
Automated Fault Tree Analysis from AADL Models
Peter Feiler and Julien Delange

Carnegie Mellon Software Engineering Institute
4500 5th Avenue, Pittsburgh, PA15213

{phf,delange}@sei.cmu.edu

Abstract
Cyber-physical systems, used in domains such as avionics or
medical devices, perform critical functions where a fault might
have catastrophic consequences (mission failure, severe injuries,
etc.). Their development is guided by rigorous practice standards
that prescribe safety analysis methods in order to verify that
failure have been correctly evaluated and/or mitigated. This labor-
intensive practice typically focuses system safety analysis on
system engineering activities.
As reliance on software for system operation grows, embedded
software systems have become a major source of hazard
contributors. Studies show that late discovery of errors in
embedded software system have resulted in costly rework, making
up as much as 50% of the total software system cost. Automation
of the safety analysis process is key to extending safety analysis to
the software system and to accommodate system evolution.
In this paper we discuss three elements that are key to safety
analysis automation in the context of fault tree analysis (FTA).
First, generation of fault trees from annotated architecture models
consistently reflects architecture changes in safety analysis results.
Second, use of a taxonomy of failure effects ensures coverage of
potential hazard contributors is achieved. Third, common cause
failures are identified based on architecture information and
reflected appropriately in probabilistic fault tree analysis.
The approach utilizes the SAE Architecture Analysis & Design
Language (AADL) standard and the recently published revised
Error Model Annex V2 (EMV2) standard to represent annotated
architecture models of systems and embedded software systems.
The approach takes into account error sources specified with an
EMV2 error propagation type taxonomy and occurrence
probabilities as well as direct and indirect propagation paths
between system components identified in the architecture model
to generate a fault graph and apply transformations into a fault
tree representation to support common mode analysis, cut set
determination and probabilistic analysis.

Categories and Subject Descriptors
Software and its engineering➝Software safety
Software and its engineering➝System modeling languages
Software and its engineering➝Fault tree analysis
Software and its engineering➝Software verification and
validation

General Terms Algorithms, Reliability, Standardization,
Languages.

Keywords safety analysis; fault tree; fault propagation
taxonomy; AADL; automation; ARP4761.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright 2016 ACM

1. Introduction
Cyber-physical systems, used in domains such as avionics or
medical devices, perform critical functions where a fault might
have catastrophic consequences (mission failure, severe injuries,
etc.). Their development is guided by rigorous practice standards
that prescribe safety analysis methods in order to verify that
failure have been correctly evaluated and/or mitigated.
Recommended practice standards for system safety assessment
and certification, such as SAE ARP4761 [22] provide guidance
for validation and verification of safety-critical software and
systems. In current practice the safety assessment process is labor-
intensive, mostly relying on engineer’s ability to correctly
interpret a textual specification of the system. This labor-intensive
practice typically focuses system safety analysis on system
engineering activities.
As reliance on embedded software for system operation grows,
embedded software systems have become a major source of
hazards [7]. The recent Boeing 787 generator control unit issue is
a recent example of a software induced failure potential in a quad
redundant system1. Studies show that 70% of embedded software
system errors are introduced during requirements and architecture
design phases and 80% are detected post unit test [16]. With
rework cost of 100-1000 times the cost of in-phase correction,
qualification related software rework makes up 50% of total
system development cost [12]. As result software reliant mission
and safety critical systems increasingly become unaffordable,
increase safety risks, and delay in product delivery [10].
Automation of the safety analysis process is key to extending
safety analysis to the embedded software system and to
accommodate system design evolution. In this paper we focus on
deductive fault impact analysis that identifies all potential
contributors to an undesirable system malfunction or failure, in
the form of fault tree analysis (FTA) and Common Cause
Analysis (CCA).
We discuss three elements are key to safety analysis automation.
First, generation of fault trees from annotated architecture models
consistently reflects architecture changes in safety analysis results.
We generate fault graphs and fault trees from architecture models
of embedded software systems represented in the SAE
Architecture Analysis & Design Language (AADL) standard [23]
and annotated with fault behavior specifications expressed in the
revised SAE AADL Error Model V2 Annex (EMV2) standard
[24]. Second, use of a taxonomy of failure effects ensures that
coverage of different types of potential hazard contributors is
achieved. We utilize a taxonomy of error propagation types that
has been defined as part of the EMV2 standard. Third,
architecture models help identify sources of common cause
failures. They are reflected in a fault graph, which is then
transformed and reflected appropriately in a fault tree
representation for probabilistic analysis. The approach is
supported by the Open Source AADL Tool Environment

1 http://gizmodo.com/the-boeing-dreamliner-has-a-bug-that-can-make-it-

lose-a-1701599388

(OSATE)2 and a recently developed open source FTA analysis
tool that has been integrated with OSATE.
Model-based approaches have been deployed to safety analysis.
For example, fault trees [21] are analyzed by tools to determine
minimal cut sets (smallest combination of fault events leading to a
system failure) and its occurrence probability. State-based
behavioral models have been used to specify and verify nominal
and fault behavior of systems, e.g., Petri nets [20], AltaRica [3]
have been used to generate fault trees and to perform model
checking on the specified behavior. To address the challenge of
keeping a safety analysis model, such as fault trees [13],
consistent with an evolving architecture, their generation from
architecture models expressed in AADL [5][14], SysML [11],
UML [15], Simulink [13][18] and annotated with fault
information have been pursued and complemented with
behavioral verification of safety conditions [9].
We have chosen AADL as it allows us to addressing software
induced hazards and verify software design against these safety
requirements to ensure that potential software errors are avoided
or correctly handled. For example, for safety purposes, a software
subsystem must be checked to ensure that it does not send more
than its bandwidth allocation on a shared network in order to
assure timely delivery of data between other subsystems on the
same network. Other examples are: to ensure that a change in the
deployment configuration of software onto hardware; to balance
the workload across processors does not violate assumptions
about physical redundancy by placing replicated software
instances on different processor; or to isolate subsystems with
different criticality level in into different partitions.
We have chosen EMV2 for expressing fault behavior annotations
for two reasons. First, EMV2 allows users to specify fault
behavior in three levels of abstraction. Second, it supports a type
system that is used to represent an error propagation taxonomy,
which has been defined as part of the EMV2 standard. The
expressive power and semantics of EMV2 have been improved
based on experience with the original Error Model Annex
standard [5][14]. We have demonstrated that safety analysis
reports as defined by the SAE ARP4761 [22] standard from the
AADL models augmented with safety information on the wheel
braking system example [4]. At the time we utilized composite
error state specifications of EMV2, which express error states of a
system in terms of error states of its subsystems in a logic
equivalent to fault tree logic, to generate fault trees through
composition of these specifications. We have also used AADL
and EMV2 to diagnose a timing related software safety hazard
and evaluated several proposed corrections to the problem [8].
In this paper we present a flow-based approach to generate fault
trees. The flow-based approach interprets propagation paths and
EMV2 error behavior specifications to trace from an undesirable
system level effect or failure mode backwards to identify all
possible contributors. The propagation paths are determined by
connections and deployment bindings in the architecture model.
The EMV2 error behavior specifications can be incoming and
outgoing error propagations and related error path and error
source specifications, as well as error behavior state machines
with transitions triggered by error events and incoming
propagations and affecting outgoing propagations. Error types
associated with error events, states, and propagations are taken
into consideration similar to a typed token systems such as
colored Petri nets. In this process we take into account inclusive
and exclusive OR, AND as well as priority AND, and k of n
voting logic. Common cause contributors are identified in the
architecture model by the fan-out of propagation paths, i.e.,

2 Available at http://osate.github.io/

connections and deployment bindings. Handling of common cause
fault events has been identified as an area of future work [14].
The paper proceeds as follow: first, we present the AADL
language, its Error annex, and the error propagation taxonomy,
and a description of a new open source fault tree analysis tool
EMFTA that can process fault graphs. Then, we elaborate the
flow-based approach to fault tree generation from AADL models
annotated with fault behavior, including the handling of common
cause contributors. Finally, we illustrate key aspects of our fault
tree generation approach with an example.

2. Architecture and Fault Modeling Notations
In this work we will be utilizing the AADL notation to express the
architecture of safety-critical software systems, the Error Model
V2 Annex standard used to annotate the AADL model with fault
safety related fault information, and the fault tree representation of
an open source fault tree editor and analyzer called EMFTA. In
the next sections we provide a summary of each.

2.1 AADL

AADL is a modeling language for embedded software systems
standardized by SAE International. It allows users to describe the
task and communication architecture of embedded software, its
deployment on a hardware platform, and its interaction with a
physical system within a single and consistent architecture model.
The core language specifies several categories of components. For
each one the modeler defines a component type to represent its
external interface, and one or more component implementations to
represent a blue print in terms of subcomponents. For example,
the task and communication architecture of the embedded
software is modeled with thread and process components
interconnected with port connections, shared data access and
remote service call. The hardware platform is modeled as an
interconnected set of processor, bus, and memory components. A
device component represents a physical subsystem with both
logical and physical interfaces to the embedded software system
and its hardware platform. The system component is used to
organize the architecture into a multi-level hierarchy. Users model
the dynamics of the architecture in terms of operational modes
and different runtime configurations through the mode concept.
Users further characterize components through standardized
properties, e.g., by specifying the period, deadline, worst-case
execution time for threads. Users specify deployment binding of
functional architectures to physical systems and software
architectures to hardware platforms.
The language is extensible; users may adapt it to their needs using
two mechanisms:

1. User-defined properties. New properties can be defined
by users to extend the characteristics of the component. This is
a convenient way to add specific architecture criteria into the
model (for example, criticality of a subprogram or task)

2. Annex languages. Specialized languages can be attached
to AADL components to augment the component description
and specify additional characteristics and requirements (for
example, specifying the component behavior). They are
referred to as annex languages, meaning that they are added as
an additional piece of the component. In this paper we will
discuss the Error Model Annex language for specifying fault
behavior.

The AADL model, annotated with properties and annex language
clauses is the basis for virtual system integration and analysis of
functional and non-functional properties along multiple
dimensions from the same source, e.g., for performance analysis
or safety evaluation. The same model can be used for generating

http://osate.github.io/

code and configuration files that are consistent with the verified
model as shown in Figure 1.

Figure 1 AADL ecosystem

2.2 Error Model Annex V2

EMV2 allows users to specify fault behavior of systems and their
subsystems in terms of error propagations and flows, in terms of
error behavior states and transitions triggered by error events and
incoming propagations, and in terms of system error states as
composites of subsystem error states. EMV2 introduces user-
definable error types that when associated with error events,
propagations, and states, act as a typed token system. A standard
set of error types associated with error propagations acts as a
taxonomy for characterizing failure effects.
EMV2 supports three levels of abstraction:
• Focus on error propagation between components: For each

component the user can specify outgoing and incoming error
propagations of error types being propagated and of error
types expected to be contained. They represent a contract with
outgoing propagation and containment specifications
indicating guarantees and incoming ones indicating
assumptions.
The error propagation paths between components are
determined by connections and deployment bindings. In
addition, each component includes a specification of whether
it is the source of an error propagation, the sink of an error
propagation, or passes on incoming error propagations,
possibly transforming the error type into a different one. This
level of architecture fault model specification allows for
hazard identification, fault impact analysis, and stochastic
fault analysis, and aligns with the Fault Propagation and
Transformation Calculus (FPTC) [17].

• Focus on error behavior of a component: For each component
the user can specify an error event, i.e., activation of
component-specific faults, recover and repair events, their
occurrence probability, how they together with incoming error
propagations affect the error state of the component, under
what conditions outgoing error propagations occur, and when
error behavior is detected and addressed by the component.

• Focus on the composite error behavior of a component: For
each component with subcomponents the user can specify
under what conditions in terms of subcomponent error states
the component is in a particular error state. This mapping of
subcomponent error state into a component error state
abstraction reflects fault tree logic and allows for architecture
fault analysis at different levels of the architecture hierarchy.

A more detailed presentation of EMV2 can be found in [6].

2.3 An Error Propagation Taxonomy

The EMV2 standard includes a standard set of error types that
represents a taxonomy for characterizing commonly propagated
failure effects. This taxonomy draws on previous work on
formally specifying error propagation behavior [19][26]. The

taxonomy views the interaction between two system components
as one component providing a service to the other with the service
consisting of a continuous or (as in the case of software) discrete
stream of service items, e.g., a sensor providing a sequence of
sensor readings. The taxonomy helps modelers ensure that they
have covered common potential failure effects. The taxonomy
consists of the following error types, which are organized into
type hierarchies:
• Omission and commission errors: They can be omission and

commission of the service as a whole (ServiceOmission,
ServiceCommission), or omission and commission of
individual service items (ItemOmission, ItemCommission).
Examples of service omission and commission are loss and
unexpected provision of electrical power. An example of item
omission is loss of a message in transmission.

• Timing errors: They can be item related such as early or late
arrival of messages (EarlyDelivery, LateDelivery), or stream
related in the form of rate errors (HighRate, LowRate,
RateJitter), or service related such as service starting early or
late.

• Value errors: They can be for individual items such as
OutOfRange sensor readings, OutOfBounds control state, or
stream related such as NonMonotonic, OutOfCalibration, or
StuckValue.

• Replication errors: They deal with replicates of service and
include symmetric and asymmetric value, timing, and
omission errors.

• Concurrency errors: They deal with access to shared
resources by concurrent tasks, e.g., RaceCondition and
MutexError.

• Authentication and authorization errors: They deal with
security issues.

These error types are associated with outgoing and incoming error
propagations defined for each of the interaction points of a
component with other components, e.g., ports, or deployment
binding points. Error types of outgoing propagations (guarantees)
must match those of incoming propagations (assumptions). Users
can explicitly error types that are expected not to be propagated.
This allows us to ensure that absence of an error type in an error
propagation is not an oversight.
Users can define domain specific aliases for these error types, e.g.,
NoPower for ServiceOmission, and can extend the taxonomy.
Users can also introduce libraries or error types to be associated
with error events associated with different types of components,
e.g., a particular type of sensor. Those types represent different
ways a component can fail. The perceived effect of such failures
tends to be one of the error types in the taxonomy.

2.4 Fault Tree Representation and Analysis

The SAE ARP4761 standard describes the Fault Tree Analysis
(FTA) [1][2] as a deductive fault impact analysis that focuses on
identifying all potential causes, i.e., contributors, that lead to a
particular undesired system failure. The Fault Tree Handbook [25]
defines a representation for fault trees consisting of alternating
events and gates.
Figure 2 illustrates such a fault tree with the root event specifying
the system failure is interest, a computer crash. An OR gate
indicates that any of three contributors can result in the crash,
namely, a broken device, an unhandled interrupt, or a software
error. The software error is refined by an AND gate to indicate
that a divide by zero occurs and a no recovery handler is present.
The figure also shows the occurrence probabilities associated with

System Architecture with Safety Information

 AADL models

System Analysis

Safety
Evaluation

Software
Build

leaf events and calculated for enclosing intermediate events
including the root event.

Figure 2 Example of a Fault Tree
We have developed an open source graphical tool to create,
visualize and analyze fault trees, EMF-based Fault Tree Analysis
(EMFTA). Its development was motivated by the lack of actively
maintained open source tools for fault tree analysis. Commercial
tools are available for a high cost that can be a barrier for research
activities.
EMFTA has been developed on top of Eclipse. It is available as a
stand-alone tool on a github repository3 and released under the
BSD license. We also have integrated it with OSATE by
combining it with the fault tree generator discussed in this paper.
From within OSATE users can invoke fault tree analysis on a
system instance model, which will automatically generate the
fault tree and open it in EMFTA.
EMFTA provides two representations for creating, visualizing,
and analyzing a fault tree:
• Graphical representation: tree representation, as shown in

Figure 2.
• Table representation: spreadsheet-style representation, easier

to edit.
Both representation operate on the same underlying fault tree
model and are synchronized. A change in the tree representation is
automatically reflected in the table representation.
The underlying fault tree model actually represents a fault graph,
where common cause (dependent) events and subtrees are not
replicated but referenced by different gates. Think of a shared
event or subtree as transfer out symbol [25] that can be referenced
by multiple transfer in symbols.
EMFTA includes the following analysis capabilities:
• Minimal cut set generation: determines the minimal

combinations of events that lead to a system failure event.
• Occurrence probability computation: computes the occurrence

probability of any intermediate and the root events from leaf
event probabilities taking the gate logic into account. It also
ensures that the fault tree has a consistent set of probability
values associated with each event.

The fault tree model in EMFTA supports the following event
types (see also [25]):

3 EMFTA repository: https://github.com/cmu-sei/emfta

• Basic to represent leaf events (shown as rectangle with a small
circle),

• Intermediate to represent the root and subtree events with
gates (shown as rectangle),

• External to represent events that occur outside the system of
interest but contribute to the system failure (shown as
rectangle with a small pentagon),

• Undeveloped to represent events that at this time are not
further developed due to lack of information (shown as
rectangle with a small diamond), and

• Conditioning to represent a condition that applies to a logic
gate such as Priority AND and Inhibit (shown as rectangle
with a small oval).

The fault tree model in EMFTA supports the following gate types:
• AND to indicate that a fault occurs if all faults represented by

subevents occur,
• OR to indicate that a fault occurs if at least one of the faults

represented by subevents occurs,
• Exclusive OR to indicate that a fault occurs if exactly one of

the faults represented by subevents occurs,
• Priority AND to indicate that a fault occurs if all faults

represented by subevents occur in sequence,
• Intermediate to indicate that a fault occurs if a single subevent

fault occur, i.e., to associate a single subevent with an event,
• Inhibit to indicate that a fault occurs if a single subevent fault

occurs in the presence of a condition specified by an
associated Conditioning event,

• K of n Voting OR to indicate that a fault occurs if at least k of
the subevent faults occur.

3. Generation of Fault Trees
We generate fault trees from AADL models that are annotated
with EMV2 specifications by creating a system instance model
from a root system implementation, and by identifying the failure
condition (error state or outgoing error propagation and possibly
error type) of interest to become the fault tree root event. We
support the composition of fault trees from composite error state
specifications and flow-based fault tree generation.
The generator supports the creation of fault trees based on
composite error state specifications. This may be useful early in
development when the user has specified a parts model, i.e., the
component implementation declaration only contains
subcomponents without connections. In that case, the user can
associate error states (failure modes) with each component and
define a composite error state specification to indicate which
combination of subcomponent error states leads to a particular
error state of the enclosing system component. This condition is
expressed in terms of a combination of AND¸ (exclusive) OR, k
ORMORE, k ORLESS operators. The logic expressions of these
components are recursively combined into a fault tree.
In the flow-based fault tree generation, the AADL model includes
connections and possibly bindings from a functional architecture
to a physical architecture, or an application software architecture
to a virtual or physical computer platform. These connections and
bindings represent propagation paths between components of a
system, i.e., determine that outgoing error propagations of one
component can impact another component. Furthermore,
components of the system are expected to have at least error
source, sink, and path specifications. Users may have elaborated
the EMV2 specification of a component with a component error
behavior in terms of an error behavior state machine with a set of

https://github.com/cmu-sei/emfta

error events, transitions, and outgoing propagation condition
declarations.
We proceed by first describing how EMV2 constructs are mapped
into fault tree fragments, then discussing how common cause
(dependent) events and subtrees are easily identified from the
AADL model, and outlining the transformations applied to the
fault graph to flatten it and minimize multiple references to
events, and finally point out special case processing of exclusive
OR operators in error state and outgoing propagation conditions.

3.1 Mapping of EMV2 Constructs into Fault Tree Elements

The starting point of flow-based fault tree generation is an
outgoing error propagation of the root component in an AADL
system instance model. It represents the undesirable system
failure of interest. If the outgoing error propagation has multiple
error types, the user selects the type of failure of interest. It
becomes the root event of the fault tree.
We traverse propagation paths and error flows backwards to
identify contributors to the failure. The feature of the outgoing
propagation has a connection from one or more subcomponents.
These are combined with an OR gate to indicate that any of them
can lead to a failure. For each subcomponent outgoing error
propagation we follow error flows if no component error behavior
specification exists. Error sources become Basic events. In case of
error paths the incoming error propagation of the path is used to
follow the propagation path (connection or binding) to its
predecessor. Multiple error paths and error sources for the same
outgoing propagation are combined by an OR gate. Similarly,
multiple connections from a feature of an incoming error
propagation are combined with an OR gate.
If a component has an error behavior specification we interpret the
error state machine with error events and incoming propagations
triggering transitions to different error states, and outgoing
propagation condition (OPC) declarations indicating which
combination of error states and incoming error propagations result
in a particular outgoing error propagation.
First, we elaborate on how OPC are handled. For OPC, the
condition expression and the error state are interpreted and
combined under a Priority AND gate with the state related subtree
occurring before the trigger condition subtree. If the outgoing
propagation condition applies to all states (all keyword on left)
only the condition is interpreted.
The OPC condition, if not empty, identifies incoming error
propagations. They are followed to outgoing propagations of
connected/bound components by following propagation paths as
discussed earlier.
The error state of an OPC or leaf error state of a composite error
state specification is elaborated as follows. Any transition with the
state as target is processed and multiple transitions are combined
by an OR gate. The transition trigger condition identifies error
events, which are represented by Basic events. Incoming error
propagations referenced in the trigger conditions are processed as
described earlier. The various subtrees are combined according to
the condition logic operators (see below for details). The source
state of a transition is processed backwards recursively if it
includes transitions by error events and combined by a Priority
AND gate. This captures situations where a failed state is reached
from a degraded state through an error event and the degraded
state was reached by a previously occurring error event.
The logic operators of the composite state condition as well as the
trigger condition of error state transitions and outgoing
propagation conditions are mapped into fault tree gates as follows:
AND maps into an AND gate; (exclusive) OR maps into an
Exclusive OR gate; 1 ORMORE maps into an OR gate; k
ORMORE maps into a Voting OR gate; k ORLESS is typically

used to specify k or fewer error free states, thus can be mapped
into an equivalent Voting OR gate.
Incoming propagation that represent bindings, but are not bound,
are mapped into Undeveloped events. Similarly, incoming
propagations that do not have a propagation path to a sending
component are mapped into Undeveloped events. These events
will be expanded in the future when binding specifications or
connections have been added to the AADL model. Incoming
propagations that trace back to an incoming propagation of the top
system, are mapped to External events. For example, the
incoming error propagation of the top level system represents an
exceptional condition in the operational environment that affects
the safe operation of the system, e.g., a failure condition of an
external power supply.
Note that as we generate the fault tree, we start with the error type
identified by the user and perform the appropriate filtering and
mappings according to the specified type set constraints. In other
words, the error type being propagated affects which error flows,
transitions, and OPCs are included in the generated fault tree.

3.2 Generating a Fault Graph

When generating fault trees we have to be concerned with
common cause (dependent) events and subtrees. For example, a
power supply supplying multiple sensors becomes a common
failure cause. Similarly, a processor failure results in all software
tasks executing on that processor to fail, or one task overrunning
its execution time budget causing other tasks on the same
processor to miss their deadlines. We have explicit knowledge of
such common cause propagation paths in the AADL model in the
form of multiple connections from the same component or
multiple bindings to the same resource, i.e., a fan out of
propagation paths.
The generation process utilizes this information to generate a fault
graph by having common cause events and subtrees referenced by
multiple gates whose events are impacted by the common cause
event. The fault graph makes a common cause analysis (CCA)
simple in that any event that is the target of multiple gate
references is a candidate. Note that this fault graph can be
visualized by the EMFTA tool as a graph or as a fault tree by
replicating common cause events and subtrees.

3.3 Fault Tree Transformations

We apply two types of transformation to the generated
intermediate fault graph: flattening of nested gates of the same
type, and moving events as target of multiple references towards
the root to reduce or eliminate multiple references.
When flattening nested gates we take advantage of the fact that
fault tree gates represent n-ary logical operators. For example the
generation process may produce an event with an OR gate, one or
more of whose subevents have OR gates themselves. This is the
case when tracing back propagation paths across multiple
components. These nested OR gates can be reduced to a single
OR gate with all the “leaf” subevents. We do so for OR, AND,
Exclusive OR, Priority AND gates.
For common cause events it is desirable to move them up towards
the root of the fault graph. For example, in a two sensor system
the system fails if sensor1 and sensor2 fail or if the power supply
to the sensors fails. The initially generated fault graph has an
AND gate with an OR gate under each subevent to represent the
sensor failure and the common cause power supply failure, i.e.,
(s1 OR power) AND (s2 OR power). By applying the Distributive
Law this can be transformed into power OR (s1 AND s2). Note
that the power event is now referenced only once.
A second transformation that moves common cause events and
subtrees towards the root is the application of the Law of

Absorption. For example, if the original fault graph has power
AND (s1 OR power) the result of the transformation is power. The
same applies for power OR (s1 AND power).
Finally, we apply the Idempotent Law, which allows us to reduce
multiple instances of the same subevent under a gate to a single
subevent, i.e., power OR power becomes power.
These transformations may turn the fault graph into a fault tree of
independent events. This allows for a simplified calculation of
occurrence probabilities.

3.4 Processing Exclusive OR Conditions

Users may specify that an error state is reached or a particular
error type is propagated out only if one of several incoming
propagations or error events occur. For example, a control system
may go into degraded mode if it loses one of its sensor input and
as result it controls a system with less precision. Therefore,
subtrees of an Exclusive OR gate generated from an EMV2
exclusive OR operator cannot contain common cause events or
subtrees. This is taken into account when we generate the fault
graph. Figure 7 in the next section shows the resulting fault tree
for such a scenario.

4. Illustrated Example
We demonstrate the fault tree generation capability on a Global
Positioning System (GPS) receiver example4. The GPS receiver is
shown in Figure 3. It consists of two satellite signal receivers
picking up satellite signals. The signals are processed by a
processing unit, which provides high precision location
information when it has both signals and low precision when one
signal is available. The processing unit executes on, i.e., is bound
to a CPU. The receivers communicate over a network with the
CPU. A power supply supplies both receivers, the network, and
CPU. Error propagation paths are determined by the port
connections representing data flow, bus access connections that
interconnect the hardware, and abstract feature connections for
electrical power.

Figure 3 GPS Receiver

Figure 4 shows the AADL and EMV2 error propgation and flow
specificaiton of the GPS processing unit. It is defined as an
abstract component as we have not yet decided whether it will
execute as a thread in the same or a different process on the same
processor. The two incoming ports have incoming error
propagation declarations indicating that ServiceOmission is being
propagated. The outgoing propagation declaration for location
indicates that ServiceOmission as well as LowPrecisionData and
IncorrectData are potentially propagated. The incoming
propagation labelled processor identifies error propagation due to
processor binding. The error paths specify how incoming error
propagations are passed on. The error source declaration indicates

4 The GPS Receiver example with additional use cases is available at

https://github.com/osate/examples/tree/master/SafetyTutorial

that the processing unit is the source of low precision and
incoorect location data.

Figure 4 Error Propagation and Flows for GPS Processing

Figure 5 expands the EMV2 specification for the GPS processing
unit by adding error state behavior. This includes a computeError
error event, which triggers a transition to the Incorrect error state,
a transition to indicate low precision processing due to single
input, and a transition to the NoService state if no input is
available. Outgoing propagation condition declarations specify
when ServiceOmission, LowPrecisionData, and IncorrectData is
propagated.

Figure 5 Error State Behavior for GPS Processing

Figure 6 shows the fault tree that has been generated and
transformed for the GPS receiver system providing no service as
failure condition. It shows that this condition occurs when we
receive no satellite signal (an External event), or the network, or
CPU, or power supply fail. It also occurs when both receivers fail.
Note that in the initially generated fault graph the power supply
failure event and the network failure event were common cause
events contributing to ServiceOmission as incoming receiver
signal error propagation to the GPS processing unit, i.e., they
would have been referenced by two separate OR gates (and
intermediate event) together one of the receiver failure event
under the AND gate. Note that fault tree shows computed
occurrence probabilities.

Figure 6 Location Service Omission for GPS

Figure 7 shows the generated and transformed fault tree for the
same GPS receiver system for the condition that it produces low
precision location data. As expected it only consists of an
Exclusive OR gate of the two receivers failing themselves.

Figure 7 Low Precision Location for GPS

5. Conclusion
System safety analysis has been a labor intensive process where
safety engineers develop and analyze safety models such as fault
trees. As safety-critical systems increasingly rely on software,
embedded software systems have become a major hazard
contributor. Model-based approaches have been pursued to
address the challenge of keeping safety models consistent with an
evolving system architecture and design by leveraging system
models that are annotated with safety information.
In this paper we have presented an approach of automated safety
analysis that combines the generation of safety models, in our
case fault trees, with a taxonomy of error propagation types to
achieve coverage of potential failure effects, and with a way to
take into account common cause failures. The approach utilizes
the SAE AADL standard to represent embedded software system
architectures and the SAE EMV2 standard, which includes the
above mentioned taxonomy, to annotate AADL models with fault

behavior information. The error propagation type taxonomy is
used to characterize outgoing and incoming propagations to
represent failure effects that are and are not expected to be
propagated (guarantees) and received (assumptions).
We have presented a flow-based approach to the generation of
fault trees from AADL models annotated with fault behavior
information expressed in EMV2. This approach supports the
interpretation of fault behavior specification at three levels of
abstraction using the revised Error Model Annex V2 standard. It
takes into account the fault propagation level abstraction of
EMV2 specification as well as error behavior specifications
expressing failure modes and their triggers in terms of error events
and incoming propagations. It also supports the composition of
fault trees from composite error state specifications in EMV2.
We have discussed how our approach explicitly represents
common cause events by leveraging knowledge about common
cause sources from the architecture model, and then applies
transformations to flatten the structure and eliminate multiple
references to events by moving then closer to the root event. The
resulting fault tree is then amenable to provide more accurate
occurrence probability calculations. We have also shown that
exclusive OR operators in EMV2 require special attention in the
generation of fault trees.
The fault tree generator has been integrated with OSATE, a tool
environment for AADL. We have also developed an open source
tool for visualizing and analyzing generated fault trees as well as
editing fault trees manually called EMFTA. We have also released
EMFTA under the BSD license with the hope that other modeling
framework can leverage it and integrate its safety analysis
capabilities.
Previous work by us and others has shown the value of
automatically generating fault trees from architecture models
annotated with fault behavior. We have been able to demonstrate
that several methods in support of system safety analysis
following best practices such as SAE ARP4761 can be supported
from a single model. The AADL-based approach has been applied
to various systems, including an aircraft wheel braking system, a
situational awareness system, satellite systems, medical devices,
and a stepper motor based engine control system. The automation
of these safety analyses has allowed users to continuously re-
evaluate safety properties as architecture design alternatives are
being considered and as architecture designs are refined and
evolve.

Acknowledgments
This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and
development center.

[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

DM-0004003

References
[1] Andrews, J. "Fault Tree Analysis." Proceedings of the 16th

International Safety Conference, www. fault-tree.
net/papers/andrews-fta-tutor. pdf (Stand 12/2004). 1998.

[2] Barlow, R. E. Fault Tree Analysis. John Wiley & Sons, Inc., 1973.
[3] Bieber, P., C. Castel, and C. Seguin. “Combination of Fault Tree

Analysis and Model Checking for Safety Assessment of Complex
Systems”, in 4th European Dependable Computing Conference,
2002.

[4] Delange, J., et al. "AADL Fault Modeling and Analysis within an
ARP4761 Safety Assessment.", Software Engineering Institute,
CMU/SEI-2014-TR-020 (2014).

[5] Ern, B., V. Y. Nguyen, T. Noll. “Characterization of Failure Effects
on AADL Models.” Proceedings of the 32nd International
Conference on Computer Safety, Reliability and Security
(SAFECOMP 2013), Volume 8153 of LNCS, Springer, 2013.

[6] Feiler, P., et.al. “Architecture Fault Modeling and Analysis with the
Error Model Annex, Version 2”, Software Engineering Institute,
CMU/SEI-2016-TR-009 (2016).

[7] Feiler, P. “Challenges in Validating Safety-critical Embedded
Systems.” In SAE International AeroTech Congress, Nov 2009.

[8] Feiler, P., et.al. Architecture-led Diagnosis and Verification of a
Stepper Motor Controller. 8th European Congress on Embedded
Real Time Software & Systems (ERTS 2016). Jan 2016.
http://www.erts2016.org/

[9] Ghassabani, E., A. Gacek, M. Whalen. “Efficient Generation of
Inductive Validity Cores for Safety Properties.” ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (FSE 2016), November 2016.

[10] Hagen, C., J. Sorenson. “Delivering Military Software Affordably.”
Defense AT&L. March-April 2013.
http://www.dau.mil/pubscats/ATL%20Docs/Mar_Apr_2013/Hagen_
Sorenson.pdf

[11] Hecht, M., et.al. “Using SysML to Automatically Generate of
Failure Modes and Effects Analyses”, INCOSE International
Symposium, Volume 25, Number 1, 2015.

[12] Helton, S., D. Ward. “Estimating Return on Investment for SAVI: A
Model-based Virtual Integration Process.” SAE International
AeroTech Congress. Oct 2011.

[13] Joshi, A., S. Miller, M. Whalen, M. Heimdahl. “A Proposal for
Model-based Safety Analysis.” In Proceedings of the 24th Digital
Avionics Systems Conference (DASC 2005), Oct 2005.

[14] Joshi, A., P. Binns, S. Vestal, “Automatic Generation of Fault Trees
from AADL Models”, 1st International Workshop on Aerospace
Software Engineering, in conjunction with International Conference
on Software Engineering (ICSE), May 2007.

[15] Lauer, C., R. German, and J. Pollmer. "Fault Tree Synthesis from
UML Models for Reliability Analysis at Early Design Stages." ACM
SIGSOFT Software Engineering Notes 36.1 (2011): 1-8.

[16] National Institute of Standards and Technology (NIST). “The
Economic Impacts of Inadequate Infrastructure for Software
Testing” Technical report, 2002. http://www.nist.gov/director/prog-
ofc/report02-3.pdf.

[17] Paige, R., et.al. “FPTC: Automated Safety Analysis for Domain-
Specific Languages.” In Models in Software Engineering. Lecture
Notes in Computer Science. Volume 5421. Pages 229–242.
Springer-Verlag. 2009

[18] Papadopoulos Y., et.al. “Engineering Failure Analysis & Design
Optimisation with HiP-HOPS”, Journal of Engineering Failure
Analysis, Elsevier Science, 2011.

[19] Powell, D. “Failure Mode Assumptions and Assumption Coverage.”
In Fault-Tolerant Computing, 1992. FTCS-22.Digest of Papers,
Twenty-Second International Symposium on, pages 386–395, 1992.

[20] Rugina, A., K. Kanoun, and M. Kaâniche. “A System Dependability
Modeling Framework Using AADL and GSPNs.” In Architecting
Dependable Systems IV Lecture Notes In Computer Science, Vol.
4615. Springer-Verlag. 2007.

[21] Ruijters, E., and M. Stoelinga. "Fault Tree Analysis: A Survey of the
State-of-the-art in Modeling, Analysis and Tools." Computer
Science Review 15 (2015): 29-62.

[22] SAE International. ARP4761. "Guidelines and methods for
conducting the safety assessment process on civil airborne systems
and equipment." SAE International (1996): 1-331.

[23] SAE International. AS5506B. “Architecture Analysis and Design
Language (AADL)”, 2012.
https://saemobilus.sae.org/content/as5506b.

[24] SAE International. AS5506/1A. “SAE Architecture Analysis and
Design Language (AADL) Annex Volume1A – Error Model Annex
V2”, Sept 2015, https://saemobilus.sae.org/content/as5506/1a.

[25] Vesely, W. E., et al. Fault Tree Handbook. No. NUREG-0492.
Nuclear Regulatory Commission Washington DC, 1981.

[26] Walter, C.J., N. Suri. “The Customizable Fault/Error Model for
Dependable Distributed Systems.” Theor. Comput. Sci., Vol. 290,
No. 2, pp. 1223-1251. Jan 2003. .

	Abstract
	1. Introduction
	2. Architecture and Fault Modeling Notations
	2.1 AADL
	2.2 Error Model Annex V2
	2.3 An Error Propagation Taxonomy
	2.4 Fault Tree Representation and Analysis

	3. Generation of Fault Trees
	3.1 Mapping of EMV2 Constructs into Fault Tree Elements
	3.2 Generating a Fault Graph
	3.3 Fault Tree Transformations
	3.4 Processing Exclusive OR Conditions

	4. Illustrated Example
	5. Conclusion
	Acknowledgments
	References

