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ABSTRACT
Cyber-physical systems (CPS) span the communication,
computation and control domains. Creating a single, com-
plete, and detailed model of a CPS is not only difficult,
but, in terms of verification, probably not useful; current
verification algorithms are likely intractable for such all-
encompassing models. However, specific CPS domains have
specialized formal reasoning methods that can successfully
analyze certain aspects of the integrated system. To prove
overall system correctness, however, care must be taken to
ensure the interfaces of the proofs are consistent and leave
no gaps, which can be difficult since they may use different
model types and describe different aspects of the CPS.

This work proposes a bridge between two important verifi-
cation methods, software model checking and hybrid systems
reachability. A contract automaton (CA) expresses both (1)
the restrictions on the interactions between the application
and the controller, and (2) the desired system invariants. A
sound assume-guarantee style compositional proof rule de-
composes the verification into two parts – one verifies the
application against the CA using software model checking,
and another verifies the controller against the CA using hy-
brid systems reachability analysis. In this way, the proposed
method avoids state-space explosion due to the composition
of discrete (application) and continuous (controller) behav-
ior, and can leverage verification tools specialized for each
domain. The power of the approach is demonstrated by veri-
fying collision avoidance using models of a distributed group
of communicating quadcopters, where the provided models
are software code and continuous 2-d quadcopter dynamics.

CCS Concepts
•Software and its engineering → Formal software
verification;
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1. INTRODUCTION
A cyber-physical system (CPS) consists of a tight cou-

pling between software and the physical world. CPSs play a
crucial role in many aspects of our day-to-day lives, ranging
from thermostats, cars and airplanes, to medical devices, nu-
clear power plants and electric grids. Since many CPSs are
safety-critical applications, it is important to assure their
correct behavior to the maximum extent possible. Formal
verification provides a high level of confidence in a system’s
operation, and is therefore a desirable assurance approach.
However, scalable formal verification of CPSs is an open
challenge, and the topic of this paper.

A general CPS may consist of a distributed set of agents
in a shared physical environment. Communication is per-
formed over a network, which may not necessarily be re-
liable. The agents are each implemented using C-language
source code that is run periodically by a real-time scheduler.
The goal of this work is enable the verification of high-level
properties, which deal with the physical world and in rela-
tion to multiple agents. With this goal in mind, the specific
contribution is a decomposition of one part of the larger
verification process. In particular, the proposed method en-
ables formal reasoning between the software code on a single
agent and the physical environment with which it interacts.
Combined with other verification approaches, we show how
this decomposition enables end-to-end reasoning about high-
level system properties.

We consider a CPS agent consisting of two layers – an
application A and a controller C. The single-agent system
S, is a composition of these two, S = A ‖ C. This composi-
tion is performed along the analysis boundaries, where A is
analyzed using software model checking and C is analyzed
with hybrid systems reachability tools. Note that in our
approach, the controller model C consists of not just the
low-level controller, but also the continuous plant dynam-
ics. The application A and controller C execute in parallel
and communicate via shared variables. The application is
available as source code that calls a specific set of functions
(API) to access (read/write) the shared variables, while the
plant/controller model is represented by a hybrid automaton
which interacts with the environment based on the shared
variables.

In order to enable end-to-end reasoning, it becomes nec-
essary to verify cyber-physical properties, which are true for
the combined application and controller system, but not nec-
essarily for the individual parts. We want to verify that the
system satisfies some cyber-physical safety property Φ, i.e.,
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A ‖ C |= Φ. There are two challenges to doing this directly.
First, there are no algorithms to verify a composition of
source code with hybrid automata. Second, even if we de-
veloped such an algorithm, using it would likely suffer from
state-space explosion for any practical systems, as it would
require us to construct A ‖ C.

We propose an approach that sidesteps these two prob-
lems. Our key intuition is that A ‖ C |= Φ typically holds
because A and C interact in restricted ways, and each “as-
sumes” a specific behavioral pattern that the other “guar-
antees”. In particular, A calls the API functions in a well-
defined sequence with parameters that respect certain pre-
conditions, while C maintains invariants involving the phys-
ical system state in relation with the shared variables. We
leverage this intuition by using a“contract automaton”(CA)
M to capture the restricted interaction between A and C,
as well as the target safety property Φ. Further the CA
leads to an “assume-guarantee” style proof rule that enables
compositional verification:

A �M C �M
A ‖ C �M

where X � Y informally means that X “refines” Y , i.e., be-
haviors of X can conform to the behavior of Y . We define
the premises and conclusion of the proof rule formally, and
prove its soundness. We also describe procedures for dis-
charging the premises using domain-specific tools. Specifi-
cally, A �M is verified with a software model checker, while
C � M is verified using a hybrid systems reachability tool.
Finally, we should how the conclusion of the proof rules im-
plies that the invariants of M are transferred to the system
A ‖ C, thereby verifying that A ‖ C satisfies the target
cyber-physical property Φ.

Our approach not only avoids composing A and C (thus
ameliorating state-space explosion) but also uses software
verification and hybrid verification tools synergistically. Dis-
charging the two premises is still complex, but they build on
software model checking and hybrid systems analysis tools,
where a lot of progress is being made. Once a cyber-physical
property Φ is proven about individual agents, other verifi-
cation methods can use Φ to reason about high-level system
properties dealing with the distributed interactions. To the
best of our knowledge, this is the first end-to-end formal
verification of high-level properties of a distributed cyber-
physical system, that includes both the application software
and the controller, using a sound combination of software
model checking and hybrid systems reachability analysis.

The rest of the paper is organized as follows. Section 2
first presents a running example of an end-to-end verifica-
tion problem dealing with distributed collision avoidance for
quadcopters. Then, Section 3 introduces contract automata,
and the compositional proof rule, and applies this to the
quadcopter system. Next, Section 4 shows how the premises
of our proof rule can be discharged using software and hy-
brid systems verification tools. In Section 5, we use the
developed method to prove cyber-physical properties, and
uses these properties to complete the high-level, distributed
collision avoidance proof. Finally, we discuss related work
in Section 6, followed by a conclusion.

2. QUADCOPTER CPS EXAMPLE
We demonstrate our approach by proving end-to-end col-

lision avoidance, in terms of physical distances, between a
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Figure 1: Example quadcopter.

group of communicating quadcopters moving in a continuous
2-d space. Each quadcopter contains a path-planning appli-
cation, written in C, that communicates with other quad-
copters and updates its own setpoints. The evolution of
the quadcopters physical aspects is governed by differential
equations, which are not coupled between different quad-
copters (although they move in a shared environment). A
low-level controller periodically actuates each system based
on the current setpoint, according to some real-time schedul-
ing policy like Rate Monotonic [36]. Communication be-
tween quadcopters is unreliable, i.e., message delivery is not
guaranteed. We assume a finite 2-d space with a fixed num-
ber of quadcopters. We also have control over the initial
states. The desired high-level property is that no two quad-
copters ever collide, i.e., assuming a given quadcopter radius,
the distance between any two quadcopters is always greater
than 2 ∗ HELI_RADIUS.

The setpoint-generating application needs a strategy to
prevent collisions. In our case, the application software gen-
erates setpoints based on a 2-dimensional grid which covers
the physical space. Each cell is a 5 × 5 square, and is rep-
resented by a unique pair of integers, which we refer to as
the grid id. The left-bottom-most cell has id (0, 0), and
the integer ids increase moving to the right or up, as in a
traditional coordinate axis. While the application software
generates the next setpoint, a controller is responsible for
actually moving the quadcopter. The setpoints for each di-
rection are a 5-multiple of a cell id (i.e., they correspond to
the centers of cells). The application and controller commu-
nicate via two shared variables: (i) spcur = (spcurx, spcury):
the current setpoint; and (ii) spnxt = (spnxtx, spnxty): the
next setpoint.

In addition, the controller model maintains a variable
pos = (posx, posy) to denote the position of the center of
the quadcopter w.r.t. the global coordinate system. For
example, in Figure 1, we have spcur = pos = (0, 0) and
spnxt = (5, 0), meaning that the center of the quadcopter
coincides with the center of cell (0, 0). Given two coordi-
nates c = (x, y) and c′ = (x′, y′) we write c − c′ to mean
(x − x′, y − y′), |c| to mean (|x|, |y|) and c ≤ c′ to mean
(x ≤ x′ ∧ y ≤ y′). Suppose that the quadcopter is hovering
over its current setpoint. Once the application has computed
the next setpoint, it moves the quadcopter to this setpoint
as follows:

(Step 1) The application calls the function
update setpoint(x, y) where the arguments contains
the value of the next setpoint; this function sets the value
of spnxt to (x, y), which triggers the controller to move to
spnxt . Function update setpoint(x, y) returns a void value.



(Step 2) The application then repeatedly polls the state
of the system by calling the function has arrived(), un-
til it returns true. This function returns true only if:
|pos − spnxt | ≤ (0.1, 0.1). In addition, if has arrived() re-
turns true, it updates the value of spcur to be spnxt .

Correct interaction between the application and the con-
troller, which we will show is sufficient to prove cyber-
physical properties about the combined system, requires sev-
eral conditions:

(C1) The application always calls update setpoint(x, y),
with arguments that satisfy the condition
|(x, y)− spcur | = (5, 0) ∨ |(x, y)− spcur | = (0, 5).

(C2) Once the application calls update setpoint(x, y), it can
keep calling has arrived() until it gets a return value
of true; once has arrived() returns true, the appli-
cation can only then start to call update setpoint(x, y)
again.

(C3) When the quadcopter is hovering (i.e., spnxt = spcur),
the controller must maintain the following invariant:
Φhover ≡ |pos − spcur | ≤ (1.5, 1.5).

(C4) When the quadcopter is moving (i.e., |spnxt−spcur | =
(5, 0) ∨ |spnxt − spcur | = (0, 5)), the controller must
maintain the following invariant:

Φmove ≡ min(spcurx, spnxtx)− 1.5 ≤ posx

≤ max(spcurx, spnxtx) + 1.5

∧ min(spcury, spnxty)− 1.5 ≤ posy

≤ max(spcury, spnxty) + 1.5

Note that conditions C1–C2 restrict the sequence of func-
tion calls that can be made by the application, and the argu-
ments that can be passed, while conditions C3–C4 restrict
the behavior of the controller. In the next section, we will
see how a contract automaton can be used to both specify
and verify such conditions formally.

3. CONTRACT AUTOMATON
We assume a computational model where the applica-

tion and controller execute in parallel, and communicate
via three types of shared variables. These shared variables
fall in three categories: (i) Cyber variables VC : these are
written by the application only, during function calls; (ii)
Parameter variables VPar : these are used as parameters
of functions called by the application to interact with the
controller; and (iii) Physical variables VP : these are mod-
ified by the controller only. We write V to denote the
set of all variables, i.e., V = VC ∪ VPar ∪ VP . All vari-
ables are typed. We use real (R) and Boolean (B) vari-
ables. For brevity, we use the symbol for a type to also
denote the set of elements of that type. Thus, R is also
the set of all real numbers. Functions can also return
void (�) values. In our example from Figure 1, we have
VP = {pos : (R,R)}, VC = {spcur : (R,R), spnxt : (R,R)},
and VPar = {x : R, y : R}.

Expressions. Let D = R∪B be the set of all non-void val-
ues (reals, true, and false). Given a set of variable V ⊆ V,
we write Expr(V ) to denote set of expressions constructed
from V ∪ D, using numeric operators (+,−, ∗, /, etc.), re-
lational operators (<,≤, >,≥, etc.), and logical operators
(∧,∨,¬, etc.).
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𝑔𝑟𝑑: 𝑝𝑜𝑠 − 𝑠𝑝𝑛𝑥𝑡 > (0.1,0.1)

𝐴: 𝑟𝑣: 𝑓𝑎𝑙𝑠𝑒
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Figure 2: Example contract automaton.

Functions and Function Calls. A function is a triple
(fn, p, rt) where fn is the function name, p ⊆ VPar is a list of
its parameters, and rt is its return type. The set of all func-
tions via which the application interacts with the controller
is denoted Func. Indeed, for our purposes, the semantics
of the application is a set of execution traces, where each
trace is a sequence of function calls. A function call is a
triple (f, a, rv) where f = (fn, p, rt) is a function, a : p 7→ D
maps each parameter to an argument of appropriate type,
and rv ∈ rt is a return value of appropriate type.

Example. In our example from Figure 1, we have Func =
{f1, f2} where: (i) f1 = (update setpoint , 〈x, y〉, �); and (ii)
f2 = (has arrived , 〈〉,B). Some possible function calls are
(f1, 〈1, 1〉, �), (f2, 〈〉, false), etc.

Definition 1 (Application). An application is de-
fined by a C-language program that makes calls to Func.

Definition 2 (Controller). A controller is defined
by a hybrid automaton over the variables VP ∪ VC .

Assignments. An assignment is a pair (lhs, rhs) where
lhs ∈ V is the left-hand side and rhs ∈ Expr(V) is the right-
hand side. The set of all assignments is Asgn.

Definition 3 (Contract Automaton). Formally, a
contract automaton (CA) is a 5-tuple (S, I, T, Inv , L) where:

• S is a finite set of locations;

• I ∈ S is the initial location;

• T ⊆ S × S is a transition relation;

• Inv : S 7→ Expr(VP ∪ VC) maps each location to an
expression over the physical and cyber variables; infor-
mally, Inv(l) is the invariant that a correct controller
should maintain when the system is in location l;

• L : T 7→ Func × Expr × Expr × Asgn∗ × (D ∪ {�})
labels each transition with information about the func-
tion call from the application that triggers the tran-
sition, a guard under which the transition occurs, a
sequence of assignments that the transition executes,



and the return value of the triggering function call
that the transition results in. Formally, if L(l, l′) =
(f, req , grd , U, rv), then it means:

– The transition from l to l′ is triggered by a call to
function f = (fn, p, rt) by the application.

– Any such call must satisfy the condition req,
which is an expression over VC ∪ p.

– Once the transition is triggered, it can only occur
if condition grd, which is an expression over VP ∪
VC ∪ p, holds. The key difference between req and
grd is that while every call to f by A must satisfy
req, it does not have to satisfy grd.

– If the transition occurs, it executes the assign-
ments in U and then the call to f returns with
value rv.

Note that the labeling of a transition provides a se-
mantic description of the correct implementation of f .
Indeed, f must implement the function:

if (grd) then {U ; return rv ;}

We will use this intuition for the verification steps pre-
sented in the following sections.

Example. Figure 2 shows the contract automaton M for
the quadcopter system described in Section 2. The automa-
ton has two locations – hover and wait . The initial location
is hover . Locations are labeled with corresponding invari-
ants, and transitions are labeled with details about the func-
tion calls that trigger them. Note how M enforces the con-
ditions C1–C4 from Section 2. Specifically, conditions C1–
C2 are enforced by the possible transitions and the function
calls labeling them, while conditions C3–C4 are enforced
by the invariants labeling the locations.

3.1 Contract Automaton Semantics
To define the semantics of a contract automaton, we have

to first define states, and how expressions are evaluated. A
state σ : V ↪→ D is a partial assignment of variables to values.
The domain of σ is denoted Dom(σ). We write σ1 ⊕ σ2 to
denote the state obtained by merging σ1 and σ2 with disjoint
domains, i.e., if Dom(σ1) ∩Dom(σ2) = ∅, then:

(σ1 ⊕ σ2)(v) = σi(v) � v ∈ Dom(σi), i ∈ {1, 2}

Given a set of variables V , the set of all states σ such that
Dom(σ) = V is denoted Σ(V ), i.e.,

Σ(V ) = {σ : V ↪→ D | Dom(σ) = V }

Given a state σ and a set of variables V ⊆ Dom(σ), the
projection of σ on V , denoted σ � V , is the state such that:

Dom(σ � V ) = V ∧ ∀v ∈ V � (σ � V )(v) = σ(v)

Given a state σ, and an expression e, we write [[e, σ]] to
denote the value obtained by evaluating e under σ in the
natural way. For example, if σ(v1) = 5 and σ(v2) = 3,
then [[v1 − v2, σ]] = 2, and [[v1 − v2 > 3, σ]] = false. We
write σ |= e to mean [[e, σ]] = true, and σ 6|= e to mean
[[e, σ]] = false.

Trajectory. Given two states σ and σ′ such that (σ �
VC) = (σ′ � VC), a trajectory τ from σ to σ′ is the se-
quence of states encountered as a finite amount of time
elapses, due to the continuous dynamics and the low-level

controller. This is a trajectory in the hybrid automaton
sense, which includes intervals of continuous evolution and
discrete jumps. It is an infinite sequence of states starting
with σ and ending with σ′ that does not modify the cyber
variables, (∀σ′′ ∈ τ � σ′′ � VC) = (σ � VC). Given expression
e, we write τ |= e to mean ∀σ ∈ τ � σ |= e.

Contract Automaton Transition. LetM = (S, I, T, Inv , L)
be a contract automaton. Its semantics is given by a state
transition system, where each state is a pair (l, σ) such
that l ∈ S and σ ∈ Σ(VP ∪ VC). There are two types of
transitions – application-triggered and controller triggered.
An application-triggered transition is of the form (l, σ)

c−→
(l′, σ′) such that: (i) (l, l′) ∈ T ; (ii) (σ � VP ) = (σ′ � VP );
note that this means an application-triggered transition
does not alter the values of physical variables; (iii) σ |=
Inv(l) ∧ σ′ |= Inv(l′); and (iv) L(l, l′) = (f, req , grd , U, rv)
and c = (f, a, rv) such that:

– σ ⊕ a |= req ∧ grd ; and
– {σ ⊕ a}U{σ′ ⊕ a}, i.e., state σ′ ⊕ a is obtained from

σ⊕ a by executing the assignments in U ; note that we need
a since it may be read (but not updated) by U .

The set of all application-triggered transitions is denoted
δ(M)A. A controller-triggered transition is of the form

(l, σ)
τ−→ (l, σ′) such that: (i) τ is a trajectory from σ

to σ′; (ii) (σ � VC) = (σ′ � VC); and (iii) τ |= Inv(l);
note this means that the invariant of l is maintained at
all intermediate states as M transitions from σ to σ′. A
controller-triggered transition does not alter the location of
the contract automaton. The set of all controller-triggered
transitions is denoted δ(M)C .

Definition 4 (Contract Automaton Semantics).
An execution of M is an alternating sequence of controller-
triggered and application-triggered transitions:

(l1, σ1)
τ1−→ (l1, σ

′
1)

c1−→ (l2, σ2) . . . (ln−1, σ
′
n−1)

cn−1−→ (ln, σn)

such that:

l1 = I ∧
∀i ∈ [1, n− 1] � (li, σi)

τi−→ (li, σ
′
i) ∈ δ(M)C ∧

∀i ∈ [1, n− 1] � (li, σ
′
i)

ci−→ (li+1, σi+1) ∈ δ(M)A

The semantics of a contract automaton M , denoted [[M ]], is
the set of all its executions.

3.2 Refinement
Our broad goal is to show that, if an application A and

a controller C both “refine” a contract automaton M , then
the system composed of A and C refines M as well. In
this section, we present this formally. We begin with the
semantics of an application.

Definition 5 (Application Semantics). For our
purposes, an application is a black-box that makes calls
to functions in Func. Thus, the semantics of A, de-
noted [[A]] is a set of executions, where each execu-
tion π is a sequence of states and function calls, i.e.,

π = σ1
c1−→ σ2 . . . σn−1

cn−1−→ σn such that each σi maps
cyber variables to values, i.e., ∀i ≥ 1 � Dom(σi) = VC .

Definition 6 (Controller Semantics). Since the
controller C is defined by a hybrid automaton, its semantics
is given by a set of executions over VC ∪ VP , and an initial



state InitC ∈ Expr(VC ∪ VP ). An execution of C is a se-

quence σ1
τ1−→ σ′1, σ2

τ2−→ σ′2, . . . , σn−1
τn−1−→ σ′n−1 such that:

(i) σ1 |= InitC ; (ii) ∀i ∈ [1, n − 1] � (σi � VC) = (σ′i � VC);
(iii) ∀i ∈ [1, n − 1], τi is a (hybrid) trajectory from σi
to σi+1; and (iv) ∀i ∈ [1, n − 2] � σi � VP = σi+1 � VP .
Intuitively, each trajectory represents evolution of C with-
out interference from A, and the possible jump from one
trajectory to the next is caused by a function call. The
semantics of C, denoted [[C]], is the set of all its executions.

Definition 7 (System Semantics). The system S =
A ‖ C is an asynchronous interleaving of the application and
the controller where function calls by the application inter-
leave with the evolution by the controller. The semantics of
S, denoted [[S]], is given by a set of executions where each
execution is a sequence of the form:

σ1
τ1−→ σ′1

c1−→ σ2 . . . σn−1
τn−1−→ σ′n−1

cn−1−→ σn

such that each transition σi
τi−→ σ′i represents continuous

evolution by the controller, and each σ′i
ci−→ σi+1 represents

a function call by the application. In other words:

(SS1) ∀i ≥ 1 � Dom(σi) = Dom(σ′i) = VC ∪ VP

(SS2) ∀i ≥ 1 � (σi � VC = σ′i � VC) ∧ (σ′i � VP = σi+1 � VP )

(SS3) σ1
τ1−→ σ′1, σ2

τ2−→ σ′2, . . . , σn−1
τn−1−→ σ′n−1 ∈ [[C]]

(SS4) σ1 � VC
c1−→ σ2 � VC

c2−→ . . .
cn−1−→ σn � VC ∈ [[A]]

Definition 8 (Application Refinement). A refines
M , denoted A �M , if every execution of A, that maintains
the invariants in each mode of the contract automaton M ,
corresponds to some execution of M . Formally:

A �M ⇐⇒

∀σ1
c1−→ σ2 . . . σn−1

cn−1−→ σn ∈ [[A]] �

∀l1 = I, l2, . . . , ln−1 �

∀σ̃1, . . . , σ̃n−1 � σ1 ⊕ σ̃1 |= Inv(I) ∧
∀i ∈ [2, n− 1] � σi ⊕ σ̃i−1 |= Inv(li) ∧ σi ⊕ σ̃i |= Inv(li) =⇒

∃ln � (ln−1, σn−1 ⊕ σ̃n−1)
cn−1−→ (ln, σn ⊕ σ̃n−1) ∈ δ(M)A

Note that each li is a location of M and each σ̃i ∈ Σ(VP )
maps VP to values.

Definition 9 (Controller Refinement). C refines
M , denoted C � M , if every trajectory in C, that obeys
the transitions (ordering and pre/post conditions) from M ,
corresponds to some execution of M . Formally:

C �M ⇐⇒

∀σ1
τ1−→ σ′1, σ2

τ2−→ σ′2, . . . , σn−1
τn−1−→ σ′n−1 ∈ [[C]] �

τ1 |= Inv(I) ∧ ∀l1 = I, l2, . . . , ln−1 �

∀i ∈ [1, n− 2] � ∃ci � (li, σ
′
i)

ci−→ (li+1, σi+1) ∈ δ(M)A =⇒
τn−1 |= Inv(ln−1)

This consists of checking that the controller’s reachable set of
states, under any application A which satisfies the discrete
transition conditions in the contract automaton, does not
violate the mode invariants in the contract automaton.

Definition 10 (System Refinement). S = A ‖ C
refines M , denoted S � M , if every execution of S cor-
responds to an execution of M . Formally:

S �M ⇐⇒

∀σ1
τ1−→ σ′1

c1−→ σ2 . . . σn−1
τn−1−→ σ′n−1

cn−1−→ σn ∈ [[S]] �

∃l2, l3, . . . , ln � (I, σ1)
τ1−→ (I, σ′1)

c1−→ (l2, σ2)

. . . (ln−1, σn−1)
τn−1−→ (ln−1, σ

′
n−1)

cn−1−→ (ln, σn) ∈ [[M ]]

3.3 Cyber-Physical Properties
A contract automaton’s power is in proving cyber-physical

properties. These are properties which are true not solely on
the basis of the application software, or the controller, but
instead require both to satisfy certain properties (expressed
collectively in the contract automaton). The CPS proper-
ties are expressed as relations over the cyber and physical
variables. For the contract automaton from Figure 2, the
corresponding cyber-physical property Φ is:

(Φhover ∧ spnxt = spcur) ∨ (Φmove ∧
(|spnxt − spcur | = (5, 0) ∨ |spnxt − spcur | = (0, 5)))

It follows from Definition 4 that all reachable states of M
satisfy its invariant. In other words:

Proposition 1 (Invariant Satisfaction).

∀(l1, σ1)
τ1−→ (l1, σ

′
1)

c1−→ (l2, σ2) . . . (ln−1, σn−1)
τn−1−→ (ln−1, σ

′
n−1)

cn−1−→ (ln, σn) ∈ [[M ]] �

∀i ∈ [1, n] � σi |= Inv(M) ∧ ∀i ∈ [1, n− 1] � τi |= Inv(M)

The main power of Definition 10 is that it implies that
if S � M , then Inv(M) also holds on S (where Inv(M) is
defined as the disjunction of invariants over all locations in
M given in definition 3). Formally:

Proposition 2 (Invariant Preservation).

S �M =⇒

∀σ1
τ1−→ σ′1

c1−→ σ2 . . . σn−1
τn−1−→ σ′n−1

cn−1−→ σn ∈ [[S]] �

∀i ∈ [1, n] � σi |= Inv(M) ∧ ∀i ∈ [1, n− 1] � τi |= Inv(M)

However, checking S � M directly is complex because S
and M combine discrete behavior by the application with
continuous behavior by the controller. In the next section,
we show how S � M can be checked compositionally using
two separate verification steps – one for A �M and another
for C � M , and how each of these can be achieved using
domain-specific verification tools.

3.4 Compositional Refinement Check
We now present our main theorem in the form of an

assume-guarantee style proof rule.

Theorem 1 (Compositional Refinement).

A �M C �M
A ‖ C �M

Proof. Let S = A ‖ C, A �M , C �M , and π ∈ [[S]] be
any execution of S. Let:

π = σ1
τ1−→ σ′1

c1−→ σ2 . . . σn−1
τn−1−→ σ′n−1

cn−1−→ σn

The degenerate case of an execution where the application
never executes is taken care of as part of the base case below.



For i ∈ [1, n], let us write σA,i to mean σi � VC . By condition
SS4 in Definition 7 we know that:

σA,1
c1−→ σA,2

c2−→ σA,3 . . . σA,n−1
cn−1−→ σn ∈ [[A]]

From condition SS3 in Definition 7, we know that:

σ1
τ1−→ σ′1, σ2

τ2−→ σ′2, . . . , σn−1
τn−1−→ σ′n−1 ∈ [[C]]

For i ∈ [1, n−1], define σ̃i = σ′i � VP . From condition SS2
in Definition 7, we know that ∀i ∈ [1, n−1] � σ̃i = σi+1 � VP .

We will now show by induction that ∃l2, . . . , ln such

that (I, σ1)
τ1−→ (I, σ′1)

c1−→ (l2, σ2) . . . (ln−1, σn−1)
τn−1−→

(ln−1, σ
′
n−1)

cn−1−→ (ln, σn) ∈ [[M ]]. Then, our result follows
directly from Definition 10.

Base Case: From Definition 9, we know that τ1 |= Inv(I).

Hence (I, σ1)
τ1−→ (I, σ′1) ∈ δ(M)C . Also note that σ′1 =

σA,1 ⊕ σ̃1, σ′1 |= Inv(I), and σ2 = σA,2 ⊕ σ̃1. Hence from

Definition 8, we have ∃l2 �(I, σ′1)
c1−→ (l2, σ2) ∈ δ(M)A. From

Definition 4, we have (I, σ1)
τ1−→ (I, σ′1)

c1−→ (l2, σ2) ∈ [[M ]].

Inductive Step: Suppose ∃l2, . . . , lm such that (I, σ1)
τ1−→

(I, σ′1)
c1−→ (l2, σ2) . . . (lm−1, σm−1)

τm−1−→ (lm−1, σ
′
m−1)

cm−1−→
(lm, σm) ∈ [[M ]]. Using the inductive hypothesis, and Defi-

nition 9, we know that τm |= Inv(lm). Hence (lm, σm)
τm−→

(lm, σ
′
m) ∈ δ(M)C . Again note that σ′m = σA,m ⊕ σ̃m

and σm+1 = σA,m+1 ⊕ σ̃m. Hence from the inductive hy-

pothesis and Definition 8, we have ∃lm+1 � (lm, σ
′
m)

cm−→
(lm+1, σm+1) ∈ δ(M)A. From Definition 4, this means

(I, σ1)
τ1−→ (I, σ′1)

c1−→ (l2, σ2) . . . (lm, σm)
τm−→ (lm, σ

′
m)

cm−→
(lm+1, σm+1) ∈ [[M ]]. This completes the proof.

Note that our proof rule is not complete. Consider a con-
troller C that fails to maintain the invariant Inv(l2) when
location l2 is reached via function call c1. Suppose it is
composed with an application A that never calls c1, i.e., the
application prevents the controller from reaching the bad
state. In this case, the conclusion of our rule A ‖ C � M
holds, but the premise C �M does not.

4. VERIFYING PROOF-RULE PREMISES
In this section, we illustrate how to discharge the two

premises of the proof rule given in Theorem 1, i.e, A � M
and C �M .

4.1 Checking Application Refinement
We assume that the application A is a C-language pro-

gram with calls to Func. To check A � M , we construct
stub-functions for each f ∈ Func that check the condi-
tions in Definition 8. We then verify A along with the
stub-definitions of Func using an off-the-shelf software model
checker. Our stub-functions for Func are non-deterministic.
This is necessary since the conditions in Definition 8 involve
quantifiers.

More specifically, we assume a software model checker that
supports three features: (i) non-deterministic value *; (ii)
assume – a function that blocks all executions that invoke it
with a false argument, typically used to model the environ-
ment under which a specific part of a program is executed;
and (iii) assert – a function that aborts all executions that
invoke it with a false argument, typically used to detect
the violation of safety properties.

All these features are supported by most state-of-the-art
software model checkers. For example, the bounded model

enum Loc {hover, wait};
Loc loc = hover;

void update_setpoint(double x, double y) {
pos = *; //-- assign non-deterministic value
if (loc == hover) {

assume(INV_hover); assert(REQ_hover_wait);
spnxt = (x,y); assert(INV_wait);
loc = wait; return;

}
assert(0);

}

_Bool has_arrived() {
if (loc == wait) {

pos = *;
//-- non-deterministic choice between
//-- two outgoing transitions from wait
if (*) {

assume(INV_wait);
assume(|pos - spnxt| > (0.1,0.1));
assert(INV_wait); loc = wait; return 0;

} else {
assume(INV_wait);
assume(|pos - spnxt| <= (0.1,0.1));
spcur = spnxt; assert(INV_hover);
loc = hover; return 1;

}
}
assert(0);

}

Figure 3: Stub definitions for our example contract
automaton; INV_x denotes invariant Inv(x); REQ_a_b

denotes the req component of label L(a, b). The * is
a non-deterministic choice.

void A1() {
for (int n=1;;++n) {
update_setpoint(n,0);
while(!has_arrived());
}
}

void A2() {
for (int n=1;;++n) {
update_setpoint(n,0);
while(has_arrived());
}
}

Figure 4: Two example applications where initially
spcur = spnxt = (0,0). A1() refines our example con-
tract automaton; A2() does not.

checker cbmc [17] supports non-determinism via return val-
ues of undefined functions, assume via a call to the function
__CPROVER_assume, as well as assert. Consider a contract
automaton M = (S, I, T, Inv , L). The body of the stub func-
tion for each f ∈ func is generated as follows:

(a) Introduce a global variable loc to track the current
state of M ; loc is initialized to I.

(b) For each transition (l, l′) ∈ T with L(l, l′) =
(f, req , grd , U, rv) generate code that: (i) is executed only
if loc = l; (ii) assigns non-deterministic values to VP ; (iii)
assume-s Inv(l); (iv) assert-s condition req ; (v) assume-s
condition grd ; (vi) executes assignments in U ; (vii) assert-
s Inv(l′); (viii) updates loc to l′; and (ix) return-s rv .

Example. Figure 3 shows the stub functions for up-

date_setpoint and has_arrived from our example contract
automaton in Figure 2. We omit statements that have no
effect (e.g., assert-ing or assume-ing true). Note that the
assert(0) at the end of each function ensures that the func-
tion is never called when the contract automaton is in an in-
appropriate state. Also, since there are two transition from
state wait labeled by arrived , they are both allowed non-
deterministically.

The following theorem expresses the correctness of our



procedure.

Theorem 2 (Application Refinement Check).
The C-language program A together with the stub definitions
of functions in Func constructed as above has no executions
that violate an assertion if and only if A �M .

Proof. (Sketch) Consider any σ1
c1−→ σ2

c2−→
σ3 . . . σn

cn−→ σn+1 ∈ [[A]]. It can be shown that there ex-
ists a sequence of locations l1, . . . , ln+1 that satisfy condition
AR of Definition 8 if and only if the C-language program
A together with the stub definitions of Func executes a se-
quence of function calls c1, . . . , cn such that for i ∈ [1, n] the
value of loc when ci is called is li, and the final value of loc
is ln+1.

Example. Figure 4 shows two possible example applica-
tions (note the real quadcopter code we use is significantly
more complex). A1() refines our example M and the pro-
gram obtained by combining it with the stub definitions in
Figure 3 does not violate any assertions. A2() does not
refine our example M and the program obtained by com-
bining it with the stub definitions in Figure 3 violates an
assertion when it first calls update_setpoint(5,0), then
calls has_arrived() which returns false, and then calls up-
date_setpoint(10,0).

The application code for each quadcopter was written in a
domain-specific language, called dmpl [13], for programming
distributed real-time systems, which includes a C-language
code generator. This feature was used to generate the C-
language source for the application A. The stub definitions
for functions update_setpoint_x(), has_arrived_x(), up-
date_setpoint_y() and has_arrived_y() were created
manually from M as shown in Figure 3. They were also
written in dmpl, and then converted automatically to C
source code. The combined application and stub func-
tions, consisting of about 1700 LOC, were then verified
using cbmc. Since cbmc is a bounded model checker,
and our application does not terminate, cbmc cannot ver-
ify properties over (logically) unbounded program execu-
tions by itself. Therefore, we manually created loop-
invariants and verified them to be inductive using cbmc,
thus enabling us to prove unbounded properties. Essen-
tially, to prove that I is an invariant of a loop with
body B, we verify the following program with cbmc –
HAVOC(); __CPROVER_assume(I); B; assert(I); – where
HAVOC() assigns all relevant variables non-deterministic val-
ues. Note that the semantics of C is untimed and purely log-
ical, and is therefore appropriate for modeling application-
triggered transitions. Using a laptop with a quad-core 2.9
GHz CPU and 16 GB of RAM, the check took about 3.5
seconds. These invariants were also strong enough to imply
all the assertions in the code. This proves A �M .

4.2 Checking Controller Refinement
We assume that the physical system and low-level con-

troller C are modeled together as a hybrid automaton [29].
To check C �M , we construct a hybrid automaton HM us-
ing M such that the composed hybrid automaton C ‖ HM
reaches a forbidden error state if C 6� M . We then use an
off-the-shelf hybrid system reachability analysis tool to ver-
ify that the forbidden states are not reachable in C ‖ HM . In
order to do this we need a hybrid automaton model checker
which supports: (i) forbidden state checking; (ii) transi-
tions with may-semantics; and (iii) automaton composition.

Figure 5: Converted hybrid automaton extracted
from contract automaton.

These features are generally supported by hybrid systems
model checkers like spaceex [28] or flow* [15]. Automa-
ton composition can be performed by an external tool [4], if
not supported natively by the reachability tool.

For 2-d position dynamics, we considered a simple, double-
integrator system, where the position’s derivative ẋ = v, the
velocity’s derivative v̇ = a, and the acceleration a is the con-
trol input. We use a proportional-derivative (PD) low-level
controller, with a proportional gain of 10 and a derivative
gain of 3. Although hybrid systems reachability can han-
dle more complicated dynamics and controllers, the focus of
this work on the interface between the software and a hy-
brid automaton model. Thus, scalability and accuracy of
hybrid systems reachability analysis becomes an orthogonal
problem.

The HM derived from the contract automaton M is given
in Figure 5. The process of creating this automaton con-
sists of first directly extracting the invariants and applica-
tion guarantees from the original contact automaton. Next,
the model is converted into a form amenable to analysis by
a reachability tool, which consists of things like converting
disjunctions in guards to multiple transitions, using com-
pound conditions instead of min/max functions, and elimi-
nating circular stutter transitions which do not affect analy-
sis. These steps could be automated in a model transforma-
tion framework [4]. The last step involves reasoning about
model symmetry in order to facilitate detection of fixpoints
within reachability analysis. If the x direction, for example,
was unbounded, then the reachable set of states would be
infinite, and reachability using flow-pipe construction would
not complete. We take advantage of dynamics symmetry in
the x and y directions in order to reduce the analysis to a
single dimension, and furthermore, recenter the system to
0 whenever the controller settles near a new setpoint (the
transition with the has_arrived label the HM automaton
in Figure 5 has its reset assignment changed from spcur

:= spnext to x := x - spnext && spnext := 0 && spcur

:= 0). This symmetry reduction step needs to be proven
correct, for example by using reachability reduction trans-
formations [5].

The quadcopter low-level PD controller performs high-



Figure 6: The SpaceEx model of the continuous ap-
proximation of sampled quadcopter dynamics. The
modes specify invariants and ODEs, while transi-
tions have guards and instantaneous reset assign-
ments.
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Figure 7: (a) Time-bounded reachability of the com-
posed hybrid automaton, without symmetry reduc-
tion; (b) Reachability computation with symmetry
reduction, which reaches a fixpoint.

frequency sampling and actuation, subject to a real-time
scheduler such as Rate Monotonic or Earliest-Deadline
First [36], which guarantees one execution per period, but
is not strictly periodic. Such a system can be abstracted for
reachability analysis by a continuous one with an extra noise
term in the dynamics, to account the effects of any possible
jitter in the schedule [6]. We use the continuous approxima-
tion of the controller in our hybrid automaton model, shown
in Figure 6.

A hybrid systems reachability tool can be used to ana-
lyze the hybrid automaton model consisting of the com-
position of the extracted automaton in Figure 5 and the
controller/plant given in Figure 6. Without symmetry re-
duction, a time-bounded analysis can be performed. The
projection of the reach set in terms of x position and veloc-
ity, computed with Flow∗, is shown in Figure 7(a). After
changing the reset upon reaching the setpoint, as described
above, a fixpoint in the reachable states can be detected. On
a 2.3 GHz quad-core CPU laptop with 16 GB of memory,
SpaceEx took about 33 seconds, 17 of which was the reacha-
bility computation. A 2-d projection of the reach set output
by the tool is given in Figure 7(b). Neither of these models
reach the error mode in the extracted contract automaton
from Figure 5, which means that the contract’s invariants
are always met for the given plant/controller combination,
and therefore C � M . An example of a plant/controller
which does not refine M would be one with an unstable
controller. Such as system would not have a response in
the necessary bounds given in the invariants, and therefore
reachability analysis would detect that the error mode is
reachable.

5. PROVING HIGH-LEVEL PROPERTIES
The contract automaton method enables the proving of

cyber-physical properties, which deal with individual quad-
copters. The cyber-physical property Φ consists of the dis-
junction of the invariants of each of the modes of the contract
automaton M , shown before in Figure 2. By Theorem 1, we
have proven Φ holds for our quadcopter system, by check-
ing A � M (done in Section 4.1) and C � M (done in
Section 4.2). Now, we go beyond proofs of properties of in-
dividual quadcopters. We illustrate one way to use the CPS
property Φ with additional formal verification techniques in
order to perform end-to-end reasoning about collision avoid-
ance between multiple quadcopters.

In particular, we want to show collision avoidance in a
group of quadcopters in a finite, shared space. Specifically,
we consider a system consisting of 10 quadcopters moving
on a 100 × 100 2-d area (i.e., 20 × 20 cells). As mentioned
before, the quadcopter logic was programmed in dmpl. In
addition to allowing C-language code generation, dmpl also
allows use of the synchronous model of computation as a
primitive in algorithm design. The code generated from
dmpl uses a barrier-based protocol [11], built on top of the
madara [25] middleware, to implement this synchronous
model of computation. Also, dmpl’s semantics takes care
of packet loss and out-of-order arrival in the communication
layer. The code generated from dmpl uses message retrans-
mission and madara’s packet reordering to remedy these
situations.

Our system executes a synchronous distributed collision
avoidance protocol. Each quadcopter maintains a cell vari-
able cellcur corresponding to the current setpoint, and a cell
variable cellnext corresponding to the destination setpoint.
Each cell is treated as a shared resource, and a quadcopter
always “locks” a cell by communicating with the others be-
fore moving into it. The synchronous model of computation
is used to implement this distributed locking.

We refer to the 10 quadcopters as N0, N1, . . . , N9. Each
quadcopter has its own copy of cyber and physical variables.
For any such variable x ∈ VC ∪VP , we use x[i] to denote the
copy of x for quadcopter Ni. Thus, for example, spcurx[2]
is the x coordinate of the current setpoint of N2 and posy[3]
is the y coordinate of the current position of N3.

To prove collision avoidance, one property we need is that
the cells defined by cellcur [i] and cellnext [j] are always mu-
tually disjoint for distinct quadcopters, i.e.,

∀0 ≤ i < j < 10�
cellcur [i] 6= cellcur [j] ∧ cellcur [i] 6= cellnext [j]∧
cellnext [i] 6= cellcur [j] ∧ cellnext [i] 6= cellnext [j]

Note that this means essentially proving the correctness
of the distributed locking algorithm. A second property to
check is that for every quadcopter, the setpoints are 5 times
the corresponding integer cell ids,

∀0 ≤ i < 10 � 5 ∗ cellcur [i] = (spcurx[i], spcury[i])∧
5 ∗ cellnext [i] = (spnxtx[i], spnxty[i])

The verification step for these two properties leverages the
synchronous model of computation provided by dmpl. The
collision avoidance logic for all 10 quadcopters is combined
into a single C-language program using the sequentializa-
tion technique [11], where computation proceeds in rounds
based on the guarantees provided by the madara middle-
ware. The combined program consists of about 17.5 KLOC,



Potential Error Detection
Software bug modifies setpoint twice in a row SW
Software bug changes setpoint by both x and y SW
Controller’s gains are too high causing quadcopter to
overshoot into neighboring cell

HY

Controller logic unstable HY
Real-time period of low-level controller too low HY
has_arrived condition too aggressive HY
Barrier synchronization incorrectly used in communi-
cation protocol

DIST

Software does not reason about loss of communication DIST
Buffer distances in cells too small SMT
Helicopters too large for a given grid size SMT

Table 1: A list of possible design and implementa-
tion errors, and where our approach would detect
them. The detection locations are Software Model
Checking (SW), Hybrid Systems Reachability (HY),
Distributed System Sequentialization (DIST), and
High-Level SMT Proof (SMT).

about 10 times the size of the single-quadcopter application
refinement check, which is then verified using cbmc. On
same 2.9 GHz laptop that was used for the application re-
finement check, verification requires about 1900 seconds.

Given these three properties (the cyber-physical prop-
erty from the contract automaton Φ and the two properties
proven using sequentialization of the distributed system), we
can now prove global collision avoidance. The three proper-
ties were formally written using SMT syntax, and as well as
an additional assertion which encodes the condition under
which a collision occurs (the positions are within twice the
helicopter radius). This condition in SMT syntax is:

(<= (abs (- (pos i) (pos j))) (* 2.0 HELI_RADIUS))

Here, i and j are the x positions of two non-identical
quadcopters (the check for y positions is similar). The satis-
fiability of these combined properties was then checked using
Z3 [22], taking a fraction of a second. If HELI_RADIUS < 1.0,
the SMT solver returned unsat, indicating that no config-
uration is possible where all the properties are true and a
collision is occurring. If HELI_RADIUS ≥ 1.0, then the SMT
solver can produce counter-examples demonstrating a col-
lision may be possible. For example, a possible counter-
example has one quadcopter moving along the x direction
from cell 0 to cell 1, and another quadcopter moving from
cell 3 to cell 2. In this case, first quadcopter may be at posi-
tion 6.5, while the second is at position 8.5 (recall they are
permitted to deviate from the setpoints by up to 1.5 units).
In this case, the quadcopters are exactly 2 ∗ HELI_RADIUS
apart (when HELI_RADIUS = 1.0).

To the best of our knowledge, this is the first formal veri-
fication of a distributed cyber-physical system that includes
both the application software and the controller, using a
sound combination of software model checking and hybrid
reachability analysis. The proof includes end-to-end formal
reasoning without gaps between analysis approaches, except
for syntactic translations of properties, which could be au-
tomated (this translation would then ideally be proven cor-
rect). This makes it capable of catching a large variety of
design and implementation mistakes. An outline of possible
system errors, and where they would be detected using the
proposed approach, is provided in Table 1.

6. RELATED WORK

Software Model Checking. Our work is complementary
to, and leverages, verification techniques [31] for sequential
C-language programs [7]. Sequentialization has been used
for concurrent program verification. However, most of this
work is targeted toward multi-threaded software [34, 20] or
real-time software [12] executing on a single processor, not
distributed applications. There has also been work on ver-
ifying distributed algorithms [32], while our goal is to ver-
ify distributed cyber-physical systems where each node has
both discrete applications and hybrid components.

Hybrid-systems verification targets systems modeled us-
ing hybrid automata [1], which are best suited for model-
ing physical aspects of CPS with simpler discrete behaviors.
Hybrid automata consist of, roughly, finite state machines
combined with differential equations within each mode. Var-
ious hybrid automata model checkers exist depending on the
complexity of the differential equations. Tools for comput-
ing reachability exist for timed automata [41], linear hybrid
automata [28], and systems with general, nonlinear dynam-
ics [15]. Other analysis methods for hybrid systems include
falsification [23, 2], where the goal is to search for concrete
inputs that lead to a property-violating trace.

Composition Verification. Assume-guarantee reasoning
was proposed in the context of distributed programs [33],
networks of processes [37], and program verification [39].
L* has been used [19, 14] to learn assumptions automati-
cally. Compositional verification techniques have also been
explored for model checking [18], probabilistic system veri-
fication [21], component-based reasoning with reals[16, 42],
and hybrid systems [9, 8]. Within hybrid systems, analysis
tractability can be improved by analyzing local components,
and then reasoning separately about their composition [30,
3, 27]. However, these approaches assume systems with se-
mantically uniform components (e.g., finite state automata),
while we handle systems with discrete and dense hybrid com-
ponents. Nuzzo et al. construct contracts across different
domains, such as Linear Temporal Logic and Signal Tempo-
ral Logic [38], but for multi-layer controller synthesis.

Cross-Domain Reasoning. Some research explores reason-
ing across domains by abstracting the system from one do-
main into the other, where all the reasoning is performed.
For example, continuous systems controlled by periodic soft-
ware controllers are analyzed by converting the continuous
dynamics to equivalent software code which advances phys-
ical variables according to the solutions of the differential
equations, which may not always be available [24]. The
system is then analyzed using off-the-shelf software veri-
fiers, which may not scale over long time horizons. Alterna-
tively, the continuous dynamics is abstracted by maneuver
automata [26], which are finite state machines with timing
information, describing both trim conditions and transitions
between them. Such models can be used to synthesize dis-
tributed control strategies using SMT solvers [40]. Com-
bined models with imperative semantics for programs and
differential equations has also been proposed [10], but their
formal analysis remains difficult. Symbolic execution of C
software has been used to generate counter-examples for hy-
brid systems that explore all execution paths [43]. The StarL
framework [35] contains primitives, specifications, and Java
code, that can be composed and reasoned manually with the
PVS theorem prover. However, the code itself is not proven
to conform to the formal PVS specifications.



7. CONCLUSION
We presented a method to verify end-to-end safety prop-

erties of distributed CPSs. The crucial step was proving
cyber-physical properties, which required reasoning over a
combined software system and a hybrid automaton model
of the low-level controller and plant. We used a contract
automaton (CA) to formally describe the correct behav-
ior of the application (in terms of legal sequence of API
function calls and their pre-post-conditions and return val-
ues) and the controller (in terms of invariants maintained
by its continuous dynamics). A sound assume-guarantee
style proof rule was used to decompose the verification into
two parts – one that verifies the application against the
CA using software model checking, and another that verifies
the controller against the CA using hybrid systems reach-
ability analysis. The approach avoids the composition of
discrete (application) and continuous (controller) behavior,
ameliorating state-space explosion. It also permits the use of
domain-specific (software and hybrid automata) specialized
verification tools. The subsequent domain-specific analysis
is simpler than the original combined CPS analysis. We used
our approach to verify physical collision avoidance between
a group of communicating quadcopters in a 2-d space. Our
end-to-end proof is entirely performed using formal verifi-
cation tools, except for syntactic translations of properties
along the tool boundaries, which could be automated.
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