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Abstract—A roadmap to modernize the architecture of an 
existing system must satisfy many strongly-positioned 
stakeholders and satisfy the constraints of continuing business 
operations as the plan is implemented. Our previous work 
reported on a method to engage with stakeholders to model 
architecture options for a modernization roadmap. These models 
have proven to be too large to analyze all options manually: Ad hoc 
approaches must be employed to prune the space of possible 
solutions, which risks dropping optimal solutions. We report here 
on a method that efficiently collects stakeholder preferences about 
architecture options and uses an automated search-based 
optimization approach over the full solution space to identify the 
most important architecture decisions, i.e., the decisions that have 
the most influence on stakeholder satisfaction. 
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I. INTRODUCTION 
IT system modernization projects present special challenges 

for architecture decision making. Labeling a project as 
“modernization” implies that there is an existing system that 
provides sufficient value so that it is worth investing to maintain 
or improve that capability. While all systems have stakeholders 
who should be respected, in a modernization project the 
stakeholders use the existing system to deliver essential services 
to the enterprise, giving them a bigger voice in architecture 
decisions.  

In this context, the architect must develop a roadmap 
defining a sequence of architecture changes [5]. Stakeholder 
cooperation is needed to successfully execute the roadmap; e.g., 
they provide necessary domain knowledge, provide funding for 
operation of the new system, and will perform acceptance testing 
of the new system. The architecture decision-making process 
must include this large and diverse group, who may have 
conflicting preferences from differing goals and evaluation 
criteria. Modernization changes technology, and also processes 
and organizational structure, and our experience is that decisions 
can have broad impact and trigger strong stakeholder reactions. 

This paper describes an architecture decision-making 
process which addresses the specific challenges of 
modernization projects, and can be applied in other less 
challenging contexts. The process is scalable and transparent, 
and allows direct stakeholder participation in either 
collaborative or asynchronous modes. The process has four 
steps: 

1. Capture decision alternatives identified by stakeholders in a 
goal model [10], along with cost and benefit values; 

2. Collect stakeholder preferences about the options using the 
analytic hierarchy process (AHP); 

3. Apply a search-based optimizer that performs heuristic 
sampling of the entire decision space represented by the 
softgoal model; 

4. Rank solutions on cost, benefit, and stakeholder 
satisfaction, and identify the architecture decisions that have 
the highest impact. 

The contribution of this paper is a stakeholder preference 
collection step in this process, and use of stakeholder 
preferences in architecture decision-making. 

II. ELICITING DECISION SPACES WITH GOAL MODELS 
A goal model expresses the relations among softgoals, which 

are subjective; hard goals, which can be objectively satisfied; 
and tasks or services, which reflect activities necessary to satisfy 
a goal. These elements are refined with and/or relations [10]. 
Fig. 1 shows a typical goal model used to specify modernization 
roadmap architecture options. 

Reasoning on a softgoal model labels each hard goal and 
task/service element as do or do not, in accordance with the 
semantic constraints of the inter-element relations. We call such 
a labeling a solution candidate. A solution candidate embodies 
a set of semantically acceptable architecture decisions. A 
solution candidate can be evaluated by summing the cost, risk, 
stakeholder satisfaction, or other metrics from all elements 
labeled do, and by evaluating the benefit produced by the root 
soft goals satisficed by the labeling and the root hard goals 
satisfied by the labeling [7]. 

We used a goal model to capture the decision space for our 
modernization planning in a process we described in [5]. The 
challenge is to obtain, from a set of technical stakeholders, their 
assessment of costs and benefits for a range of architectural 
options. The input to this process is a set of architecture risks 
identified in some architecture analysis; in our case, using the 
Architecture Tradeoff Analysis Method (ATAM) [3]. The 
workshop facilitators prioritize the risks, and then create 
scenarios that ‘test’ the risks. In a 2-day workshop, technical 
stakeholders (e.g., chief architects, development managers, team 
leads) are asked to suggest technical options–decisions–for 
mitigating the risks. For example, if a risk is that data access 
relies on a direct database connection, leading to modularity 



 

 
Fig. 1. Modernization roadmap options model example (from [5]) 

violations, a potential option is to introduce a service layer as a 
mediator. 

The collected set of options is analyzed by the facilitator 
team to identify dependencies and collapse similar options, and 
the result is then presented back to the stakeholders in another 
session. A lightweight cost/benefit analysis elaborates the pros 
and cons (technical benefits to selecting the option) and then 
asks for ordinal, relative costs for implementing that option (e.g., 
High/Medium/Low relative to other options). The result of this 
is a set of options that the facilitators can structure into the goal 
model shown in Fig. 1. The modeling step is currently based on 
the skill and judgment of the facilitators at identifying similar 
options (decision points) and dependencies. The next phase of 
the approach is a member-checking exercise in which the 
structure model is evaluated with the stakeholders a final time. 

III. PRIORITIZATION WITH THE AHP 
The AHP is a method for making a decision, described in 

detail by Saaty [13]. Briefly, the AHP represents the decision as 
a hierarchy of criteria and options. The decision maker first 
makes pairwise comparisons among all of the criteria, 
expressing his judgment about the relative importance between 
each pair of criteria. Then, for each criterion, the he judges the 
relative ability between a pair of options to satisfy the criterion. 
These are subjective, personal, and relative judgments about 
what will satisfy the stakeholder. 

The AHP assigns numeric values to the judgments and then 
weights the option judgments by the criteria judgments to rank 
the options. We then combine the individual stakeholder 
judgments in our search-based optimizer. 

We applied the AHP to collect preferences about the 
decisions in model shown in Fig. 1. That model contains six 

                                                 
1 http://csrc.nist.gov/roi/wksps0603-notes/Risk-Handout.pdf 

decisions–there are six goals refined using exclusive or 
relations. AHP treats each decision independently, with its own 
criteria. However, this set of decisions is coherent (i.e. decisions 
about the same system, made at the same time), and so we used 
a single set of criteria for all, since the architecture qualities 
represented by the criteria are system-wide properties and their 
relative importance should not change from decision to decision. 
This system was developed by a government agency, so we 
selected the six most relevant criteria from a set used to assess 
government IT projects1: (1) Schedule; (2) Life-cycle costs; (3) 
Dependencies and interoperability; (4) Risk of failure; (5) Risk 
of not achieving business goals; and (6) Security. The resulting 
AHP hierarchy for one decision—“What type of data model 
should we develop?”—is shown in Fig. 2. 

Stakeholder preferences were collected using a spreadsheet-
based form. In our pilot experiment, this took stakeholders less 
than 30 minutes to make the 75 pairwise judgments required by 
this model. In cases where the number of pairwise comparisons 
becomes too large, there are approaches that sample 
comparisons across a group of deciders, to reduce the workload 
on each individual to an acceptable level [6]. 

We used an online AHP data analysis package 
(https://github.com/gluc/ahp). The analysis produced a ranking 

 
Fig. 2. AHP hierarchy example 



example table for one stakeholder for the decision hierarchy 
from Fig. 2. The first column shows how this stakeholder 
weighted the criteria, with the pairwise judgments transformed 
into a weighted ranking: Business risk was the most important 
(35.3%), followed closely by Schedule risk (30.6%). The others 
were all ranked relatively low. The first row of the table shows 
the final result of the AHP calculations, which weight the 
stakeholder’s pairwise judgments among the options by the 
stakeholder’s criteria weights. In this case, the stakeholder 
prefers the “Specific” option for a Data Model, with a weight of 
63.7%. The “Extensible” option has a weight of only 26.6%, 
while the “Comprehensive” option has a weight of only 9.7%. 

 
Fig. 3. AHP Example 

The rightmost column shows the measure of the transitive 
consistency of the pairwise judgments: If A is judged as better 
than B, and B is judged as better than C, then we would expect 
that A would also be judged better than C. Saaty discusses why 
the judgments should be reviewed when the consistency metric 
is greater than 10% [13]. (Although the AHP literature labels this 
metric “consistency”, note that the value increases as the 
judgments become more inconsistent.) The data analysis 
package that we used calculates the aggregated consistency 
metric (37.0%), however we must look to the metrics for each 
criteria to make an assessment. For the “Life-Cycle Costs” 
criterion, the metric was significantly above the threshold, at 
25.4%. We accepted this inconsistency, since the stakeholder 
ranked this criterion as unimportant and the inconsistency was 
likely due to a lack of any strong preferences about the options. 
However, a similar metric for one a highly-ranked criteria would 
warrant review. Possible causes for inconsistency by a single 
stakeholder include data entry error on the form, 
misunderstanding of the alternatives, or even intentional 
misrepresentation to undermine the project. If many 
stakeholders show inconsistency on a particular judgment, this 
might indicate that there is little real differentiation among the 
alternatives.  

IV. A SHORTER METHOD 
The output of the modeling process, and the subsequent AHP 

prioritization, serve as inputs to our decision ranking tool, 
SHORT [11]. Fig. 4 shows the methodology. Inputs are the 
softgoal model from Section II, including cost/benefit values 
from the stakeholders, and the preferences elicited from AHP. A 
search-based algorithm evaluates potential combinations of 
decisions according to a) decision cost; b) decision benefit and 
preference satisfaction; c) softgoal satisfaction. This results in a 
set of optimal (non-dominated) solutions.  

 
Fig. 4. End-to-end method 

This heuristic search-based approach scales better than 
complete approaches, particularly when there are cross-tree 
relationships in the goal model, as discussed in [11]. 

A Bayesian ranker produces a list of key decisions (Fig. 5). 
Conceptually, the ranking is based on the probability that a 
decision appears in a particular solution, given that the solution 
is optimal. Details are provided in  [11]. These are the decisions 
which account for the majority of the variance in the decision 
value space, i.e., making the top 3 decisions below accounts for 
the majority of the cost/benefit/satisfaction value. Note that each 
decision includes the decision state (do or do not, as discussed 
above in Section II). 

V. DYNAMIC ASPECTS OF DECISIONS 
One of the characteristics of the work we have described in 

this paper is that it focuses on a relatively static picture of the 
world. Decisions are abstract representations of an ideal 
software system. In more recent work, we have been using the 
notion of ongoing, dynamic analysis of software-in-use to 
inform our assessment of the design options. This is particularly 
important in the emerging ‘intelligent, connected’ software 
systems [15]. There, the challenge will be to understand how the 
decisions an organization makes affect, and are affected by, 
external components. Our approach investigates dynamic 
configuration mechanisms such as dependency 
injection/inversion of control to understand how these impact 
architectural decisions. Consider the modules in Fig. 4. We may 
have created links between modules A and B, and C and A, and 
be able to understand these with the SHORT approach. 
However, run-time analysis informs us of the dynamic 
dependency between B and C, which introduces a cycle, 
possibly reducing modularity. We are working to bring this type 
of run-time analysis into our decision-making approach. 

 
Fig. 5. Ranked decisions  



  
Fig. 6. Static, compile-time vs dynamic, run-time dependencies 

VI. RELATED WORK 
Tofan et al. reported on a tool to increase consensus in group 

architecture decision making [14]. Key differences compared to 
that method are our support of asynchronous judgments (no 
meeting required) and allowing preferences to be reported 
anonymously or attributed, to match the culture and policy of the 
organization. 

Research in requirements prioritization covers some of the 
same territory. Karlsson et al. [8] analyzed six prioritization 
approaches and concluded AHP was most useful.  Similarly, 
Achimugu et al. [1] also found AHP most used, but suffering 
from scalability challenges. Our notion of “key” decisions can 
alleviate this. Finally, like us, Pitangueira et al. [12] analyzed 
search-based approaches to prioritization, including work on the 
Next Release Problem [2]. In particular, they noted there was 
relatively little work applying search-based techniques to 
industry challenges, which we do here. 

VII. CONCLUSIONS AND FUTURE WORK 
We described a process for making software design 

decisions using goal models and search-based decision ranking. 
Our approach leverages light-weight stakeholder input to create 
a simple model of the potential solutions, and uses AHP to 
determine stakeholder preferences. The SHORT process then 
finds the key decisions, which we use to greatly simplify the 
design decisions that need consideration by the stakeholders in 
the revised AHP process. As future work, we are expanding on 
our work to include the dynamic decisions we identify from run-
time design analysis, and planning systematic validation of the 
end-to-end method. 
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