Analysis and Design of Safety-critical, Cyber-Physical
Systems

John D. McGregor
School of Computing
Clemson University
. Clemson, SC 29632
johnmc@clemson.edu

ABSTRACT

The list of applications classified as safety critical is growing
due to emerging contexts such as the Internet of Things that
touch the everyday activities of millions of people through
smart devices like home automation systems and connected
vehicles. These consumer products require high reliability
but must be priced competitively. Traditional system de-
velopment strategies are costly, in part, because traditional
verification activities find only a small percentage of de-
fects early in a project and because when discovered late
in the development life cycle their repair requires changes to
dependent code as well. Our development approach lever-
ages early system architecture knowledge to jump start an
architecture-centric development strategy that iteratively es-
tablishes traceability among the requirements, architecture,
and verification artifacts. A virtual integration strategy
makes the current state of the system under development
available for analysis early in the product development life
cycle. The approach is implemented using the Architec-
ture Analysis and Design Language (AADL) embodied in
the Open Source AADL Tool Environment (OSATE). The
Architecture-Led Incremental System Assurance (ALISA)
toolkit, the latest contribution of our team at the Software
Engineering Institute, builds on AADL to provide the con-
structs and tools for an engineer to specify the integrated
system, and to define verification activities that ensure sat-
isfaction of the specification. The results from using the
languages and techniques in pilot projects have shown very
large cost and time savings, important to holding down costs
for consumer-level Internet of Things systems. In this paper
we focus on the architecture-led development process and
illustrate the support given by ALISA.

1. INTRODUCTION

Smart devices such as fly-by-wire aircraft, connected ve-
hicles, and the “things” connected to the Internet of Things
are touching our everyday life and driving the need for more
effective and efficient embedded system development tech-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2016 ACM. ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

David P. Gluch
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213 USA

dpg@sei.cmu.edu

Peter H. Feiler
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213 USA

phf@sei.cmu.edu

niques. For the Internet of Things to fulfill its potential, de-
vices attached to the Internet must be affordable and safe,
a seemingly contradictory set of requirements. In this pa-
per we describe our model-based development process that
provides significant development economies to the develop-
ment of safety-critical embedded systems. These economies
are realized through early defect detection while specifying
development activities that ensure safe operation of the sys-
tem under development. We illustrate the technique using
a cruise control subsystem for ease of presentation.

The “things” in an Internet of Things system are often
cyber-physical systems (CPS) that couple hardware and soft-
ware to sense the state of the physical world, to then reason
about that world and initiate control actions.The use of CPS
in essential activities such as control of the living environ-
ment and automation of transportation make them critical
to the safety of humans. Some of the literature assumes
that safety is related to security. That is, connected devices
are “safe” as long as our identity is not stolen; however, the
use of CPS can pose real physical threats to the health of
humans simply due to product defects. Already reported
in the literature are defects that threaten the health of the
very young and very old through exposure to temperature
extremes [3]. Others have hypothesized threats such as el-
evator doors opening when the elevator car is not present
exposing humans to potential life-ending falls [14].

The hardware and software portions of the CPS differ in
terms of traditional representations, the degree to which the
physical world constrains their operation, and their failure
characteristics. These are fundamental issues that must be
addressed by a development method for CPS but there are
also development challenges that must be addressed by CPS
since most are embedded.

Woodward and Mosterman identify five challenges for em-
bedded system development which our development process
will face: complexity, optimization, interdependency, verifi-
cation, and tools [21]. The increasing complexity of embed-
ded systems is often mentioned as one of the system char-
acteristics posing the most immediate threat to embedded
system development [15]. Complexity can be addressed by
modularity and compositionality and by traceability [1] [18].

Modularity makes inter-dependencies among requirements
and architecture components explicit so that they can be
developed by distributed teams and managed by tools [17].
Applying modularity operators, such as splitting and substi-
tution given in [2], to the architectural specification results
in a hierarchy of component specifications which are interde-
pendent [20]. These specifications can be enforced at every

level in the hierarchy. This hierarchy makes the behavioral
requirements and resulting verification obligations explicit.
The hierarchy provides a structure that guides the modular
definition of the verification activities. Verification activi-
ties need to be designed so that they can be applied quickly
and maintained easily and the hierarchy of module specifi-
cations provides that structure [13]. Tools play a key role in
addressing the growing complexity of products, and each of
the other challenges [12]. The main focus of this paper is a
toolset intended to address the other challenges.

The contribution of this paper is an overview of our model-
based development process that addresses these issues and
that is supported by a toolset including the Architecture
Analysis and Design Language (AADL) and the Architecture-
Led Incremental System Assurance (ALISA) toolkit. The
process uses assume/guarantee contracts for specifying and
verifying safety-critical embedded systems. It builds on ex-
isting techniques to detect defects early in the system de-
velopment process. The rest of the paper is organized as
follows: in section 2 we provide information helpful to under-
standing the development approach; in section 3 we describe
the overall development approach; in section 4 we explain
the toolset that instruments our approach; in section 5 we
give the example development scenario. Finally in section 6
we briefly review our experience in applying the approach
and then summarize in section 7 by describing the impact
of this approach on the essential qualities of the products
created using the process.

2. BACKGROUND

The Architectural Analysis and Design Language (AADL),
a standard from SAE, is the foundation of an ecosystem of
languages and tools for creating analyzable system architec-
tures [11]. The Software Engineering Institute has devel-
oped the Open Source AADL Tool Environment (OSATE),
an IDE for designing and analyzing architectures. AADL
is strongly typed and provides separation of specification
and implementation. AADL provides the ability to define
reusable sets of domain specific properties and to define anal-
yses based on those properties.

Members of the AADL ecosystem, e.g. members of the
standards committees, commercial users, and research teams,
have defined a number of annexes, additions to the core
language, that are standardized separate from the core lan-
guage resulting in a modular family of standards that are
easier to manage than a single monolithic standard. Ele-
ments in annexes can reference elements in the architecture
model coupling the two sufficiently tightly that a change
in the architecture is easy to associate with changes to the
verification artifacts.

The Error Annex for AADL version 2 (EMV2) is of par-
ticular use in designing safety critical systems. The annex
focuses on fault propagation, failure behavior of individual
components, and composite failure behavior of a system in
terms of its components [5]. These three types of specifica-
tions allow the designer to supplement component specifica-
tions with information about which error types are assumed
to be propagated to connected components and which are
guaranteed to be contained within the component. This al-
lows the component specification to include nominal behav-
ior and error behavior in similar ways. The error ontology
defined in the error annex provides a reference against which
the designer can check the component specification to insure

that known error types have been included in the specifica-
tion and mitigated through specific requirements.

AADL is a good modeling choice for CPS since it contains
software primitives for processes, threads, and subprograms
as well as hardware primitives for processors, memory, buses
and devices as well as systems. The extensible property
definition facility allows the modeler to accurately reflect
those characteristics of the system under analysis that are
important to the analyses being conducted. Connections
can be defined between the hardware and software elements.
Each component can contain nominal and error flows. This
allows events (such as interrupts) to be modeled flowing from
hardware to software.

Two very powerful property analysis tools, AGREE and
Resolute, have been contributed to the AADL ecosystem by
Rockwell Collins. Assume Guarantee REasoning Environ-
ment (AGREE) is a tool used to define assume/guarantee
contracts. AGREE supports compositional reasoning using
a Satisfiability-Modulo Theorem (SMT) prover that checks
the behavior model for contradictions that would prevent
the system from fulfilling the system guarantees. The guar-
antees are proved by beginning at the lowest levels of each
implementation hierarchy, evaluating the guarantees at that
level and then composing that evidence at the next higher
level of composition to prove the guarantees for the aggre-
gated components.

"Resolute” is a language and tool for developing architec-
tural assurance cases for architectures represented in AADL.
Resolute enables the developer to link activities, which cre-
ate assurance case assets, to the architecture elements being
assured. Resolute extends the Goal Structuring Notation
(GSN) to provide for defining claims about the properties
of the system, identifying the evidence needed to prove a
claim to be true, and a structure that sequences the claims
and evidence unto an argument. Each claim is a predicate
supported by a set of functions to evaluate portions of the
architecture description to evaluate the truth value of the
predicate.

3. APPROACH

The ALISA project at the Software Engineering Institute
is developing a different approach to embedded system de-
sign particularly for safety-critical CPS using reusable as-
sets such as reusable requirements, design fragments, and
test artifacts. The ALISA toolkit provides a set of domain
specific languages to specify requirements, verification ac-
tivities, and assurance cases. Our approach:

e is based on the hypothesis that even in the very early
stages of development the development team has some
basic knowledge of, and makes some fundamental as-
sumptions about, the architecture of the system being
developed;

e assumes that significant products are built by mul-
tiple teams within a large organization or by a con-
sortia of independent organizations that must coor-
dinate their work and communicate technical details
with each other; and

e recognizes certain realities of development in this en-
vironment such as the need for identifying relation-
ships (1) between development artifacts, such as re-
quirements or reusable components, and the personnel

responsible for maintaining those artifacts, (2) between
assets, such as security design patterns, and users of
the assets, such as programmers, and (3) between var-
ious types of assets, such as requirements descriptions
and design patterns that satisfy the requirements.

The development process behind this approach follows the
double V model shown in Figure 1 in which the system is
constructed in parallel with the specification and evaluation
of verification conditions.

Our approach builds on the concept of virtual system in-
tegration and analysis of architecture models. Virtual sys-
tem integration refers to composing a product representa-
tion from model components capable of being automatically
analyzed. The Aerospace Vehicle Systems Institute (AVSI)
chose the SAE AADL standard and tool support as key tech-
nology in a proof of concept effort as part of a multi-year
System Architecture Virtual Integration (SAVI) initiative.
The US Army has recently incorporated this approach un-
der the name Architecture-Centric Virtual Integration Pro-
cess (ACVIP) in a large scale tech demo program. Our work
presented here complements these efforts with a focus on re-
quirements and safety specifications as well as incremental
verification throughout the development life-cycle.

AADL is a strongly typed language and supports reliable
integration and analysis of subsystem models and analysis of
the fully integrated model. The behavior of each model ele-
ment can be tweaked via properties to more closely express
the system under development. The ALISA tools support
references to elements in the AADL model.

The virtual integration facet of our approach was the fo-
cus of a proof of concept effort [9]. The trials have shown
significant cost reductions resulting from the early detection
of defects [19]. Our recent work has supported the virtual
integration of test assets into effective verification activities.
The full development approach is being used on a trial ba-
sis in a phased project involving a government agency and
multiple contracting organizations.

4. TOOLS

The AADL team at the SEI has developed a set of do-
main specific languages that support the ALISA approach.
The ALISA toolkit combines with other tools in the AADL
ecosystem to support the ACVIP style process [6]. In this
section we give an overview of three languages, which we
will use in a development scenario in section 5. The tools
are based on xText, an open source tool for building do-
main specific languages (DSL) and supporting tools such as
context-sensitive editors. Each file and the associated lan-
guage tools are associated via the file extensions. For ex-
ample, the stakeholder goals are defined in a file that uses a
.goals extension. Opening such a file invokes the appropriate
editor.

Regspec is a requirements specification language that sup-
ports the expression of requirements. Each requirement can
be linked directly to elements of the AADL model and to
other system artifacts. It supports the statement of stock-
holder’s goals (.goals), as shown in Figure 3, and the state-
ment of system requirements (.regspec), as shown in Fig-
ure 5. Requirements are first class objects with properties
including links to other requirements and verification activ-
ities, stability measures, and ownership information.

Verify is a language for defining actions to be taken to ver-

ify aspects of the system under development. At the most
detailed level individual verification activities such as exe-
cutable test cases or model analyses are specified. A veri-
fication suite is a logical grouping of verification activities.
Each suite selects the activities needed to achieve a verifica-
tion objective such as “every line of code” test coverage. A
verification plan groups verification suites to meet a project
objective such as a type of certification. These verification
activities can be mixed and matched in many different con-
figurations to support the verification of different but similar
products. Subsystems, and the corresponding verification
activities, can also be exported for use in other products.

Assure is a language for defining assurance cases. An as-
surance case is a structured argument in which claims are
made about the degree to which requirements are satisfied
by the system development artifacts. A .assure file organize
verification results into arguments establishing the validity
of the specific claims in the assurance case. Assure supports
the automation of the verification plans that execute verifi-
cation activities.

S. A SCENARIO

In this section we illustrate our architecture-led systems
engineering process for developing safety-critical embedded
CPS through a scenario. We illustrate the initial iteration
which covers some setup and early system development. The
system is developed in increments, significant sets of sys-
tem capabilities. Each increment is developed through a
complete requirements / architecture / verification cycle, il-
lustrated in Figure 2. The knowledge gained from making
architecture decisions feeds back into the requirements in
several ways. Values of properties may be more precisely
stated. New requirements, such as safety requirements, may
be added. As architecture elements are defined, verification
activities are defined and tied to individual requirements and
individual architecture elements.

Figure 2: Iterative relationships

Verification

AN

We will use a simple adaptive cruise control system as the
system under development for our example scenario. The
system can be set to maintain a minimum speed and a min-
imum gap between our vehicle and a vehicle in front. The
system has inputs from multiple sensors measuring current
speed and size of the gap. The system outputs signals to
the Human Machine Interface (HMI) to illuminate icons re-
garding the state of the system and outputs signals to the
throttle and brake actuators. The system is part of a family
of cruise control subsystems: cc - traditional cruise control;
acc - adaptive cruise control; and cacc - a collaborative,
adaptive cruise control.

The system development process begins with the defini-
tion of the high level system goals based on stakeholder in-
puts. The stakeholder goals for a CPS are often stated in
terms of quality attributes. These high level goals lead the
development team to anticipate that a system will be based
on a certain architecture style. The stakeholder goals for the

Figure 1: Parallel development and verification processes

>

R ¢ quil A
Ir ‘<—>| idati | Modeling Build |<—> Test ‘
Analysis &
Generation
Q
System System Target 3 System
Design “+— | Architecture Build "_’ Test
Software ~ >
Design ‘Build “_' ‘Test |
Component :|
Design
Build the Build the
System Assurance
Case

Figure 3: Stakeholder goal

stakeholder goals caccStakeholderGoals for caccintegration::cacc_rt
use constants caccConstants

[

description "Stakeholder goals for the family of cruise controls"
goal g1 : "Safety" [
description "The system shall only change modes when it is safe to do so."
rationale "This is a control system, whose failure affects lives. "
stakeholder caccProject.rs
category quality.safety

© N LA WS

o
= o

cruise control system are to safely and securely constrain the
speed of the vehicle.

An example stakeholder goal written in the Reqgspec nota-
tion is shown in Figure 3. Line 1 shows that all of the goals
defined in this file refer to the architecture defined in the
cacc_rt specification written in AADL. Line 6 defines Safety
as the goal and labels it “gl.” The field “stakeholder cac-
cProject.rs” on Line 6 refers to a system stakeholder defined
in an organization description using a file with extension
.org and shown in Figure 6. This traces the statement of a
system goal directly to the stakeholder responsible for the
goal.

As the terrain over which the vehicle is traveling changes
the system will have to speed up or slow down the vehicle.
The team recognizes that these goals point to a standard ref-
erence architecture - the feedback control loop architecture
style, shown in Figure 4. This initially chosen style drives
a high-level AADL model. The stakeholders’ goals and the
feedback control loop lead to the definition of requirements
to assure safe operation.

An example system safety requirement, stated in the Re-
gspec DSL, for controlling the maximum speed to mitigate
one form of unintended acceleration, is shown in Figure 5.
This requirement is a safety constraint that enforces a max-
imum limit in the speeds at which the cruise control can
operate. Note that in Line 2 the reference to the AADL
model is to a specific implementation, cacc_rt.devices, rather
than just to the specification, cacc_rt. = One goal of this
research effort is to improve traceability from development
artifacts back to the relevant requirements. Notice that the
system requirement, shown in Figure 5, has a field on Line

LA ST o > A

© ® N o

11.
12.
13.
14.
15.
16.

=

19.
20.

7.

Figure 4: Feedback/control loop

Friction, momentum, wind,...

Set speed
_

Figure 5: A safety requirement

system requirements caccreqs:"CACC"
for cacclntegration::cacc_rt.devices
use constants caccConstants

[

val MaximumSpeed = 120

requirement speed_R1 : "throttle cannot exceed the maximum setting"

[
description this " shall have a maximum reading that is less than or equal to maximum setting"
rationale "fly by wire may introduce an electrical error beyond the physical throttle setting"

Curra H

d

peed < P

value predicate Curr

mitigates "Invalid data sent by the speedometer"
issues "need tor that physical sub can present issues for a digital system"
see goal caccStakeholderGoals.g1
category kind.cc kind.acc quality.safety
uncertainty[
volatility 2
impact 3

1

14 “see goal caccStakeholderGoals.gl” linking the system re-
quirement to a stakeholder goal. In Figure 5 the fragment

“for caccIntegration::cacc_rt” in the first line links the set of
goals to a system specification in the AADL model, shown
in Figure 7.

Figure 6: stakeholder description in an organization

1. organization caccProject
. Stakeholder rs [
full name "Roselane Santana Silva"

role "System modeler”

2
3
4. title "Researcher"
5,
6.]

Figure 7: portion of AADL model of adaptive cruise
control

1. system cacc_rt extends abstracts::cacc
2. features
3. sensed_speed:in data port

data_{ ityProp YEXitPointPrivileges=>5.0;security i y 0%
4. sensed_speed_limit:in data port

data_t ityProperti y g urityl v 03}
5. sensed_position:in data port

data_types::gps_Positi i P yi yi y!

>3.05%;
6. gapiin data port{; ityProperties::entryExitPointPrivilegs -0; ity i VEXitPoil i .0}
7. gaplimit: in data I

y g P :zentryl .0;};

8. power:indata ityProperties::entryExitPointPrivileg i i yEXitPoi i 0}
9. throttle_position: in data port

data_ ityl i y 3 P y .01

10. end cacc_rt;

In Figure 8 the expressions in {} are property specifica-
tions. In this case the properties are describing the attack
surfaces of the system’s subcomponents, a form of security
metric [16]. These properties are manipulated by Resolute
queries intended to compute the attack surface of the sys-
tem. One of the Resolute claims is shown in Figure 11. The
use of these local property values allows the hardware and
software in a CPS to be configured differently for different
products within the same product family.

Figure 8: Property Specifications

1. Security_Features(self : component) <= **"Calculating total attack

surface " **
2. let featureSet : {feature} = features(self);

3. let sumSurfaceC:real = sum({surfaceAreaC(t) for (t:featureSet)});

4. let sumAccessC:real = sum({surfaceAccessC(w) for
(w:featureSet)});

5. Reqg5(sumSurfaceC/sumAccessC)

Now that some requirements have been defined, an archi-
tecture style identified, and links established among them,
the developer turns to verification and defines a set of veri-
fication activities using the Verify DSL. A portion of a ver-
ification plan is shown in Figure 9. The verification plan is
linked to a set of requirements by the “for caccreqgs” state-
ment in the header. Each claim uses a specific requirement
identifier from the linked set, for example speed R1 from
Figure 5, to link test activities to a specific requirement.

Figure 9: A portion of a verification plan

verification plan CACCPIan for caccregs|
description"This is the verification plan for the requirements in caccReqs"
claim speed_R1:"The vehicle does not exceed maximum speed" [

rationale "This plan achieves a certification level of verification"

speed_ActTest1:"Test of speed control":
caccVerificationMethod: i Curre

property values ()
[

10. weight2

11. timeout5

12.]

1.
2
3
a
5. activities
6.
7
8.
9

13. speed_ActTest2:"Second test of speed control" :
14, Plugins.ElectricalPower()

15. property values()[

16. category kind.cc

17. weight3

18. timeout 5

19.]

20. assert all[speed_ActTest1, speed_ActTest2]
21]

caccVerificationMethods.comp (MaximumSpeed,
CurrentSpeed) invokes a user-defined Java method to com-
pute a comparison while Plugins.ElectricalPower(), a calcu-
lation of the electric power needs of the system, invokes one
of the analysis methods built into OSATE as Eclipse plug-
ins. Other methods may be written in Resolute (see below),
as tests in the JUnit test harness, or maybe as manual pro-
cesses, such as review of a document.

Each verification activity specifies a weight that expresses
the importance of the activity as well as a timeout limit to
aid in automatic monitoring of test execution. The weight is
used in planning which tests to run and evaluating the test
results. The category field with “cc” is an enumeration value,
which refers to one of three product types introduced earlier
in this scenario, used to filter out tests that only apply to
the acc or cacc product types.

Finally the developer wants to tie the new increment into
the evolving assurance case. The Assure DSL allows the
developer to specify the scope of an assurance case. First,
the scope of the assurance case is determined by the verifi-
cation plans of the subsystems identified to be part of the
case and those assumed to be verified separately. Second,
the developer can specify a filter for subsets of requirements
and verification activities to focus on certain functional and
non-functional requirements and verification activities rele-
vant to the phase of development. The configured assurance
case is then the basis for automated verification execution
and tracking of verification results incrementally throughout
the project.

Figure 10 shows the contents of a .alisa file that defines
an assurance case composed of assurance plans, which in
turn are composed of assurance tasks. The assurance case
is scoped by the “for” statement to cover the cacc_rt spec-
ification while the assurance plan is scoped to the cacc_rt
implementation of cacc_rt.devices. This hierarchical defini-
tion approach allows for precise targeting of test activities
and their reuse.

Before starting the next increment of product definition,
the developer can activate the assurance case analysis which
will identify problems early. The OSATE environment sup-
ports instantiating the architecture using the structures and

Figure 10: A portion of an assurance plan

case ase:" case for the family of cruise control systems-CACC" for
cacclntegration::cacc_rt[

plan : "The
for caccintegration::cacc_rt.devices [
assure CACCPlan
issues "this assurance plan is related to the assurance case for CACC"

1

case for the CACC implementation"

ow s wN

task for one element" [
category kind.cc kind.acc kind.cacc quality.security quality.safety

task firstTest:

0N

9.]
10.]

properties defined in the AADL model. This virtually in-
tegrated system can be analyzed using a number of anal-
yses that already exist in OSATE and using new queries
defined in Resolute. For example, if all the threads in the
system are expected to be dispatched periodically the Res-
olute query shown in Figure 11 would check the entire in-
stantiated model to verify that each thread has the “peri-
odic” property. Line 5 shows the Resolute function that
can extract the value for a specific property in the AADL
model. This means that many types of defects, mismatched
assumptions, and violated constraints can be detected very
soon after they are injected into the system. There is also
a type of verification activity type labeled “manual” to sup-
port activities that cannot be automated but whose results
contribute to the assurance case.

Figure 11: A structural Resolute query

. SystemWideReq1() <= ** "All threads have a period" **
. forall (t: thread). HasPeriod(t)

HasPeriod(t : thread) <= ** "Thread " t " has a period" **
has_property(t,Timing_Properties::Period)

voe W e

Our approach has integrated safety analysis with require-
ment specification and verification [8]. It consists of two
steps: first, users systematically annotate the architecture
with potential error source and propagation specifications.
They represent exceptional conditions that have safety im-
plications. The annotated model is then analyzed by ver-
ification activities to assess the impact of potential faults
(Failure Mode and Effect Analysis (FMEA)) and determined
all possible contributors and the probability of occurrence of
system failures using Fault Tree Analysis (FTA). In addition
verification activities include assuring coverage of potential
fault conditions by utilizing a fault taxonomy defined as part
of the EMV2 annex to of AADL.

The developer has now completed an initial cycle and is
ready to tackle another increment of capabilities. Analyses
can be run at any time utilizing the development assets and
the rich structure of relationships among those assets. Those
relationships are summarized in Figure 12.

6. EVALUATION OF THE APPROACH

The principles and techniques underlying the approach de-
scribed in this paper have been evaluated in several contexts.

They have been used in investigations of representative in-
dustrial application systems but not in a production mode
[7],[4][10]. It is also being used in a large technical project
that does represent production mode.

7. SUMMARY

The five development challenges presented in section 1
provide a basis for summarizing the work related to AADL
and ALISA.

e complexity - Our approach is modular. AADL pro-
vides for defining component specifications in a type-
safe manner. AADL has constructs for specifying hard-
ware and software components, and even abstract com-
ponents, which may be resolved to either. The mod-
eling language supports separating specification from
implementation and strong typing of artifacts. Our
new DSLs treat many development artifacts as first
class citizens about which analysis procedures can rea-
son.

e optimization - ALISA supports an iterative style of
development. The OSATE environment and add-ins
support virtual integration. The AGREE and Reso-
lute annexes support evaluation of predicates to eval-
uate a number of the properties of the system allowing
the design space to be searched and designs to be op-
timized.

e interdependency - The natural dependencies among
requirements, the architecture, and the verification con-
ditions are made explicit by the cross-references among
the artifacts in the ReqSpec and Verify definitions.
The tool set uses those dependencies to locate ele-
ments defined in various files for carrying out auto-
mated analysis and verification activities.

e verification - The Verify and Assure languages pro-
vide several tools for defining, automating, and execut-
ing verification activities and reporting results. Verifi-
cation plans are developed for individual modules and
for compositions of modules. The activities can be
used in multiple assurance plans to develop assurance
cases for individual products. Application of these ac-
tivities is automated in a manner similar to JUnit en-
hancing reusability.

e tools - Our approach uses a number of tools beginning
with OSATE, the integrated development environment
for AADL models, incorporating tools for model check-
ing, such as AGREE and Resolute, developed by oth-
ers, and a set of domain specific languages aimed at im-
plementing an architecture-led development approach.

We continue to validate our work by modeling and an-
alyzing example systems across a variety of safety-critical
domains.The ALISA toolkit is open source and available at
https://github.com/osate/alisa.

8. ACKNOWLEDGEMENTS

Copyright 2016 ACM

Roselane S. Silva of the Federal University of Bahia, Brazil,
developed the AADL model from which we extracted ex-
cerpts. Many thanks to her for her contribution. The full

Figure 12:

Artifact dependency relationships

caetslobl

aysrerTypes.cat

renuiranent catagories]
% acccace.
1

7

=

cacc:r..:ml/
PR

caccProjoct.org s e
< Cacrrags.feqspec

re. . N

e pe— cacctinals guals regulrenent speed_RL
use constants Hi e et

Jam caccConstants I "

a[ﬁ’m—f—" ~
stakatotdenis
1
T
AADL Model

AGRFF

uarantzes &

Mesoluts y
Fradicatas r

selectlon categories]
ol wosie | cacgsel

ikl |u..i,-,-ur-,

warifi .wlmn nl,ln CACCPlan
—

ALISA Model

curcAsurance alisy
torgacd rt.devices:

——TPesuanc ek cameratipht

fikcer Eacesel nnly

Kepurlsasure

model can be found at https://github.com/rose2s/AADL/

tree/master/CACC_model.

[5]

This material is based upon work funded and supported
by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation [6]
of the Software Engineering Institute, a federally funded re-

search and development center.

[Distribution Statement A] This material has been ap-
proved for public release and unlimited distribution. Please [7]
see Copyright notice for non-US Government use and distri-

bution.

Carnegie Mellon® is registered in the U.S. Patent and

Trademark Office by Carnegie Mellon University.
DM-0003803

9. REFERENCES
[1] A. Albinet, J.-L. Boulanger, H. Dubois, M.-A.

Peraldi-Frati, Y. Sorel, and Q.-D. Van. Model-based

methodology for requirements traceability in
embedded systems. In Proceedings of 8rd Furopean

8]

[9]

Conference on Model Driven Architecture Foundations

and Applications, ECMDA’07, 2007.
[2] C.Y. Baldwin and K. B. Clark. Design rules: The
power of modularity, volume 1. MIT press, 2000.

[3] N. Bilton. Nest thermostat glitch leaves users in the
cold. http://www.nytimes.com/2016,/01/14/fashion/

nest-thermostat-glitch-battery-dies-software-freeze.
html?_r=0. url visited June 29, 2016.
[4] D. De Niz, P. H. Feiler, D. Gluch, and L. Wrage. A

virtual upgrade validation method for software reliant

systems. Technical Report CMU/SEI-2012-TR~005,
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2012.

(10]

(11]

(12]

J. Delange and P. Feiler. Architecture fault modeling
with the AADL Error-Model Annex. In 2014 40th
EUROMICRO Conference on Software Engineering
and Advanced Applications, pages 361-368, Aug 2014.
J. Delange, P. Feiler, and N. Ernst. Incremental life
cycle assurance of safety-critical systems. In 8th
FEuropean Congress on Embedded Real Time Software
and Systems (ERTSS 2016), 2016.

J. Delange, P. Feiler, D. Gluch, and J. Hudak. AADL
fault modeling and analysis within an ARP4761 safety
assessment. Technical Report CMU/SEI-2014-TR-020,
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2014. url visited June 29,
2016.

P. Feiler, D. Gluch, and J. D. Mcgregor. An
architecture-led safety analysis method. In Proceedings
of ERTS 2016, 2016.

P. Feiler, J. Hansson, D. de Niz, and L. Wrage.
System architecture virtual integration: An industrial
case study. Technical Report CMU/SEI-2009-TR-017,
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2009.

P. Feiler, C. Weinstock, J. Goodenough, J. Delange,
A. Klein, and N. Ernst. Architecture-led diagnosis and
verification of a stepper motor controller. In 8th
European Congress on Embedded Real Time Software
and Systems (ERTSS 2016), 2016.

P. H. Feiler and D. P. Gluch. Model-Based Engineering
with AADL: An Introduction to the SAE Architecture
Analysis € Design Language. Addison-Wesley
Professional, 1st edition, 2012.

P. H. Feiler, B. A. Lewis, and S. Vestal. The sae
architecture analysis: Design language (aadl) a

standard for engineering performance critical systems.
In 2006 IEEE Conference on Computer Aided Control
System Design, 2006 IEEE International Conference
on Control Applications, 2006 IEEE International
Symposium on Intelligent Control, pages 1206-1211,
Oct 2006.

D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner.
Embedded system design: modeling, synthesis and
verification. Springer Science & Business Media, 2009.
J. Holler, V. Tsiatsis, C. Mulligan, S. Avesand,

S. Karnouskos, and D. Boyle. From
Machine-to-Machine to the Internet of Things:
Introduction to a New Age of Intelligence. Elsevier
Academic Press, 2014.

P. Liggesmeyer and M. Trapp. Trends in embedded
software engineering. IEEE Software, 26(3):19-25,
May 2009.

P. K. Manadhata and J. M. Wing. An attack surface
metric. IEEE Transactions on Software Engineering,
37(3):371-386, 2011.

B. Nuseibeh. Weaving together requirements and
architectures. Computer, 34:115-117, 2001.

K. J. Sullivan. The structure and value of modularity
in software design. In SIGSOFT Software Engineering
Notes, pages 99-108. ACM Press, 2001.

D. Ward. Avsi’s system architecture virtual
integration program:proof of concept demonstrations,
2013.

M. Whalen, A. Gacek, D. Cofer, A. Murugesan,

M. Heimdahl, and S. Rayadurgam. Your 'what’ is my
’how’: iteration and hierarchy in system design. IFEFE
Software, 30(2):54-60, 2013.

M. V. Woodward and P. Mosterman. Challenges for
embedded software development. In Proceedings of the
50th International Midwest Symposium on Circuits
and Systems (MWSCAS), Montreal, Canada, pages
630-633, 2007.

