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Distributed real-time embedded systems operating in uncertain and contested environ-
ments are of great relevance to the aerospace community. Such systems rely on components
with unpredictable behavior to provide mission-critical capability. However, these compo-
nents pose a challenge to assuring system-level safety and security. Runtime assurance
(RA) has been used successfully to balance such capability with confidence in various non-
DRTS domains. This paper presents a project we are pursuing with the aim of developing
a provably correct approach for RA of DRTS. We discuss the core technical thrust areas,
present two challenge problems we are using to guide our research, and conclude with an
experimental testbed and initial results.

I. Introduction

Distributed real-time embedded systems operating in uncertain and contested environments (e.g., multi-
UAS missions) are of great relevance to the aerospace community.1 Typically, such systems rely on com-
ponents with unpredictable behavior (and potentially from untrusted sources, such as COTS) to provide
mission-critical capability (e.g., use machine learning for effective decision making under uncertainty). Yet,
by their very non-deterministic nature, these components pose a challenge to assuring system-level safety
and security. Runtime assurance (RA)2 has been used successfully to balance such capability with confidence
in various non-DRTS domains. Following this lead, our work aims at developing a provably correct approach
for RA of DRTS.

The key idea behind RA is to monitor system behavior, and take preemptive action to prevent the
system from entering an unsafe or insecure state. This idea has emerged in several domains. For example,
the Simplex3 architecture switches from an efficient untrusted controller to a trusted inefficient one to prevent
instability. Similarly, runtime verification4–7 generates monitors from formal specifications and uses them to
detect errors by observing a system’s execution traces. Mixed-criticality real-time schedulers, such as ZSRM,8

monitor the execution time of threads and implement protection schemes that ensure graceful degradation in
the presence of overloads. Finally, Schneider’s security automata,9 and their generalization to edit automata
by Ligatti et al.,10 are used to monitor and modify a system’s interaction with its environment to enforce
specific security policies.

However, the applicability of RA to DRTS operating in uncertain and adversarial environments, and
with unpredictable components, is limited by several open challenges: (i) how to specify policies that involve
both timing and functionality, e.g., event α should never happen within time t of event β; (ii) how to assure
(functional and timing) correctness of the monitors themselves – Quis custodiet ipsos custodes? ;11 (iii) in
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practice, we envision that a component will need to respect multiple policies; interaction between monitors
is non-trivial; determining whether (and how) to use a set of monitors together is an open problem; (iv)
ultimately, we are interested in ensuring system-level policies; thus, we must verify that a set of component-
level policies imply a system-level one; (v) this verification should be both compositional and incremental
so that it applies to systems that have many evolving components; and (vi) given unpredictable components
and an attacker, the RA must be implemented in a provably secure, yet effective and performant, manner.

We propose to address these challenges by: (i) using timed automata12 to express component-level
contracts that combine functional and timing correctness; (ii) developing a procedure to formally verify, at
the source code level, that a monitor correctly implements a contract; (iii) developing a procedure to check
compatibility between monitors, and determining how they should be applied on a component; (iv) developing
assume-guarantee style verification techniques to prove that the composition of several component-level
contracts leads to a specific system-level property; and (v) developing a system architecture where RA
can be deployed in a secure manner on a system with unpredictable components, and an adversary with
well-defined capabilities.

The rest of this paper is organized as follows. Section II surveys related work. Section III elaborates
on the various thrust areas of our research. Section IV presents two challenge problems we are using to
guide our research. Section V describes our experimental platform and preliminary experimental results,
and Section VI concludes the paper.

II. Related Work

The idea of using a monitor to ensure that a system does not get into an undesirables state was proposed
in the context of control systems by Seto et al.3 They called this approach “Simplex”. The key idea was that
if we have a complex and more capable, but untrusted, controller Ccomp, and a simple but trusted controller
Csimp, then we can use Ccomp as long as it does not take the system into a state from which it can no longer
be recovered, i.e., moved back to a safe state by Csimp. This condition is monitored, and as soon as the
system is in danger of moving to a non-recoverable state, the monitor switches to Csimp. The Simplex idea
has been demonstrated on a number of real-life systems, such as an inverted pendulum. More recently, Bak
et al.13 have developed a more sophisticated version of Simplex that combines offline analysis with hybrid
reachability at runtime to further push the envelop of recoverability.

The idea of runtime monitoring has also been used in other contexts, such as formal verification.4,5 The
key idea here is that instead of verifying the system exhaustively in a static manner, which has scalability
issues due to statespace explosion, we check for violations of safety properties at runtime. This is more
tractable since we are only analyzing the states that are actually reachable during a concrete execution.

Schneider proposed “security automata”9 as a formalism to express security properties whose violations
can be detected at runtime. Originally, security automata were passive, i.e., they only monitored the system
for safety violations. More recently, Ligatti at al.10 have generalized this idea to “edit automata” that can
not only monitor system inputs and outputs, but also modify them as needed.

In the domain of real-time scheduling, monitors have also been used widely, particularly to enforce CPU
usage budgets by threads. For example, the ZSRM8 mixed-criticality scheduler handles threads with different
priorities and criticalities. It allocates CPU cycles to these threads in a way that respects priorities (during
nominal execution) and criticalities (during overload execution). To this end, it uses alarms to intercept
thread execution and take appropriate preemptive and budget enforcement steps.

Compared to all these works, our main contributions are in monitoring both logical and timing properties,
producing verified monitor implementations, analyzing interactions between monitors in a compositional
manner, and developing a secure deployment of monitors that is resilient against realistic attackers.

III. Thrust Areas

Our research will proceed in six inter-related thrust areas: (i) specifying contracts; (ii) verifying monitors;
(iii) monitor compatibility and composition; (iv) verifying system-level policies; (v) system evolution; and
(vi) secure deployment. We now discuss these thrust areas in more detail.
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III.A. Specifying Contracts

The specification of component-level contracts is done via timed automata.12 Timed automata are finite
automata augmented with clocks. Transitions are guarded by conditions on clock values, and reset clocks
as part of their associated action. Timed automata are able to express a rich class of timed behavior, and
hence are an appropriate formalism for capturing component contracts that involve both functionality and
timeliness.

Timing properties are particularly important for aerospace systems where both the correctness of a value
computed as well as when such value is available are necessary to ensure the proper interaction with the
physical environment. From the contract perspective and a component internal point of view, the contract
needs to guarantee that that this component will receive enough CPU cycles to ensure that it will finish its
computations on time. This means that given a contract for a component C1 defined as a time automaton T s

1

that describes the minimal availability of CPU time provided to the component as intervals of time when the
CPU is available (a.k.a. resource supply-bound function – sbf 14) we should be able to apply a verification
function S(T s

1 , C1) that verifies that all threads of component C1 meet their timing requirements. From the
inter-component point of view a contract needs to define a time automaton T d

1 that defines the maximum
consumption of CPU as intervals of times when the CPU is used (a.k.a. resource demand-bound function
– dbf 15). T d

1 indicates the CPU consumed by C1 (the threads inside C1) and hence not available to other
components. In the ideal case T s

1 will be equal to T d
1 (meaning that all the CPU time provided to the

component is used – no waste) but that depends on the thread scheduler used inside the component, the
scheduler used between components, the monitors used, and the allocation of CPU time to each component.
In the general case the verification function can be expressed as S(T s

1 , T
d
1 ) expressing that the resource supply

(sbf ) should be able to satisfy the resource demand (dbf ). For instance in ARINC 65316 sets of timeslots
within a major frame are assigned to each component (activating them in their assigned slots) and within
each slot fixed-priority scheduling is used.

III.B. Verifying Monitors

Given a monitor M at source code level, and contract expressed as a timed automaton T , our goal is to
check that M enforces T , i.e., every behavior allowed by M is a legal behavior according to T . Formally,
this boils down to verifying that T simulates M , i.e., M � T . Since M is available as source code, we will
check simulation by manually constructing a formula R that relates states of M and T , and using auto-active
verification tools (such as Frama-C) to prove that R is a simulation relation. We simplify the verification
by assuming that M is implemented as a while loop Loop that repeatedly waits for an action from the
component being controlled (e.g., a function being called) and responds by passing it on, or replacing it with
zero or more other actions (i.e., function calls.) Thus, using R, we only need to show that the body of Loop
simulates the transition relation of T . Typically, this will mean that R is inductive over the execution of
one iteration of Loop, and one step of T . From the timing point of view time monitors M t will restrict the
amount of CPU given to the component ensuring that the supply function (T s) is respected, i.e., M t � T s.
Note that given that this is only an approximation, it is possible for the enforcer to provide more CPU time
than is required leading to waste. The design of the appropriate contracts and enforcers is key for an efficient
implementation. In this case, we will also verify the implementation of the monitors M t.

III.C. Monitor Compatibility and Composition

Consider two monitors for a component C: M1 counts the number of times C performs an action α, while
M2 suppresses α whenever it is attempted within time t of action β. Clearly, the order in which M1 and
M2 are applied affects the final count obtained by M1. A similar issue arises if M2 inserts α instead of
suppressing it. We address this challenge in two phases. In the first phase, an algorithm takes a set of
monitors M1, . . . ,Mk and computes an ordering such that whenever Mi requires an action as input that is
suppressed (or inserted) by Mj , then Mi appears before Mj in the ordering. In the second phase, this is
generalized by distinguishing between actions produced by components and those produced by monitors. In
this scenario, monitor M1 could be interested either in α produced by C (in which case it should be applied
before M2) or by M2 (in which case it should be applied after M2). In all situations, we detect (and warn)
when no feasible monitor orderings exist (e.g., due to circular dependencies). Timing monitors introduce an
interesting problem given that they can pause the execution of a component when it tries to execute longer
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than specified in the contract. As a result, a value expected by a functional monitor may be suddenly absent.
Our composition scheme also handles this situation.

III.D. Verifying System-Level Policies

So far, we have considered component-level contracts and monitors only. In practice, systems will consist
of a number of concurrently executing and interacting components. We see concurrency in DRTS at two-
levels: (i) intra-node where multiple threads execute on the same processor, and interact via shared memory
with sequential consistency; (ii) inter-node where threads executing on separate processors or physically
separated nodes interact via shared memory with weaker notions of consistency (e.g., total store order) or
via message passing. In both cases, the problem is to verify that a set of low-level monitors implement a
global policy. This is challenging because monitors can interact in complex ways, and since they execute
in parallel, verifying them exhaustively in a brute-force way leads to statespace explosion. To this end,
we use assume-guarantee17 reasoning verify a collection of monitors compositionally. We create assume-
guarantee style proof rules for monitors that enforce timing constraints. In addition, we create proof rules
that handle both shared memory and message passing based communication between monitors. From the
timing perspective, integrating the components together implies ensuring that the sbf of all components can
be satisfied by the system scheduler.

III.E. System Evolution

Systems are continuously evolving. This evolution typically happens in an incremental fashion by replacing,
adding, and/or removing components. These components can be completely new or reused from previous
projects. As a result, contracts and monitors should enable this evolution. From the timing perspective this
requires the sbf of the contract of a component to be flexible enough to allow variations in the periodicity
and execution times of the threads (among other timing parameters). The challenge here is to describe
T s (and their corresponding MT ) flexible enough to ensure that S(T s, T d‘) holds for widely-varying T d‘s
(modification of the original dbf contract T d). Current standards that allow the definition of contracts are
rather brittle. For instance, ARINC 653 defines time partitions that repeat every major frame. Typically,
the period of each task must be a multiple of the major frame. Unfortunately, this means that even a small
reduction in the period of a task can force a recalculation of major frame and the corresponding partitions,
i.e., triggering a system-wide change. This has been a challenge for incremental verification. For instance,
the FAA allows limiting the re-certification of a modified system to only certifying the modified components
if it can be proven that their external behavior (contract) remains the same and does not interfere with
the other components. Brittle contracts offer very little opportunities to preserve previous certifications.
Furthermore, the composition of timing and logical contracts and the corresponding monitors has not been
analyzed and remain an open challenge as discussed before.

III.F. Secure Deployment

We envision an architecture where each monitor is implemented as a module that is logically and temporally
isolated from its target component. This means that the monitor will perform correctly under arbitrary
actions and CPU usage by the component. This takes care of the requirement that the monitors are un-
predictable (and potentially untrustworthy). We explore implementing each monitor as a HypApp of the
XMHF hypervisor.18 XMHF has been already verified to provide memory integrity (i.e., logical isolation)
between the untrusted guest OS (containing all components) and its HypApps. Moreover, each HypApp is
implemented as a function that will be invoked (by the hardware) whenever a specific low-level intercept
(e.g., accessing a device) occurs. This maps naturally to our monitors as event handlers. However, addi-
tional research is needed to determine a procedure by which high-level contracts can be mapped to low-level
intercepts, and a collection of verified monitors can be developed and deployed as XMHF HypApps.

IV. Challenge Problems

To guide our work, we are using two challenge problems, inspired by real-world scenarios.
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Virtual 
Tether

𝐴

𝐷

Figure 1. The Virtual Tether Challenge Problem.

IV.A. Virtual Tether

In our initial experiments with commercially available drones, we noticed that they would occasionally move
in ways that were not intended by the human operator. For example, in indoor settings, this often manifested
as the drone suddenly moving up and hitting the ceiling. To solve this problem, we considered tethering
the drone physically by a wire to a heavy weight on the ground. Our first challenge problem is to achieve
this goal via runtime assurance. Specifically, given a drone D, and a well-defined 3-dimensional geographical
area A, we want to develop an enforcer that will ensure that D does not move out of A. Our threat model,
as shown in Figure 1, includes both incorrect remote guidance by an human operator, as well as malicious
intrusions by cyber-attackers.

Obviously, this technique can also be used to solve the complementary problem of ensuring that the drone
never enters a forbidden area F . This problem is sometimes referred to as geo-fencinga. Indeed, there have
been proposals b to use geo-fencing to regulate drone movement without stifling innovation.

Sensor Package

Sensors Actuators

Hardware Platform

Device Drivers

Autopilot

Enforcer

Operating System

Sensor Package

Sensors Actuators

Hardware Platform

Device Drivers

Autopilot

Enforcer

Operating System

Hypervisor

(a) (b)

Figure 2. Runtime architecture for the two stages of virtual tether.

To solve this problem, we assume the drone has access to localization information, i.e., knowledge of
where it is situated in a well-defined 3-dimensional coordinate system. In practice, this can be achieved

ahttps://en.wikipedia.org/wiki/Geo-fence
bhttp://alcalde.texasexes.org/2015/03/todd-humphreys-dont-overregulate-drones
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via GPS, or a more localized mechanism, depending on the situation. We plan to solve the problem in two
stages:

• In the first stage, we will trust not only the hardware, but also all the software components other than
the ones that may be providing movement commands to the drone. For example, in a human-operated
scenario, we trust the auto-pilot but not the human operator. If the drone moves autonomously, then we
do not trust the software components producing guidance information, such as waypoint. Figure 2(a)
shows a possible runtime architecture for this stage of the problem. From a security perspective, this
has a very weak attacker model, since we have are assuming a large trusted computing base, including
the autopilot and the entire operating system. Given the large number of software vulnerabilities that
are discovered and exploited routinely, a solution at this stage is only a stepping stone toward a secure
deployment.

• In the second stage, we will reduce our trusted computing base to only the hardware. Figure 2(b) shows
a possible runtime architecture for this stage of the problem. Since we no longer trust the operating
system, we must implement the enforcer in a layer that is outside the control of the OS. We plan to
explore virtualization as a means to achieve this goal.

This challenge problem will enable us to make progress on several of our research thrusts, such as
specifying contracts, verifying monitors, and secure deployment. However, it has limited scope to explore
monitor compatibility and composition, since it is restricted to a single agent. Our second challenge problem,
described next, is designed to address this issue.

IV.B. Autonomous Intersection

There has been considerable recent interest in autonomous vehicles on roads and highways. One area that has
received particular attention is the development of techniques to ensure that autonomous vehicles can cross
road intersections safely (i.e., without collisions). A number of different approaches have been proposed, such
as intersection protocols,19but none have been verified at the implementation level. We believe that runtime
assurance can be used to address this challenge. The key idea is to develop an enforcer that steps in at the
right moment to avoid a collision, while allowing the vehicle to operate normally otherwise. An important
challenge here is the interaction between multiple enforcers executing on different vehicles that get into a
potential collision situation. Once again, we may be able to assume good localization and communication
among the vehicles. Nevertheless, verifying that the enforcers correctly collaborate to avoid collisions under
all possible situations is an open problem, and directly relevant to our research thrusts.

V. Experimental Platform and Validation

In order to validate our results, we have set up an experimental testbed comprising of an indoor local-
ization system, and a set of trackable minidrones. We also have preliminary results to indicate that the
platform works as expected, which we describe in this section.

V.A. Indoor Localization

Since both our challenge problems require accurate localization information, we have set up an indoor
localization system using the commercial Optitrack systemc. Our current setup, shown in Figure 3(a),
includes 6 motion capture cameras setup (roughly) in a circle with a diameter of 18 feet. This area is
sufficient for our initial experiments, and can be increased as needed by adding more cameras.

Figure 3(b) shows a camera from up close. The cameras can track small spherical markers (that come
with the system) which are coated with special reflective surface. The tracking information from each
camera is sent via ethernet cables to a central computer (shown in Figure 3(c)). A software (also supplied by
Optitrack) collects this tracking information and combines it to produce the precise location of the ball in a
3-dimensional coordinate system setup by the cameras. Thus, for each marker, we get a value of X, Y and
Z. The software also allows three or more markers with fixed relative positions (e.g., if the markers are fixed
to the surface of a solid object) to be identified and combined into a rigid body. For each such rigid body,

chttp://optitrack.com
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(a)

(b) (c)

(d)

Figure 3. Optitrack Localization System.

the software generates both the location (X, Y and Z) of its center of mass, and it orientation in terms of
roll, pitch and yaw.

The location of each marker, and the location of orientation of each rigid body is continuously multicast
in real-time over the local network at a rate of 120Hz. The format of the packets used to represent this
data is known, and there is open source (C++) client software that can receive the data over the network,
and extract the location and orientation of each marker and rigid body by unpacking it. Figure 3(d) shows
a screenshot of our central computer with two windows. The one on top is the Optitrack software that
constructs the location and orientation information for each marker and rigid body, and broadcasts them.
The one on the bottom is the client software receiving this data and unpacking it to extract and display the
localization information.

V.B. Mini-Drones

We are also using commercially available minidrones manufactured by Parrot as mobile agents that can be
used to test our localization infrastructure, as well as to deploy runtime assurance solutions for our first
challenge problem. Our choice of minidrones was motivated by two factors:

1. They have an appropriate size, and power, for safe indoor experimentation, and in particular to be
tracked via our localization system.
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(a) (b)

Figure 4. Minidrones and experimental setup to validate localization.

2. They are relatively inexpensive that we can purchase several within our budget. In addition, they are
robust against minor crashes, which are inadvertent in experimental situations.

3. There is publicly available open-source software which can be used to control them programmaticallyd

using standard Bluetooth hardware, and a Linux-based laptop.

Figure 4(a) shows two minidrones with Optitrack markers attached. Figure 4(b) shows the laptop and
gamepad controller we are using to control the minidrones as part of our preliminary experiments, which we
describe next.

V.C. Platform Validation

Our preliminary experiments are aimed mainly at testing the efficacy of our testbed. We implemented
a simple enforcer to create a virtual tether for a minidrone. The enforcer executes periodically on the
laptop. During each execution, it receives user commands via the gamepad controller, and localization and
orientation data from Optitrack. Using the localization information, the enforcer first determines whether
the minidrone is within the safe area A defining the virtual tether. If this is the case, the enforcer passes
the user command as is to the minidrone. Otherwise, it uses a very simple algorithm to determine a new
command aimed at bringing the minidrone back to within A. In our initial experiments we observed that,
when the enforcer is enabled, the minidrone is brought back to the safe area A as soon as it strays outside.
When the enforcer is disabled, the human operator is easily able to navigate the minidrone to a point outside
A and keep it there. We would like to emphasize again that these results only indicate that our tested is
working as expected. While this is encouraging, we still need to address the core technical thrust areas
presented earlier in the paper.

VI. Future Work and Conclusion

Distributed real-time (DRTS) embedded systems operating in uncertain and contested environments
are of great relevance to the aerospace community. Such systems rely on components with unpredictable
behavior to provide mission-critical capability. These components pose a challenge to assuring system-level
safety and security. This paper presents an approach for developing a provably correct approach for Runtime
Assurance of DRTS. We discuss the core technical thrust areas, present two challenge problems we are using
to guide our research, and conclude with an experimental setup and initial results. We believe this work
will lead to the advancement in practical development of high-assurance software for highly adaptive and
autonomous aerospace systems.
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