
SAAM: A Method for Analyzing the Properties of Software Architectures

Abstract

While software architecture has become an increasingly
important research topic in recent years, insufficient atten-
tion has been paid to methods for evaluation of these archi-
tectures. Evaluating architectures is difficult for two main
reasons. First, there is no common language used to de-
scribe different architectures. Second, there is no clear way
of understanding an architecture with respect to an organi-
zation’s life cycle concerns—software quality concerns
such as maintainability, portability, modularity, reusability,
and so forth. This paper addresses these shortcomings by
describing three perspectives by which we can understand
the description of a software architecture and then propos-
ing a five-step method for analyzing software architectures
called SAAM (Software Architecture Analysis Method). We
illustrate the method by analyzing three separate user in-
terface architectures with respect to the quality of modifi-
ability.

1 Introduction

Software architecture is a topic of growing concern
within both the academic and industrial communities.
Despite the popularity of this topic, little attention focuses
on methods for analyzing a software architecture to show
that it satisfies certain properties. Software architectures
are primarily motivated by software engineering consider-
ations, or software quality factors, such as maintainability,
portability, modularity and reusability. In this paper, we
address architectural description and a method of analysis
with respect to software quality. The method is demon-
strated by means of a case study examining architectures
for developing the user interface portion of interactive sys-
tems.

Over the past decade, changes in the software architec-
ture characterize the advances in support environments for
the development of user interfaces. However, it is often
difficult to assess a developer's claims of qualities inherent

in a software architecture. Examples of such claims are:

We have developed … user interface components
that can be reconfigured with minimal effort. [20]

Serpent … encourages the separation of software
systems into user interface and “core” application
portions, a separation which will decrease the cost
of subsequent modifications to the system. [22]

This Nephew UIMS/Application interface is bet-
ter that [sic] traditional UIMS/Application inter-
faces from the modularity and code reusability
point of views. [26]

The difficulty in assessing the validity of these claims
arises for two reasons. First, the various architectural
descriptions do not use a common vocabulary. When peo-
ple develop new architectures, they typically develop new
terms to describe them, or use old terms in a new way. It
is, therefore, difficult to compare these new architectures
with existing ones—there is no level playing field. Second,
it is often difficult to link architectural abstractions with
system development concerns. Developers tend to concen-
trate on the functional features of their architectures, and
seldom address the ways in which their architectures sup-
port quality concerns within the system development life
cycle.

The main goal of this paper, therefore, is to establish a
method for describing and analyzing software architec-
tures, called the Software Architecture Analysis Method
(SAAM). Before analyzing an architecture, we must first
have a way to provide a clear description of it which
exposes its main features. We define three perspectives for
understanding and describing architectures—functionality,
structure and allocation. We also provide a simple lan-
guage for describing the structural perspective. This lan-
guage is important because i t permits different
architectures to be described consistently, forcing a com-
mon level of understanding for comparing different archi-
tectures.

Rick Kazman

Department of Computer Science
University of Waterloo

Waterloo, ON Canada N2L 3G1
rnkazman@watcgl.uwaterloo.ca

Len Bass, Gregory Abowd

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA, U.S.A. 15213
{ljb,gda}@sei.cmu.edu

Mike Webb

Texas Instruments Inc.
Dallas, TX, U.S.A. 75265

{smw}@sei.cmu.edu

After we have a way to describe an architecture, we can
apply the SAAM to analyze it. The main activities
involved in the SAAM are enumerated below.

1. Characterize a canonical functional partition-
ing for the domain.

2. Map the functional partitioning onto the ar-
chitecture’s structural decomposition.

3. Choose a set of quality attributes with which
to assess the architecture.

4. Choose a set of concrete tasks which test the
desired quality attributes.

5. Evaluate the degree to which each architec-
ture provides support for each task.

It is a secondary goal of this paper is to demonstrate the
utility of this general architectural analysis method for the
evaluation of user interface architectures.

1.1 Background

Our approach to the analysis of software at the architec-
tural level reflects a growing trend in software engineer-
ing. That trend emphasizes a better understanding of
general architectural concepts as a foundation for the
proof that a system meets more than just functional
requirements [12]. We agree with Perry and Wolf [18] that
an architectural description provides multiple perspectives
of different information, though their perspectives would
rightly be considered as perspectives on structure in our
terms. They also promote the use of a small lexicon of ele-
ments to portray structure as do Abowd, Allen and Garlan
[2] and Garlan and Shaw [8]. Our small lexicon, however,
resulted more because it was sufficient for the task at hand
and not out of any conviction that a small vocabulary was
essential.

We are not original in our desire to predict the quality
of a software product from a higher level design descrip-
tion. For example, Parnas [17] motivated the use of modu-
larization or information hiding as a means of high-level
system decomposition to improve flexibility and compre-
hensibility. Stevens, Myers and Constantine [25] intro-
duced the notions of module coupling and cohesion to
evaluate alternatives for program decomposition. The soft-
ware metrics community has used these notions to define
predictive measures of software quality (see, for example,
the work by Briand, Morasca and Basili [6]). Our analysis
method appeals to a more abstract evaluation of how the
architecture fulfills the domain functionality and other
nonfunctional qualities. We do not present any metrics for
predictive evaluation, but instead present an example-
based method for performing a more qualitative evalua-
tion.

Garlan and Shaw demonstrated how the examination of

significant architectural case studies can help to define the
field of software architecture, and this is why we chose to
ground our general analysis method in a concrete domain.
Although we have extensive experience in the field of
Human-Computer Interaction and user interface develop-
ment and analysis, our main interest in writing this paper
was not so much for the HCI community but for the gen-
eral software engineering community interested in under-
standing how clear and coherent software architectures
can aid in analysis. Having said that, there is a clear contri-
bution in our work for the user interface development
community. There is an abundance of literature which
takes a taxonomic approach to classifying the many user
interface development tools ([4], [11]). Rather than simply
classify various user interface development tools, we pro-
vide a means of evaluating their suitability for producing
modifiable interactive systems.

1.2 Overview

In Section 2, we define the three distinct perspectives,
functionality, structure and allocation, used to describe a
software architecture and we introduce the simple lexicon
for the structural perspective. The remainder of the paper
demonstrates the application of the SAAM to the case
study of user interface software. In Section 3, we define a
canonical functional partitioning for user interface soft-
ware and examine how that functionality is allocated for
three distinct user interface development environments. In
Section 4, we discuss one quality attribute, modifiability,
important for user interface software. We then identify two
benchmark modification tasks which are used in Section 5
to evaluate the architectures assumed by the different
development environments. In Section 6, we summarize
the results of this paper and point to further work on this
topic.

2 Perspectives on architectures

The architectural design of a software system can be
described from (at least) three perspectives—the func-
tional partitioning of its domain of interest, its structure,
and the allocation of domain function to that structure.
These perspectives reflect a consensus within the software
engineering community, as witnessed by the literature ([8],
[13], [21], [24]). We will discuss each of these perspec-
tives in turn.

2.1 Functionality

A system’s functionality is what the system does. It
may be a single function or a bundle of related functions
which together describe the system’s overall behavior. For
large systems, a partitioning divides the behavior into a

collection of functions which together comprise the sys-
tem’s function but which are individually simple to
describe or otherwise conceptualize.

Typically, a single system’s functionality is decom-
posed through techniques such as structured analysis [30]
or object oriented analysis [22], but this is not always the
case.When discussing architectures for a collection of sys-
tems in some common domain, such as we are doing here,
the functional partitioning is often the result of a domain
analysis. In a mature domain (e.g., databases, user inter-
faces, flight simulators, and VLSI design), the partitioning
of functionality has been exhaustively studied and is typi-
cally well understood, widely agreed upon, and canonized
in implementation-independent terms. Another common
name for a canonical functional partitioning is a reference
architecture, but we choose not to use that name for fear of
overloading the term architecture.

2.2 Structure

A system’s software structure reveals how it is con-
structed from smaller connected pieces. The structure is
described in terms of the following parts:

1. A collection of components which represent
computational entities (e.g., a process) or per-
sistent data repositories (e.g., a file);

2. A representation of the connections between
the components, that is, the communication
and control relationships among the compo-
nents.

In our analysis of architectures, we make use of a small
and simple lexicon for describing structure, as indicated in
Figure 1.

Square-cornered boxes with solid lines represent pro-
cesses, or independent threads of control. Round-cornered

boxes represent computational components which only
exist within a process or within another computational
component (e.g. procedures, modules). Square cornered
shaded boxes represent passive data repositories (typically
files). Round-cornered shaded boxes represent active data
repositories (e.g., an active database). Solid arrows repre-
sent data flow (uni- or bi-directional) and grey arrows rep-
resent control flow (also uni- or bi-directional). This
lexicon has been defined to meet the descriptive needs of
this paper; it should not be construed as a complete vocab-
ulary for all structural descriptions.

To understand the overall behavior of a system, we
would need to provide more detailed descriptions of the
computations possible within components and the overall
coordination of a collection of components with various
connection relationships between them. Such computa-
tional and coordination models should be explicit in an
architectural description [1]. However, we do not include
such information in our lexicon.

2.3 Allocation

The allocation of function to structure identifies how
the domain functionality is realized in the software struc-
ture. The purpose of making explicit this allocation is to
understand the way in which the intended functionality is
achieved by the developed system. There are many struc-
tural alternatives and many possible allocations from func-
tion into that structure. Software designers choose
structural alternatives on the basis of system requirements
and constraints which are not directly implied by the sys-
tem’s functional description. It is the allocation of function
to structure which we will be examining most closely in
this paper, because the allocation choices most strongly
differentiate architectures within a given domain.

3 Description of architectures for user
interfaces

We can now describe a number of software architec-
tures for user interfaces in terms of a canonical functional
partitioning for the domain, the individual structural
decomposition and the allocation from functionality to
that structure. Once we have these architectural descrip-
tions, we will have the basis for a more intellectually satis-
fying comparison of different user interface software
architectures. We begin with a description of a canonical
functional partitioning for this domain before describing
three influential non-commercial user interface architec-
tures—Serpent, Chiron and Garnet.

3.1 The Arch/Slinky metamodel

The Arch/Slinky metamodel of user interface architec-

Process

Passive Data
Repository

Computational

Uni-/Bi-directional
Control Flow

Uni-/Bi-directional

Data Flow

Figure 1: Architectural notations

Component

()

()

Active Data
Repository

Components Connections

tures [29] will serve as our canonical functional partition-
ing for this domain. It is an extension of the Seeheim
model of user interface management systems [19], and is
the result of wide discussion and agreement amongst user
interface researchers and developers. Arch/Slinky identi-
fies the following five basic functions of user interface
software:

• Functional Core (FC). This component performs the
data manipulation and other domain-oriented func-
tions. It is these functions that the user interface is
exposing to the user. This is also commonly called the
Domain Specific Component, or simply the Applica-
tion.

• Functional Core Adapter (FCA). This component
aggregates domain specific data into higher-level struc-
tures, performs semantic checks on data and triggers
domain-initiated dialogue tasks.

• Dialogue (D). This component mediates between the
domain specific and presentation specific portions of a
user interface, performing data mapping as necessary.
It ensures consistency (possibly among multiple views
of data) and controls task sequencing.

• Logical Interaction (LI) component. This component
provides a set of toolkit independent objects (some-
times called virtual objects) to the dialogue compo-
nent.

• Physical Interaction (PI) component. This component
implements the physical interaction between the user
and the computer. It is this component which deals
with input and output devices. This is also commonly
called the Interaction Toolkit Component.

 In the remainder of this section, we will provide struc-
tural descriptions of the Serpent, Chiron and Garnet user
interface development environments. Each of these devel-
opment environments assumes a structure for application
built within that system. We will first show that graphical
structure assumed by the authors of the development envi-
ronment. We will then recast that structure using the lexi-
con defined in Section 2.2. Superimposed on that
structural description will be the allocation of domain
function given by the Arch/Slinky canonical functional
partitioning.

3.2 Serpent

Serpent identifies a dialogue controller, the presentation
and the application as three distinct processes in its archi-
tecture [3], as shown in Figure 2.

Application modules contain the computational seman-
tics required for the application. Although there can theo-
retically be many different applications contained within a
given run-time instance of Serpent, there is typically only

one. Presentation modules provide techniques for support-
ing interaction at both the logical and physical level com-
pletely independent of application semantics. Different
presentation modules in a given run-time instance are pos-
sible, although once again, not typical. Given that applica-
tion and presentation modules are separate, there must be a
way to coordinate a given application component with a
presentation component. That is the purpose of the dia-
logue controller. The dialogue component mediates the
user’s interaction with an application, through the control
of the presentation.

All communication between Serpent components is
mediated by constraints on shared data in the database
shown in Figure 2. This structure is implemented as an
active database—when values in the database change, they
are automatically communicated to any component which
is registered as being interested in the data. This global
database physically resides in the same process as the dia-
logue controller but is logically independent from all of
the Serpent components. A dialogue manager sits within
the dialogue controller process and mediates the connec-
tion between application and presentation. The dialogue
manager is further decomposed into a collection of view
controllers (not shown in Figure 2) which provide a finer
grain of correspondence between application and presenta-
tion objects.

Figure 3 indicates how the five basic functional roles of
a user interface architecture, as identified in section 3.1,
are mapped onto Serpent’s software structure. Dotted lines
are used, in this and following figures, as a visual indica-
tion of the allocation of functionality to portions of the
structure. This is done for analysis purposes only and
should not be interpreted as having any other structural
implications.

Several things have changed between Figure 2 and Fig-

Dialogue
Controller

Figure 2: The Serpent architecture (adapted from [3])

Active Database

Dialogue
Manager

Application

Presentation

ure 3. The architecture has been redrawn using the nota-
tion given in section 2.2, and the functional roles have
been overlaid on the structure of Serpent, in order that the
allocation of functionality to structure may be illustrated.

There are several points of interest to note in this re-
characterization of Serpent’s structure:

• there is no structural separation between the PI and LI
functions in the presentation process;

• there is no structural separation between the FCA and
D functions in the dialogue controller process;

• except for the dialogue manager, all of Serpent’s com-
ponents are monolithic—that is, they provide no archi-
tectural support for subdivision of functionality within
a component. Within the dialogue manager, a view
controller hierarchy provides an architectural decom-
position.There are other forms of support that allow for
further subdivision of functionality. For example, in

Serpent a glue language is used within the presentation
process to separate physical aspects of a window sys-
tem/toolkit from logical aspects. This glue, therefore,
supports the subdivision of the presentation process
into physical interaction and logical interaction func-
tions.
This last point is important to remember. We are only

concerned with architectural support in this paper. We do
not discuss other forms of support, such as language sup-
port as exemplified by the use of glue in Serpent, though
we recognize their potential importance.

3.3 Chiron

The Chiron architecture [24] was built with the
expressed goals of addressing life cycle concerns of main-
tainability and sensitivity to environmental changes. A
Chiron architecture consists of a client and a server. The
client consists of an application, which exports a number
of abstract data types (ADTs) which Chiron encapsulates
within Dispatchers. Dispatchers communicate with Art-
ists, which maintain abstract representations of their asso-
ciated ADTs in terms of an abstract depiction library
(ADL).

A Chiron server consists of the ADL, a virtual window
system, and an instruction/event interpreter. The virtual
window system translates abstract interface depictions into
concrete ones. The instruction/event interpreter responds
to requests from Artists to change the abstract description
and translates those requests into changes to the presenta-
tion. It also responds to events from users and translates
those back into Artist requests.

The architecture of a typical system developed under
Chiron is shown in Figure 4.

The Chiron architecture clearly separates the applica-
tion (functional core) from the rest of the system, as would
be expected in a system which was built with the
expressed goal of minimizing sensitivity to environmental

FC PI
LI

FCA
D

Application Presentation

Figure 3: Serpent architecture (annotated)

Dialogue
Controller

Dialogue Manager

Active Database

Figure 4: A typical Chiron architecture (adapted from [24])

Abstract Depiction

ADL Library

V
ir

tu
al

 W
in

do
w

Chiron Server

Application

Chiron Client

ADT
DispatcherArtist

ADT
Dispatcher

ADT
Dispatcher

Artist

Artist

Artist

I/E Interpreter

Sy
st

em

changes. The dispatchers/ADTs together form the func-
tional core adapter. It seems clear that the Artists contain
some of the dialogue, for example, maintaining a corre-
spondence between objects from the application domain
and interface objects from the presentation domain. How-
ever, what is less clear, from the architectural description,
is where the “state” of the dialogue lives. For example,
where does one put the information that the “paste” option
in an edit menu should be grayed out unless something has
previously been cut or copied? Another type of dialogue
issue is maintaining relationships among the interface
objects. For example, when a user selects the “Save As”
option in a file menu, something in the dialogue must
cause a file selection box to be created. Once again, the
location of these sorts of dialogue issues is not clear from
Chiron’s architectural description. These dependencies
might exist in the Artists or the ADTs. [28]

The physical interaction component appears to be
located in Chiron’s Virtual Window System component,
and the logical interaction component is encapsulated
within the ADL. As a result of this characterization, we
can provisionally annotate the Chiron architecture as
shown in Figure 5.

This re-characterization indicates the logical division of
functionality in Chiron, according to the Arch/Slinky
meta-model. Note that by re-characterizing Chiron’s archi-
tecture in this way, we can now begin to understand its
relationships to other architectures, such as Serpent’s. This
task is considerably more difficult when trying to compare
architectures based upon their own representations and
claims. What we have done is to develop a common lan-
guage for making architectural comparisons.

3.4 Garnet

The emphasis for systems developed under Garnet [15]
is on control of the runtime behavior of interaction objects
and the visual aspects of the interface. This is a different

emphasis from Serpent and Chiron, which were expressly
interested in maintainability and separation of concerns.

The architecture of applications built with Garnet is a
single process, with Common Lisp and the X11 window
system as its foundations (above an assumed operating
system). The Garnet toolkit is built on top of this founda-
tion. At the very top are high-level Garnet tools (which we
call Garnet applications). Garnet is thus commonly pre-
sented as a layered system, as shown in Figure 7.

However, Garnet applications are not strictly layered.
In a strictly layered system, the nth layer hides all details
of the layers n-1 and lower, and is available only to layer
n+1. In Garnet applications, Common Lisp, the KR object
system and the Constraint system are services used
directly by all layers. There are no prototypical patterns of
usages for the object services. Consequently, we choose
not to reveal it as an architectural features of Garnet in
Figure 7, just as we have chosen not to represent the oper-
ating system in our architectural description.

The Interactors and Opal Graphics together strictly hide
all of the X11 calls. Thus, Garnet widgets and applications
do not have any window manager calls in them, only calls

Operating System

KR object system

X11 Common Lisp

Constraint system

Interactors Opal Graphics

Widget set

Garnet Applications

Figure 6: The Garnet architecture (adapted from [15])

Abstract Depiction

ADL Library

I/E
Interpreter

V
ir

tu
al

 W
in

do
w

Chiron Server

Application

Chiron Client

Artist ADT

Dispatcher

FC
D FCALIPI

Artist

Artist

Artist

ADT

Dispatcher

ADT

Dispatcher

Figure 5: Chiron architecture (annotated)

Sy
st

em

to the interactors, object-oriented graphics, constraints and
object system. [14]

Given this analysis, we can re-draw Garnet’s architec-
ture as follows:

The X11 window system fills the physical interaction
function. The Widgets, Interactors and Opal graphics col-
lectively provide the logical interaction function, making
use of the object and constraint services. Finally, applica-
tions in Garnet fulfill the functions of dialogue, functional
core adaptor and functional core, again utilizing object and
constraint services.

This characterization of Garnet illustrates several
points. Garnet applications subdivide logical interaction
into three distinct parts. Dialogue, functional core adaptor
and functional core are separated from the rest of the sys-
tem but are not further subdivided within a Garnet applica-
tion.

How an architecture partitions its functionality indi-
cates the emphases of the architecture. The partitioning is
the architectural manifestation of the stated goals of Gar-
net: control of the runtime behavior of interaction objects
and the visual aspects of the interface (physical interaction
and logical interaction components) are paramount.

4 Analyzing architectural qualities

One of our key arguments is that software architectures
are neither intrinsically good nor intrinsically bad; they
can only be evaluated with respect to the needs and goals
of the organizations which use them. It is important to
understand the life cycle concerns for a particular organi-
zation, providing a list of quality factors which can be
used to discriminate between good and bad architectural
alternatives for that organization.

In the Evolutionary Development Life Cycle project at
Carnegie Mellon University, we are concerned with the
architecture of systems which have long projected life-
times—20-30 years. This is an increasingly important seg-
ment of the software market. According to a study by
Green and Selby, the average age of all software is increas-
ing [9]. In systems such as these, modifiability is of para-
mount importance. In the domain of user interface
development, modifiability is frequently cited as a moti-
vating factor for a particular architecture, since some
changes are very common. For this reason, we will evalu-
ate user interface architectures with respect to the property
of modifiability.

Modifiability by itself is too abstract to be useful for
analysis. In order to understand how to design for modifi-
ability, it is necessary to better understand the ramifica-
t ions of this at t r ibute. We look at what sorts of
modifications to a software system in our domain are pos-
sible. When that is accomplished, we then decide what
sorts of modifications are likely, or representative of the
domain. We evaluate each candidate architecture accord-
ing to how well it supports the set of likely modifications,
or benchmark tasks. If the application domain is well
understood, this set of benchmark modifications can often
be given a sample distribution, for the purposes of ranking
the individual evaluations.

This process is akin to choosing a set of benchmark
tasks to evaluate the performance characteristics of a piece
of software or hardware. These modifications are intended
to approximately model the type and distribution of tasks
which are typical of an organization’s software develop-
ment life cycle. This is why a set of example modifications
is required.

Oskarsson gives an informal characterization of classes
of modifications in [16]. Drawing upon his work, we have
enumerated the following classes of modifications:

• Extension of capabilities: adding new functionality,
enhancing existing functionality;

• Deletion of unwanted capabilities: e.g. to streamline or
simplify the functionality of an existing application;

• Adaptation to new operating environments: e.g. proces-
sor hardware, I/O devices, logical devices

• Restructuring: e.g. rationalizing system services, mod-
ularizing, optimizing, creating reusable components.

In the user interface domain, two classes of modifica-
tions prove most common—adaptation to new operating
environments and extensions of capabilities. The other
classes of modifications—restructuring and deletion of
unwanted capabilities—do not constitute a significant per-
centage of the modifications for user interfaces. We will
not include them in our set of modifications.

Figure 7: The Garnet architecture (annotated)

X11 library

Interactors Opal Graphics

Widget set

Garnet Applications FCA
FC

PI

D

LI

O
bj

ec
t/C

on
st

ra
in

t
 S

ys
te

m

Adaptation to new operating environments is a common
modification activity which user interface architectures
must support. For example, this paper is being composed
using a desktop publishing system which is available on
Unix-based workstations running the X window system,
Macintoshes running the Macintosh toolkit, and IBM-
compatible PCs, running MS-Windows. In each of these
cases, the underlying functionality of the system is identi-
cal. What does change are the devices, both logical and
physical, used to interact with the program.

The first of our benchmark modification tasks, there-
fore, is to change the toolkit. For example, a move from
using Motif to Fresco would be typical of this category of
modification.

Because user interface development is highly iterative,
extensions of capabilities (adding new features, reorganiz-
ing the appearance of the interface, reorganizing the
human-computer dialogue) occur frequently. This is par-
ticularly so during the initial development of a user inter-
face, but such modifications are also common later in the
life cycle.

The user interface life cycle is distinguished from typi-
cal software engineering life cycles because it is highly
iterative, relying more on prototyping and empirical test-
ing and validation. Requirements for human-computer
interaction are often not well understood in advance, and
so iteration and prototyping are often the only ways in
which to evolve a system’s design. Thus this class of
change is the most common (and most costly overall) in
the user interface life cycle.

We choose as our second benchmark task a modifica-
tion to the human-computer dialogue. More specifically,
the second benchmark modification is to add a single
option to a menu, reflecting some piece of application
functionality which must be made available to a user.

5 Architectural analysis for UI tools

Now that we have enumerated our set of benchmark
modifications—changing the window system/toolkit and
adding a single option to a menu—we are in a position to
evaluate the degree to which each of our candidate systems
provides architectural support for these modifications.

5.1 Serpent

5.1.1 Changing the toolkit

Changing the toolkit in Serpent assumes that we have
an application running under one toolkit and we want to
change to another toolkit which is not currently supported
within the Serpent run-time environment. For example,
this situation would occur if we had Motif running in a
Serpent presentation process and we want to replace it

with OpenLook. What would have to change is both the
presentation process and the dialogue.

There are two ways this change can be accommodated
in Serpent. If the intended use of the new toolkit is simply
to reproduce the look and feel of the old toolkit, then the
only modification necessary is to change Serpent’s glue
code in the presentation process. As discussed in Section
3.2, the glue code provides the logical interaction function
for Serpent, but is not isolated in its architectural descrip-
tion, so we conclude that Serpent provides no architectural
support for this kind of modification. If the intended use of
the new toolkit is to provide new interaction capability,
then modifications to the dialogue manager would be nec-
essary, in addition to new glue code.

We can see from this analysis the purpose of the logical
interaction function in the Arch/Slinky canonical partition-
ing. Logical interaction provides a buffer between the dia-
logue and the physical interaction in order to isolate the
effect of changes between them. Architectures that isolate
the logical interaction function provide support for this
benchmark modification. Serpent, therefore, does not pro-
vide architectural support for this modification.

5.1.2 Adding a menu option

Serpent has isolated the dialogue controller, so it is easy
to say that the second modification type—adding an
option to a menu—will occur somewhere in that process.
The dialogue controller process contains two parts, the
dialogue manager, which governs the behavior of the dia-
logue and the active database, which maintains the state of
the dialogue. The benchmark modification concerns a
change in the behavior of the dialogue, so it is isolated in
the dialogue manager. View controllers further subdivide
the dialogue manager so that it easier to isolate a specific
piece of dialogue behavior, such as a menu. Therefore, we
conclude that Serpent provides adequate architectural sup-
port for this modification.

5.2 Chiron

5.2.1 Changing the toolkit

Chiron goes one step beyond Serpent in providing
architectural support for this modification. Chiron has iso-
lated the logical and physical interaction functions in sepa-
rate structures within a Chiron server. Since the Virtual
Window System only communicates with the Instruction/
Event Interpreter and its associated Abstract Depiction
Library, it is isolated from the rest of the architecture. This
architectural isolation means that the Virtual Window Sys-
tem and Instruction/Even Interpreter communicate via a
well-defined interface. The existence of such an interface
means that different toolkits could be inserted into the

architecture as long as they comply with the interface con-
ventions.

This strict separation of concerns aids modifiability, by
localizing the effects of a change. Thus, we can conclude
that the Chiron architecture provides significant support
for this benchmark modification.

5.2.2 Adding a menu option

Chiron fares slightly less well with respect to the sec-
ond modification. As stated in section 3.3, the division of
dialogue responsibilities between Artists and ADTs is not
precisely specified. Hence, a modification to the dialogue
may manifest itself as a change to an Artist or an ADT, or
both. If the ADTs are well-structured, changes to them
should be minimal, in which case a change to the dialogue
would be isolated to the Artists.

For this particular modification, it is reasonable to
assume that no change to an ADT would be necessary
since we are assuming that we want to make available
some pre-existing application function which would
already be defined in one ADT. The modification in this
case is restricted to an Artist which is associated to the
ADT containing the desired function. We conclude that
Chiron provides architectural support for this benchmark
modification.

5.3 Garnet

5.3.1 Changing the toolkit

Garnet has isolated the toolkit to three components—
interactors, Opal graphics and widgets—and has hidden
any X11 dependencies behind them. Garnet has strictly
separated physical interaction, and so we conclude that
this modification is supported by the architecture.

5.3.2 Adding a menu option

A dialogue in Garnet is monolithic, and can involve any
of the language services which Garnet provides. Thus,
changing a menu in Garnet involves locating and modify-
ing the affected Lisp code, which may be a difficult task in
a complex interface. The second modification is not archi-
tecturally supported by Garnet. Garnet does provide tool
and language support for this class of change, but as we
stated earlier, that is not the concern of this paper.

6 Conclusions and future work

In this paper, we have provided a architectural analysis
method (SAAM) and used it to evaluate user interfaces
architectures with respect to modifiability. This method is
based upon a common understanding and representation
for architectures and an analysis of an organization’s life-

cycle requirements. SAAM permits the comparison of
architectures within the context of an organization’s par-
ticular needs. This sort of comparison has been hitherto
quite difficult.

The SAAM places strong demands on an organization
to articulate those quality attributes of primary impor-
tance. It also require a selection of benchmark tasks with
which to test those attributes. The purpose of the SAAM is
not to criticize or commend particular architectures, but to
provide a method for determining which architecture sup-
ports an organization’s needs.

We applied the method to evaluate user interface devel-
opment environments to determine their architectural sup-
port for two benchmark modifiability tasks. We saw that
the benchmark tasks could be cast in terms of the Arch/
Slinky metamodel. Therefore, systems with a clear alloca-
tion of that functional partitioning to their structure could
provide architectural support for the modifications. We
emphasize that architectural support for a quality attribute
is only one possible type of support. We may also have
language or tool support. We recognize that an analysis of
these other types of support is an important topic for future
research.

Quality attributes is a recognized driver for software
architectural design, outside of the user interface domain
(e.g. [1]). Consequently, we believe SAAM will work for
other attributes. This method of evaluation shows the
degree to which an architecture was designed to support
selected quality attributes. We see a strong link between
quality attributes and canonical partitionings. More than
one canonical partitioning is possible for a given domain,
each accommodating a different set of quality attributes
[5]. For example, the multiagent PAC model [7] is a candi-
date canonical partitioning which emphasizes scalability
and construction efficiency.

Finally, what is really desirable is to have metrics for
more precisely evaluating attributes in terms of architec-
tures, but our understanding of this topic is not yet suffi-
cient to define any measurements. For now, we simply
have ways to analyze, compare and rank architectures. We
believe that the work of Henry and Kafura [10] on infor-
mation flow points the way to an analysis technique for
architectures, but it must be augmented by techniques for
measuring the understandability and consistency of archi-
tectures.

7 Acknowledgments

We would very much like to thank Brian Boesch of
ARPA and Dick Martin of the School of Computer Sci-
ence at CMU for their support of this research. We also
thank members of the IFIP Working Group 2.7 (User
Interface Engineering) and colleagues at the SEI, specifi-

cally Reed Little and Larry Howard, for their influence
during the formative stages of this work. This work was
sponsored in part by the National Sciences and Engineer-
ing Research Council of Canada and the U.S. Department
of Defense.

8 References

[1] Abowd, G., Bass, L., Howard, L., Northrop, L. “Structural
Modeling: an Application Framework and Development Process
for Flight Simulators”. Software Engineering Institute, Carnegie
Mellon University Technical Report CMU-SEI-TR-93-14. Pitts-
burgh, PA, 1993.

[2] Abowd. G., Allen, R., Garlan, G. “Using Style to Understand
Descriptions of Software Architectures”. Software Engineering
Notes, 18(5):9-20, 1993. Proceedings of SIGSOFT ‘93: Sympo-
sium on the Foundations of Software Engineering.

[3] Bass, L., Clapper, B., Hardy, E., Kazman, R., Seacord, R.
“Serpent: A User Interface Management System”. Proceedings of
the Winter 1990 USENIX Conference, Berkeley, CA, January
1990, 245-258.

[4] Bass, L. and Coutaz, J. Developing Software for the User
Interface, Addison-Wesley, 1991.

[5] Bass, L. Kazman, R. and Abowd, G. “Issues in the Evaluation
of User Interface Tools”. Proceedings of the ICSE Workshop on
Software Engineering and Human-Computer Interaction, Sor-
rento, Italy, May, 1993. Forthcoming

[6] Briand, L.C., Morasca, S. and Basili, V.R. “Measuring and
Assessing Maintainability at the End of High Level Design”, Pro-
ceedings of the IEEE conference on Software Maintenance,
Montreal, Canada, 1993.

[7] Coutaz, J. “PAC, An Implementation Model for Dialog
Design”, Proceedings of Interact ‘87, Stuttgart, September, 1987,
431-436.

[8] Garlan, D., Shaw, M. “An Introduction to Software Architec-
ture”. Advances in Software Engineering and Knowledge
Engineering, Volume I, World Scientific Publishing, 1993.
Forthcoming.

[9] Green, J., Selby, B. “Dynamic Planning and Software Mainte-
nance: A Fiscal Approach”, Naval Postgraduate School,
Monterey, CA, NTIS Report AD-A112 801/6, 1981.

[10] Henry, S., Kafura, D. “Software Structure Metrics Based on
Information Flow”, IEEE Transactions on Software Engineering,
SE-7(5), Sept. 1981.

[11] Hix, D. “Generations of User-Interface Management Sys-
tems”, IEEE Software, 7(5):77-87, 1990.

[12] Kazman, R., Abowd, G., Bass, L., Webb, M., “Analyzing the
Properties of User Interface Software Architectures,” Carnegie
Mellon University, School of Computer Science Technical Report
CMU-CS-93-201, 1993.

[13] Military Standard, Defense System Software Development
(DOD-STD-2167A). Washington, D.C.: United States Depart-
ment of Defense, 1988.

[14] Myers, B., Giuse, D., Dannenberg, R., et al., “The Garnet
Reference Manuals”, School of Computer Science, Carnegie
Mellon University Technical Report CMU-CS-90-117-R3, 1992.

[15] Myers, B., Giuse, D., Dannenberg, R., et al. “Garnet: Com-
prehensive Support for Graphical, Highly Interactive User

Interfaces”, IEEE Computer, 23(11): 71-85.

[16] Oskarsson, Ö. “Mechanisms of Modifiability in Large Soft-
ware Systems”, Linköping Studies in Science and Technology
Dissertations No. 77, 1982.

[17] Parnas, D.L. “On the Criteria To Be Used in Decomposing
Systems into Modules”, Communications of the ACM,
15(12):1053-1058, 1972.

[18] Perry, D., Wolf, A. “Foundations for the study of software
architecture”, SIGSOFT Software Engineering Notes, 17(4),
October 1992, 40-52.

[19] Pfaff, G. (ed.). User Interface Management Systems. New
York: Springer-Verlag, 1985.

[20] Pittman, J., Kitrick, C. “VUIMS: A Visual User Interface
Management System”, Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software and Technology, Snow-
bird, UT, October 1990, 36-46.

[21] Pressman, R. Software Engineering: a Practitioner’s
Approach, 3rd edition. New York: McGraw-Hill, 1992.

[22] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Loren-
son, W. Object-Oriented Modeling and Design, Englewood
Cliffs, N.J.: Prentice-Hall, 1991.

[23] SEI, “Serpent Overview,” SEI Technical Report CMU/SEI-
89-UG-2, Carnegie Mellon University Software Engineering
Institute, August 1989.

[24] Sommerville, I. Software Engineering, 4th edition. Reading,
MA: Addison-Wesley, 1992.

[25] Stevens, W.P., Myers, G.J. and Constantine, L.L. “Structured
design” IBM Systems Journal, 13(2):115-139, 1974.

[26] Szekely, P. “Standardizing the Interface Between Applica-
tions and UIMSs”, Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software and Technology, Will-
iamsburg, VA, November 1989, 34-42.

[27] Taylor, R., Johnson, G. “Separations of Concerns in the Chi-
ron-1 User Interface Development and Management System,”
Proceedings of InterCHI ‘93, Amsterdam, May 1993, 367-374.

[28] Taylor, R. personal communication, July 1993.

[29] UIMS Tool Developers Workshop, “A Metamodel for the
Runtime Architecture of an Interactive System”, SIGCHI Bulle-
tin, 24(1), 32-37.

[30] Yourdon, E. Modern Structured Analysis, Englewood Cliffs,
N.J.: Prentice-Hall, 1989.

