
Creating Software Modernization Roadmaps:
The Architecture Options Workshop

Neil A. Ernst, Mary Popeck, Felix Bachmann, Patrick Donohoe
Carnegie Mellon University Software Engineering Institute

4500 Fifth Avenue
Pittsburgh, PA

Email: {nernst,mpopeck,fb,pd}@sei.cmu.edu

Abstract—Architecture modernization requires a
clear roadmap to transition to a new state. However,
creating that roadmap is often difficult, particularly
in complex settings. This paper investigates how one
might systematically derive such roadmaps. We in-
troduce the Architecture Options Workshop (AOWS),
a systematic treatment to address the problems of
moving from identified system risk themes to potential
design options, and a roadmap for implementation.
Many techniques present a range of options and leave
it to stakeholders to select, or are tailored for detailed
design processes. The Architecture Options Workshop,
by contrast, is intended to resolve the question of what
options to choose at a high level of abstraction. Ap-
plying a technical action research approach, we applied
the AOWS to three different real-world systems. We
describe the advantages—reasonably efficient, system-
atic architecture modernization—and some remaining
questions for future research.

I. Introduction
We describe the application of what we call the Ar-

chitecture Options Workshop (AOWS), an approach to
help stakeholders identify the specific tasks that should
be undertaken to improve or modernize the system’s ar-
chitecture (and related process and workflow approaches)
and ultimately, meet their business goals. The output for
an AOWS is a concrete roadmap for 2-3 iterations of
the customer’s development cycle, along with longer-term
‘targets’. We specifically avoid overly constrained trajec-
tories, instead identifying specific short-term milestones
and longer-term targets, recognizing the path might well
change. One difficult aspect of the modernization problem
is that it has to run in parallel with evolution of the
existing system, because of the time it take to modernize.

This paper describes the design science approach we
used to create the AOWS, applying its techniques with
three organizations. We describe its rationale, required
inputs, workflow, and outputs, relating these to other de-
sign techniques. We are continuing to improve this process
iteratively, and we conclude with a look at questions which
have arisen after applying AOWS in realistic settings.

The contributions of this paper are
• Description of a novel technique, the AOWS, for
moving qualitatively from options to roadmaps in
software modernization.

• Guidance for applying the three phases of the AOWS
including necessary preconditions and how to move to
decisions.

• Demonstration of the AOWS in practice, in three real-
world settings.

II. Research methodology

Our research methodology is technical action research
[1] (TAR). TAR is a methodology that applies to the treat-
ment validation phase of the design science lifecycle (i.e.,
problem investigation, treatment design, treatment vali-
dation, and treatment implementation [2]). A treatment
in this context is an artifact that aims to solve a problem,
which was (potentially) the subject of the problem inves-
tigation phase, producing knowledge questions and design
problems. TAR in particular is a methodology—like sta-
tistical difference-making experiments—for understanding
the effectiveness of the proposed treatment (AOWS, in this
paper) in context. Particular to TAR is the notion that
helping the client is part of the research approach. This
makes it well-suited to the application of novel engineering
approaches in settings where we nonetheless must deliver
value to the client.

A. Treatment design
The problem the AOWS treatment addresses is modern-

ization planning. Stakeholders have great difficulty devel-
oping specific roadmaps to get a software-intensive system
from a current (typically problematic) state to a desired
state. We have encountered this in many of our client
projects while applying architecture techniques such as the
Architecture Tradeoff Analysis Method [3] (ATAM), the
Quality Attribute Workshop [4] (QAW) and the Mission
Thread Workshop [5] (MTW), among others.
Certain commonalities exist across these methods:
• There is a focus on quality attributes, derived from
business / mission goals, as decision drivers

• They are client and stakeholder focused, in order to
let the domain experts drive the analysis;

• They are scenario-based in order to ‘test’ the system-
to-be against actual scenarios that, if met, would
allow the organization to achieve its business goals.

Many of the outputs of these techniques present stake-
holders (customers) with a range of problems prioritized
during the workshop. From there, the onus has been on
the stakeholders to move ahead with identifying options
for input into a design process, using the architecture
challenges or risk themes1 derived from quality attribute
scenarios.

This is the case in modernization initiatives as well,
where the system(s) are in an initial state (costly, hard to
change, and otherwise unsatisfactory) and the stakehold-
ers desire to move them to an improved target state. The
Architecture Options Workshop is a systematic treatment
to address the problems of moving from identified system
risk themes to potential design options, and to provide a
roadmap for implementation.

B. Context: Case study backgrounds
We conducted our options workshops with three cases

we report on here. As is expected in technical action
research, in between cases we reflected on lessons learned
and incrementally improved the technique, then re-applied
it to the new case. The organizations are listed in temporal
order of our involvement.

Organization A is Bursatec, a financial services com-
pany aiming to build a new high-performance trade pro-
cessing system, previously documented in Bachmann et
al. [6], among others. This was our first application of the
AOWS concept (in 2013).

Organization B is a multinational in the medical
domain. The task was a modernization effort for a middle-
ware component in a wider ecosystem of client apps and
data stores, applied in 2015.

Organization C is a large governmental organization
with regulatory, mission-critical information systems vary-
ing in age from 1-30 years, totaling millions of lines of code.
We applied the AOWS in 2014-2016. The SEI was asked to
aid in a modernization effort for several of these systems.

III. Treatment Design: Architecture Options
Workshops

A. Overview and Rationale
The AOWS originated in response to problems we found

in our work with modernization projects. Therefore the
AOWS was iteratively designed to do the following.
1) Elaboration of a set of alternative technical archi-

tectures (defined by options derived from the risk
themes, driven by business goals).

2) Create a single initial target architecture, selected
using trade-off and prioritization from the set of
possible architectures. In that way, you can return to
the original set if things do not go as planned. This
is not an end state but a ‘next’ state.

1An architecture challenge [5] applies to a system-to-be; a risk
theme [3] applies to a system-in-use. We will use the term risk theme
to refer to both.

Define Possible
Options Per Scenario

0–Preparation Phase II–Synthesis Phase

Elicit Business Goals

Define Scenarios
Achieving Goal

Prepare
Roadmap

Combine and
Select Options

Prioritize Options

�

�

�

Assign Cost/
Benefit Per Option
�

�

�

�

I–Breadth Phase

Fig. 1. The Architecture Options Workshop model

3) Documentation of rationale for most decisions using
simple, qualitatively derived costs and benefits.

4) Priorities for roadmap phasing using a decision pro-
cess that enforces decision making.

The Architecture Options Workshop also results in some
guidance on redesigning the system architecture although
it does not provide a full redesign of the architecture.
The reality is that up-front, big bang modernization is
rarely successful; the AOWS recognizes this by focusing
on moving to an improved state and iterating from there.
Ideally, the Architecture Options Workshop will enable

an Architecture Runway[7] that allows for iteratively en-
hancing the existing products with low impact to the
business. Developers build according to the path laid out
by the architects. Architects set the parameters for the
developers to follow. The goal of the AOWS is to find out
what those parameters are.
The AOWS approach is composed of seven steps (shown

in Fig 1). These are divided into a preparation phase,
a breadth phase and a synthesis phase. The preparation
phase (phase 0) is a norming function to ensure no matter
where the workshop starts, there is a set of scenarios to
focus on in the subsequent phases.
Phase 0 - Preparation
1) Elicit the business goals that the organization is

trying to attain.
2) For each business goal, define a set of scenarios that

would allow that business goal to be achieved.
Phase 1 - Breadth
3) For each scenario, define a set of architecture options

that would allow the scenario to be realized.
4) For each option, collect cost and benefits, to be used

as the criteria for decision making.
Phase 2 - Synthesis
5) Prioritize the architecture options.
6) Combine and prioritize the high priority architecture

options of all scenarios per business goal.
7) Create a roadmap by combining and prioritizing the

architecture options across all selected business goals.

B. Preconditions
In any large modernization project, such as with Orga-

nizations B and C, (large meaning, among other things,
multiple systems and multiple years of code), we suggest
the following workflow:
1) Begin with an activity (such as a Mission Thread

Workshop/MTW) that walks through a key business
process fundamental to the organization’s business
goals. This improves understanding of the scope of
the system of systems you are dealing with. This will
identify architecture challenges traceable to individ-
ual systems. For organization B, this phase was done
offsite. For organization C, we conducted 3 separate
MTWs.

2) Perform an architecture analysis on one or more
problem systems (identified in step 1). This might be
an ATAM, for example. That results in risk themes
partially traceable to problematic components (some
are more generic, such as lack of documentation, or
are process related). For Organization A, we con-
ducted lightweight peer evaluations every iteration
(see [6]). In B, we did a 5 day architecture analysis,
and in C, two separate ATAMs on different systems
identified as critical in the MTWs.

3) For a critical problem component, perform an AOWS,
outlining solution options to resolve that risk theme
(and create a roadmap for change). For Organization
A, this followed on from the risks identified in the
peer evaluations. Learning from those experiences, we
conducted (largely in parallel) AOWS on components
identified in the ATAM’s for Organization B and
C. For example,2 in Organization B, a replacement
system was desired and a key component was the
middleware between clients and backend.

4) If necessary, (as was the case in Organization C),
conduct a follow-up options workshop to identify
more detailed solutions. From here one can rely on
well-developed approaches for detailed design, such
as Attribute-Driven Design [8].

This is a process that essentially decomposes a modern-
ization problem into more manageable, yet high priority,
targets for improvement. Note that at the first two steps,
multiple problems are identified! That is acceptable: the
purpose is not to boil the ocean but identify highly
important (with respect to business goals) components
that must be fixed. For example, the data service layer in
a system of systems where many applications all write to a
common database. At each level quality attribute scenarios
are required to properly ‘test’ the systems/components
under evaluation. The AOWS requires some identified
set of business goals/drivers, risk themes, and quality
attribute scenarios to drive the analysis.

Business goals are goals independent of the technical
solution that focus the quality attribute evaluation and are

2some details have been changed for confidentiality

critical in later prioritization of the options. An example of
a business goal is “release new features within 2 weeks” or
“increase market share by 10%”. Without business goals,
one cannot understand the context for prioritization.
Risk themes (in the modernization context) are business

goal derived technical problems. For example, a risk is “de-
ployment to production takes 10 business days”, a theme
is “slow deployment”, impeding our goal of rapid feature
release. Ideally these risk themes are derived from an
explicitly architecture analysis phase, such as an ATAM,
but could also be simple expressions of dissatisfaction
with the current technical architecture. In a modernization
context, the risks are with respect to doing nothing and
continuing with the system-as-is.
Two of the instances of the AOWS we have conducted

(Organization C and Organization B) have derived inputs
from an earlier ATAM, in particular, the risk themes and
business drivers. If those inputs do not exist, business goals
in particular must be developed with the customer.
Scenarios, ideally quality attribute scenarios per [4], are

the ‘tests’ [9] used to traverse (and reduce) the option
space. These quality attribute scenarios should be derived
from the business goals, or at least relatable to those goals.
In our case study with Organization C, we also derived
the quality attribute scenarios from risk themes found in
previous ATAMs on the systems involved.
Scenarios in an AOWS are slightly different, in that they

must be technical enough to stimulate technical option
generation. For example, a scenario from our most recent
experience was “Successfully develop and deploy a new
application on average within X weeks after approval
of requirements, where users are able to easily use this
application.” From this scenario, many technical archi-
tectural options are possible, including documenting the
existing structure, devising automated tests, developing
more powerful middleware, and improving the application
frameworks. In organization C, then, we found ourselves
(as the consultants) creating scenarios based on our knowl-
edge of the context (we had all been involved since the
initial context setting in the Mission Thread Workshops).
Depending on the customer, one may make the scenarios

either a precondition or a part of the workshop. If there
was a pre-existing and recent ATAM or QAW, for example,
it may be easier for the analysis team (e.g., the SEI) to
generate these scenarios, since they will have a suitable
understanding from those previous engagements about key
problems. If there is sufficient time, scenario generation
could be done early on in the workshop. Regardless, the
following conditions are vital in the scenarios:

• Agreement on what the important scenarios are.
• Scenarios must focus on solving the problem, i.e.,
achieving a business goal.

• Involvement of all appropriate stakeholders. We dis-
cuss this aspect in Section V.

• Relevant to system risk themes. For example, if a sce-
nario is about deployment, there should be a mapping

to a risk theme (and thence to a business goal) about
deployment challenges with the architecture. 3

At the end, the set of scenarios created for use during
either an ATAM, a QAW, or derived from business goals,
describe the desired state in which the existing archi-
tectural problems are resolved. The risk themes help to
understand and prioritize the potential architecture op-
tions. The remainder of the workshop activities now focus
on determining options that would make these scenarios
achievable.

The AOWS is designed to fit into the existing SEI
portfolio of software architecture analysis and design tech-
niques as shown in Figure 2. An instance of this approach
as applied to Organization C is shown in Fig. 3.

C. Stakeholders
As we described at the end of the previous section, it

is vital that the “right” people be invited and partici-
pate in the AOWS. There should always be two groups
of stakeholders present. One group represents the user
community, the stakeholders who have to live with the
architecture options chosen. The second group represents
the stakeholders that are responsible for the product, the
stakeholders who define and implement the options chosen.

The following is a rough guide to who must be there:
• Anyone who has the requisite high-level technical
knowledge about both the organization and the tech-
nical infrastructure. They are the ones who know
if an option will be possible. For example, what
frameworks and tools are feasible given the current
organizational climate and ability? Examples: chief
architects, enterprise architects.

• People who are up to date on architectural tactics,
patterns, and best practices. This could possibly be
people who only know technical solutions, and don’t
care about organizational capability. An option could
be technically possible but not organizationally feasi-
ble. Examples: developers, testers, contractors.

• Those with political power to approve workplans.
Since the AOWS creates a roadmap, it is vital that
the roadmap be realistic, and that the decisions it
embodies be committed to by the organization. Ex-
amples: program managers, technical leads, technical
managers.

• Anyone who understands the business processes and
end-user concerns. They check suggested options for
feasibility within the organization. Examples: business
managers, supervisors, end-users, system administra-
tors, field service engineers

3This may seem somewhat backward from the typical flow of an
ATAM, for example. There one starts with business goals, and then
develop scenarios and finally risk themes. The difference is that in a
modernization context, we expect to have a set of all three. Without
goals, we cannot prioritize; without scenarios, we cannot focus our
analysis; without risk themes, we cannot understand what scenarios
to focus on

This is potentially a large number of stakeholders. In our
experience, what is more important is that a sufficiently
representative group able to play the major roles are
present. For example, with Organization C our AOWS
session consisted of 10-12 people, including technical ar-
chitects, contracted developers, program managers, and
technical domain experts. With Organization A, options
were evaluated in smaller teams, one chief architect, and
5-8 junior architects.

D. Phase 0 - Preparation
1. Elicit the business goals that the organization is trying
to attain. Well-chosen goals point an organization in the
desired direction and help to keep them on track. In the
absence of such goals, it may be possible to use outstand-
ing architectural problems, which are likely impeding the
business from attaining their (hidden) business goals. For
Organization C, these proved challenging to gather, so
extra time was allocated to find them.
2. For each business goal, define a set of scenarios that
would satisfy that business goal. During the AOWS, sce-
narios are produced for each business goal by the stake-
holders that describe the desired state of the business. A
diverse group of stakeholders is critical in order to ensure
that at least the most important aspects of attaining
the business goal are considered and how the potential
solutions affect different members of the organization. For
Organization A, these scenarios were vital to guide more
detailed design.
Having collected goals and scenarios, we can continue

to Phase 1. Note that these do not usually occur on the
same day/session.

E. Phase 1 - Breadth: Option Brainstorming
3. For each scenario, elicit a set of architecture options
that would allow the scenario to be realized. Architecture
options are anything from a small architecture transforma-
tion (such as implementing an architecture tactic4) to in-
tegrating a big application or framework into existing sys-
tems. Options are solutions that could be used to achieve
the scenario. Every workshop participant is encouraged to
provide their options, in case their view on how to solve
the problem differs from the other stakeholders. At this
point in the AOWS, all options are considered no matter
how unlikely they are to be implemented. That is why
this phase is called the breadth phase. For Organization
C, we had around 6-7 options per scenario, diminishing
over time as options were applicable to multiple scenarios
(e.g., document the architecture).
4. For each option, collect qualitative pros and cons to be
used as the criteria for decision making. Stakeholders are
first asked to name all the positive attributes associated

4An architectural tactic is a building block for a solution, and
books like Software Architecture in Practice [10] lists many possible
tactics for various quality attributes. For example, one might Bound
Queue Sizes to improve Performance.

Mission Thread
Workshop

Quality Attribute
Workshop

Business
Goals

Architecture
Tradeoff Analysis

Method
Architecture

Options Workshop
System Improvement
Technical Roadmap

Risks
Scenarios

Quality
Attributes

Scenarios

Fig. 2. One possible analysis and design approach with SEI Techniques

Threads Issues Issue Themes

Business
Goals

Scenarios
(Utility Tree) Risks Risk Themes

High-level
current state
architecture

Scenarios Options Decisions

Near-term
Roadmap

Mission Thread Workshops

ATAMs

AOWS

exploring current arch
with respect to risk themes

ranked with respect to
options

derived from stakeholders
and documents

derived from stakeholders
and business process models

Fig. 3. Instantiation of Fig. 2

with the option being implemented. Then, they are asked
to name all the negative attributes. These are enumerated
for all to see and to evaluate. For example, if an option to
manage the scenario of “Deploy to production in 24 hours”
is to document the build process, then a possible pro is
that this documentation also supports understanding the
production environment.

For each option, stakeholders are asked to rate it on
a High-Medium-Low scale for both Cost and Benefit.
Sometimes stakeholders need to assign monetary values
to the rankings (e.g., High > $1 million, Low < $100k)
before being able to rate effectively. In the AOWS we ran,
we did not conduct any triangulation exercise to ensure
everyone was on the same page, but our stakeholders did
this informally. Cost is defined as how resource intensive it
will be to implement, and Benefit is defined as how much
improvement the organization will see if it is implemented.
For the AOWS, we deliberately keep the list of criteria
on which to evaluate options simple and qualitative. We
elaborate on prioritization in Section V-A.

At the end of Phase 1, we have a spreadsheet with
tuples ⟨Option, Scenario, Pro, Con, Cost, Benefit⟩. For
Organization C, our 1 day workshop produced 20 different
options for 5 prioritized scenarios. The next phase takes
this input and develops the roadmap.

F. Phase 2 - Synthesis: Roadmap Planning and Prioriti-
zation

5. Prioritize the architecture options. In Organization
B and C, we struggled with prioritization. It is not a
straightforward task, since options have dependencies,
options apply to different parts of the system, and can
be effective at different points in time. What we actually
did was classify the options (future things / legacy things
/ supporting things), we drew dependencies (if you choose
this you have to choose this too), and we tagged options
according to how likely the organization is to do it.
Ultimately it was up to the analysis team to move

from Options to a decision tree (described in the following
section). For this tree, some decisions can be concluded
quickly based on the collective prioritization. Options
rated in Step 4 as High in Benefit and Low in Cost, then
Medium Benefit and Low Cost, and then High Benefit and
Medium Cost, tended to be fairly easy to agree to act on.
Likewise, Options that rated Low in Benefit and High in
Cost would be the least likely to ever be implemented and
might be excluded from the roadmap entirely.
The most difficult options are the ones rated equally

for benefit and Cost (Low/Low, Medium/Medium,
High/High). Here no clear decision criterion might be
found. This may lead to deferring decisions and adding
new options like prototypes or feasibility studies to gain
more insights into the problem which hopefully leads

to better decision criteria. All options are included in
the AOWS documentation for completeness to show the
breadth of options considered. Options not chosen may be
considered in the future if technology changes result in a
modification to their Cost/Benefit ratings. It is important
to capture decision rationale so that if circumstances
change, the decision may be revisited. For example, with
Organization C, we identified a “Big Bang” option that
was essentially a rewrite of their entire system. While this
option was of High benefit, its cost was High++. It is
important to document that this option was considered
and rated, as it is tempting for new people coming onto
the team and examining the roadmap to ask the question
“Why can’t we scrap everything and start over?”

6. Combine and prioritize the high priority architecture
options of all scenarios per business goal. In choosing the
“best” option or set of options to achieve each scenario,
the tasks to be performed are narrowed down. This makes
it easier to move forward in meeting the business goals. If
there is no obvious “best” option, then a feasibility study
may be needed to gather more information leading to a
decision point regarding a set of options, some or all of
which might be selected. These tasks and decision points
all help to form a roadmap.

For example, in Organization C, a decision point was
introduced to choose between inserting a service layer
and/or extracting embedded business logic from the data
layer. The high priority tactics of all the scenarios pertain-
ing to one business goal are combined. This is done for each
business goal. Note that in some cases, an option supports
more than one business goal, and this would improve its
ranking. Even a high priority option may not be selected if,
for example, doing so depends on selecting a lower-ranked
option being chosen, or if it is exploratory and outside the
time horizon of the roadmap.

7. Create a roadmap by combining and prioritizing the
architecture options across all selected business goals.
Roadmaps should span two years or less. If the roadmap
needs to be longer, then it should be iterative. How much is
accomplished in each iteration will need to be determined
and shorter term goals will need to be set. Finally, for
each milestone on the roadmap, a champion must be
identified. The champion should then define a timeline and
measurements that illustrate whether or not the task was
successful at implementing the option. The stakeholders
should all buy-in to the idea that the roadmap is credible
and that once all the milestones are completed the business
goals will be achieved.

In the Organization A (Bursatec) case, this entailed
handing the chosen scenarios and chosen options to a team
of designers, who then created a detailed UML-notated
design. In Organization C, the follow-up to the roadmap is
more concrete design workshops on certain chosen options
(e.g., how to extract business logic).

G. Decision Tree
Performing Step 6—combining the options for all sce-

narios per business goal—will be different for every
AOWS. However, in all cases some type of decision tree
is needed. This is a directed acyclic graph with high-level,
most constraining decisions at the top. For Organization
C, these high-level decisions were whether to go with
replacement or incremental re-architecting. From there,
the design tree is conditional on higher-level choices, e.g.,
given incremental was chosen, what are the remaining
options?
Options are also related, including dependency and ex-

clusion relationships. Finding these relationships is clearly
amenable to some form of automation. Creating the de-
cision tree is non-trivial, and although the search itself is
naturally logarithmic in the size of the options, enumer-
ating the tree is not, and we are not yet able to guaran-
tee the chosen solution set (i.e., the chosen options) are
Pareto-optimal with respect to our criteria, e.g., quality
attribute scenarios, cost/benefit. We have currently used
three approaches for creating this tree manually.

Approach 1: Sort options into exploratory and techni-
cal tasks. Exploratory tasks could be grouped together.

Approach 2: Break decisions down by system compo-
nent. If a set of options are all related to the user interface,
while other options are related to the data layer, user
interface and data layer are natural groupings. Be careful
to keep the cross-cutting nature of the scenarios (which
will almost certainly traverse layers) separate from the
more hierarchical nature of options.

Approach 3: Group options by level of detail. This
is the approach we took with Organization C. Our first
decision point was the general approach to modernization:
rewrite or refactor? Once that decision is made, some
of the other options are precluded. For example, if the
stakeholders choose to not do big-bang rewrites, options
about starting from scratch for individual systems no
longer apply. We found that for a one day workshop (that
is, the decision phase (2) of the AOWS), fifteen or so
decisions was tractable.
It is obvious how to create a decision tree when the

decision is easy. Where stakeholders need help is when
it is a tough decision (i.e., very similar pros and cons).
In this case, an approach that was useful in Organization
B and C was to create a separate option that conducts
a feasibility study or bakeoff to gather more data to
simplify the decision. For a short workshop such as the
AOWS, going into more detail than “costs/benefits” does
not scale. However, the presence of too many middle-range
options (e.g., M/M) in a single decision suggests that more
investigation is necessary.
In this case a larger set of specific criteria can be useful.

For example, our colleague William Wood’s approach [11]
used 23 individual criteria (more precisely, risk factors) for
ranking options, based on OMB’s Exhibit 300 [12]. These
criteria include the cost to back out a change, the ability to

manage the investment, and security risks. Other criteria
may be relevant depending on context.

IV. Outcomes
By the end, the stakeholders should all be committed to

a roadmap that is achievable, measurable, and will allow
the organization to attain its business goals. The facilitator
should have a sense for commitment during the workshop,
in particular, whether any factions are opposed to it. A
facilitator might consider conducting a paper survey to see
if there are any stakeholders in disagreement or hold one
on one discussions with various stakeholders to ascertain
commitment.

The goal of the Architecture Options Workshop is to
create a reasonable vision for the evolution of the sys-
tems towards mitigating the important risks uncovered
during an ATAM and allowing an organization to attain
its business goals. This vision includes a roadmap with
identified releases for the near term and a set of features
and capabilities to implement for the long term.

A. The Roadmap
Preforming Step 7—Create a roadmap—will also vary

across AOWS applications. Roadmaps that are only work-
ing to achieve one business goal, which can be accom-
plished in a shorter timeframe, will be easier to con-
struct than roadmaps supporting multiple business goals
over longer timeframes. Checkpoints should be inserted in
the roadmap to review progress. If you are not making
progress, then you should stop executing the roadmap.
Timeframes should be based on organizational cadences,
but going beyond 2 years is probably of little value, since
things will have changed substantially at the AOWS level
of detail. Some problems may be larger than the timeline
can cover. Create options that decompose that problem
into smaller steps. Some possible techniques for “slicing”
the problem can be found in [13].

For Organization C, doing this results in a roadmap
like that in Figure 4. Note that specific milestones are
dependent on stakeholders to schedule. They must con-
sider the following: what resources, fiscal year deadlines,
available funds. For example, Organization C had little
capacity to perform most of the tasks in their remaining
fiscal year budget. Some tasks had to be delayed until the
next fiscal year. Earlier we mentioned that a difficulty in
modernization is synchronizing that work with ongoing
maintenance of the existing system. In Organization C,
this has meant creating separate task orders. In the future,
a roadmap alignment with existing IT strategy would be
helpful (currently this remains tacit).

In Figure 4, M stands for milestone. There is a cham-
pion, due date and measure associated with each of the 11
milestones shown in Figure 4. It should also be noted that
some of the early milestones are for the gathering of data
and comparing of different approaches to determine how
to perform the tasks necessary to achieve later milestones.

Fig. 4. Sample Technical Roadmap for Organization C. Some details
hidden for confidentiality.

The implication of this roadmap is that in the short-term,
achieving these milestones will move the organization
closer to a more mature architectural approach.

V. AOWS: Observations and Future
Improvements

As part of our design science approach, we continue
to improve the AOWS treatment. We remark on issues
that appeared in all three AOWS we conducted, as well
as needed improvements.

A. Measuring Certainty
Each option is given two ratings. The first, “Cost”, is

the stakeholders’ collective interpretation of the amount
of resource effort required to implement that option. This
includes time, money, and socio-political challenges. The
second, “Benefit” is the perceived advantages, in terms of
satisfying business goals. Each is rated as High, Medium
or Low (HML). In practice, we see stakeholders acknowl-
edging that a HML does not necessarily capture the true
range of values for comparing options. For example, while
the Cost may well be “High”, in practice sometimes it is so
high that it means “Never Happen”, versus another option
that is “High” in Cost but might be done if sufficient
resources are found.
The importance of these rankings is in deciding on a

course of action. In particular, things with High benefit
and Low cost will always be chosen. In our experience,
of course, clients do not need help understanding these
decisions. Help is needed when costs are Medium/High
and benefits are Medium/High, because that is much less
obvious. In practice the decisions about these conflicted
options is organizationally dependent. In some places,
High Benefit is sufficient to motivate an organization to
pursue at least gathering more information. In other (risk-
averse) places, High Cost is sufficient to preclude this
option, even if the benefit is High.

The cost/benefit considerations could clearly be much
more nuanced (e.g., with probability measures). However,
in the context of a 2-day workshop, gathering more detail
did not seem justified in terms of decision-making (most
of the Organization C options, for example, are high-level
and require more knowledge).

B. Agile and Iterative Architecture and Options
An important consideration in building an architecture

roadmap is the length and frequency of delivery itera-
tions. In a high-maturity organization, completion of an
increment may force an update to the information in the
roadmap. For example, a team will report that a particular
option will not work in practice due to previously unseen
obstacles. In this sense, benefits and costs do not take into
account incrementality; we develop our prioritization with
the knowledge at the time of the workshop. This implies
three things.
1) The roadmap must be updated as knowledge is gained

about option-specific information.
2) Roadmaps should make clear what tasks are

information-gathering and may change the roadmap
(e.g., an architecture spike, outlined in [13]).

3) Roadmap developers should be aware of “unknown
unknowns”. A clear lesson of agile development is that
prescriptive and overly detailed roadmaps never work.
We tried to describe destinations instead of specific
routes.

A roadmap should include a loopback task. If a roadmap
milestone is not met, or if it fails, then you must go back
to the AOWS and revisit the options, i.e., if measures
show that improvement was not attained. Therefore, in-
formation must be preserved, and there needs to be a
trigger when something fails or a milestone cannot be
met that forces the organization to go back and repeat.
Similarly, an important cost to keep in mind when doing
the decision prioritization is the “back-out cost”, that is,
the cost to undo the work of implementing that option. In
Organization C, this would include the cost of canceling
a maintenance contract with a framework provider. This
loopback task is particularly important when iterations
are long and infrequent, which is common in government
organizations.

C. Involving Stakeholders
Qualitative approaches, such as the AOWS or the

ATAM, have outcomes that may vary based on who is
present on the assessment team and facilitators, the tech-
nical competence of the staff, and the internal dynamics
of the individuals. To address this we are working on ways
to record conversations, find the right level of detail, and
organizational structures.

It is critical to create templates in advance to record
decisions and propose roadmaps. The important thing
during a workshop is to use a template to accurately
record what participants are saying. We project the notes

on a whiteboard so that the stakeholders can confirm
that what is being recorded is what they intended. Often,
this scribing generates new discussion as differences in
meaning come to the surface. Different templates are used
to present the option decisions and roadmap outcomes
to the stakeholders at the end or after the workshop.
Even so, there are plenty of non-verbal cues that can be
picked up only by detailed observation, such as facial cues
and deferential behaviour. We would like to incorporate
more knowledge on group decision-making [14] in order to
ensure the best conversations arise.
Hitting the right level of technical detail can be a chal-

lenge. In particular, it can be difficult to find the correct
level of technical abstraction to discuss options. If the
technical detail is very deep, non-technical stakeholders
will lose interest; if it is very high, then the option will
not be refined sufficiently. At the same time, detailed
discussions of task orders and funding is not interesting
to people who have no say in such things.
Which stakeholders should be in the room? Small groups

can get more done faster, but if key stakeholders are miss-
ing, the final options/roadmap will be deficient and lack
buy-in. We are working on techniques to pre-seed discus-
sions with ground-truthed, distributed analysis of criteria
spaces. For example, a phase 0 task to collect each indi-
vidual’s understanding of key attributes (cost, schedule,
security, viability, ...). Other issues include groupthink,
Conway’s Law (“organizations which design systems ... are
constrained to produce designs which are copies of the
communication structures of these organizations”), and
lack of common terminology (e.g., layers vs. tiers).

D. Pareto-optimality
The outcome of the AOWS is a single roadmap, with

parallel task and milestones, that nonetheless converge
on a specific solution. It is not clear that this is the
optimal solution, depending as it does on the skill of the
analyst team and the stakeholders who are involved. Other
approaches for identifying the Pareto frontier of dominant
solutions could be useful.

E. Treatment Validation
The TAR methodology suggests one of the next research

phases is treatment validation. To some extent this is
implicit in using the AOWS in actual client projects. To
date our focus is iterating the treatment (AOWS) design.
We have done validation implicitly, by informal conversa-
tion with our project partners (who seem satisfied) but a
more in-depth analysis (e.g., Did the roadmap work? What
options were omitted that became important?) would be
useful from a generalizability point of view. We did not poll
our participants on these meta-questions about the process
in the moment, aside from some rebasing questions (e.g.,
“Is everyone happy with how things are progressing”). Our
internal validity is threatened by a few confounders. One
is we believe participants are contributing in good faith.

There are no obvious other factors that could have caused
our results, but our model does not explicitly consider
social factors, which certainly affect how our participants
interact and respond. Finally, our external validity is
strengthened by the three distinct cases; that said, making
analogic inferences to other cases requires at least a case
with a modernization problem of similar scale.

VI. Related Work
We consider two categories of related work. One cate-

gory is focused on architecture design support, but ignores
larger-scale modernization issues. The other category de-
scribes specific analytic approaches for generating mod-
ernization options, but does little to support roadmapping
(i.e., selecting among those options). Our position is that
the AOWS is a necessary intermediate step between anal-
ysis and more detailed design.
A. Architecture Design Support

There are numerous proposals for doing disciplined
design. The SEI’s own Attribute-Driven Design (ADD)
technique [8] creates architectural solutions to quality
attribute scenarios. It is most appropriate for taking the
output of the architecture options workshop (AOWS), i.e.,
a specific option, and designing a less-abstract solution.
For example, for Organization C, one option is to migrate
to a 3-layer architecture. The specifics of how to design
that new architecture, including which frameworks to use,
are well-suited to an ADD-style approach [15].

Similarly, specific guidance is available as books on
architecture patterns and tactics, such as the seminal
Pattern-Oriented Software Architecture series [16], or
somewhat more generally, introductory books such as
Shaw and Garlan [17].

There are also methodologies for designing greenfield
systems. Academically, Tropos [18] is a methodology for
moving from early requirements to agent-oriented soft-
ware implementations. Design is supported by assigning
requirements to agents in the model. It is however com-
mitted to a specific architectural approach, namely agent-
oriented platforms. Industry standards such as AADL [19]
likewise provide assistance in creating robust architectures
for particular sets of design challenges (primarily safety-
related).

It is important to emphasize that the contribution of the
AOWS is not in how to choose between various architec-
tural approaches—there are existing tools for doing this—
but rather, the process for moving from quality attribute
scenarios to implementable roadmaps.
B. Architecture Modernization Analysis

Several SEI technologies, such as the Mission Thread
Workshop and Architecture Tradeoff Analysis Method, fit
well here (and we made use of them in various ways,
described above).

In the early phases of system design, systems engineer-
ing approaches such as tradespace analysis [20] can be

helpful in understanding high level quality attributes and
business goals. Other systems engineering approaches ex-
plore the issue of options optimization in more mathemat-
ically rigorous fashion [21]. Work on software migration
patterns hold promise for generating options necessary in
Step 3 of the AOWS, such as the Dublo pattern [22]. Sim-
ilarly, there is much useful early design analysis research
in the requirements engineering field. i* for organizational
dependency modeling is one such approach [23].
Tools such as Lattix5, which provide insight into depen-

dency, and by extension, modifiability properties of the
architecture, support analysis and modernization as well,
and this is perhaps where industry is most concentrated in
conducting modernization analysis. We have stayed away
from tools since the AOWS is more concerned with imple-
mentation independent options, although the properties
of the implementation (such as vendor choices) clearly
constrain the solution space.
Finally, the OMG’s Architecture-driven Modernization

initiative (http://adm.omg.org) is an attempt to apply
model-driven software engineering to modernization prob-
lems. It seems like a promising approach, particularly for
organizations that maintain reasonably complete architec-
ture models or do architecture recovery. This was not the
case in our three case studies, however.

VII. Conclusions
Technical action research is about discovering the mech-

anisms at work in the context, or in other words, under-
standing the relationship artifact x context => effects by
mechanisms [2]. In this paper:

• Our artifact (treatment) was the AOWS. We intro-
duced a new way to identify architectural options dur-
ing system engineering or modernization activities,
filling the gap between early design analysis and late-
stage design assistance.

• Our contexts were the three organizations to which
we applied AOWS.

• The effect we observed in each setting was a roadmap
that had the approval and understanding of key stake-
holders.

• Finally, our mechanisms include the three-phased
AOWS approach, the necessary inputs and outputs it
produces.

The Architecture Options Workshop (AOWS) is a struc-
tured approach to understand what design options will sat-
isfy business goals, and results in an architecture roadmap
that will, all else being equal, bring the system towards
the desired target architecture. We continue to refine our
approach as we learn about what works and what does
not.

VIII. Acknowledgments
This material is based upon work funded and sup-

ported by the Department of Defense under Contract
5www.lattix.com

No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a
federally funded research and development center. [Distri-
bution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copy-
right notice for non-US Government use and distribution.
Architecture Tradeoff Analysis Method® and ATAM® are
registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University. DM-0003209

References
[1] R. Wieringa and A. Morali, “Technical action re-

search as a validation method in information sys-
tems design science,” in Design Science Research in
Information Systems, Las Vegas, 2012, pp. 220–238.

[2] R. Wieringa, Design Science Methodology: For Infor-
mation Systems and Software Engineering. Springer,
2014.

[3] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H.
Lipson, and J. Carriere, “The architecture tradeoff
analysis method,” in International Conference on
Engineering of Complex Computer Systems, Aug.
1998, pp. 68–78. doi: 10.1109/ICECCS.1998.706657.

[4] M. R. Barbacci, R. J. Ellison, A. J. Lattanze,
J. A. Stafford, C. B. Weinstock, and W. G. Wood,
“Quality attribute workshops (QAWs),” Software
Engineering Institute, Technical Report CMU/SEI-
2003-TR-016, 2003.

[5] M. Gagliardi, W. Wood, and T. Morrow, “Introduc-
tion to the mission thread workshop,” SEI-CMU,
Tech. Rep. CMU/SEI-2013-TR-003, 2013.

[6] F. H. Bachmann, L. Carballo, J. McHale, and R. L.
Nord, “Integrate end to end early and often,” IEEE
Software, vol. 30, no. 4, pp. 9–14, 2013. doi: 10.1109/
MS.2013.77.

[7] D. Leffingwell, Agile Software Requirements: Lean
Requirements Practices for Teams, Programs, and
the Enterprise. Addison-Wesley Professional, 2011,
isbn: 978-0321635846.

[8] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P.
Merson, R. Nord, and W. Wood, “Attribute-driven
design (ADD), version 2.0,” Software Engineering
Institute, Tech. Rep. CMU/SEI-2006-TR-023, 2006.

[9] F. Bachmann, “Give the stakeholders what they
want: Design peer reviews the ATAM style,”
Crosstalk: Journal of Defence Software Engineering,
Nov. 2011.

[10] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice, 3rd ed., ser. SEI Series in
Software Engineering. Addison-Wesley Professional,
2012, isbn: 0321815734.

[11] W. Wood, Information technology systems modern-
ization, Blog post, Apr. 2015. [Online]. Available:
http ://blog . sei . cmu.edu/post . cfm/ information -
technology-systems-modernization.

[12] Office of Management and Budget, “Instructions
for completing the OMB Exhibit 300, capital asset
plan and business case,” Office of Management and
Budget, Tech. Rep., 2006.

[13] N. A. Ernst, S. Bellomo, R. L. Nord, and I.
Ozkaya, “Enabling incremental iterative develop-
ment at scale: Quality attribute refinement and allo-
cation in practice,” Software Engineering Institute,
Tech. Rep. CMU/SEI-2015-TR-008, 2015.

[14] V. Smrithi Rekha and H. Muccini, “A study on
group decision-making in software architecture,” in
IEEE/IFIP Conference on Software Architecture,
Apr. 2014, pp. 185–194. doi: 10.1109/WICSA.2014.
15.

[15] H. Cervantes, P. Velasco-Elizondo, and R. Kazman,
“A principled way to use frameworks in architecture
design,” IEEE Software, vol. 30, no. 2, pp. 46–53,
2013. doi: 10.1109/MS.2012.175.

[16] F. Buschmann, K. Henney, and D. Schmidt, Pattern-
Oriented Software Architecture: A Pattern Language
for Distributed Computing. Wiley, 2007, vol. 4.

[17] M. Shaw and D. Garlan, Software architecture: Per-
spectives on an emerging discipline. Prentice Hall,
1996.

[18] P. Giorgini, P. Bresciani, F. Giunchiglia, J. My-
lopoulos, and A. Perini, “Tropos: an agent-oriented
software development methodology,” Autonomous
Agents and Multi-Agent Systems, vol. 8, pp. 203–236,
2004. doi: 10.1023/B:AGNT.0000018806.20944.ef.

[19] P. H. Feiler, B. A. Lewis, and S. Vestal, “The SAE
architecture analysis & design language (AADL): A
standard for engineering performance critical sys-
tems,” in International Symposium on Computer
Aided Control System Design, 2006, pp. 1206–1211.

[20] H. Bagheri, C. Tang, and K. Sullivan, “Trade-
maker: Automated dynamic analysis of synthesized
tradespaces,” in International Conference on Soft-
ware Engineering, 2014, pp. 106–116.

[21] A. Engel and T. R. Browning, “Designing systems
for adaptability by means of architecture options,”
Systems Engineering, vol. 11, no. 2, pp. 125–146,
2008. doi: 10.1002/sys.20090.

[22] W. Hasselbring, R. Reussner, H. Jaekel,
J. Schlegelmilch, T. Teschke, and S. Krieghoff,
“The Dublo architecture pattern for smooth
migration of business information systems: An
experience report,” May 2004, pp. 117–126. doi:
10.1109/ICSE.2004.1317434.

[23] E. S. K. Yu, “Towards modelling and reasoning
support for early-phase requirements engineering,”
in International Conference on Requirements Engi-
neering, Annapolis, Maryland, 1997, pp. 226–235.

http://dx.doi.org/10.1109/ICECCS.1998.706657
http://dx.doi.org/10.1109/MS.2013.77
http://dx.doi.org/10.1109/MS.2013.77
http://blog.sei.cmu.edu/post.cfm/information-technology-systems-modernization
http://blog.sei.cmu.edu/post.cfm/information-technology-systems-modernization
http://dx.doi.org/10.1109/WICSA.2014.15
http://dx.doi.org/10.1109/WICSA.2014.15
http://dx.doi.org/10.1109/MS.2012.175
http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef
http://dx.doi.org/10.1002/sys.20090
http://dx.doi.org/10.1109/ICSE.2004.1317434

	Introduction
	Research methodology
	Treatment design
	Context: Case study backgrounds

	Treatment Design: Architecture Options Workshops
	Overview and Rationale
	Preconditions
	Stakeholders
	Phase 0 - Preparation
	Phase 1 - Breadth: Option Brainstorming
	Phase 2 - Synthesis: Roadmap Planning and Prioritization
	Decision Tree

	Outcomes
	The Roadmap

	AOWS: Observations and Future Improvements
	Measuring Certainty
	Agile and Iterative Architecture and Options
	Involving Stakeholders
	Pareto-optimality
	Treatment Validation

	Related Work
	Architecture Design Support
	Architecture Modernization Analysis

	Conclusions
	Acknowledgments

