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Abstract 
Cyber-physical systems, used in domains such as avionics or 
medical devices, perform critical functions where a fault might 
have catastrophic consequences (mission failure, severe injuries, 
etc.). Their development is guided by rigorous practice standards 
that prescribe safety analysis methods in order to verify that 
failure have been correctly evaluated and/or mitigated. This labor-
intensive practice typically focuses system safety analysis on 
system engineering activities. 
As reliance on software for system operation grows, embedded 
software systems have become a major source of hazard 
contributors. Studies show that late discovery of errors in 
embedded software system have resulted in costly rework, making 
up as much as 50% of the total software system cost. Automation 
of the safety analysis process is key to extending safety analysis to 
the software system and to accommodate system evolution.  
In this paper we discuss three elements that are key to safety 
analysis automation in the context of fault tree analysis (FTA). 
First, generation of fault trees from annotated architecture models 
consistently reflects architecture changes in safety analysis results. 
Second, use of a taxonomy of failure effects ensures coverage of 
potential hazard contributors is achieved. Third, common cause 
failures are identified based on architecture information and 
reflected appropriately in probabilistic fault tree analysis.  
The approach utilizes the SAE Architecture Analysis & Design 
Language (AADL) standard and the recently published revised 
Error Model Annex V2 (EMV2) standard to represent annotated 
architecture models of systems and embedded software systems. 
The approach takes into account error sources specified with an 
EMV2 error propagation type taxonomy and occurrence 
probabilities as well as direct and indirect propagation paths 
between system components identified in the architecture model 
to generate a fault graph and apply transformations into a fault 
tree representation to support common mode analysis, cut set 
determination and probabilistic analysis. 

Categories and Subject Descriptors 
Software and its engineering➝Software safety    
Software and its engineering➝System modeling languages    
Software and its engineering➝Fault tree analysis    
Software and its engineering➝Software verification and 
validation 

General Terms Algorithms, Reliability, Standardization, 
Languages. 

Keywords safety analysis; fault tree; fault propagation 
taxonomy; AADL; automation; ARP4761. 
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1. Introduction 
Cyber-physical systems, used in domains such as avionics or 
medical devices, perform critical functions where a fault might 
have catastrophic consequences (mission failure, severe injuries, 
etc.). Their development is guided by rigorous practice standards 
that prescribe safety analysis methods in order to verify that 
failure have been correctly evaluated and/or mitigated. 
Recommended practice standards for system safety assessment 
and certification, such as SAE ARP4761 [22] provide guidance 
for validation and verification of safety-critical software and 
systems. In current practice the safety assessment process is labor-
intensive, mostly relying on engineer’s ability to correctly 
interpret a textual specification of the system. This labor-intensive 
practice typically focuses system safety analysis on system 
engineering activities. 
As reliance on embedded software for system operation grows, 
embedded software systems have become a major source of 
hazards [7]. The recent Boeing 787 generator control unit issue is 
a recent example of a software induced failure potential in a quad 
redundant system1. Studies show that 70% of embedded software 
system errors are introduced during requirements and architecture 
design phases and 80% are detected post unit test [16]. With 
rework cost of 100-1000 times the cost of in-phase correction, 
qualification related software rework makes up 50% of total 
system development cost [12]. As result software reliant mission 
and safety critical systems increasingly become unaffordable, 
increase safety risks, and delay in product delivery [10]. 
Automation of the safety analysis process is key to extending 
safety analysis to the embedded software system and to 
accommodate system design evolution. In this paper we focus on 
deductive fault impact analysis that identifies all potential 
contributors to an undesirable system malfunction or failure, in 
the form of fault tree analysis (FTA) and Common Cause 
Analysis (CCA).  
We discuss three elements are key to safety analysis automation. 
First, generation of fault trees from annotated architecture models 
consistently reflects architecture changes in safety analysis results. 
We generate fault graphs and fault trees from architecture models 
of embedded software systems represented in the SAE 
Architecture Analysis & Design Language (AADL) standard [23] 
and annotated with fault behavior specifications expressed in the 
revised SAE AADL Error Model V2 Annex (EMV2) standard 
[24]. Second, use of a taxonomy of failure effects ensures that 
coverage of different types of potential hazard contributors is 
achieved. We utilize a taxonomy of error propagation types that 
has been defined as part of the EMV2 standard. Third, 
architecture models help identify sources of common cause 
failures. They are reflected in a fault graph, which is then 
transformed and reflected appropriately in a fault tree 
representation for probabilistic analysis. The approach is 
supported by the Open Source AADL Tool Environment 
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(OSATE)2 and a recently developed open source FTA analysis 
tool that has been integrated with OSATE. 
Model-based approaches have been deployed to safety analysis. 
For example, fault trees [21] are analyzed by tools to determine 
minimal cut sets (smallest combination of fault events leading to a 
system failure) and its occurrence probability. State-based 
behavioral models have been used to specify and verify nominal 
and fault behavior of systems, e.g., Petri nets [20], AltaRica [3] 
have been used to generate fault trees and to perform model 
checking on the specified behavior. To address the challenge of 
keeping a safety analysis model, such as fault trees [13], 
consistent with an evolving architecture, their generation from 
architecture models expressed in AADL [5][14], SysML [11], 
UML [15], Simulink [13][18] and annotated with fault 
information have been pursued and complemented with 
behavioral verification of safety conditions [9].  
We have chosen AADL as it allows us to addressing software 
induced hazards and verify software design against these safety 
requirements to ensure that potential software errors are avoided 
or correctly handled. For example, for safety purposes, a software 
subsystem must be checked to ensure that it does not send more 
than its bandwidth allocation on a shared network in order to 
assure timely delivery of data between other subsystems on the 
same network. Other examples are: to ensure that a change in the 
deployment configuration of software onto hardware; to balance 
the workload across processors does not violate assumptions 
about physical redundancy by placing replicated software 
instances on different processor; or to isolate subsystems with 
different criticality level in into different partitions.  
We have chosen EMV2 for expressing fault behavior annotations 
for two reasons. First, EMV2 allows users to specify fault 
behavior in three levels of abstraction. Second, it supports a type 
system that is used to represent an error propagation taxonomy, 
which has been defined as part of the EMV2 standard. The 
expressive power and semantics of EMV2 have been improved 
based on experience with the original Error Model Annex 
standard [5][14]. We have demonstrated that safety analysis 
reports as defined by the SAE ARP4761 [22] standard from the 
AADL models augmented with safety information on the wheel 
braking system example [4]. At the time we utilized composite 
error state specifications of EMV2, which express error states of a 
system in terms of error states of its subsystems in a logic 
equivalent to fault tree logic, to generate fault trees through 
composition of these specifications. We have also used AADL 
and EMV2 to diagnose a timing related software safety hazard 
and evaluated several proposed corrections to the problem [8]. 
In this paper we present a flow-based approach to generate fault 
trees. The flow-based approach interprets propagation paths and 
EMV2 error behavior specifications to trace from an undesirable 
system level effect or failure mode backwards to identify all 
possible contributors. The propagation paths are determined by 
connections and deployment bindings in the architecture model. 
The EMV2 error behavior specifications can be incoming and 
outgoing error propagations and related error path and error 
source specifications, as well as error behavior state machines 
with transitions triggered by error events and incoming 
propagations and affecting outgoing propagations. Error types 
associated with error events, states, and propagations are taken 
into consideration similar to a typed token systems such as 
colored Petri nets. In this process we take into account inclusive 
and exclusive OR, AND as well as priority AND, and k of n 
voting logic.  Common cause contributors are identified in the 
architecture model by the fan-out of propagation paths, i.e., 
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connections and deployment bindings. Handling of common cause 
fault events has been identified as an area of future work [14]. 
The paper proceeds as follow: first, we present the AADL 
language, its Error annex, and the error propagation taxonomy, 
and a description of a new open source fault tree analysis tool 
EMFTA that can process fault graphs. Then, we elaborate the 
flow-based approach to fault tree generation from AADL models 
annotated with fault behavior, including the handling of common 
cause contributors. Finally, we illustrate key aspects of our fault 
tree generation approach with an example. 

2. Architecture and Fault Modeling Notations 
In this work we will be utilizing the AADL notation to express the 
architecture of safety-critical software systems, the Error Model 
V2 Annex standard used to annotate the AADL model with fault 
safety related fault information, and the fault tree representation of 
an open source fault tree editor and analyzer called EMFTA. In 
the next sections we provide a summary of each. 

2.1 AADL 

AADL is a modeling language for embedded software systems 
standardized by SAE International. It allows users to describe the 
task and communication architecture of embedded software, its 
deployment on a hardware platform, and its interaction with a 
physical system within a single and consistent architecture model. 
The core language specifies several categories of components. For 
each one the modeler defines a component type to represent its 
external interface, and one or more component implementations to 
represent a blue print in terms of subcomponents. For example, 
the task and communication architecture of the embedded 
software is modeled with thread and process components 
interconnected with port connections, shared data access and 
remote service call. The hardware platform is modeled as an 
interconnected set of processor, bus, and memory components. A 
device component represents a physical subsystem with both 
logical and physical interfaces to the embedded software system 
and its hardware platform. The system component is used to 
organize the architecture into a multi-level hierarchy. Users model 
the dynamics of the architecture in terms of operational modes 
and different runtime configurations through the mode concept. 
Users further characterize components through standardized 
properties, e.g., by specifying the period, deadline, worst-case 
execution time for threads. Users specify deployment binding of 
functional architectures to physical systems and software 
architectures to hardware platforms. 
The language is extensible; users may adapt it to their needs using 
two mechanisms: 

1. User-defined properties. New properties can be defined 
by users to extend the characteristics of the component. This is 
a convenient way to add specific architecture criteria into the 
model (for example, criticality of a subprogram or task) 

2. Annex languages. Specialized languages can be attached 
to AADL components to augment the component description 
and specify additional characteristics and requirements (for 
example, specifying the component behavior). They are 
referred to as annex languages, meaning that they are added as 
an additional piece of the component. In this paper we will 
discuss the Error Model Annex language for specifying fault 
behavior. 

The AADL model, annotated with properties and annex language 
clauses is the basis for virtual system integration and analysis of 
functional and non-functional properties along multiple 
dimensions from the same source, e.g., for performance analysis 
or safety evaluation. The same model can be used for generating 
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code and configuration files that are consistent with the verified 
model as shown in Figure 1. 

 
Figure 1 AADL ecosystem 

2.2 Error Model Annex V2 

EMV2 allows users to specify fault behavior of systems and their 
subsystems in terms of error propagations and flows, in terms of 
error behavior states and transitions triggered by error events and 
incoming propagations, and in terms of system error states as 
composites of subsystem error states. EMV2 introduces user-
definable error types that when associated with error events, 
propagations, and states, act as a typed token system. A standard 
set of error types associated with error propagations acts as a 
taxonomy for characterizing failure effects.  
EMV2 supports three levels of abstraction:  
• Focus on error propagation between components: For each 

component the user can specify outgoing and incoming error 
propagations of error types being propagated and of error 
types expected to be contained. They represent a contract with 
outgoing propagation and containment specifications 
indicating guarantees and incoming ones indicating 
assumptions.  
The error propagation paths between components are 
determined by connections and deployment bindings. In 
addition, each component includes a specification of whether 
it is the source of an error propagation, the sink of an error 
propagation, or passes on incoming error propagations, 
possibly transforming the error type into a different one. This 
level of architecture fault model specification allows for 
hazard identification, fault impact analysis, and stochastic 
fault analysis, and aligns with the Fault Propagation and 
Transformation Calculus (FPTC) [17]. 

• Focus on error behavior of a component: For each component 
the user can specify an error event, i.e., activation of 
component-specific faults, recover and repair events, their 
occurrence probability, how they together with incoming error 
propagations affect the error state of the component, under 
what conditions outgoing error propagations occur, and when 
error behavior is detected and addressed by the component. 

• Focus on the composite error behavior of a component: For 
each component with subcomponents the user can specify 
under what conditions in terms of subcomponent error states 
the component is in a particular error state. This mapping of 
subcomponent error state into a component error state 
abstraction reflects fault tree logic and allows for architecture 
fault analysis at different levels of the architecture hierarchy. 

A more detailed presentation of EMV2 can be found in [6]. 

2.3 An Error Propagation Taxonomy 

The EMV2 standard includes a standard set of error types that 
represents a taxonomy for characterizing commonly propagated 
failure effects.  This taxonomy draws on previous work on 
formally specifying error propagation behavior [19][26].  The 

taxonomy views the interaction between two system components 
as one component providing a service to the other with the service 
consisting of a continuous or (as in the case of software) discrete 
stream of service items, e.g., a sensor providing a sequence of 
sensor readings. The taxonomy helps modelers ensure that they 
have covered common potential failure effects. The taxonomy 
consists of the following error types, which are organized into 
type hierarchies: 
• Omission and commission errors: They can be omission and 

commission of the service as a whole (ServiceOmission, 
ServiceCommission), or omission and commission of 
individual service items (ItemOmission, ItemCommission). 
Examples of service omission and commission are loss and 
unexpected provision of electrical power. An example of item 
omission is loss of a message in transmission.  

• Timing errors: They can be item related such as early or late 
arrival of messages (EarlyDelivery, LateDelivery), or stream 
related in the form of rate errors (HighRate, LowRate, 
RateJitter), or service related such as service starting early or 
late. 

• Value errors: They can be for individual items such as 
OutOfRange sensor readings, OutOfBounds control state, or 
stream related such as NonMonotonic, OutOfCalibration, or 
StuckValue. 

• Replication errors: They deal with replicates of service and 
include symmetric and asymmetric value, timing, and 
omission errors. 

• Concurrency errors: They deal with access to shared 
resources by concurrent tasks, e.g., RaceCondition and 
MutexError. 

• Authentication and authorization errors: They deal with 
security issues. 

These error types are associated with outgoing and incoming error 
propagations defined for each of the interaction points of a 
component with other components, e.g., ports, or deployment 
binding points. Error types of outgoing propagations (guarantees) 
must match those of incoming propagations (assumptions). Users 
can explicitly error types that are expected not to be propagated. 
This allows us to ensure that absence of an error type in an error 
propagation is not an oversight. 
Users can define domain specific aliases for these error types, e.g., 
NoPower for ServiceOmission, and can extend the taxonomy. 
Users can also introduce libraries or error types to be associated 
with error events associated with different types of components, 
e.g., a particular type of sensor. Those types represent different 
ways a component can fail. The perceived effect of such failures 
tends to be one of the error types in the taxonomy.   

2.4 Fault Tree Representation and Analysis  

The SAE ARP4761 standard describes the Fault Tree Analysis 
(FTA) [1][2] as a deductive fault impact analysis that focuses on 
identifying all potential causes, i.e., contributors, that lead to a 
particular undesired system failure. The Fault Tree Handbook [25] 
defines a representation for fault trees consisting of alternating 
events and gates.  
Figure 2 illustrates such a fault tree with the root event specifying 
the system failure is interest, a computer crash. An OR gate 
indicates that any of three contributors can result in the crash, 
namely, a broken device, an unhandled interrupt, or a software 
error. The software error is refined by an AND gate to indicate 
that a divide by zero occurs and a no recovery handler is present. 
The figure also shows the occurrence probabilities associated with 
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leaf events and calculated for enclosing intermediate events 
including the root event.  

 

Figure 2 Example of a Fault Tree 
We have developed an open source graphical tool to create, 
visualize and analyze fault trees, EMF-based Fault Tree Analysis 
(EMFTA). Its development was motivated by the lack of actively 
maintained open source tools for fault tree analysis. Commercial 
tools are available for a high cost that can be a barrier for research 
activities.  
EMFTA has been developed on top of Eclipse. It is available as a 
stand-alone tool on a github repository3 and released under the 
BSD license. We also have integrated it with OSATE by 
combining it with the fault tree generator discussed in this paper. 
From within OSATE users can invoke fault tree analysis on a 
system instance model, which will automatically generate the 
fault tree and open it in EMFTA. 
EMFTA provides two representations for creating, visualizing, 
and analyzing a fault tree: 
• Graphical representation: tree representation, as shown in 

Figure 2. 
• Table representation: spreadsheet-style representation, easier 

to edit. 
Both representation operate on the same underlying fault tree 
model and are synchronized. A change in the tree representation is 
automatically reflected in the table representation.  
The underlying fault tree model actually represents a fault graph, 
where common cause (dependent) events and subtrees are not 
replicated but referenced by different gates. Think of a shared 
event or subtree as transfer out symbol [25] that can be referenced 
by multiple transfer in symbols.  
EMFTA includes the following analysis capabilities: 
• Minimal cut set generation: determines the minimal 

combinations of events that lead to a system failure event. 
• Occurrence probability computation: computes the occurrence 

probability of any intermediate and the root events from leaf 
event probabilities taking the gate logic into account. It also 
ensures that the fault tree has a consistent set of probability 
values associated with each event. 

The fault tree model in EMFTA supports the following event 
types (see also [25]):  
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• Basic to represent leaf events (shown as rectangle with a small 
circle),  

• Intermediate to represent the root and subtree events with 
gates (shown as rectangle),  

• External to represent events that occur outside the system of 
interest but contribute to the system failure (shown as 
rectangle with a small pentagon),  

• Undeveloped to represent events that at this time are not 
further developed due to lack of information (shown as 
rectangle with a small diamond), and  

• Conditioning to represent a condition that applies to a logic 
gate such as Priority AND and Inhibit (shown as rectangle 
with a small oval). 

The fault tree model in EMFTA supports the following gate types:  
• AND to indicate that a fault occurs if all faults represented by 

subevents occur,  
• OR to indicate that a fault occurs if at least one of the faults 

represented by subevents occurs,  
• Exclusive OR to indicate that a fault occurs if exactly one of 

the faults represented by subevents occurs,  
• Priority AND to indicate that a fault occurs if all faults 

represented by subevents occur in sequence,  
• Intermediate to indicate that a fault occurs if a single subevent 

fault occur, i.e., to associate a single subevent with an event, 
• Inhibit to indicate that a fault occurs if a single subevent fault 

occurs in the presence of a condition specified by an 
associated Conditioning event,  

• K of n Voting OR to indicate that a fault occurs if at least k of 
the subevent faults occur.  

3. Generation of Fault Trees 
We generate fault trees from AADL models that are annotated 
with EMV2 specifications by creating a system instance model 
from a root system implementation, and by identifying the failure 
condition (error state or outgoing error propagation and possibly 
error type) of interest to become the fault tree root event. We 
support the composition of fault trees from composite error state 
specifications and flow-based fault tree generation. 
The generator supports the creation of fault trees based on 
composite error state specifications. This may be useful early in 
development when the user has specified a parts model, i.e., the 
component implementation declaration only contains 
subcomponents without connections. In that case, the user can 
associate error states (failure modes) with each component and 
define a composite error state specification to indicate which 
combination of subcomponent error states leads to a particular 
error state of the enclosing system component. This condition is 
expressed in terms of a combination of AND¸ (exclusive) OR, k 
ORMORE, k ORLESS operators. The logic expressions of these 
components are recursively combined into a fault tree.  
In the flow-based fault tree generation, the AADL model includes 
connections and possibly bindings from a functional architecture 
to a physical architecture, or an application software architecture 
to a virtual or physical computer platform. These connections and 
bindings represent propagation paths between components of a 
system, i.e., determine that outgoing error propagations of one 
component can impact another component. Furthermore, 
components of the system are expected to have at least error 
source, sink, and path specifications. Users may have elaborated 
the EMV2 specification of a component with a component error 
behavior in terms of an error behavior state machine with a set of 
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error events, transitions, and outgoing propagation condition 
declarations. 
We proceed by first describing how EMV2 constructs are mapped 
into fault tree fragments, then discussing how common cause 
(dependent) events and subtrees are easily identified from the 
AADL model, and outlining the transformations applied to the 
fault graph to flatten it and minimize multiple references to 
events, and finally point out special case processing of exclusive 
OR operators in error state and outgoing propagation conditions.  

3.1 Mapping of EMV2 Constructs into Fault Tree Elements 

The starting point of flow-based fault tree generation is an 
outgoing error propagation of the root component in an AADL 
system instance model. It represents the undesirable system 
failure of interest. If the outgoing error propagation has multiple 
error types, the user selects the type of failure of interest. It 
becomes the root event of the fault tree. 
We traverse propagation paths and error flows backwards to 
identify contributors to the failure. The feature of the outgoing 
propagation has a connection from one or more subcomponents. 
These are combined with an OR gate to indicate that any of them 
can lead to a failure. For each subcomponent outgoing error 
propagation we follow error flows if no component error behavior 
specification exists. Error sources become Basic events. In case of 
error paths the incoming error propagation of the path is used to 
follow the propagation path (connection or binding) to its 
predecessor. Multiple error paths and error sources for the same 
outgoing propagation are combined by an OR gate. Similarly, 
multiple connections from a feature of an incoming error 
propagation are combined with an OR gate.  
If a component has an error behavior specification we interpret the 
error state machine with error events and incoming propagations 
triggering transitions to different error states, and outgoing 
propagation condition (OPC) declarations indicating which 
combination of error states and incoming error propagations result 
in a particular outgoing error propagation. 
First, we elaborate on how OPC are handled. For OPC, the 
condition expression and the error state are interpreted and 
combined under a Priority AND gate with the state related subtree 
occurring before the trigger condition subtree. If the outgoing 
propagation condition applies to all states (all keyword on left) 
only the condition is interpreted.  
The OPC condition, if not empty, identifies incoming error 
propagations. They are followed to outgoing propagations of 
connected/bound components by following propagation paths as 
discussed earlier. 
The error state of an OPC or leaf error state of a composite error 
state specification is elaborated as follows. Any transition with the 
state as target is processed and multiple transitions are combined 
by an OR gate. The transition trigger condition identifies error 
events, which are represented by Basic events. Incoming error 
propagations referenced in the trigger conditions are processed as 
described earlier. The various subtrees are combined according to 
the condition logic operators (see below for details). The source 
state of a transition is processed backwards recursively if it 
includes transitions by error events and combined by a Priority 
AND gate. This captures situations where a failed state is reached 
from a degraded state through an error event and the degraded 
state was reached by a previously occurring error event.  
The logic operators of the composite state condition as well as the 
trigger condition of error state transitions and outgoing 
propagation conditions are mapped into fault tree gates as follows: 
AND maps into an AND gate; (exclusive) OR maps into an 
Exclusive OR gate; 1 ORMORE maps into an OR gate; k 
ORMORE maps into a Voting OR gate; k ORLESS is typically 

used to specify k or fewer error free states, thus can be mapped 
into an equivalent Voting OR gate. 
Incoming propagation that represent bindings, but are not bound, 
are mapped into Undeveloped events. Similarly, incoming 
propagations that do not have a propagation path to a sending 
component are mapped into Undeveloped events. These events 
will be expanded in the future when binding specifications or 
connections have been added to the AADL model. Incoming 
propagations that trace back to an incoming propagation of the top 
system, are mapped to External events. For example, the 
incoming error propagation of the top level system represents an 
exceptional condition in the operational environment that affects 
the safe operation of the system, e.g., a failure condition of an 
external power supply. 
Note that as we generate the fault tree, we start with the error type 
identified by the user and perform the appropriate filtering and 
mappings according to the specified type set constraints. In other 
words, the error type being propagated affects which error flows, 
transitions, and OPCs are included in the generated fault tree. 

3.2 Generating a Fault Graph 

When generating fault trees we have to be concerned with 
common cause (dependent) events and subtrees. For example, a 
power supply supplying multiple sensors becomes a common 
failure cause. Similarly, a processor failure results in all software 
tasks executing on that processor to fail, or one task overrunning 
its execution time budget causing other tasks on the same 
processor to miss their deadlines. We have explicit knowledge of 
such common cause propagation paths in the AADL model in the 
form of multiple connections from the same component or 
multiple bindings to the same resource, i.e., a fan out of 
propagation paths.  
The generation process utilizes this information to generate a fault 
graph by having common cause events and subtrees referenced by 
multiple gates whose events are impacted by the common cause 
event. The fault graph makes a common cause analysis (CCA) 
simple in that any event that is the target of multiple gate 
references is a candidate. Note that this fault graph can be 
visualized by the EMFTA tool as a graph or as a fault tree by 
replicating common cause events and subtrees. 

3.3 Fault Tree Transformations 

We apply two types of transformation to the generated 
intermediate fault graph: flattening of nested gates of the same 
type, and moving events as target of multiple references towards 
the root to reduce or eliminate multiple references.  
When flattening nested gates we take advantage of the fact that 
fault tree gates represent n-ary logical operators. For example the 
generation process may produce an event with an OR gate, one or 
more of whose subevents have OR gates themselves. This is the 
case when tracing back propagation paths across multiple 
components. These nested OR gates can be reduced to a single 
OR gate with all the “leaf” subevents. We do so for OR, AND, 
Exclusive OR, Priority AND gates.  
For common cause events it is desirable to move them up towards 
the root of the fault graph. For example, in a two sensor system 
the system fails if sensor1 and sensor2 fail or if the power supply 
to the sensors fails. The initially generated fault graph has an 
AND gate with an OR gate under each subevent to represent the 
sensor failure and the common cause power supply failure, i.e., 
(s1 OR power) AND (s2 OR power). By applying the Distributive 
Law this can be transformed into power OR (s1 AND s2). Note 
that the power event is now referenced only once.  
A second transformation that moves common cause events and 
subtrees towards the root is the application of the Law of 



Absorption. For example, if the original fault graph has power 
AND (s1 OR power) the result of the transformation is power. The 
same applies for power OR (s1 AND power).   
Finally, we apply the Idempotent Law, which allows us to reduce 
multiple instances of the same subevent under a gate to a single 
subevent, i.e., power OR power becomes power. 
These transformations may turn the fault graph into a fault tree of 
independent events. This allows for a simplified calculation of 
occurrence probabilities. 

3.4 Processing Exclusive OR Conditions 

Users may specify that an error state is reached or a particular 
error type is propagated out only if one of several incoming 
propagations or error events occur. For example, a control system 
may go into degraded mode if it loses one of its sensor input and 
as result it controls a system with less precision. Therefore, 
subtrees of an Exclusive OR gate generated from an EMV2 
exclusive OR operator cannot contain common cause events or 
subtrees. This is taken into account when we generate the fault 
graph. Figure 7 in the next section shows the resulting fault tree 
for such a scenario. 

4. Illustrated Example 
We demonstrate the fault tree generation capability on a Global 
Positioning System (GPS) receiver example4. The GPS receiver is 
shown in Figure 3.  It consists of two satellite signal receivers 
picking up satellite signals. The signals are processed by a 
processing unit, which provides high precision location 
information when it has both signals and low precision when one 
signal is available. The processing unit executes on, i.e., is bound 
to a CPU. The receivers communicate over a network with the 
CPU. A power supply supplies both receivers, the network, and 
CPU. Error propagation paths are determined by the port 
connections representing data flow, bus access connections that 
interconnect the hardware, and abstract feature connections for 
electrical power. 

  
Figure 3 GPS Receiver 

Figure 4 shows the AADL and EMV2 error propgation and flow 
specificaiton of the GPS processing unit. It is defined as an 
abstract component as we have not yet decided whether it will 
execute as a thread in the same or a different process on the same 
processor. The two incoming ports have incoming error 
propagation declarations indicating that ServiceOmission is being 
propagated. The outgoing propagation declaration for location 
indicates that ServiceOmission as well as LowPrecisionData and 
IncorrectData are potentially propagated. The incoming 
propagation labelled processor identifies error propagation due to 
processor binding. The error paths specify how incoming error 
propagations are passed on. The error source declaration indicates 

                                                                 
4 The GPS Receiver example with additional use cases is available at 

https://github.com/osate/examples/tree/master/SafetyTutorial 

that the processing unit is the source of low precision and 
incoorect location data. 

 
Figure 4 Error Propagation and Flows for GPS Processing 

Figure 5 expands the EMV2 specification for the GPS processing 
unit by adding error state behavior. This includes a computeError 
error event, which triggers a transition to the Incorrect error state, 
a transition to indicate low precision processing due to single 
input, and a transition to the NoService state if no input is 
available. Outgoing propagation condition declarations specify 
when ServiceOmission, LowPrecisionData, and IncorrectData is 
propagated.  

  
Figure 5 Error State Behavior for GPS Processing 

Figure 6 shows the fault tree that has been generated and 
transformed for the GPS receiver system providing no service as 
failure condition. It shows that this condition occurs when we 
receive no satellite signal (an External event), or the network, or 
CPU, or power supply fail. It also occurs when both receivers fail. 
Note that in the initially generated fault graph the power supply 
failure event and the network failure event were common cause 
events contributing to ServiceOmission as incoming receiver 
signal error propagation to the GPS processing unit, i.e., they 
would have been referenced by two separate OR gates (and 
intermediate event) together one of the receiver failure event 
under the AND gate. Note that fault tree shows computed 
occurrence probabilities.  



 
Figure 6 Location Service Omission for GPS 

Figure 7 shows the generated and transformed fault tree for the 
same GPS receiver system for the condition that it produces low 
precision location data. As expected it only consists of an 
Exclusive OR gate of the two receivers failing themselves. 

 
Figure 7 Low Precision Location for GPS 

5. Conclusion 
System safety analysis has been a labor intensive process where 
safety engineers develop and analyze safety models such as fault 
trees. As safety-critical systems increasingly rely on software, 
embedded software systems have become a major hazard 
contributor. Model-based approaches have been pursued to 
address the challenge of keeping safety models consistent with an 
evolving system architecture and design by leveraging system 
models that are annotated with safety information.  
In this paper we have presented an approach of automated safety 
analysis that combines the generation of safety models, in our 
case fault trees, with a taxonomy of error propagation types to 
achieve coverage of potential failure effects, and with a way to 
take into account common cause failures. The approach utilizes 
the SAE AADL standard to represent embedded software system 
architectures and the SAE EMV2 standard, which includes the 
above mentioned taxonomy, to annotate AADL models with fault 

behavior information. The error propagation type taxonomy is 
used to characterize outgoing and incoming propagations to 
represent failure effects that are and are not expected to be 
propagated (guarantees) and received (assumptions).  
We have presented a flow-based approach to the generation of 
fault trees from AADL models annotated with fault behavior 
information expressed in EMV2. This approach supports the 
interpretation of fault behavior specification at three levels of 
abstraction using the revised Error Model Annex V2 standard. It 
takes into account the fault propagation level abstraction of 
EMV2 specification as well as error behavior specifications 
expressing failure modes and their triggers in terms of error events 
and incoming propagations. It also supports the composition of 
fault trees from composite error state specifications in EMV2. 
We have discussed how our approach explicitly represents 
common cause events by leveraging knowledge about common 
cause sources from the architecture model, and then applies 
transformations to flatten the structure and eliminate multiple 
references to events by moving then closer to the root event.  The 
resulting fault tree is then amenable to provide more accurate 
occurrence probability calculations. We have also shown that 
exclusive OR operators in EMV2 require special attention in the 
generation of fault trees.  
The fault tree generator has been integrated with OSATE, a tool 
environment for AADL. We have also developed an open source 
tool for visualizing and analyzing generated fault trees as well as 
editing fault trees manually called EMFTA. We have also released 
EMFTA under the BSD license with the hope that other modeling 
framework can leverage it and integrate its safety analysis 
capabilities.  
Previous work by us and others has shown the value of 
automatically generating fault trees from architecture models 
annotated with fault behavior. We have been able to demonstrate 
that several methods in support of system safety analysis 
following best practices such as SAE ARP4761 can be supported 
from a single model. The AADL-based approach has been applied 
to various systems, including an aircraft wheel braking system, a 
situational awareness system, satellite systems, medical devices, 
and a stepper motor based engine control system. The automation 
of these safety analyses has allowed users to continuously re-
evaluate safety properties as architecture design alternatives are 
being considered and as architecture designs are refined and 
evolve.  
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