
Model-Driven Observability for Big Data Storage

John Klein
Software Engineering Institute

Carnegie Mellon Univ.
Pittsburgh, PA, USA
jklein@sei.cmu.edu

Ian Gorton
Northeastern University

Seattle, WA, USA
igorton@ccs.neu.edu

Laila Alhmoud, Joel Gao, Caglayan
Gemici, Rajat Kapoor, Prasanth Nair,

Varun Saravagi
Carnegie Mellon Univ.
Pittsburgh, PA, USA

Abstract—The scale, heterogeneity, and pace of evolution of
the storage components in big data systems makes it impractical
to manually insert monitoring code for observability metric
collection and aggregation. In this paper we present an
architecture that automates these metric collection processes,
using a model-driven approach to configure a distributed
runtime observability framework. We describe and evaluate an
implementation of the architecture that collects and aggregates
metrics for a big data system using heterogeneous NoSQL data
stores. Our scalability tests demonstrate that the implementation
can monitor 20 different metrics from 10,000 database nodes
with a sampling interval of 20 seconds. Below this interval, we
lose metrics due to the sustained write load required in the
metrics database. This indicates that observability at scale must
be able to support very high write loads in a metrics collection
database.

Keywords—big data, NoSQL, observability, model-driven
engineering.

I. INTRODUCTION
In the last decade, the world has seen an exponential growth of
digital data, Organizations such as Google and Facebook were
born on the internet, and are leading this scale-driven
revolution [1]. Beyond the Internet companies, big data
applications are becoming pervasive across diverse business
and scientific domains. For example, modern commercial
airplanes produce approximately 0.5TB of operational data per
flight [2], and by 2020, the Internet of Things (IoT) will
generate 4 zettabytes of data per year, supporting monitoring
and optimization of processes and services globally [3].

At the scale of these systems, meaningful analysis and
prediction of end-to-end performance is usually not feasible at
design time. Performance models must capture the complex
static and dynamic component compositions in both the system
and the underlying execution infrastructures. In addition,
accurately representing heterogeneous and highly variable
workloads challenges the state of the art in performance
modeling. Pragmatically, even if it were possible to build such
models, rapid post-deployment data growth, shared cloud-
based infrastructures, and rapid application evolution would
quickly invalidate model results. Assuring runtime
performance at big data scale must be based on observing and
analyzing in vivo application behavior. This enables
observability into system health and status, both at the
infrastructure and application level.

This paper builds on our earlier work [13] that presents the
challenges of building massively scalable, easily configurable,

lightweight observability solutions. In response to these
challenges, we describe a model-driven framework for
observability that is the focus of our current research. Model-
driven approaches facilitate rapid customization of a
framework and eliminate custom code for each deployment,
hence reducing costs and effort. In our initial experiments, this
framework has been able to efficiently collect and aggregate
runtime performance metrics in a big data system with 1000s
of storage nodes.

The contributions of our research in this area are:

1. A model-driven architecture, toolset, and runtime
framework that allows a designer to describe a
heterogeneous big data storage system as a model, and
deploy the model automatically to configure an
observability framework.

2. A reference implementation of the architecture, using the
open source Eclipse package to implement the MDE
design client, the open source collectd package to
implement the metric collection component, and the open
source Grafana package to implement the metrics
aggregation and visualization component.

3. Performance and availability results from initial
experiments, using the reference implementation.

The initial metamodel and implementation focuses on the
pervasive big data pattern known as polyglot persistence [4],
which uses multiple heterogeneous data stores (often
NoSQL/NewSQL) within a single big data system. We note
that a model-driven approach would not be strictly necessary
(e.g., a discovery-based approach might be a better solution) if
the observability scope was limited to just NoSQL/NewSQL
technology. However, we intend this architecture to extend to
cover complete big data applications, including processing
pipelines and analytics. In this broader case, a model-driven
approach provides advantages in automating and creating
application-aware metric aggregation and visualization.

II. ARCHITECTURE AND IMPLEMENTATION
We have developed an architecture and a reference

implementation1 suitable for further research that addresses the
challenges of observability in big data systems. The
architecture uses model-driven engineering [5] to automate
metric collection, aggregation, and visualization.

1 Available at https://github.com/johnrklein/obs-prototype

2016 13th Working IEEE/IFIP Conference on Software Architecture

978-1-5090-2131-4/16 $31.00 © 2016 IEEE

DOI 10.1109/WICSA.2016.27

134

2016 13th Working IEEE/IFIP Conference on Software Architecture

978-1-5090-2131-4/16 $31.00 © 2016 IEEE

DOI 10.1109/WICSA.2016.27

134

A. Overview of the Observability Architecture
The architecture context is shown in Fig. 1, depicting three

user roles. The first is modeling, representing a DevOps
engineer who uses a design time client to create a model of the
system’s data storage topology and specify the configuration
for each heterogeneous database. The model identifies the
metrics to capture and their collection frequency. At the
completion of the modeling phase, the design time client
generates the monitoring configuration for a set of metric
collection and visualization elements.

Fig. 1. Observability Architecture Context Diagram

The second role is observing, representing a system
operator who uses a metric visualization client to monitor
system performance. The visualization client is configured
using the output of the design-time client to reflect the model
of system to be observed. It supports real time monitoring of
system operations and allows operators to specify and
customize views based on their requirements for situational
awareness.

The third role is programmers, who create metric collection
probes to plug into the architecture. These probes are database-
specific adapters that allow any database technology to be
incorporated into the architecture. Extensibility is a major
feature of our approach, as any solution must be able to
efficiently support both existing and future database platforms.

The main run time elements of the observability system
architecture are shown in the top-level component and
connector diagram in Fig. 2. There are two clients, one for each
of the main user roles, modeling and observing, discussed
above. The Server Tier includes the Metric Engine, which
implements dynamic metric aggregation and handles concerns
related to dependability of connections to Collection Daemons.
The Server Tier also includes the Grafana Server, which
handles metric visualization. The Model Handler in the Server
Tier propagates changes to the design-time model, and the
Notification Server augments the interactive metric
visualization with automated notification of user-defined
exception conditions.

Fig. 2 Observability System Architecture (Component and Connector View)

135135

The Storage Tier provides persistent storage of metric
streams and notifications. All metrics for each database are
stored as a time series to facilitate visualization and analysis.
Metrics are stored with metadata to enable dynamic discovery
of the metrics. This is necessary to accommodate changes in
monitoring configurations after an existing model has been
upgraded and deployed as a new version.

The Metric Monitoring Tier uses Observability Daemons
on each database node to collect metrics from the local
database instance and operating system. The daemons exploit
database-specific and operating system APIs to periodically
sample metrics and forward these to the Metric Engine.

B. Metamodel
Our observability architecture exploits a model-driven

engineering approach to address the scale challenge of big data
systems. Hence, a model of the system to be observed is
created by the modeling role. This model is built from elements
defined in the metamodel (Fig. 3). It specifies and customizes
the components in our observability framework. The system
model also specifies the metrics to be collected and how the
metrics will be aggregated. The metamodel represents the
topology as one or more database clusters (DatabaseCluster
element in the metamodel), with each cluster using a particular
technology (DbType). A cluster is comprised of a number of
nodes (NodeMachine).

Metrics (Metric) are defined as key-value pairs (KeyValue)
collected from a database cluster. They may be simple values
collected directly from a database’s monitoring API
(BaseMetric), or calculated at run time from one or more
simple metrics (AggregatedMetric). Each particular database
technology (DbType) defines a set of metrics that are supported
by that technology and are available programmatically. This
approach makes it possible to collect both common metrics that
are available from all databases (e.g., disk utilization, query
processing time) and technology-specific metrics (e.g.,
automatic rebalancing in MongoDB 2). These metrics are
available for selection when the modeler creates a system
model and specifies the databases that will be deployed.

The metamodel also defines the structure of event
notifications (Notification). These are triggered when simple or
aggregated metrics exceed a specified threshold value set by
the modeler.

C. Model Editor Client
In Fig. 2, the Model Editor Client instantiates the

metamodel in a graphical editor, using the Eclipse Modeling
Framework (EMF) 3 . The graphical model specifying the
topology of the observed system and the metrics to be collected

2 https://docs.mongodb.org/manual/core/sharding-balancing/
3 https://eclipse.org/modeling/emf/

Fig. 3. Metamodel for observability of polyglot persistence pattern

136136

and aggregated is transformed using Acceleo 4 into a text
representation. This is uploaded to the Model Handler server,
which propagates model changes to the Observability Daemons
and Metrics Engine. Models are versioned to improve
dependability, ensuring all parts of the system are consistent.
This also enables rollback to a previous version.

D. Runtime Metric Collection
An Observability Daemon executes on each node in the

observed system to collect metrics and forward them to the
Metrics Engine. Each Observability Daemon is configured by
the Model Handler based on the system model, so that model
changes (e.g., in topology or metrics collected) immediately
change the Observability Daemon behavior. The Observability
Daemon is based on the collectd5 open source package. Our
architecture adds a Daemon Manager component on top of
collectd, so that collectd can be remotely and dynamically
configured by the Model Handler.

 Our architecture uses collectd plug-ins to adapt to each
supported database technology, encapsulating the precise
mechanism used to obtain database metrics within a database-
specific plug-in. The plug-ins exploit the monitoring API
provided by the specific database technology (e.g., Cassandra’s
JMX API6), to acquire the metric data from databases. We
have developed and tested reference plug-ins for Cassandra,
MongoDB, and Riak.

Each Observability Daemon sends the collected metrics to
the Metric Engine server using the collectd notification
protocol. Separately, a heartbeat notification is sent by the
Daemon Manager to the Missing Daemon component in the
Metrics Engine. The Missing Daemon component uses the
system model to determine which Observability Daemons
should be executing, compares that to the received heartbeats,
and raises an alarm when an Observability Daemon appears to
have failed. The heartbeat notification was included to improve
dependability. Simply monitoring a metric stream to assess the
state of an Observability Daemon is problematic as individual
messages may be delayed due to transient network partitions,
or daemon or node failure. Transient partitions can be handled
by this protocol, as daemons buffer collected metrics for a
configurable time period (e.g. 5 minutes) and can resend
missed values. Node and daemon failures currently require
operator intervention. Automated recovery from such failures
simply requires us to incorporate additional monitoring
capabilities into our framework, an objective for further work

E. Metric Aggregation and Visualization
In our implementation, several metric visualizations are

created using the Grafana 7 open source package, which
supports time series graphs such as those shown in Fig. 4.
Grafana comprises a server and a web-based client, as shown
in Fig. 2. Metrics are stored using self-describing data
structures embedded in the metric stream. We utilize key-value

4 http://www.eclipse.org/acceleo/
5 https://collectd.org
6
http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsMonitoring
.html
7 http://grafana.org

pairs, where the metric name comprises the key and the value
is the metric reading at a given time.

Fig. 4. Metric visualization user interface

III. PERFORMANCE RESULTS
To assess the performance and scalability of our

observability architecture, we performed a series of tests using
Amazon’s AWS cloud platform. We created a test daemon that
was able to simulate metrics generation from multiple database
nodes. We then configured a pool of test daemons to simulate
metrics collection from 100 to 10,000 database nodes. We
initially set the metrics collection interval to 30 seconds, and
configured the daemons to simulate the generation of 20
distinct metrics per node. We also specified the model to
aggregate CPU metrics from all nodes to calculate overall
system CPU utilization.

We deployed the observability architecture on an AWS
m3.2xlarge instance type. This comprised an Intel Xeon E5-
2670 v2 (Ivy Bridge) server with 8 cores, 8MB RAM, 30GB
disk and 160GB SSD. The test daemons were configured to
initially simulate metrics generation from 100 database nodes.
After 5 minutes, the number of simulated nodes increased to
1000, and then 1000 simulated nodes were added every 5
minutes until the test simulates 10,000 database nodes. We
monitored the resource usage on the observability server, and
the results are in Fig. 5.

Graph 1 shows that the metric transfer time stays constant
as the number of metrics per interval increases (the peaks in
this graph), and that the metric transfer takes about one-half of
the collection interval, leaving margin for growth (the troughs
in this graph). The system was able to handle 10,000 nodes
generating 20 metrics during each 30 second interval. The
system scaled well to handle network traffic and saved the
metrics to disk to be shown at dashboard. The aggregation
plugin was able to aggregate metrics from 10,000 nodes
successfully.

To summarize the test results:

• With linearly increasing metric collection load, the disk
space used also increased linearly. For 10,000 nodes with
20 metrics per node and a 30 second collection interval,
disk space required is approximately 50 GB for 7 days
monitoring data.

137137

• Server free memory reduced from 25 GB initially to 22 GB
with 10000 nodes being monitored. Hence we conclude our
solution is not limited in scalability by memory utilization.

• CPU utilization is low, only showing minor increases in
activity as the number of nodes grows.

• With 10000 simulated nodes, the server was processing 293
Kbits/s of network traffic at peak.

To stress test the observability framework, we deployed the
test system with 10,000 simulated nodes. The collection
interval started at 30 seconds, and every 5 minutes was reduced
by 5 seconds. The system operated normally until the sample
frequency reached 15 seconds. At this point, some metrics
were not written to disk. This situation continued to deteriorate
as we reduced the sampling interval to 5 seconds. No
components failed, but there was a significant loss of metric
data in the database.

Examining execution traces from these failing tests, we saw
the CPU, memory, and network utilization levels remained
low. Disk writes, however, grew to a peak of 32.7 MB/s. This

leads us to believe that the Whisper database8 in the Grafana
server was unable to sustain this relatively heavy write load.
This is likely a limitation of this component in our architecture.
Replacing this database with a distributed database technology
such as Cassandra would consequently make it possible to
monitor a significantly larger collection of nodes.

IV. PRIOR WORK

There has been significant prior work on collecting general
measurements of resource utilization at process and node level.
This includes Ganglia9, and Nagios [6]. Ganglia and Splunk10
support collection of host-level measurements across clusters,
and provide basic monitoring and visualization dashboards.
Commercial products from HP 11, IBM12 , and others also
provide similar collection and visualization capabilities, but

8 http://graphite.wikidot.com/whisper
9 ganglia.sourceforge.net
10 www.splunk.com
11 http://www8.hp.com/us/en/software-solutions/systems-management-server-
monitoring-tools/
12 http://www.ibm.com/software/tivoli

Fig. 5. Performance and Scalability Test Results

138138

incur significant license costs. Tools such as Chukwa13 and
Sawzall14 focus on general analytics on collected log data, and
provide semantics for time series data sets.

In visualizing large-scale system health and performance,
Yin, et al, take an approach inspired by video games to enable
navigation through a complex data landscape [7]. In this case,
the focus was on infrastructure-level measurement data,
however the approach may be extensible for other types of
measurements. The Theia system provides architecture-specific
visualization for Hadoop-based systems [8].

Architecture-aware modeling based on architecture styles
traces back to very early work in software architecture [9].
More recently, Palladio [10] uses architectural styles to
generate performance models, and Rainbow [11] uses
architectural styles to model and generate a runtime framework
focused on dynamic adaptation. The Rainbow framework uses
measurement probes, which may include monitoring
performance. However, the probes must be built into the
components of the system, and the generation focuses on style-
based reaction strategies when a probe’s measurement crosses
a threshold.

Finally, there has been little work on using model-driven
approaches to generate monitors. He, et al, present a model-
driven approach to composing monitors, synthesizing a
compatible metamodel and then transforming heterogeneous
monitors into that common metamodel. The approach
generates only monitors, without aggregations, a measurement
persistence schema, or visualizations [12].

V. CONCLUSIONS AND FUTURE WORK
In this paper we described the design and prototype

implementation of an observability framework for big data
systems. We have exploited model-driven techniques to make
the core architecture customizable to different system’s
observability requirements without the need for custom code
for each deployment. We have also built the solution by
reusing various off-the-shelf components to streamline our
development effort and provide advanced capabilities ‘out of
the box’. The reference implementation has been publicly
released as a research platform. The reference implementation
has availability limitations that will be addressed, using
standard architecture mechanisms, as we evolve the platform.

Our current implementation only provides observability at
the database layer. Extending these model-driven capabilities
to other layers in a big data system (e.g., application server and
Web servers) and improving the scalability of our framework
forms the core of our future work. We also wish to investigate
the potential of automated resource discovery approaches to
compose an observability system dynamically. Automated
approaches have immense potential for dealing with scale and
rapid evolution, but face many daunting challenges, for
example navigating security perimeters, distributed data
centers and logical application partitions.

ACKNOWLEDGMENT

13 wiki.apache.org/hadoop/Chukwa
14 research.google.com/archive/sawzall.html

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center. References herein to any specific
commercial product, process, or service by trade name, trade
mark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software
Engineering Institute. [Distribution Statement A] This material
has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution. DM-0003210

REFERENCES
[1] J. Weiner and N. Bronson. Facebook's Top Open Data Problems

[Online].
https://research.facebook.com/blog/1522692927972019/facebook-s-top-
open-data-problems/ (Accessed 10 Nov 2014).

[2] M. Finnegan, “Boeing 787s to create half a terabyte of data per flight,
says Virgin Atlantic,” Computerworld UK, 6 March 2013,
http://www.computerworlduk.com/news/infrastructure/3433595/boeing-
787s-to-create-half-a-terabyte-of-data-per-flight-says-virgin-atlantic/
(Accessed 20 Feb 2014).

[3] V. Turner, J. F. Gantz, D. Reinsel, et al., “The Digital Universe of
Opportunities: Rich Data and the Increasing Value of the Internet of
Things.” International Data Corporation, White Paper, IDC_1672, 2014,
http://idcdocserv.com/1678 (Accessed 10 Nov 2014).

[4] P. J. Sadalage and M. Fowler, NoSQL Distilled. Addison-Wesley
Professional, 2012.

[5] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice. Morgan & Claypool, 2012.

[6] E. Imamagic and D. Dobrenic, “Grid Infrastructure Monitoring System
Based on Nagios,” in Proc. 2007 Workshop on Grid Monitoring (GMW
'07), Monterey, California, USA, 2007, pp. 23--28. doi:
10.1145/1272680.1272685.

[7] J. Yin, P. Sun, Y. Wen, et al., “Cloud3DView: An Interactive Tool for
Cloud Data Center Operations,” in Proc. ACM Conference on
SIGCOMM (SIGCOMM '13), Hong Kong, China, 2013, pp. 499--500.
doi: 10.1145/2486001.2491704

[8] E. Garduno, S. P. Kavulya, J. Tan, et al., “Theia: Visual Signatures for
Problem Diagnosis in Large Hadoop Clusters,” in Proc. 26th
International Conference on Large Installation System Administration:
Strategies, Tools, and Techniques (lisa'12), San Diego, CA, 2012, pp.
33--42.

[9] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[10] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” J. of Systems and
Software, vol. 82, no. 1, pp. 3-22, Jan 2009, doi:
10.1016/j.jss.2008.03.066

[11] D. Garlan, S.-W. Cheng, A.-C. Huang, et al., “Rainbow: Architecture-
Based Self Adaptation with Reusable Infrastructure,” IEEE Computer,
vol. 37, no. 10, October 2004, doi: 10.1109/MC.2004.175.

[12] Y. He, X. Chen, and G. Lin, “Composition of Monitoring Components
for On-demand Construction of Runtime Model Based on Model
Synthesis,” in Proc. 5th Asia-Pacific Symposium on Internetware
(Internetware '13), Changsha, China, 2013, pp. 20:1--20:4. doi:
10.1145/2532443.2532472

[13] John Klein and Ian Gorton. 2015. Runtime Performance Challenges in
Big Data Systems. In Proceedings of the 2015 Workshop on Challenges
in Performance Methods for Software Development (WOSP '15). ACM,
New York, NY, USA, 17-22.

139139

