
Spatial References and Perspective in
Natural Language Instructions for Collaborative Manipulation

Shen Li*, Rosario Scalise*, Henny Admoni, Stephanie Rosenthal, Siddhartha S. Srinivasa

Abstract— As humans and robots collaborate together on
spatial tasks, they must communicate clearly about the objects
they are referencing. Communication is clearer when language
is unambiguous which implies the use of spatial references and
explicit perspectives. In this work, we contribute two studies
to understand how people instruct a partner to identify and
pick up objects on a table. We investigate spatial features and
perspectives in human spatial references and compare word
usage when instructing robots vs. instructing other humans.
We then focus our analysis on the clarity of instructions with
respect to perspective taking and spatial references. We find that
only about 42% of instructions contain perspective-independent
spatial references. There is a strong correlation between partic-
ipants’ accuracy in executing instructions and the perspectives
that the instructions are given in, as well between accuracy
and the number of spatial relations that were required for the
instruction. We conclude that sentence complexity (in terms of
spatial relations and perspective taking) impacts understanding,
and we provide suggestions for automatic generation of spatial
references.

I. INTRODUCTION

As people and robots collaborate more frequently on
spatial tasks such as furniture assembly [1], warehouse au-
tomation [2], or meal serving [3], they need to communicate
clearly about objects in their environment. In order to do
this, people use a combination of visual features and spatial
references. In the sentence “The red cup on the right”, ‘red’
is a visual feature and ‘right’ is a spatial reference.

There is a long line of research in robotics related to
communicating about spatial references like ‘furthest to the
right’,‘near the back’, and ‘closest’ for navigation task [4]–
[10]. However, there are fewer studies involving the commu-
nication of spatial references for tabletop or assembly tasks
[11]. A common theme in the space of tabletop manipulation
tasks is clutter which we view as many potential objects to
reason about. See Fig. 1
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A cluttered table introduces the problem of object unique-
ness where if there are two objects which are identified in
the same manner (e.g. the red cup among two red cups), we
are left with an ambiguity. One possible solution to this is
to utilize spatial references which allow the use of spatial
properties to establish a grounding or certainty about the
semantic relationship between two entities.

However, even with the use of spatial references, it is still
possible to encounter additional ambiguity which originates
from the reference frame. Humans often use perspective to
resolve this ambiguity as in the example ‘the red cup on
your right’. Often times, in tabletop scenarios, the person
giving instructions will be situated across the table from
their partner and thus will have a different perspective.
Therefore, robots that collaborate with humans in tabletop
tasks have to both understand and generate spatial language
and perspective when interacting with their human partners.
We investigate these key components by collecting a corpus
of natural language instructions and analyzing them with our
goal of clear communication in mind.

We first conducted a study in which we asked participants
to write instructions to either a robot or human partner sitting
across the table to pick up an indicated block from the table
as shown in Fig. 1. This task raises a perspective problem:
does the participant use the partner’s perspective or their
own perspective, if any? Blocks were not always uniquely
identifiable, and so the task required participants to describe
spatial relationships between objects as well. We analyze
the instructions from participants for 1) language differences
between instructing a human versus a robot partner, 2)
trends in language for visual and spatial references, and
3) the perspective(s) participants use when instructing their
partners.

To investigate the effect of perspective, we conducted a
second study in which we presented new participants with
the instructions from the first study and asked them to select
the indicated block. We utilized the correct selection of the
indicated block as an objective measure of clarity. In order
to establish which instructions contained ambiguities (lack of
clarity), we first manually coded the instructions for whether
the reference perspective was unknown or explicit (partici-
pant’s, partner’s, or neither) and whether there were multiple
blocks that could be selected based on the instruction. An
unknown perspective implies the instruction is dependent on
perspective, but it is not explicitly stated.

Results from the first study show that participants explic-
itly take the partner’s perspective more frequently when they
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Fig. 1: Scenes used to elicit spatial references. Online participants were asked to write how they would instruct the silhouetted figure to pick up the block
indicated with the red arrow. For each participant, the silhouette was either referred to as a robot or a human partner. The block configurations on the left
were rated as the easiest to describe, while the configurations on the right were the most difficult.

believe they are instructing a person rather than a robot.
Additionally, we find that people use color most frequently
to refer to a block, while block density (e.g. the cluster of
green blocks), block patterns (e.g. lines of red blocks), and
even certain precise quantitative terms (e.g. 2nd block to
the left) are also widely used. Finally, people spend more
time writing the instructions and rate their tasks as more
challenging when their instructions require the use of more
spatial references.

From the second study, we find that 58% of our collected
instructions contain perspective-dependent spatial references.
Of this 58% more than half fail to explicitly specify the per-
spectives. This results in participants taking longer amounts
of time to process the instructions and lower accuracies in
discerning the intended block. The other 42% of instruc-
tions contained perspective-independent spatial references.
These instructions demonstrated quicker completion times
and higher correct block selection accuracies. We conclude
that it is beneficial for instructions to avoid perspective-
dependent spatial references when possible.

II. RELATED WORK

A. Visual Search

Visual search, defined as the routine visual behavior to find
one object in a visual world filled with other distracting items
[12], is well aligned with our tabletop task. Wolfe divides
visual search into 2 steps: processing easy information from
all locations at the same time in parallel and focusing on
the complex information from a few spatial locations. In the
first step, people respond to visual stimuli from the scene,
including object color, stereoscopic depth, line arrangement,
curvature, intersection, and terminator [12]. In this work, we
match these features to our collected instructions and analyze
the frequency of each feature.

B. Spatial Reference

When similar objects are involved, referring to a group
as a whole is an easy and natural way of specifying the
target [13]. In spatial navigation system, there are three
hierarchical levels: landmark, route, and survey knowledge
of an environment. Landmarks are unique objects at fixed
locations; routes correspond to fixed sequences of locations;

survey knowledge abstracts and integrates knowledge from
different experiences into a single model [14].

C. Perspective
When people collaborate together on spatial tasks, they

often must take each other’s perspectives when referring to
objects in and features of the environment [15], [16]. In an
analysis of 4000 utterances made by NASA astronauts train-
ing together for a mission, 25% of the utterances involved
perspective taking [10].

Levelt separates perspectives into three categories: deictic
perspective (referring to the participants’ points of view, e.g.
“on my left”), intrinsic perspective (referring to the objects’
points of view, e.g. “in front of the car”), and absolute
perspective (referring to the world frame, e.g. “north”) [17].
Levinson merges addressee-centered and deictic perspectives
into relative perspective (referring to landmark object) [18].

Most work on spatial references and perspective taking for
robots assumes people always take robots’ perspective when
giving instructions for tabletop [19], [20] or navigation [21]
tasks. When a person instructs a robot to perform a task
with some ambiguity, the person prefers the robot to take
the person’s perspective [22]. In object identification tasks,
people intuitively use their robot partners’ perspectives [23].
Conversely, human-human collaboration literature reveals
that solo people with imaginary human partners are uniform
in taking their partners’ perspectives while people with real
human partners are not [24], indicating that there is no
consensus on common perspectives. Hence, in our task where
participants instruct partners sitting across the table, we
analyze and rank different perspectives participants use.

D. Ambiguity
Instructions become obscure when the instruction givers

are not explicit about the perspectives they are taking and
the instructees have to make assumptions [17]. Moreover,
the ambiguities occurred in target objects, landmarks, and
spatial relationships between them [25] also make the in-
struction harder for people to understand. For example, in
object identification tasks, applicability regions for spatial
references are fairly large and not mutually exclusive, which
makes instructions not necessarily precise [23].

In an experiment in which people were asked to write
navigation instructions to another person, the other person
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was only able to successfully follow 69% of the nearly-
700 instructions while the others are ambiguous [6]. In a
similar study, subjects were only able to navigate to the final
destination 68% of the time [26]. We analyze the effects
of general ambiguity and the ambiguity caused by unknown
perspective on the easiness that people can understand the
instruction.

E. Human Partner vs. Robot Partner

Robot is treated as a communication partner who needs
more basic instructions than human interlocutor [25]. This is
consistent with another study where half of the participants
instruct robots by decomposing the action and describing
paths to adapt to robots’ assumed linguistic and perceptual
abilities. [13]. Seniors want a streamlined communication
with a task-oriented robot and do not want to speak to robots
the same way they speak to people [27]. Therefore, we also
investigate the difference between the way people speak to
a robot and to a human partner in our tabletop task.

III. STUDY 1: COLLECTING LANGUAGE EXAMPLES

To understand how people describe spatial relationships
between similar objects on a tabletop, we collected a broad
corpus of spatial references generated by 100 online par-
ticipants. We analyzed this corpus for the types of words
participants used and the word choice across differences in
perceived difficulty of providing a spatial reference.

A. Study design

To collect spatial references that represents tasks that
required perspective taking as well as object grounding, we
created a set of stimulus images. Each image represents a
configuration with 15 simplified block objects in different
colors (orange, yellow, green, or blue) on a table. (Fig. 1).
We first generated 14 images of configuration independently,
each of which included different visual features and spatial
relationships, such as a single block of one color, pairs of
blocks closely placed, blocks separated from a cluster, and
blocks within or near clusters of a single color. Then we
placed red-arrow indicators above two different target blocks
independently in each image and ended up with 14 pairs of
configuration (28 images of configuration in total).

This stimulus design is chosen to elicit instructions that
rely more on the visual and spatial arrangement of the blocks
than their individual appearance for the purposes of human-
robot interaction. In order to capture clear instructions for
a potential partner, this task asked participants to instruct a
hypothetical partner to pick up the indicated block as though
that partner could not see the indication arrow. The partner
(indicated by the silhouetted figure in the images) was seated
across the table from the participant viewing the scene. This
setup required participants to be clear about the target blocks
and the perspectives where they were describing the blocks.

Prior work indicates that people communicate with robots
differently from with other people [13], [25], [27]. Therefore,
we varied whether participants were told that their partner

(the silhouette) was human or robot. 1 Participants were
randomly assigned to either the human or the robot condition,
and this assignment was the same for every stimulus they
saw. The stimuli were otherwise identical across conditions.

We analyze the results with respect to these hypotheses:
H1 People use different words when talking to human

and robot. Specifically, people are more verbose,
more polite, and use more partner-based perspec-
tive words to human partners than robot partners.

H2 The frequency of words used in all instructions
correlates with the features used in visual search
(color, stereoscopic depth, line arrangement, cur-
vature, intersection, and terminator [12]).

H3 Subjective ratings of sentence difficulty correlate
with the number of spatial references required to
indicate the target blocks.

B. Study Procedure

We deployed our study through Amazon’s Mechanical
Turk2. Each participant was randomly assigned a partner
condition (human vs robot) and 14 trials. In each trial,
participants were presented with an image, like the one
on the left side of Fig. 1, which was randomly chosen
from the two predefined configurations in each of the 14
pairs of configuration III-A. The participants then typed
their instructions and rated the difficulty of describing that
block on a 5-point scale. For each trial, we also collected
the completion time. After completing 14 trials, participants
were asked 1) if they followed any particular strategies when
giving instructions, 2) how challenging the task was overall,
and 3) for any additional comments they had about the
task. Finally, we collected demographics such as age, gender,
computer usage, handedness, primary language (English or
not), and experience with robots.

C. Metrics

We analyze the collected corpus for language features.
To analyze the differences on word choice between human-
partner group and robot-partner group (H1), we computed
• word count - number of words for each instruction,
• politeness - presence of the word “please” in each

instruction,
• perspective - whether the instruction explicitly refers

to participant’s perspective (egocentric), partner’s per-
spective (addressee-centered), neither perspective3, or
unknown perspective (instruction implicitly refer to
some perspectives) (see Table I for details).4 [17], [18]

Word count and politeness were automatically extracted
from the text. Perspective was manually coded by four raters

1We did not change the visual appearance of the silhouette
2www.mturk.com
3Neither Perspective sentences only use perspective-independent direc-

tional information. For example, “closer to you” should be classified as
neither perspective instead of partner perspective, because it contains a
perspective-independent reference to a landmark, “you,” but not perspective-
dependent relationships such as “on my left” and “on your right”.

4Object-centered perspective is not considered because blocks are all the
same except color
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Type P1 P2 Example

Participant Perspective + - “the block that is to my rightest.”
“my left most blue block”

Partner Perspective - + “the block on your left”
“second from the right from your view”

Neither Perspective - - “closest to you”
“the top one in a triangle formation”

Unknown Perspective ? ? “to the left of the yellow block”
“the block that is on far right”

TABLE I: Possible perspectives. (P1=Participant P2=Partner).

Word Category Description

Action An action to perform
Object An object in configuration
Color Color of object

Ordering/Quantity Ordering/Quantization of objects
Density Concentration of objects (or lack of)

Pattern/Shape A readily apparent formation
Orientation The direction an object faces

Environmental Reference to an object in the environment
Spatial Reference Positional reference relating two things

Perspective Explicitly indicates perspective

TABLE II: Word categories and their brief descriptions

who coded the same 10% of the data and iterated until high
inter-rater reliability, measured by averaging the result of
pairwise Cohen’s κ tests. The average κ value for perspective
was 0.85, indicating high inter-rater reliability. Once this
reliability established, the four raters each processed one
quarter of the remainder of the instructions.

To compare the features used in our collected instructions
with visual search (H2), we classify words into categories
adapted from visual search literature [12]. The categories
are listed in Table II and presented in the order of word
frequency, the number of instructions that contain words
from the category divided by the size of the corpus.

To verify the correlation between perceived difficulty and
the number of required spatial references (H3), we compare
the subjective difficulty rating (Likert scale 1 (easy) to 5
(difficult)) to the following objective measures:
• word count - as computed for H1
• spatial reference count - as computed for H2
• ordering and quantity word count - as computed for H2
• completion time - the duration from when a participant

loads a new stimulus to when the participant hits the
submit button for his/her instruction.

D. Results

In the study, we recruited 120 participants and over-
sampled 1680 instructions so that we could account for
errors in data collection process and invalid responses. We
remove 10 sentences (0.006%) that either do not refer to
any blocks or are otherwise nonsensical. For consistent
and organized analysis, we randomly select 1400 sentences
from the remaining 1670 to ensure that each of the 28
configurations has exactly 50 instructions divided as evenly
as possible between partner conditions. We analyze the 1400
sentences selected in this manner.

Visual Feature Count Frequency

Color 1301 0.929
Ordering/Quantity 498 0.356

Density 456 0.326
Pattern/Shape 60 0.043

Orientation 1 0.001

TABLE III: Visual feature frequencies and feature-included sentence counts
over all 1400 sentences ranked from most to least frequent

1) Hypothesis H1: To evaluate the different words people
used when speaking to a robot or human partner (H1), we
analyze the overall word count, number of politeness words,
and perspective used between the two partner conditions.

To analyze word count, we conduct an independent-
samples t-test comparing number of words in the sentences
for the two partner conditions. There is no significant differ-
ence in the mean sentence length by partner type (human:
M = 14.90, SD = 7.8, robot: M = 14.35, SD = 7.1),
t(1398) = −1.389, p = 0.179.

To analyze politeness, we conduct a Chi-squared test of
independence between partner type (human or robot) and
politeness word (present or absent). There is a significant
relationship between the two variables, χ2(1) = 6.685, N =
1400, p = 0.01. Though use of politeness words is rare
overall (only 4.6% of all the sentences contain “please”),
politeness words are used significantly more often in human-
partner condition (6.1%) than robot-partner condition (3.2%).

To analyze perspective, we conduct a Chi-squared test
of independence between partner type (human or robot)
and perspective used (participant’s, partner’s, neither, or
unknown). There is a significant relationship between the
two variables, χ2(3) = 13.142, n = 1400, p = 0.004. Post-
hoc analysis with a Bonferroni correction identify that the
partner perspective is used significantly more frequently in
human-partner condition (28.1% of sentences) than in robot-
partner condition (20.6% of sentences), p = 0.001. No other
significant differences are found. This result is aligned with
the idea that people adapt to the robot’s assumed linguistic
and perceptual abilities when talking to a robot. [13].

Thus, H1 is partially supported: there is no difference in
sentence length between human and robot conditions, but
people use “please” more often and take partner’s perspec-
tive more frequently when they believe they are instructing
another human than instructing a robot.

2) Hypothesis H2: To address our belief regarding the
correlations between the visual features in our collected in-
structions and visual search (H2), we analyze how frequently
sentences contain visual search features.

A summary of the results are in Table III.
First, a reference to color is used in nearly every sentence,

since color is such a salient feature in our stimuli as well as
in visual search. Next, although orientation is also strongly
influential according to visual search literature, orientation is
almost never referenced in our data. This is likely due to the
fact that in our study, blocks have 4-way symmetry and are
not oriented in any particular direction [12].

Without many other visual indicators, participants fre-
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quently referred to “dense” regions of one particular color or
to shapes or patterns they saw in the blocks such as a “line of
red blocks”. These references are observed in the literature
with less consistency than color and orientation are [12].

Finally, although ordering/quantity does not fit the
paradigm of visual search [12] as well as the previously
mentioned features did, these words are closely related to the
concepts of pattern/shape and density. “The third block in the
line” and “The second block from the cluster” are examples
respectively. We find high occurrence of ordering/quantity
words especially in relation to other visual search terms.

In summary, we find that the observed frequency of
many categories of words in our corpus, including color,
density, shape, and ordering/quantity, closely matched what
we expected based upon the visual search literature [12].

3) Hypothesis H3: We evaluate the effect of perceived
difficulty on word choice in each instruction (H3) by investi-
gating the correlations between subjective rating of difficulty,
overall word count, number of spatial references, number of
order/quantity words, and completion time. We excluded any
trials on which the participant did not provide a subjective
rating of difficulty and two outlier trials for which the
response times were greater than 10 minutes, which ended
up with 1353 sentences.

Because we use ordinal measures in this evaluation (e.g.
subjective difficulty is rated on a 5-point scale), we conduct a
Spearman’s rank-order correlation to determine the relation-
ship among the five metrics identified. There are statistically
significant correlations across all pairs of metrics (p < 0.01
for all, which accounts for multiple comparisons).

Table IV details these correlations, and Fig. 2 visually
displays some of them. Some of our key observations are:

1) As expected, there is a clear positive correlation
(0.528) between word count and difficulty (Fig. 2a):
easier scenes require fewer words to describe.

2) Also as expected, there is a clear positive correlation
(0.508) between completion time and difficulty (Fig.
2b): harder scenes require more time.

3) Interestingly, easier rated tasks generally require fewer
spatial references (Fig. 2c): more spatial references in
a sentence imply a greater depth of search to find the
correct answer.

These findings confirm that subjective ratings of sentence
difficulty are strongly correlated with the number of spatial
references required to indicate the target block.

We conclude that participants are more polite and use
partner’s perspective more frequently when instructing a
human partner than a robot partner. Additionally, the words
used in the instructions are in line with the words used by
participants when helping partners perform visual search. Fi-
nally, there are strong correlations between subjective rating
of difficulty with all of our objective measures. However, we
are mostly interested in whether these collected instructions
are clear enough for partners to understand. Our second study
is aimed at analyzing the corpus from Study 1 for clarity.

(a) (b) (c)

Fig. 3: (a) In Study 2 (Sec. IV), we removed the red indication arrow. (b) As
participants move their mouse over the image, a red circle will appear over
the blocks to show them which block they could possibly select. (c) When
they click on the block, a black and white checkered circle will appear
around the selected block.

IV. STUDY 2: EVALUATING LANGUAGE FOR CLARITY

To study the principles of clear spatial references in human
robot collaboration, we need to validate the clarity of the
instructions obtained in Study 1 (Sec. III). First, we manually
coded the instructions in terms of two criteria (perspectives
had already been coded in Study 1 (Sec. III)):
• block ambiguity - the number of blocks that people

could possibly identify from the image based on the
given instruction.

• perspective - whether there is an explicitly stated per-
spective provided in the instructions.

Subsequently, we ran a follow up study to empirically
measure the clarity of the sentences. In this second study,
participants were presented with the stimuli from Study
1 (Sec. III) (without red indication arrows) alongside the
corresponding block descriptions from Study 1 (Sec. III), and
were asked to click on the indicated blocks. We collected
responses from ten participants for each instruction from
Study 1 (Sec. III).

A. Coding Instructions for Clarity

We manually code each of the instructions from Study 1
(Sec. III) for perspective and general block ambiguity. The
coding measures, inter-rater reliability scores, and prelimi-
nary findings are described next.

1) Perspective: As described in Sec. III-C and Table I, all
sentences are labeled with perspective information. Among
all the 1400 sentences, 454 (32.4%) sentences use unknown
perspective, 339 (24.2%) sentences use partner perspective,
15 (1.07%) sentences use participant perspective, and 589
(42.1%) sentences use neither perspective.

2) Block Ambiguity: Block ambiguity is the number of
blocks this sentence could possibly apply to. For our def-
inition, no inferences are allowed when determining block
ambiguity. Every detail which could possibly lead to ambi-
guity should be considered and expanded to different referred
blocks. For example, the spatial relation “surrounded” could
mean either partially or fully surrounded, which makes the
sentence “the block that is surrounded by three blocks”
potentially ambiguous. Unknown perspective could also lead
to block ambiguity if different blocks are identified under the
assumption of different perspectives.

We manually code each of the instructions from Study 1
(Sec. III) for “high” or “low” block ambiguity. If a sentence
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Fig. 2: The effect of subjective difficulty on ratings and measures of the sentences, such as (a) word count, (b) completion time, and (c) number of spatial
references.

Difficulty Word Count Spatial Reference Order/Quantity Word Completion Time

Difficulty — 0.528 0.213 0.338 0.508
Word Count 0.528 — 0.416 0.425 0.682

Spatial Reference 0.213 0.416 — 0.082 0.262
Order/Quantity Word 0.338 0.425 0.082 — 0.350

Completion Time 0.508 0.682 0.262 0.350 —

TABLE IV: Spearman’s rho correlations of sentence features and scene difficulty evaluations. All correlations are statistically significant with p < 0.01.

could refer to only one single block in the scene, it is
rated as “low” ambiguity. Otherwise, it is rated as “high”
ambiguity. We use the same process as in Sec. III-C to
establish inter=rater reliability. On 10% of the data, the
average Cohen’s κ for the four raters is 0.68, indicating high
rater agreement. Each rater subsequently code one quarter of
the remaining data.

Among all the 1400 sentences coded, 895 (63.9%) sen-
tences are not block ambiguous with only one block being
referred to, while 492 (36.1%) sentences possibly refer to
more than one block.

B. Online Study Design and Procedure

As mentioned above, the goal of the second study is to
investigate the clarity of spatial instructions, which will guide
us through the future research on robot-generated instruc-
tions. In this online study, new Amazon Mechanical Turk
participants were shown 40 configurations random chosen
from the pool of 28 configurations generated in Study 1 (Sec.
III). Each configuration was presented alongside one of the
corresponding instructions from Study 1 (Sec. III) corpus.
We would make sure that the clarity of all the collected
instructions in Study 1 (Sec. III) were evaluated here. Then
the participants were asked to click on the block that best
matched each instruction. As they moved their mouse over
the image, a red circle appeared over the blocks to show
them which block they would be selecting (Fig. 3b). When
they clicked on the block, a black and white checkered circle
would appear around the selected block (Fig. 3c). Continuing
to move the mouse would present a red circle on those
blocks which the participants could then click on to change
their answer. Then we measured the participant’s accuracy
at selecting the indicated block.

We compute the following metrics for Study 2:
• Final Answer - whether a participant picks the correct

block

• Accuracy - average over 10 participants of final answer
for each instruction

• Completion Time - duration from moment when the
page finishes loading to the moment when a participant
clicks the next button to proceed.

Based on our ambiguity measures and the results from
Study 2, we hypothesize that:

H4 Block ambiguous sentences will take participants
in Study 2 more time and participants will be less
accurate in discerning the referred block.

H5 Sentences with unknown perspective will take par-
ticipants in Study 2 more time and they will be
less accurate in discerning the referred block. Con-
versely, sentences with neither perspective will take
less time and participants will be more accurate
in discerning the referred block.

C. Results

We collect the responses from 356 participants and ran-
domly select 10 responses for each of the 1400 sentences
from Study 1 (Sec. III). We evaluate the participant per-
formance in Study 2 on the set of sentences from Study
1 (Sec. III) by measuring their accuracy and completion
time as described above. We also compare the objective
accuracy measure to our manually-coded block ambiguity
and perspective taking.

1) Hypothesis H4: First, we investigate block ambiguity
by conducting an independent samples t-test measuring the
effect of block ambiguity (low or high) on accuracy (Fig. 4a)
and completion time (Fig. 4b). There are significant results
for both accuracy (t(1398) = 13.888, p < 0.005) and com-
pletion time (t(1398) = −5.983, p < 0.005). Accuracy is
lower and completion time is higher on sentences that contain
ambiguous block references (H4). These results confirm that
block ambiguous statements take longer amounts of time for
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Fig. 4: The effect of block ambiguity on (a) average selection accuracy and (b) completion time. The effect of perspective on average selection (c) accuracy
and (d) completion time. The effect of the subjective participant ratings of difficulty from Study 1 (Sec. III) on (e) average selection accuracy from Study
2 (Sec. IV).

participants to process and participants are less accurate in
discerning the referred block.

2) Hypothesis H5: Next, we analyze perspective taking by
conducting a one-way ANOVA measuring the effect of per-
spective type (participant, partner, neither, or unknown) on
accuracy (Fig. 4c) and completion time (Fig. 4d). Perspective
type has a significant effect for both accuracy (F (3, 1396) =
43.655, p < 0.005) and completion time (F (3, 1396) =
34.607, p < 0.005). Sentences that use neither perspective
have higher accuracies (M = 0.802, SD = 0.240) than sen-
tences that use partner (M = 0.662, SD = .278, p = 0.019)
or unknown (M = 0.619, SD = 0.307, p = 0.017) perspec-
tive (H5). Similarly, average time is lower for sentences that
use neither perspective (M = 11.418s, SD = 10.56) than
partner (M = 16.881, SD = 9.81, p < 0.001) or unknown
(M = 17.756, SD = 12.03, p < 0.001) perspective (H5). No
other significant differences are found. These results confirm
that neither perspective statements take shorter amounts of
time for participants to process and participants are more
accurate in discerning the referred block. At the same time,
unknown perspective statements take participants longer time
and participants are less accurate.

Additionally, we observe that participants in Study 2 have
lower accuracy on sentences that participants in Study 1
(Sec. III) label as more difficult (Fig. 4e). This result is not
surprising as participants who have trouble writing a clear
sentence would likely rate the task as difficult.

We conclude that hypotheses 4 and 5 are both supported.
Block ambiguity and unknown perspective are both corre-
lated with higher completion times and lower accuracies. The
type of perspective in the sentence has a significant effect
on accuracy: when the instructions are written in neither
perspective, participants in Study 2 have higher accuracy than
any of the other perspectives.

V. DISCUSSION

Keeping the goal of seemless human-robot collaboration in
a tabletop manipulation setting in mind, we find the results

from this first step forward quite encouraging. We created
a corpus of natural language when specifying objects in
a potentially ambiguous setting. We identified a cognitive
process which plays a significant role in the formation of
these specifying descriptions. We defined metrics to aid in
scoring the optimality of a description. We designed an
evaluation process based on these metrics. And finally, we
performed an initial, yet broad, analysis on our corpus that
was able to uncover a handful of insights. We will discuss a
few of these insights in the following section.

In analyzing the corpus, we discovered that participants
generally followed one of three approaches when writing
instructions: (1) a natural approach where they used em-
bedded clauses linked together by words indicating spatial
relationships such as in the instruction “Pick up the yellow
block directly to the left of the rightmost blue block.”, (2)
an algorithmic approach, which a majority of the users
employed, where they partitioned their description in stages
reflecting a visual search process such as in the instruction
“There is an orange block on the right side of the table.
Next to this orange block is a yellow block. Please pick up
the yellow block touching the yellow block”, (3) an active
language approach where they provided instructions asking
the partner to move their arms (usually) in a certain way
so as to grasp the desired object such as in the instruction
“Stand up, reach out over the table, and grab the yellow
block that is touching the blue block closest to me.”. In
certain instructions, the participant would even offer active
guidance (which is of course not an option in a one shot
response written in a web form).

Among the three, the algorithmic approach is often the
clearest but feels less natural. We believe that these observa-
tions about instruction approach types will lend themselves
well to further investigation on user instruction preferences.
For example, some users might prefer to give algorithmic
descriptions which iteratively reduce ambiguity as needed,
while other users might prefer to utilize active language
where they guide the robots motions via iterative movement-
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driven instruction.
Our findings suggest that sentence clarity suffers when

there is either an ambiguity related to the number of blocks
a sentence can specify or an ambiguity related to perspective.
An interesting observation is the relationship between block
ambiguity and perspective ambiguity. Because the process
we used in coding the data did not exclude one from
the others, it was highly possible that these two features
were dependent although the Pearson correlation indicated
the opposite (r = −0.0287). Perspective ambiguity will
often results in block ambiguity, except in the case that
there features in the instructions that are dominate enough
to eliminate all the possible blocks aside from one. For
example, in “It is the block all the way on the right side
by itself”, the perspective is unknown but only one block
in the scene is identifiable since it is the only “by itself”
candidate. In this case, we can reduce the instruction to “It
is the block by itself”. On the other hand, block ambiguity
does not always imply unknown perspective. For example, in
“pick up the closest green block”, although the perspective
is neither, not unknown, there are actually multiple possible
blocks inferred from the instruction due to ambiguity in the
landmark being referred to (e.g. closest to what?).

Further, descriptions requiring perspective always seem to
include terms like ’right’, ’left’, ’above’ and ’below’. We
shall classify these as directional relative spatial references.
If establishing perspective proves to be difficult in a scenario,
and a sentence can avoid using directional relative spatial
references, the robot should prefer to avoid these kinds
of descriptions. That is, if the robot is able to generate a
description using our definition of ’neither’ perspective, it
should prefer to do so over other descriptive strategies.

The intention of this work is to establish a baseline un-
derstanding of human preferences and behaviors when giving
manipulation scenario instructions to a robot. We identify this
one-shot language data analysis as a necessary step in laying
the foundation for a truly interactive system which might
take multiple rounds of input or ask questions to reduce
uncertainty. Even without the element of active conversing,
however, the results and insights we were able to extract are
rather encouraging and have allowed us to establish effective
grounding. We intend to gradually introduce interactivity in
future works with varying approaches and modalities, and
we believe the work we present in this paper provides an
excellent initial benchmark.
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