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Abstract— In order to be successfully integrated into human-
populated environments, mobile robots need to express relevant
information about their state to the outside world. In particular,
animated lights are a promising way to express hidden robot
state information such that it is visible at a distance. In this
work, we present an online study to evaluate the effect of
robot communication through expressive lights on people’s
understanding of the robot’s state and actions. In our study,
we use the CoBot mobile service robot with our light interface,
designed to express relevant robot information to humans. We
evaluate three designed light animations on three corresponding
scenarios for each, for a total of nine scenarios. Our results
suggest that expressive lights can play a significant role in
helping people accurately hypothesize about a mobile robot’s
state and actions from afar when minimal contextual clues are
present. We conclude that lights could be generally used as an
effective non-verbal communication modality for mobile robots
in the absence of, or as a complement to, other modalities.

I. INTRODUCTION

Mobile robots are entering our daily lives and are expected
to carry out tasks with and around humans in environments
such as hospitals, supermarkets, hotels, offices, and shops.
For effective operation of these robots, it is important that
humans have an understanding of some of the processes,
states, and actions taking place on the robot pertaining to
the tasks performed and to the robot itself. Verbal com-
munication combined with on-screen display is the typical
communication mechanism for communicating with humans.
However, for autonomous mobile robots in human environ-
ments, humans are not always in close proximity to the robot
and these communication mechanisms may fail.

Dynamic visual cues [1], and more specifically dynamic
lighting [2], have been shown to elicit interactive social
responses. These results potentially suggest that expressive
lights on a robot are likely to create more engaging interac-
tions with humans. These persistent lights might also serve as
a complement to existing modalities of interaction which are
often transient (e.g., speech) or that require close proximity
(e.g., on-screen text). Moreover, in the work mentioned on
dynamic visual cues [1], an important part of the social
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response observed was attributed to the fact that the cues
expressed a tangible property of the real world (namely
the level of interaction in the environment) in an abstracted
way. This observation particularly suggests that an abstracted
expression of a robot’s state through visual lighting cues may
also increase social engagement.

We hypothesize that expressive lights on robots would
provide an opportunity to communicate information about
robots’ state at a distance without the verbal or written
cues that are typically used. We focus our study on light
expressions for three classes of states in which our au-
tonomous mobile service robot, CoBot, typically finds itself:
(1) progress through a task with a fixed goal, (2) obstruction
by an obstacle, and (3) need for human intervention.

In our prior work, we conducted a design study in which
we captured participants’ preferences on how a robot should
use lights to express an instance of each of these classes of
states [3]. We demonstrated participant consensus on a light
animation for each of these instances, with specific animation
patterns, speeds and colors associated with them.

In this paper, we present our subsequent study to evaluate
the effect of these light expressions on people’s understand-
ing of the robot’s state/actions when viewed at a distance.
In the study, we presented online participants with videos
of our robot in nine different scenarios related to the three
classes of states mentioned above. These videos shot at a
distance emulate the viewpoint of a human observing the
robot at a distance, where speech and on-screen text would
be imperceptible. Half of the participants saw the robot
performing with its expressive lights on and half saw the
robot performing with the lights off. Our results show that,
even though the particular scenario in which the robot is
shown affects the accuracy of participants’ understanding
of the robot, the presence of lights significantly increases
that understanding regardless of the scenario. We conclude
that using expressive lights to symbolically represent robot
states is a promising way to intelligibly communicate this
information to humans from afar.

II. RELATED WORK

Light signals have been widely used in the history of
mankind to convey information at a distance or in low visibil-
ity environments, such as in aviation and maritime navigation
[4], but these signals often need to be learned. In contrast,
personal electronic devices make use of more intuitive, walk-
up-and-use light patterns to convey information to the user.
We see light indicators on all sorts of devices from cell
phones to toasters, and their expressivity can be greatly
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exploited to convey diverse information about the device’s
operation [5]. Expressive lights have been used as well on
apparel [6] and interactive art installations [7] [8]. Stage and
scene lighting also share common expressive features with
indicator lights like color, intensity and time-varying patterns
[9], but there the purpose is to illuminate rather than using
the light source itself as an expressive modality.

The use of lights for non-verbal communication on robots
remains rudimentary. Most of these uses do not have a direct
functional role but rather create abstract impressions (such as
“artificial subtle expressions” [10]), express emotions [11],
or serve as very basic indicators (e.g., battery level). To
the best of our knowledge, the only instances of functional
light communication in robots are for human-robot speech
synchronization [12] and for communicating intent in robot
navigation [13]. In [12], an animated LED is used to avoid
utterance collisions in verbal human-robot communication
by making it subtly blinking between the user’s speech end
and the robot’s speech start. In [13], a LED array is used to
communicate direction of navigation on a quadcopter. This
last work fits our idea of expressing robot state information
through light animations. However, in the prior work, the
expressed feature (directionality) remains a low-level one and
the light expression has little abstraction to it.

In contrast, we focus on higher-level, task-related features
of the robot’s state. To map such high-level features to
appropriate light expressions, we first needed to understand
what animation parameters would accurately represent such
abstract concepts. Color theory [14] provides a good starting
point for the design of colored light animations carrying
meaning (in our case related to robot state). However, it
remains difficult to predict the appropriateness of animations
for light sources extending in space beyond a single point
(e.g., light strips) and expressing meaning in relation to a
complex machine such as a robot. In our previous work, we
conducted a specialized study to select appropriate designs
for robot expression through lights [3], described in the next
section. Using our designed animations, in this work we eval-
uate the effect of the lights on people’s understanding of the
state and actions of our mobile service robot, CoBot, moving
in the real world. We also look at how the effectiveness of our
animations generalizes to other scenarios sharing common
features with the ones used to design them.

III. MOBILE ROBOT STATES AND LIGHT EXPRESSIONS

Our autonomous mobile service robot, CoBot, is capable
of performing many tasks in the environment [15]. In this
section, we describe CoBot’s capabilities and discuss oppor-
tunities for enhancing the understanding of CoBot’s state and
actions when viewed at a distance. We present details about
our prior work to construct a light animation interface used
on CoBot which helps to express robot states [3].

A. Overview of CoBot and Its Tasks

CoBot can perform a set of tasks for humans in a building
across multiple floors. Building locations (offices, kitchens,
and elevators), as well as the navigation map of the building,

Fig. 1: Diagram of the robot expressive light interface

are known to the robot. CoBot navigates autonomously
while avoiding obstacles during its navigation. When facing
limitations (such as pressing the button of an elevator or
loading/unloading an object on/from the robot), the robot
asks for help from humans in the environment [16].

The tasks offered by CoBot are the following:
• Go-to-Location task, in which the robot goes from its

current position to a goal location.
• Item transport task, in which the robot transports an

item in its basket from a start location to a goal location.
• Escort task, in which the robot accompanies a person

from the elevator to a goal location.
When CoBot is moving, it is difficult to discern how much

progress it has completed in its task. Similarly, when CoBot
is stopped, it can be difficult to discern from a distance
whether the robot is stopped for its task, whether an obstacle
is blocking its path, or whether it requires help from a human.
Expressive lights are one way in which CoBot can help
clarify its state to humans in the environment.

B. Expressive Light Interface

For our robot’s light interface, we used a programmable,
fully addressable NeoPixel LED strip1 with 91 pixels in-
terfaced to the robot’s software through an Arduino micro-
controller. The light interface architecture is summarized in
Figure 1. A module in CoBot’s software translates robot
state information into light animation parameters and sends
them to the Arduino which performs the hardware-specific
light control instructions. Examples of light animations for
different scenarios are shown in Figure 2. Our Arduino
code2 is not platform-dependent and is compatible with any
robot/device capable of serial USB communication.

C. Light Expression Design

The aim of our prior study presented in [3] was to
gather “expert” advice about appropriate light animations
that could express CoBot’s state. Participants were people
knowledgeable in one of the following areas: engineering,
design, or visual arts. They were provided with information

1https://www.adafruit.com/products/1507
2https://github.com/kobotics/LED-animation
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(a) Green progress light on an escort
task

(b) Flashing red light for path
obstructions

(c) Slow soft blue light to call for
human help

Fig. 2: Examples of CoBot light animations in different scenarios

about CoBot and its tasks, and were asked how they would
demonstrate the following using expressive lights:

• Progressing to a goal: CoBot shows its progress on a
visitor escort task towards a goal location.

• Blocked by an obstacle: CoBot indicates that its path is
blocked during task execution.

• Waiting for human help: CoBot indicates that it needs
human help to press the elevator button.

Participants were asked to vote for the best choice of
animation parameters along the following three dimensions
for each scenario: (1) animation pattern, (2) speed, and (3)
color. For each scenario, the choices presented as videos
consisted of three animation patterns, three animation speeds
and six colors. Our results showed that participants were
consistent in their choices, generally strongly preferring one
of the proposed options along each dimension (or two for
the color choices). The winning animations, also used in the
study of this paper and generalized to more diverse scenarios,
are summarized below and depicted in Figure 2.

• “Progressing” animation: a bottom-up progress bar
showing the completed distance traveled as a growing
portion of the strip lit in bright green.

• “Blocked” animation: a fast red asymmetric fade in /
fade out pattern on the whole strip.

• “Waiting” animation: a soft blue slow fade in / fade out
pattern on the whole strip.

Note that this study did not control for color blindness
(particularly red/green). Though none of the color choices
included both red and green in the same animation, the
animations should be tested on this population. While this
prior study showed consistent results in how an “expert”
would design the light animations, in the remainder of the
paper we present a study to test those animations on people
viewing the robot from afar during a variety of tasks.

IV. STUDY ON THE EFFECT OF LIGHT EXPRESSIONS

In order to evaluate the effectiveness of the chosen ex-
pressive light animations, we conducted an online survey

in which participants watched videos of a robot performing
tasks from afar. At the end of each video, participants were
asked to hypothesize about the robot’s current state, but also
about its actions (i.e., reasons for performing a specific action
such as stopping or being unresponsive). Questions were in
a multiple choice format, with four possible answers. Half
of the participants saw the robot performing tasks with its
expressive lights on (“Lights on” condition), and the other
half saw the robot without its expressive lights off (“Lights
off” condition). Participants were randomly assigned to one
of the two conditions. We analyzed participants’ hypothesis
choices to demonstrate that those who saw the robot with
the lights on were more accurate and gained a higher level
of trust in robots from watching the videos.

A. Participants

A total of 42 participants (recruited through email and
online advertising), of which 14 were male and 28 were
female, took part in the study. Ages ranged from 20 to 67
(M = 32.4, SD = 13.7). Out of the 42 participants, 33 live in
the United States; the rest live in different countries across
Asia and Europe. Even though computer usage was relatively
high amongst participants (31 out of 42 used computers 30+
hours per week), experience with robots was generally low.
Only 5 out of the 42 participants reported having worked
with robots before, and 20 reported that they have never
seen a robot in person before (3 participants had seen our
particular robot, CoBot, before taking the survey). Finally,
we ensured that none of the participants were colorblind,
since our light animations included color and it could have
an effect on our results.

B. Survey Design

Our online video-based survey comprised nine video sce-
narios of CoBot acting in our environment followed by a
multiple choice question asking participants to choose a
hypothesis aboutwhat the robot was doing. Four plausible
hypotheses about the robot’s state/actions were presented as
choices for each video, of which one had to be selected. The
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TABLE I: Scenarios used in the study

Scenario class Progressing to a goal (P) Blocked (B) Waiting for human input (W)

Scenario 1 Navigation task with
human presence (P1)

Human obstacle facing
the robot (B1)

Symbiotic autonomy (elevator
button) (W1)

Scenario 2 Speech task (P2) Human obstacles looking
away from the robot (B2) Object loading (W2)

Scenario 3 Battery charging (P3) Non-human obstacle (B3) Confirming task completion
(W3)

video order, as well as the choices for each answer, were
randomized to avoid any order effects.

Each of the video scenarios was recorded using our
autonomous robot with lights on and lights off. Although the
robot was acting autonomously, the videos were replicated as
close as possible for the two conditions. We can reasonably
assume that the only notable difference between the two
videos for a given scenario is the presence or absence of
lights on the robot. The videos did not include any robot
speech or any visible information on the robot’s screen.

After viewing all nine videos, some relevant background
and related information, including trust questions about this
particular robot and robots in general, was also collected. A
copy of the full survey can be accessed online3.

C. Scenario Descriptions

The nine scenarios shown in the videos were specifically
chosen based on actual tasks that the robot performs while
it is deployed in our buildings. We focused our scenarios on
the same three common scenario classes studied in our prior
work – “progressing to a goal”, “blocked”, and “waiting for
human input”. For each scenario class, we produced three
distinct scenarios in which the robot’s state or actions are
ambiguous, which are summarized in Table I and described
below.

The “progressing to a goal” scenarios represent the robot
taking actions for a long duration. For each of these scenar-
ios, the progression was modeled as the light expression of
a progress bar (see section III-C). The scenarios chosen in
this class are:

• Navigation task with human presence (P1): A person is
being escorted by the robot to a goal location. When
present, the lights show the progress on the distance
traveled.

• Speech task (P2): The person asks a question to the
robot, which provides no immediate answer, as it is
searching the web for the required information. The
video ends before the robot responds. When present,
the lights show the progress on the web query task.

• Charging (P3): The robot is charging inside the labora-
tory (the video doesn’t show the power plug). When
present, the lights show the battery level increasing
progressively (video sped up 10 times).

The “blocked” scenarios represent the robot being in-
terrupted in its navigation by obstacles of different kinds.

3https://github.com/kobotics/Surveys/blob/master/
survey_printable.pdf

The blockage is supported by the fast red flashing light (see
section III-C). The scenarios chosen in this class are:

• Human obstacle facing the robot (B1): The robot is
blocked in its navigation by a person standing in a
narrow corridor, facing the robot.

• Human obstacles looking away from the robot (B2): The
robot is blocked in its navigation by a person standing
in a narrow corridor, facing away from the robot.

• Non-human obstacle (B3): The robot, navigating down
a narrow corridor, detects a person walking towards it
and changes its navigation path to avoid the person. As
a result, it finds itself in front of a branch of plant, which
it considers as an obstacle, causing it to stop.

The “waiting for human input” scenarios represent the
stopped robot waiting for different types of human actions
to be taken. For each of these scenarios, the robot is waiting
patiently as represented by the slow flashing blue light (see
section III-C). The scenarios chosen in this class are:

• Waiting for help at an elevator (W1): The robot is
stopped in front of the elevator, waiting for someone
to press the elevator button and let it in. People are
passing by, ignoring the robot’s presence.

• Object loading (W2): The robot is stopped in the kitchen
area, facing a counter on which we can see a cup of
coffee. Next to the counter area, a person is washing
the dishes, presumably unaware of the robot’s presence.

• Confirming task completion (W3): The robot is stopped
in front of an office door, with coffee in its basket. A
person shows up from inside the office and takes the
coffee. The robot doesn’t react to the person’s action
and remains still. The person looks at the robot with a
confused look on their face.

For each scenario, when lights are present, the default
animation on the robot (when no expression is desired) is
a static soft blue color.

D. Multiple Choice Questions

After viewing each video, the participants were given
choices to explain the robot’s state or actions. As discussed
earlier, each of the scenarios can be ambiguous to a person
viewing CoBot from afar either because of lack of contextual
information or because of mixed signals in the robot’s
behavior. The corresponding answer choices for each video
scenario were specifically chosen to reflect many of the
possible hypotheses that could correspond to the robot’s
behaviors. Given our prior work, we theorize that the light
expressions will reduce the uncertainty that people have in
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understanding robot’s behavior, leading to more accurate
answers to our multiple choice questions.
Survey question examples

Scenario B1: In the video above, why did the robot stop?
(a) The robot recognizes the person, who was expecting it,
(b) The robot sees the person as an obstacle, (c) The robot
needs help from the person, (d) The robot is inviting the
person to use its services. (Scenario B1)

Scenario W3: In the video above, why is the robot not
moving after the person has taken the coffee? (a) It is waiting
for the person to confirm the task is over, (b) It has nothing
to do, (c) It is low on battery, (d) It is trying to get inside
the room but the door is too narrow.

V. RESULTS

Responses to the survey multiple choice questions in the
nine scenarios were coded in a binary fashion – three answers
were coded as wrong and one answer was coded as the cor-
rect answer. The resulting dependent variable accuracy was
modeled as binary categorical. Additionally, we coded the
responses to our questions about robot trust (5-point Likert
scale). We analyzed the effects of our independent variables
– experimental condition (binary categorical variable “Lights
on” and “Lights off”) and scenario (nine categories) – on
the dependent variables. While our scenarios had a range
of difficulty resulting in a range of accuracies, our light
animations have a statistically significant effect across all
scenarios on participant’s accuracy. The participants who saw
the robots with lights on also indicated an increase in their
overall trust in robots more than those who saw the robot
with lights off. Detailed results are presented next.

A. Participant Accuracy

In order to analyze our categorical dependent variable ac-
curacy, we used a McNemar’s chi-square test in a combined
between- and within-subject design. The “Lights on/off” con-
dition is our between-subject variable. All nine video scenar-
ios were shown to all participants (therefore a within-subject
variable). The participant is modeled as a random variable
within the model as each person may be more or less accurate
in general. The McNemar’s chi-square tested whether the
participants’ answers depend on the presence/absence of
lights, video scenario, and/or the interaction effects of both
the lights and video scenario together.

Our results indicate that there is a statistically significant
difference in the accuracy based on the presence/absence
of lights (“Lights on” M = 75.66%, SD = 18.20; “Lights
off” M = 56.08%, SD = 19.16, χ2(1) = 22.34, p < 0.0001).
The accuracy was significantly higher for participants who
saw the lights. Additionally, there is a statistically signifi-
cant difference in participants’ accuracy based on the video
scenario (see Figure 3 for means and standard deviations,
χ2(8) = 51.22, p < 0.0001) (i.e., some videos were harder
to determine the robot’s state/actions than others for each
participant). However, there was no statistically significant
effect by the interaction of the light condition and the
video scenario (χ2(8) = 8.26, p = 0.41), indicating that

Fig. 3: Comparison of the accuracies on each scenario across
the two study conditions with corresponding error bars

the increased effectiveness of the “Lights on” condition
was the same across scenarios. Based on these results, we
conclude that while the choice of a correct robot state/actions
hypothesis does depend on the scenario in which humans
see the robot, the tested light animations universally help
increase their accuracy.

Figure 3 shows the average accuracy of the participants
for each scenario and each light condition. The error bars
represent a 95% confidence interval of the mean. We note
that the “Lights on” condition accuracies (shown in blue) are
universally higher than the “Lights off” accuracies (shown
in red). Additionally, the graph clearly shows our result that
the video scenarios have different average accuracy, but the
accuracy change between conditions per video scenario is
not reflective of the scenario.

B. Participant Trust in Robots

On average, participants reported that their trust in robots
had increased after watching the videos shown in the survey.
(To the question: “Do you agree with the following state-
ment? ‘After watching these videos, I will not trust robots
as much as I did before.’ ”, participants in both conditions
answered above 3 over 5 on average on a 5-point Likert scale,
where 1 meant “Strongly Agree” and 5 meant “Strongly
Disagree”.) The reported increase in their trust in robots
was significantly more pronounced for participants in the
“Lights on” condition (M = 4.29, SD = 0.90) compared to
those in the “Lights off” condition (M = 3.52, SD = 0.87)
(t(40) = 2.02 two-tailed, p = 0.008).

However, there was no statistically significant difference
between the two conditions in the reported absolute level of
trust in both CoBot and in robots in general (t(40) = 2.02
two-tailed, p > 0.05), only in the change in trust discussed
above did the results differ across conditions.

VI. DISCUSSION

Our results show that our three animations generalize well
across several scenarios despite being designed for only a
single scenario. Some of our new scenarios (like P3 and W3)
even outperform the original scenario. We highlight several
aspects of our study design and findings that demonstrate the
generalizability of our work to real-world scenarios.
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First, in designing our study, we identified three scenarios
that fit each of the classes we had previously studied. The
significant effect of scenario on response accuracy shows
that some survey questions were harder than others. We can
attribute some of the differences to the ambiguity of the
scenarios - it is sometimes easier to determine CoBot’s state
and actions than others. However, it is also possible that
the four answer choices we designed were more obvious
to choose or eliminate depending on the scenario and the
question asked. The fact that the lights universally helped
participants distinguish CoBot’s state better indicates that the
effect of our question choices was relatively low.

Next, in designing our study videos, all of them inten-
tionally lacked obvious contextual clues. Lack of such clues
is a usual situation when encountering a mobile robot like
CoBot. Visitors often encounter the robot for the first time
and interact with it with no knowledge about its capabilities,
current state, or expectations from humans. Even for people
familiar with CoBot, it is difficult to discern whether CoBot
is waiting for help (e.g., at an elevator) or waiting for a new
task to perform. In such cases, looking at the robot from
afar does not give much insight about the robot’s operation,
unless other visual cues such as our lights are present.

Since these results rely on the legibility of the animations
in the presence of minimal contextual clues, we would expect
them to hold for real-world encounters, both at a distance
and close-by, as long as the lights are clearly noticeable.
In fact, CoBot has been running with its lights for over a
year, showing escort progress to visitors, eliciting human
obstacles to move away and calling for help at elevators. We
have seen noticeable differences in people’s behavior around
CoBot after adding the lights although as of now we have no
quantitative data to assess this behavioral change. It would
be useful to measure the impact of these lights in real-world,
physical interactions with the robot using measures such as
robot waiting time or task completion time.

Furthermore, based on the successful generalization of
our three expressions, we hypothesize that such expressions
might also generalize to: (1) a broader class of scenarios
with similar features; (2) other types of users (participants
in this study, having no or limited experience with robots
or CoBot, were in some way the “worst case analysis”); (3)
other types of robots with similar or comparable domains;
(4) other types of light arrays or mounting configurations, as
long as the lights are easily noticeable; or even (5) multi-
modal interactions in which lights are used in conjunction
with speech and on-screen interfaces. In the future, we
hope to extract design principles for light expressions in
robots which could save design and testing efforts across
the aforementioned groups as well as be easily portable to
diverse platforms.

VII. CONCLUSION

We have presented an online study to evaluate the effect
of expressive lights on people’s understanding of a mobile
robot, CoBot, carrying out tasks in an office building. We
tested three designed light animations on three corresponding

classes of scenarios, for a total of nine scenarios. More
than just validating the effectiveness and generalizability of
our designed light expressions, our results show that the
presence of lights on a mobile robot can significantly help
people understand the robot’s state and actions. Also, some
of our interesting results related to robot trust suggest that
meaningful expressive lights could contribute to building
more solid relationships between mobile robots and humans.
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