characterization

Fig. 1 shows that CERT-audited alerts that map to particular rules

tend to be determined in only one way (always True or always

False). The chart shows there are 58 SEI CERT Coding Rules with

20 or more audited alerts. The other 324 CERT Rules have little

or no labeled data in CERT’s audit archives. The chart shows the

True:False spread, where the left side of the chart is for a close-to-

even spread, and the right side is for nearly or exactly 100% one-way

audits. 25 rules are in the rightmost division, nearly or completely

determined one-way. 2,487 of the CERT-audited alerts had True

determinations and 4,980 had False determinations. CERT-audited

data contains audited alerts that map to 158 of the 382 CERT rules.

Approximately 30% of the CERT-audited archive data consists

of alerts mapped to rule INT31-C.

Our collaborators audited 354 total alerts, mapped to the 8 tar-

geted rules and more. They labeled 144 alerts False and 210 alerts

True.

Table 4: Collaborator-audited data

Collaborator Alerts Audited CERT Rules Mapped To

Collaborator 1 93 4

Collaborator 2 195 15

Collaborator 3 66 3
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Table 1: Set of alert features, with descriptions.

Feature Description

Codebase The name of the codebase where the alert was detected.

Determination The audit determination (TRUE, FALSE, SUSPICIOUS, IGNORED, DEAD NON-LIBRARY, UNKNOWN).

Path The full path to the file where the alert occurs.

Line The line number in the file where the alert occurs.

Rule The name of the CERT rule associated with the alert.

Title The title of the CERT rule associated with the alert.

Severity The severity field of the CERT rule.a

Likelihood The likelihood field of the CERT rule.a

Remediation The remediation field of the CERT rule.a

Priority The priority field of the CERT rule.a

Level The level field of the CERT rule.a

Tool1 ... ToolN (N Features) For each static analysis tool, there is a feature indicating whether the static analysis tool detected

this alert. This is a ternary value: 0 indicates the tool did not detect the alert; 1 indicates the

tool did detect the alert; 2 indicates that the tool was not run for this codebase.

Function The name of the function where the alert occurs.b

Function Length The number of lines of code in the function.b

Function SLoC The number of significant lines of code in the function.b

Function Cyclomatic Complexity The cyclomatic complexity of the function.b

Function Parameter Count The number of parameters to the function.b

Function Token Count The number of lexical tokens in the function.b

Function Start Line The line number where the function definition starts.b

Function End Line The line number where the function definition ends.b

Function Alert Count The number of alert that occur in this function.b

Filename The base name of the file where the alert occurs, without parent directories.

File SLoC The number of significant lines of code in the file.

File Function Count The number of functions/methods in the file.

Average Function SLoC The average significant lines of code in functions in the file.

Average Function Token Count The average number of tokens in functions in the file.

File Alert Count The number of alerts that occur in the file

Depth The depth of the file where the alert occurs, in the directory structure

a See [6] for more information.
b These features are not applicable for alerts that occur outside of a function.

Table 2: CERT rules audited by our collaborators.

Rule Title

ARR36-C Do not subtract or compare two pointers that do not refer to the same array

DCL31-C Declare identifiers before using them

EXP33-C Do not read uninitialized memory

EXP34-C Do not dereference null pointers

EXP36-C Do not cast pointers into more strictly aligned pointer types

INT31-C Ensure that integer conversions do not result in lost or misinterpreted data

INT33-C Ensure that division and remainder operations do not result in divide-by-zero errors

STR31-C Guarantee that storage for strings has sufficient space for character data and the null terminator

4.2 Types of Classifiers

We developed 15 “featureless classifiers”, or classifiers for SEI CERT

Coding Rules with 20 or more audited alerts, with 100% of those

determinations being one-way (always true or always false). Fea-

tureless classifiers are not a standard classifier type.

We used two dataset types for classifier development and testing,

as shown in Fig. 2: 1) all alerts with a True or False determination;

and 2) a subset of audited alerts that map to a particular CERT rule.

We used two methods to develop and test classifiers: 1) We devel-

oped classifiers with 70% of the data, then tested on the remaining

Prioritizing Alerts from Multiple Static Analysis Tools, using Classification Models SQUADE’18:, May 28, 2018, Gothenburg, Sweden
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Table 3: Auditing rules for collaborators.

Rule 1 Understand the language and the secure coding rule in question.

Rule 2 Some alerts are too complex to judge; they should be marked Suspicious

Rule 3 It is OK to mark an alert true even if you think the code maintainers will protest.

Rule 4 Assume that external inputs to the program are malicious.

Rule 5 Unless instructed otherwise, assume that code must be portable.

Rule 6 When auditing an alert, if you discover a second true violation, mark its alert as true.

Rule 7 Do not arbitrarily extend the scope of a CERT rule.

Rule 8 Code that behaves as expected might still violate a CERT rule.

Rule 9 An alert might indicate a true violation of the CERT rule, even if its message text is useless or incorrect.

Rule 10 Multiple messages help in understanding an alert.

Rule 11 Assume no violations occur before the line in question.

Rule 12 Handle an alert in unreachable code depending on if it is in library or non-library code.
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Figure 1: Frequency of True:False ratio, for CERT rules with

a minimum of 20 audits

30% of the data.; and 2) We developed classifiers using all of the

CERT-audited data, then tested on pooled collaborator data.

Classifier accuracy test results, classifier from pooled all-alerts

data (CERT plus collaborators):

• Lasso Logistic Regression: 88%

• Random Forest: 91%

• CART: 89%

• XGBoost: 91%

Table 6 shows test results for classifiers developed on single

rule-mapped alerts. Most of the rule names are followed by an

asterisk (“*”) to indicate there is very little labeled data for this rule,

so results are suspect. However, three rules had large quantities

of labeled data in the audit archives, and one of them (INT31-C)

produced a very high-accuracy classifier ( 98% accurate).

In addition to using the four types of classifier (RF, CART, LLR,

and XGBoost) named in the Introduction, we developed variants

that used only a subset of the data to develop classifiers. Variants

include per-rule, per-coding-language, features removed that didn’t

Figure 2: Classifiers developed from 2 dataset types: all-

alerts and per-rule alerts

Rule ID Lasso LR Random Forest CART XGBoost

INT31-C 95% 96% 96% 95%

EXP01-J 68% 83% 89% 87%

OBJ03-J 73% 86% 86% 83%

FIO04-J* 75% 75% 83% 71%

EXP33-C* 90% 100% 90% 90%

EXP34-C* 74% 84% 87% 81%

DCL36-C* 100% 100% 100% 100%

ERR08-J* 99% 99% 97% 97%

IDS00-J* 97% 94% 94% 88%

ERR01-J* 100% 100% 100% 100%

Table 5: Accuracy: per-rule classifiers, CERT-audited data

only

have a value for one or more alerts, alerts removed if they were

missing a value for any feature, toolnames removed, and features

removed for Lizard code metrics outside of functions.

We developed 201 classifiers for 11 CERT rules that have a mix

of True and False determinations. We also developed 72 all-rules

classifiers where the rule name was used as a feature), including 44

per-language classifiers.

Results for CERT-audited data alone are very similar to the pre-

vious all-data results, because most of the data is CERT-audited:
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• Lasso Logistic Regression: 87%

• Random Forest: 90%

• CART: 89%

• XGBoost: 92%

Rule ID Lasso LR Random Forest CART XGBoost

INT31-C 98% 97% 98% 97%

EXP01-J 74% 74% 81% 74%

OBJ03-J 73% 86% 86% 83%

FIO04-J* 80% 80% 90% 80%

EXP33-C* 83% 87% 83% 83%

EXP34-C* 67% 72% 79% 72%

DCL36-C* 100% 100% 100% 100%

ERR08-J* 99% 100% 100% 100%

IDS00-J* 96% 96% 96% 96%

ERR01-J* 100% 100% 100% 100%

ERR09-J* 100% 88% 88% 88%

Table 6: Accuracy: per-rule classifiers, data from all auditors

Fig. 5 shows accuracy for classifiers made from per-rule data,

using only CERT-audited data. Due to less data, notice that rule

ERR09-J no longer has a classifier.

Using toolname as a feature for developing classifier generally

increased accuracy, with good accuracy as can be seen in (the lines

on) Fig. 3. (Those classifiers were developed and tested on only

CERT data, using aggregated data for all rules.) All the classifiers do

well, with similar lines and all come close to the top-left edge of the

chart (optimal cut-point accuracy is high). Dots on the figure show

performance of each tool alone (anonymized as tool A, B, etc.). Tools

A, C, and D exhibit low false positive rates, but high false negative

rates. Tools B, E, and F perform relatively poorly in identifying

violations of CERT rules. Overall, this figure demonstrates that our

models are quite successful in predicting true issues, outperforming

individual tools. We stress, however, that these classifiers were

validated with the holdout method, using only CERT-internal data.

We further evaluated these classifiers developed with CERT data

by testing them on pooled collaborator data. Results are worse than

training on CERT-audited data alone, not suprising because the

training and testing datasets differ.

• Lasso Logistic Regression: 82%

• Random Forest: 32%

• CART: 77%

• XGBoost: 78%

Results for fully-pooled data, Java code only:

• Lasso Logistic Regression: 83%

• Random Forest: 98%

• CART: 86%

• XGBoost: 90%

Results for fully-pooled data, C code only:

• Lasso Logistic Regression: 93%

• Random Forest: 95%

• CART: 94%

• XGBoost: 93%

Results for fully-pooled data, C++ code only:

• Lasso Logistic Regression: 92%

• Random Forest: 92%

• CART: 100% (very little data, suspect)

• XGBoost: 100% (very little data, suspect)

There was too little Perl data to create classifiers alone.

All CERT Rules Classifier performance
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Figure 3: Tool as feature improves accuracy across classifiers

4.3 Issues

A major issue encountered in the project was lack of data. There

was too little data per rule to create per-rule classifiers for all except

3 rules, and too little Perl data to create Perl-only classifiers. Some

data that we wanted didn’t exist in the archives, such as auditor ID,

date of the alert audit, and date of the coding rule version.

One issue we encountered is licenses of the proprietary static

analysis tools that forbid publication of tool performance data. We

have anonymized these tool names in this paper. See Section 2.2.1

for more information.

One tool alone has has 1,396 violations of INT31-C, which rep-

resents about 30% of the trimmed data.

The enhanced-SCALe tool did not include all of the auditing

determination options that we think it needed [20], which limited

utility and precision of the resultant classifiers. Also, enhanced-

SCALe didn’t provide the utility of a comprehensive framework

that provides insights from historical alert determinations on a

codebase and it wasn’t integrated with a code repository. Those

limits precluded our collaborators from being able to use enhanced-

SCALe as part of their standard auditing and development, in turn

affecting the audit archives for building classifiers.

The type of complexity causing major differences in static anal-

ysis tool flaw-finding success mentioned in [3] is not directly ad-

dressed with our code complexity metrics. Those may be better

matched using semantic features [21].

The issue of how to make a classifier resilient to archives with

different versions of static analysis tools, coding rules, and even

coding language international standards is one that needs to be

addressed. The precision of a tool’s alerts may change over time.

The SEI CERT Coding standards are constantly changing, by design

(they exist on a publicly-viewable wiki, and receive comments from

Prioritizing Alerts from Multiple Static Analysis Tools, using Classification Models SQUADE’18:, May 28, 2018, Gothenburg, Sweden
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Lori Flynn, William Snavely, David Svoboda, Nathan VanHoudnos, Richard Qin and Jennifer Burns, David Zubrow, Robert Stoddard,

Guillermo Marce-Santurio

around the world that result in edits that improve the rules). CWEs

and related coding taxonomies also change over time. For this work,

we treated identically all archived data that mapped to the same

CERT rule, although some archived alerts might have had a different

audit determination using a later version of the CERT rule.

5 CONCLUSIONS, LIMITS, FUTUREWORK

We developed classifiers for static analysis alerts mapped to CERT

rules, and testing showed they are accurate. However, analysis

of our dataset showed that little or no ground-truth labeled data

exists for many CERT rules, in the audit archives we had access to.

In future work, to address that we will try to obtain larger audit

archives, and also will develop a test suite with CERT rule code

flaw injection for under-represented labeled rules. Also, auditor

experience affects the data (and resultant classifier) quality.

In future work, we plan to modify our classifiers to provide

accurate metrics for confidence, to enable us to implement our

3-partition goal (e-TP, I, and e-FP). We also plan to add features

that have been used successfully to increase classifier accuracy,

including semantic features [21], code repository data [7], dynamic

analysis output [7], dynamic feedback during auditing [10], and

developer feedback [8]. We plan to develop a labeled and sanitized

dataset using only open-source static analysis and code metrics

tools, and publish that dataset. Another area of future work includes

developing adaptive heuristics for classifiers, particularly when the

initial and subsequent datasets differ significantly. In the future,

we also will develop methods to make the classifiers (and the audit

archive data they are created from) resilient as changes happen to

coding languages, coding rules, and static analysis tools. For future

cross-project classification, we will use methods that have been

shown to improve cross-project classification such as Wang using

semantic features [21], Nam and Kim [15] determining a subset

of labeled data and features to use, and Zhang et al. [23] using a

connectivity-based unsupervised classifier.

Future work will also include integration with automated code

repair. Our models could be used after automatic code repair of

provably-correct repairs, to prioritize (for expert analysis) potential

automated repairs that are not provably-correct. Also, analyses

could be done on the costs and benefits associated with specifying

different confidence thresholds for the classification models. This

may make the models more amenable for adoption by software

organizations. Our model supports analysis with any coding tax-

onomies (e.g., CWE). A key limitation of this work resides with the

set of analyzers used and the willingness of potential adopters to

invest in multiple analyzers. Future work could develop a trade-off

curve between the number and specific analyzers used.
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