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Abstract—The scale, heterogeneity, and pace of evolution of 
the storage components in big data systems makes it impractical 
to manually insert monitoring code for observability metric 
collection and aggregation. In this paper we present an 
architecture that automates these metric collection processes, 
using a model-driven approach to configure a distributed 
runtime observability framework. We describe and evaluate an 
implementation of the architecture that collects and aggregates 
metrics for a big data system using heterogeneous NoSQL data 
stores. Our scalability tests demonstrate that the implementation 
can monitor 20 different metrics from 10,000 database nodes 
with a sampling interval of 20 seconds. Below this interval, we 
lose metrics due to the sustained write load required in the 
metrics database. This indicates that observability at scale must 
be able to support very high write loads in a metrics collection 
database. 

Keywords—big data, NoSQL, observability, model-driven 
engineering. 

I. INTRODUCTION 
In the last decade, the world has seen an exponential growth of 
digital data, Organizations such as Google and Facebook were 
born on the internet, and are leading this scale-driven 
revolution [1]. Beyond the Internet companies, big data 
applications are becoming pervasive across diverse business 
and scientific domains. For example, modern commercial 
airplanes produce approximately 0.5TB of operational data per 
flight [2], and by 2020, the Internet of Things (IoT) will 
generate 4 zettabytes of data per year, supporting monitoring 
and optimization of processes and services globally [3]. 

At the scale of these systems, meaningful analysis and 
prediction of end-to-end performance is usually not feasible at 
design time. Performance models must capture the complex 
static and dynamic component compositions in both the system 
and the underlying execution infrastructures. In addition, 
accurately representing heterogeneous and highly variable 
workloads challenges the state of the art in performance 
modeling. Pragmatically, even if it were possible to build such 
models, rapid post-deployment data growth, shared cloud-
based infrastructures, and rapid application evolution would 
quickly invalidate model results. Assuring runtime 
performance at big data scale must be based on observing and 
analyzing in vivo application behavior. This enables 
observability into system health and status, both at the 
infrastructure and application level. 

This paper builds on our earlier work [13] that presents the 
challenges of building massively scalable, easily configurable, 

lightweight observability solutions. In response to these 
challenges, we describe a model-driven framework for 
observability that is the focus of our current research. Model-
driven approaches facilitate rapid customization of a 
framework and eliminate custom code for each deployment, 
hence reducing costs and effort. In our initial experiments, this 
framework has been able to efficiently collect and aggregate 
runtime performance metrics in a big data system with 1000s 
of storage nodes.  

The contributions of our research in this area are: 

1. A model-driven architecture, toolset, and runtime 
framework that allows a designer to describe a 
heterogeneous big data storage system as a model, and 
deploy the model automatically to configure an 
observability framework.  

2. A reference implementation of the architecture, using the 
open source Eclipse package to implement the MDE 
design client, the open source collectd package to 
implement the metric collection component, and the open 
source Grafana package to implement the metrics 
aggregation and visualization component. 

3. Performance and availability results from initial 
experiments, using the reference implementation. 

The initial metamodel and implementation focuses on the 
pervasive big data pattern known as polyglot persistence [4], 
which uses multiple heterogeneous data stores (often 
NoSQL/NewSQL) within a single big data system. We note 
that a model-driven approach would not be strictly necessary 
(e.g., a discovery-based approach might be a better solution) if 
the observability scope was limited to just NoSQL/NewSQL 
technology. However, we intend this architecture to extend to 
cover complete big data applications, including processing 
pipelines and analytics. In this broader case, a model-driven 
approach provides advantages in automating and creating 
application-aware metric aggregation and visualization. 

II. ARCHITECTURE AND IMPLEMENTATION 
We have developed an architecture and a reference 

implementation1 suitable for further research that addresses the 
challenges of observability in big data systems. The 
architecture uses model-driven engineering [5] to automate 
metric collection, aggregation, and visualization.  

                                                
1 Available at https://github.com/johnrklein/obs-prototype 
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A.  Overview of the Observability Architecture 
The architecture context is shown in Fig. 1, depicting three 

user roles. The first is modeling, representing a DevOps 
engineer who uses a design time client to create a model of the 
system’s data storage topology and specify the configuration 
for each heterogeneous database. The model identifies the 
metrics to capture and their collection frequency. At the 
completion of the modeling phase, the design time client 
generates the monitoring configuration for a set of metric 
collection and visualization elements. 

 

Fig. 1. Observability Architecture Context Diagram 

The second role is observing, representing a system 
operator who uses a metric visualization client to monitor 
system performance. The visualization client is configured 
using the output of the design-time client to reflect the model 
of system to be observed. It supports real time monitoring of 
system operations and allows operators to specify and 
customize views based on their requirements for situational 
awareness.  

The third role is programmers, who create metric collection 
probes to plug into the architecture. These probes are database-
specific adapters that allow any database technology to be 
incorporated into the architecture. Extensibility is a major 
feature of our approach, as any solution must be able to 
efficiently support both existing and future database platforms.  

The main run time elements of the observability system 
architecture are shown in the top-level component and 
connector diagram in Fig. 2. There are two clients, one for each 
of the main user roles, modeling and observing, discussed 
above. The Server Tier includes the Metric Engine, which 
implements dynamic metric aggregation and handles concerns 
related to dependability of connections to Collection Daemons. 
The Server Tier also includes the Grafana Server, which 
handles metric visualization. The Model Handler in the Server 
Tier propagates changes to the design-time model, and the 
Notification Server augments the interactive metric 
visualization with automated notification of user-defined 
exception conditions. 

Fig. 2  Observability System Architecture (Component and Connector View) 

135135



The Storage Tier provides persistent storage of metric 
streams and notifications. All metrics for each database are 
stored as a time series to facilitate visualization and analysis. 
Metrics are stored with metadata to enable dynamic discovery 
of the metrics. This is necessary to accommodate changes in 
monitoring configurations after an existing model has been 
upgraded and deployed as a new version.  

The Metric Monitoring Tier uses Observability Daemons 
on each database node to collect metrics from the local 
database instance and operating system. The daemons exploit 
database-specific and operating system APIs to periodically 
sample metrics and forward these to the Metric Engine. 

B. Metamodel 
Our observability architecture exploits a model-driven 

engineering approach to address the scale challenge of big data 
systems. Hence, a model of the system to be observed is 
created by the modeling role. This model is built from elements 
defined in the metamodel (Fig. 3). It specifies and customizes 
the components in our observability framework. The system 
model also specifies the metrics to be collected and how the 
metrics will be aggregated. The metamodel represents the 
topology as one or more database clusters (DatabaseCluster 
element in the metamodel), with each cluster using a particular 
technology (DbType). A cluster is comprised of a number of 
nodes (NodeMachine). 

Metrics (Metric) are defined as key-value pairs (KeyValue) 
collected from a database cluster. They may be simple values 
collected directly from a database’s monitoring API 
(BaseMetric), or calculated at run time from one or more 
simple metrics (AggregatedMetric). Each particular database 
technology (DbType) defines a set of metrics that are supported 
by that technology and are available programmatically. This 
approach makes it possible to collect both common metrics that 
are available from all databases (e.g., disk utilization, query 
processing time) and technology-specific metrics (e.g., 
automatic rebalancing in MongoDB 2 ). These metrics are 
available for selection when the modeler creates a system 
model and specifies the databases that will be deployed.  

The metamodel also defines the structure of event 
notifications (Notification). These are triggered when simple or 
aggregated metrics exceed a specified threshold value set by 
the modeler. 

C. Model Editor Client 
In Fig. 2, the Model Editor Client instantiates the 

metamodel in a graphical editor, using the Eclipse Modeling 
Framework (EMF) 3 . The graphical model specifying the 
topology of the observed system and the metrics to be collected 

                                                
2 https://docs.mongodb.org/manual/core/sharding-balancing/ 
3 https://eclipse.org/modeling/emf/ 

 
Fig. 3. Metamodel for observability of polyglot persistence pattern 
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and aggregated is transformed using Acceleo 4  into a text 
representation. This is uploaded to the Model Handler server, 
which propagates model changes to the Observability Daemons 
and Metrics Engine. Models are versioned to improve 
dependability, ensuring all parts of the system are consistent. 
This also enables rollback to a previous version. 

D. Runtime Metric Collection 
An Observability Daemon executes on each node in the 

observed system to collect metrics and forward them to the 
Metrics Engine. Each Observability Daemon is configured by 
the Model Handler based on the system model, so that model 
changes (e.g., in topology or metrics collected) immediately 
change the Observability Daemon behavior. The Observability 
Daemon is based on the collectd5 open source package. Our 
architecture adds a Daemon Manager component on top of 
collectd, so that collectd can be remotely and dynamically 
configured by the Model Handler.  

 Our architecture uses collectd plug-ins to adapt to each 
supported database technology, encapsulating the precise 
mechanism used to obtain database metrics within a database-
specific plug-in. The plug-ins exploit the monitoring API 
provided by the specific database technology (e.g., Cassandra’s 
JMX API6), to acquire the metric data from databases. We 
have developed and tested reference plug-ins for Cassandra, 
MongoDB, and Riak. 

Each Observability Daemon sends the collected metrics to 
the Metric Engine server using the collectd notification 
protocol. Separately, a heartbeat notification is sent by the 
Daemon Manager to the Missing Daemon component in the 
Metrics Engine. The Missing Daemon component uses the 
system model to determine which Observability Daemons 
should be executing, compares that to the received heartbeats, 
and raises an alarm when an Observability Daemon appears to 
have failed. The heartbeat notification was included to improve 
dependability. Simply monitoring a metric stream to assess the 
state of an Observability Daemon is problematic as individual 
messages may be delayed due to transient network partitions, 
or daemon or node failure. Transient partitions can be handled 
by this protocol, as daemons buffer collected metrics for a 
configurable time period (e.g. 5 minutes) and can resend 
missed values. Node and daemon failures currently require 
operator intervention. Automated recovery from such failures 
simply requires us to incorporate additional monitoring 
capabilities into our framework, an objective for further work 

E. Metric Aggregation and Visualization 
In our implementation, several metric visualizations are 

created using the Grafana 7  open source package, which 
supports time series graphs such as those shown in Fig. 4. 
Grafana comprises a server and a web-based client, as shown 
in Fig. 2. Metrics are stored using self-describing data 
structures embedded in the metric stream. We utilize key-value 

                                                
4 http://www.eclipse.org/acceleo/ 
5 https://collectd.org 
6 
http://docs.datastax.com/en/cassandra/3.0/cassandra/operations/opsMonitoring
.html 
7 http://grafana.org 

pairs, where the metric name comprises the key and the value 
is the metric reading at a given time.  

 

Fig. 4. Metric visualization user interface 

III. PERFORMANCE RESULTS 
To assess the performance and scalability of our 

observability architecture, we performed a series of tests using 
Amazon’s AWS cloud platform. We created a test daemon that 
was able to simulate metrics generation from multiple database 
nodes. We then configured a pool of test daemons to simulate 
metrics collection from 100 to 10,000 database nodes. We 
initially set the metrics collection interval to 30 seconds, and 
configured the daemons to simulate the generation of 20 
distinct metrics per node. We also specified the model to 
aggregate CPU metrics from all nodes to calculate overall 
system CPU utilization. 

We deployed the observability architecture on an AWS 
m3.2xlarge instance type. This comprised an Intel Xeon E5-
2670 v2 (Ivy Bridge) server with 8 cores, 8MB RAM, 30GB 
disk and 160GB SSD. The test daemons were configured to 
initially simulate metrics generation from 100 database nodes. 
After 5 minutes, the number of simulated nodes increased to 
1000, and then 1000 simulated nodes were added every 5 
minutes until the test simulates 10,000 database nodes. We 
monitored the resource usage on the observability server, and 
the results are in Fig. 5.  

Graph 1 shows that the metric transfer time stays constant 
as the number of metrics per interval increases (the peaks in 
this graph), and that the metric transfer takes about one-half of 
the collection interval, leaving margin for growth (the troughs 
in this graph). The system was able to handle 10,000 nodes 
generating 20 metrics during each 30 second interval. The 
system scaled well to handle network traffic and saved the 
metrics to disk to be shown at dashboard. The aggregation 
plugin was able to aggregate metrics from 10,000 nodes 
successfully. 

To summarize the test results: 

• With linearly increasing metric collection load, the disk 
space used also increased linearly. For 10,000 nodes with 
20 metrics per node and a 30 second collection interval, 
disk space required is approximately 50 GB for 7 days 
monitoring data. 
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• Server free memory reduced from 25 GB initially to 22 GB 
with 10000 nodes being monitored. Hence we conclude our 
solution is not limited in scalability by memory utilization.  

• CPU utilization is low, only showing minor increases in 
activity as the number of nodes grows.   

• With 10000 simulated nodes, the server was processing 293 
Kbits/s of network traffic at peak.   

To stress test the observability framework, we deployed the 
test system with 10,000 simulated nodes. The collection 
interval started at 30 seconds, and every 5 minutes was reduced 
by 5 seconds. The system operated normally until the sample 
frequency reached 15 seconds. At this point, some metrics 
were not written to disk. This situation continued to deteriorate 
as we reduced the sampling interval to 5 seconds. No 
components failed, but there was a significant loss of metric 
data in the database. 

Examining execution traces from these failing tests, we saw 
the CPU, memory, and network utilization levels remained 
low. Disk writes, however, grew to a peak of 32.7 MB/s. This 

leads us to believe that the Whisper database8 in the Grafana 
server was unable to sustain this relatively heavy write load. 
This is likely a limitation of this component in our architecture. 
Replacing this database with a distributed database technology 
such as Cassandra would consequently make it possible to 
monitor a significantly larger collection of nodes.  

IV. PRIOR WORK

There has been significant prior work on collecting general 
measurements of resource utilization at process and node level. 
This includes Ganglia9, and Nagios [6]. Ganglia and Splunk10 
support collection of host-level measurements across clusters, 
and provide basic monitoring and visualization dashboards. 
Commercial products from HP 11, IBM12 , and others also 
provide similar collection and visualization capabilities, but 

                                                
8 http://graphite.wikidot.com/whisper 
9 ganglia.sourceforge.net 
10 www.splunk.com 
11 http://www8.hp.com/us/en/software-solutions/systems-management-server-
monitoring-tools/ 
12 http://www.ibm.com/software/tivoli 

 
Fig. 5. Performance and Scalability Test Results  
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incur significant license costs. Tools such as Chukwa13 and 
Sawzall14 focus on general analytics on collected log data, and 
provide semantics for time series data sets.  

In visualizing large-scale system health and performance, 
Yin, et al, take an approach inspired by video games to enable 
navigation through a complex data landscape [7]. In this case, 
the focus was on infrastructure-level measurement data, 
however the approach may be extensible for other types of 
measurements. The Theia system provides architecture-specific 
visualization for Hadoop-based systems [8]. 

Architecture-aware modeling based on architecture styles 
traces back to very early work in software architecture [9]. 
More recently, Palladio [10] uses architectural styles to 
generate performance models, and Rainbow [11] uses 
architectural styles to model and generate a runtime framework 
focused on dynamic adaptation. The Rainbow framework uses 
measurement probes, which may include monitoring 
performance. However, the probes must be built into the 
components of the system, and the generation focuses on style-
based reaction strategies when a probe’s measurement crosses 
a threshold.  

Finally, there has been little work on using model-driven 
approaches to generate monitors. He, et al, present a model-
driven approach to composing monitors, synthesizing a 
compatible metamodel and then transforming heterogeneous 
monitors into that common metamodel. The approach 
generates only monitors, without aggregations, a measurement 
persistence schema, or visualizations [12].   

V. CONCLUSIONS AND FUTURE WORK 
In this paper we described the design and prototype 

implementation of an observability framework for big data 
systems. We have exploited model-driven techniques to make 
the core architecture customizable to different system’s 
observability requirements without the need for custom code 
for each deployment. We have also built the solution by 
reusing various off-the-shelf components to streamline our 
development effort and provide advanced capabilities ‘out of 
the box’. The reference implementation has been publicly 
released as a research platform. The reference implementation 
has availability limitations that will be addressed, using 
standard architecture mechanisms, as we evolve the platform. 

Our current implementation only provides observability at 
the database layer. Extending these model-driven capabilities 
to other layers in a big data system (e.g., application server and 
Web servers) and improving the scalability of our framework 
forms the core of our future work. We also wish to investigate 
the potential of automated resource discovery approaches to 
compose an observability system dynamically. Automated 
approaches have immense potential for dealing with scale and 
rapid evolution, but face many daunting challenges, for 
example navigating security perimeters, distributed data 
centers and logical application partitions. 
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