
Missed Architectural Dependencies: 
The Elephant in the Room 

Robert L. Nord,1 Raghvinder Sangwan,1,2 Julien Delange,1 Peter Feiler,1  
Luke Thomas,3 and Ipek Ozkaya1 

 
1 Software Engineering Institute 

Carnegie Mellon University 
Pittsburgh, PA, USA 

{rn, jdelange, phf, ozkaya 
@sei.cmu.edu} 

2 School of Graduate Professional 
Studies 

Pennsylvania State University 
Malvern, PA, USA 
rsangwan@psu.edu 

3 School of Engineering and 
Technology 

Indiana University–Purdue University 
Indianapolis, IN, USA 
nlulthom@iupui.edu

 
Abstract—Research in code and architectural analysis has 

demonstrated that a clear understanding of structural 
dependencies among software elements helps developers 
comprehend the impact of change. Yet examples are abundant 
from industry of major issues due to missed dependencies 
associated with different views of the architecture. Key 
concerns include dependencies related to allocation of modules 
to implementation packages to improve safety-critical testing 
and allocation of implementation packages to hardware 
partitions to optimize performance. In this paper, we present 
an in-depth study of a safety-critical system that underwent 
major changes as a result of missed architectural dependencies. 
We describe the challenges that resulted in re-architecting the 
system, the techniques we used for intervention, our results, 
and the developers’ perspective. While the engineering tools 
provided coverage of design concerns, they missed implications 
of end-to-end integration testing, latency, and cost of change. 
In our study, we observed that the tools led the engineers to 
focus on data and control flow and therefore to miss many data-
entity relationships, resource behavior, and deployment-
related dependencies. Research continues to focus on more 
tooling and automation to assist with dependency analysis 
rather than interim, easier-to-adopt solutions. Our findings 
demonstrate that providing developers with a lightweight, 
semantically well-defined description of dependencies enables 
them to reason about change impact and propagation 
implications that they might otherwise overlook. 

Keywords—software architecture; architecture views; 
architecture analysis; dependency analysis; change propagation; 
testing; re-architecting 

I. INTRODUCTION 
In this paper, we present a study of an industrial, safety-

critical system that underwent major changes as a result of 
missed architectural dependencies. This multiyear aircraft 
engine control system was being developed and deployed as 
part of a product-line strategy. The development project 
included a local team and a subcontractor team. 
Independently each team developed its piece of the system 
correctly. Engineering tools provided coverage of inputs and 
outputs, internal data dependencies, and verification of the 

design against the requirements. However, the problem was 
introduced and discovered at the architectural level. 

The traditional approach focused on data and control flow 
dependencies and missed end-to-end concerns including 
implications for critical integration testing, end-to-end 
latency, and managing cost of change that seem obvious in 
retrospect. Developers on the project perceived a need for an 
approach that considered dependencies associated with 
multiple perspectives or views of the architecture of a system, 
including implementation, run time, and deployment. In 
response, we proposed a solution, a lightweight guide of 
dependency types focusing on multiple views and their 
mapping, and an analysis approach that enabled early 
identification and discussion of architectural concerns that 
might otherwise be missed. 

While research continues to focus on more tooling and 
automation to assist with dependency analysis, architects and 
developers still lack a consistent semantic treatment of all 
dependency types. This paper demonstrates an interim 
solution toward that goal: a multi-view dependency guide 
that enables team members to discuss key architectural 
concerns and use tools accordingly. Our study outcome 
demonstrates that improved tooling without a shared 
understanding of architectural depedencies exacerbates lack 
of attention to the holistic, multi-view architectural analysis. 

We describe the industrial safety-critical system used in 
our study in Section 2. In Section 3, we describe our analysis 
approach and document the baseline dependencies captured 
from the module view of the architecture and the enhanced 
run-time and deployment dependencies captured from the 
component-connector and allocation views of the 
architecture. In Section 4, we use the dependency structure 
matrix (DSM) [1][2] to represent and analyze the baseline 
and enhanced set of dependencies. We also use the DSMs to 
analyze and understand the impact of change. In doing so, we 
highlight how the analysis of dependencies based on multiple 
views of an architecture can be more effective in providing 
information about the impact of a change. Section 5 discusses 
the developers’ perspective. Section 6 presents related work, 
and Section 7 concludes the paper. 

2016 13th Working IEEE/IFIP Conference on Software Architecture

978-1-5090-2131-4/16 $31.00 © 2016 IEEE

DOI 10.1109/WICSA.2016.32

41

2016 13th Working IEEE/IFIP Conference on Software Architecture

978-1-5090-2131-4/16 $31.00 © 2016 IEEE

DOI 10.1109/WICSA.2016.32

41



II. SAFETY-CRITICAL ENGINE CONTROL SYSTEM 
A stepper motor system (SMS) is a part of an aircraft 

engine control system (ECS) that manages fuel flow by 
adjusting a fuel valve. The SMS is commanded to open or 
close the fuel valve. The SMS translates the command into 
the number of steps it must take to move the valve to the 
desired position. It must complete its operation in a time 
proportional to the distance covered between its current 
position and the desired position. 

During its operation, the SMS may receive a new 
command from the ECS and must respond immediately. The 
SMS maintains a record of the fuel valve’s desired, 
commanded, and actual positions, which must all be the same 
upon completion of the most recent command. A homing 
command is executed at initialization to move the valve to a 
fully closed position and synchronize the values of the 
desired position, commanded position, and actual position. 

The SMS is an open-loop system with no feedback on the 
successful execution of the steps it must take for a position-
change command. Since it is a safety-critical system, the 
developers must ensure that when they make changes to the 
system, the stepper motor continues to operate as expected. 
Untangling propagating effects of changes that result in 
unanticipated issues can have a time-consuming impact on 
troubleshooting the cause of the issues. Fig. 1 shows the 
operational context for the SMS derived from SCADE [3], 
the model-driven, embedded, safety-critical software and 
hardware engineering tool used by the developers. 

The SMS is part of an engine control feedback loop and 
functions as an actuator for a fuel valve. The fuel valve 
controls the fuel flow to an engine, which has a built-in thrust 
sensor that provides the thrust reading. The ECS uses the 
thrust reading to control the desired position of the fuel valve. 

To generate a level of thrust, the ECS communicates the 
desired position to the SMS, which in turn opens the fuel 
valve to the desired position through a mechanical control 
interface. The fuel valve controls the flow of fuel to the 
engine, thereby managing the level of thrust. A sensor 
communicates the thrust reading from the engine to the ECS, 
thus closing the feedback loop. 

III. CHANGE IMPACT ANALYSIS 
Although the original design of the SMS was developed 

and verified in SCADE, only during system tests was it 

discovered that, under certain circumstances, the actual fuel 
flow from the fuel valve to the engine did not correspond to 
the desired fuel flow commanded by the ECS. The problem 
was traced to missed execution of commanded steps due to 
variation in execution time. This prompted a refactoring 
effort to remediate the problem. Before making any changes 
to the system, the developers on the project perceived a need 
for an approach that could provide a holistic view of the 
dependencies within the system so they could understand the 
impact of changes to the system. Traditional approaches that 
considered only inter-module dependencies discovered 
through static code analysis were deemed insufficient. 

A. Analysis Approach 
The target of our analysis was the software-reliant 

system’s maintainability, defined as the “degree of 
effectiveness and efficiency with which a product or system 
can be modified by the intended maintainers” [4]. 
Maintainability is subdivided into modularity, reusability, 
analyzability, modifiability, and testability. We focused on 
modularity, the “degree to which a system or computer 
program is composed of discrete components such that a 
change to one component has minimal impact on others” [4]. 
Impact is the ripple effect of a change in one module that may 
cause other modules within a system to not function properly. 
The change to a module may be motivated by achieving 
better separation of concerns to improve security, reliability, 
or safety-critical testing; tuning its resource consumption to 
improve performance or availability; or adapting its interface 
for achieving interoperability. 

To address the impact of a change, developers needed to 
follow the dependencies from the modules of a system that 
were the focus of a change to the dependent modules that will 
be affected by the change. However, to effectively apply this 
approach, the developers needed to identify these dependent 
modules and their relationships. One key issue was the lack 
of a concrete definition of dependency among the software 
engineers. There were different interpretations of 
dependencies for managing software-to-software and 
software-to-hardware allocations. The developers 
unintentionally assumed that the tool managed those 
dependencies. Another issue was that implied run-time and 
allocation dependencies could not be easily mapped back to 
the implementation modules to assess the impact of change. 

The literature lacks a clear description and collection of 
such dependencies [5]. Work with professional software 
architects also reveals that support for analyzing the 
dependencies among key architectural decisions remains a 
gap in industry practices [6]. Hence, for this study, we 
collected descriptions of common dependencies using 
multiple sources. Considering multiple views of the system 
and mapping the architectural dependencies to these multiple 
views serve as the ultimate ground truth; hence we started 
with architectural dependencies described from a multiple-
view perspective, focusing on software [5][7][8]. In order to 
ensure that key embedded software concerns were captured, 
in particular software-to-hardware allocation and real-time 
scheduling, we also reviewed domain-specific architecture 
examples as represented in [9][10][11]. We narrowed the list 

 
Fig. 1. Block diagram showing the context within which the SMS 
operates. 

4242



based on our earlier experience with safety-critical systems 
[12] and created a list of dependency types as an initial guide 
for developers for identifying and describing dependencies to 
analyze change scenarios. Table 1 summarizes these 
dependency types relevant to our study. 

After creating this list of dependency types, we analyzed 
the system together with an architect, a tester, and a developer 
from the project team using the following steps: 

1. Identify change scenarios that will be used to determine 
the degree of effectiveness with which the system can be 
modified to satisfy those scenarios: The inputs to this 
step are existing, unfulfilled, or new evolutionary and 
maintainability requirements. The output is a list of 
change scenarios formulated from these requirements. 

2. Create a baseline dependency model for the system from 
its module view: The input for this analysis is the existing 
model of the system. As needed, the system’s 
architecture documents and discussions with the 
development team help clarify ambiguities. The output is 
a baseline DSM that shows module dependencies. 

3. Create an enhanced dependency model for the system 
from its module, component-connector, and allocation 
views: Once the baseline DSM is generated, we run 
scenarios through focused architectural analysis and look 
at not only the module but also the component-connector 
and deployment views (e.g., using formal modeling tools 
for latency and safety-criticality analysis and looking at 

allocation of software components to hardware 
components). Where needed, we use architecture 
documents for clarification and discussions with the 
development team, using the list of types as a guide for 
identifying dependencies. The output is an augmented 
DSM that captures dependencies from multiple views of 
the system. 

4. Identify the impact of change: We use the baseline and 
enhanced dependency models (DSMs) and the change 
scenarios captured in the previous steps to identify the 
impact of change. We also evaluate the effectiveness of 
the enhanced model and, therefore, the effectiveness of 
multi-view dependency analysis. 
This is an iterative process in which we refine the change 

scenarios as we elaborate the dependency models. 

B. Change Scenarios 
The developers analyzed the problem and formulated six 

change scenarios, shown in Table 2, to correct it. These 
scenarios may look obvious, but it is often the case that 
assumptions at the team level get overlooked at the system 
level [13], as it was the case in this system. 

Scenarios 1 and 2 represent the intended but unfulfilled 
requirements of the original design and relate to 
modifiability; the SMS should be configurable to express 
desired and actual fuel valve positions as percent open. In 
addition, the position eventually must be translated to the 
direction of motion and number of steps that a stepper motor 
must move to achieve the desired position of a fuel valve. 

The remaining change scenarios evolved during the 
analysis process. The lightweight dependencies in Table 1 
were used to understand the problem and were also helpful 
with eliciting and refining these scenarios. 

Scenario 3 relates to safety and reliability. The SMS must 
guarantee consistency between the fuel valve position 
commanded by the ECS and the actual fuel valve position 
attained by the stepper motor. 

TABLE 1. DEPENDENCY TYPES 

Dependency Type Description 
A Aggregation Data Element A and Data Element B have a 

semantic coherence that can be aggregated as 
Module AB. 

C Control Module A depends on the presence of a correctly 
functioning Module B. 

D Data For Module B to execute correctly, the syntax (type 
or format) and semantics of the data produced by 
Module A must be consistent with the assumptions 
of Module B. 

L Location For B to execute correctly, the run-time location of 
A must be consistent with the assumptions of B. 

R Allocation of 
responsibilities 

To separate concerns, Responsibility A (behavior 
and functionality) is assigned to Design-Time 
Element B (e.g., functional decomposition, safety 
criticality). 

S Sequence of 
flow 

For B to execute correctly, it must receive the data 
produced by A in a fixed sequence (data flow). 
For B to execute correctly, A must have executed 
previously within certain timing constraints 
(control flow). 

P Physical 
resource 
behavior 

For B to execute correctly, the resource behavior of 
A must be consistent with B’s assumptions about 
physical resource (such as bandwidth, memory, 
storage capacity, and CPU) usage or ownership. 

Q Quality of 
service 

For B to execute correctly, some property involving 
the quality of the data or service provided by A 
must be consistent with B’s assumptions. 

V Virtual 
resource 
behavior 

For B to execute correctly, the resource behavior of 
A must be consistent with B’s assumptions about 
virtual resource usage or ownership. 

 

TABLE 2. CHANGE SCENARIOS FOR SMS 

ID Change Scenario 
Scenario 1 The desired fuel valve opening shall be commanded by the 

ECS in terms of PercentOpen and must be translated into 
the position that the stepper motor must attain. 

Scenario 2 The actual position of the stepper motor shall be expressed 
in units of PercentOpen and must be translated into the 
position that the stepper motor must attain. 

Scenario 3 At startup completion and at command completion, the 
actual position of the stepper motor must be the same as the 
position commanded by the ECS.  

Scenario 4 A desired position command shall be completed within  
T = MaxPosition * max(StepDuration). 

Scenario 5 The command duration shall be proportional to the distance 
between the current and desired position, i.e., not exceed 
roundup ( | Desired_Position – Mechanical_Control_
Position | * MaxStepCount/100) * FrameDuration). 

Scenario 6 There shall be a delay of no more than one frame before 
responding to the newly received command. 

 

4343



Scenarios 4, 5, and 6 focus on how the latency associated 
with moving the fuel valve to the position commanded by the 
ECS affects performance, reliability, and safety. In these 
scenarios, PercentOpen indicates the open position of the fuel 
valve in percentage units, MaxPosition indicates the 
maximum stepper motor position in units of steps when the 
fuel valve is fully open, StepDuration indicates the time 
duration for each stepper motor step, Desired_Position is the 
intended fuel valve position in percentage, Mechanical_
Control_Position is the current fuel valve position in 
percentage, MaxStepCount has a value of maximum steps per 
frame, and FrameDuration has a value of the time duration 
of a single frame. These parameters and values were critical 
for analyzing the response measures and understanding 
where the architecture failed. 

C. Baseline Dependencies 
We analyzed the scenarios presented in Table 2 for their 

derived maintainability aspects, specifically the degree of 
effectiveness with which the system can be changed to satisfy 
them. 

Fig. 2 shows a module view of the SMS that addresses 
Scenarios 1 and 2. We abstracted this view from the source 
information to hide the details of the system while focusing 
the developers’ attention on the elements involved in the 
change scenarios necessary for dependency analysis. 

SMS is decomposed into three modules. The process 
control system (PCS) receives the desired fuel valve position, 
calculates the number of steps the stepper motor must move 
as the difference between the desired position and the current 
position, and directs the actuator (ACT) to use this value to 
instruct MOTOR to turn the fuel valve. The position states 
are managed by the submodules. 

Analyzing the module view using dependency types from 
Table 1 as a guide, Table 3 captures dependencies among the 
modules of the SMS. 

D. Enhanced Dependencies 
Fig. 3 shows a data-model view for the SMS that 

addresses Scenario 3. After start-up and completion of any 
position change command, the DesiredPositionState and 
CommandedPositionState of the PCS and the ActualPosition
State of the stepper motor must be identical. 

Based on Fig. 3, Table 4 captures dependencies among 
the modules of the SMS. 

Fig. 4 shows a component-connector view of the SMS 
that addresses Scenarios 4, 5, and 6. This view uses a UML 
sequence diagram augmented with stereotypes indicating the 
use of the Architecture Analysis and Design Language 
(AADL) process and thread concepts for the components. 
These concepts have well-defined execution and 
communication timing semantics [14]. They are relevant to 
address end-to-end latency and latency jitter of the data being 
processed by SMS. 

PCS_APP is a process that periodically sends position 
change commands. All step counts in a command sequence 
for a position change, except for the last non-zero step, must 

 
Fig. 2. Module view of the SMS architecture. 

TABLE 3. DEPENDENCIES BASED ON THE MODULE VIEW OF THE SMS 

Dependency Description  
Type: Data (D) and Control (C) 
Source: ACT 
Target: PCS 

ACT receives position change 
command sequence from PCS. 

Type: Data (D) and Control (C) 
Source: MOTOR 
Target: ACT 

MOTOR receives step execution 
command signals from ACT. 

Type: Data (D) 
Source: PCS 
Target: DesiredPositionState 

PCS updates the DesiredPosition
State. This value is used to calculate 
steps for ACT. 

Type: Data (D) 
Source: PCS 
Target: CommandedPositionState 

PCS updates the Commanded
PositionState. This value is used to 
calculate steps for ACT. 

Type: Data (D) 
Source: ACT 
Target: StepsToDo 

ACT updates StepsToDo and uses it 
to generate an electrical command 
signal and turn MOTOR through a 
control interface. 

Type: Data (D) 
Source: MOTOR 
Target: ActualPositionState 

MOTOR records (updates) its 
position at any given point in time 
in ActualPositionState. 

Fig. 3. Data model of the SMS architecture. 

TABLE 4. DEPENDENCIES BASED ON THE DATA-MODEL VIEW OF THE 
SMS 

Dependency Description  
Type: Aggregate (A)
Source: 
DesiredPositionState 
Target: 
CommandedPositionState 

DesiredPositionState must be 
identical to CommandedPositionState 
after startup and after every 
completion of a position change 
command. 

Type: Aggregate (A)
Source: 
DesiredPositionState 
Target: ActualPositionState 

DesiredPositionState must be 
identical to ActualPositionState after 
startup and after every completion of a 
position change command. 

Type: Aggregate (A) 
Source: 
CommandedPositionState 
Target: ActualPositionState 

CommandedPositionState must be 
identical to ActualPositionState after 
startup and after every completion of a 
position change command. 

4444



equal MaxStepCount; all out-of-range commands are 
ignored. ACT immediately responds to commands received 
from PCS_APP and does not buffer any incoming 
commands. The previous command execution is aborted if it 
has not completed before the new command arrives. The 
number of steps within a command is translated into 
equivalent electrical command signals and completed within 
one frame. MOTOR reacts to the command signals received 
from ACT and indicates the completion of a step execution. 

The core logic of the process PCS_APP runs on a thread 
PCS. It spawns another thread, health monitor (HM), that 
periodically monitors the health of the PCS thread to ensure 
that it is alive. 

Based on Fig. 5, Table 5 captures dependencies among 
the different components of the SMS. 

The timing behavior of threads and their communication 
are affected by how they are executed on processors and how 
they communicate over buses and networks. Therefore, we 
also consider the deployment view. Fig. 5 shows the 
deployment of PCS_APP on an electronic control unit 
(ECU). 

Fig. 5 shows that the process PCS_APP consists of two 
threads; PCS is used to execute the core logic of the 
PCS_APP, and HM is used to periodically monitor the health 
of PCS. HM has a higher priority than PCS, so HM can 
preempt PCS when scheduled to run. 

Table 6 captures the dependencies among the components 
of the SMS shown in Fig. 5. 

We next use a DSM to represent and analyze the baseline 
and enhanced set of dependencies captured in Tables 3–6. 

IV. ANALYSIS AND DISCUSSION 
We chose DSMs to present our proposed analysis 

approach for architecture dependencies. While there are other 
possibilities, such as graph-based dependency analysis, 
DSMs offer a succinct representation of dependencies that 
can be easily clustered to understand their impact [1][15]. 
DSMs have been used to manage dependencies of software 
code artifacts and in the context of systems engineering [2]. 
They have been used to trace requirements to design in 
support of managing iterations [16]. And they have shown 

 
Fig. 4. Component-connector view of the SMS architecture. 

TABLE 5. DEPENDENCIES BASED ON THE COMPONENT-AND-CONNECTOR 
VIEW OF THE SMS 

Dependency Description 
Type: Data (D) 
Source: ACT 
Target: PCS_APP 

ACT receives position change 
command sequence from 
PCS_APP. 

Type: Data (D) 
Source: MOTOR 
Target: ACT 

MOTOR receives step execution 
command signals from ACT. 

Type: Sequence of Control (S) 
Source: PCS_APP 
Target: ACT 

ACT must complete execution of a 
command within a single frame. 

Type: Sequence of Control (S) 
Source: ACT 
Target: PCS_APP 

A new command from PCS_APP 
should not arrive before ACT has 
completed the previous command. 
New commands should only arrive 
at a rate that ACT can process. 

Type: Sequence of Control (S) 
Source: ACT 
Target: MOTOR 

MOTOR must maintain an 
execution rate of MaxStepCount 
per frame.  

Type: Sequence of Control (S) 
Source: ACT 
Target: MOTOR 

ACT receives a step execution 
completion signal from MOTOR. 

Type: Location (L) & Physical 
Resource Behavior (P) 
Source: HM 
Target: PCS 

HM preempts PCS periodically to 
check if it is functioning properly. 

 

 
Fig. 5. Deployment view of the SMS architecture. 

TABLE 6. DEPENDENCIES BASED ON THE DEPLOYMENT VIEW OF THE 
SMS 

Dependency Description 
Type: Location (L)
Source: HM 
Target: PCS 

HM and PCS run within the same process 
and ECU. 

Type: Physical Resource 
Behavior (P) 
Source: HM 
Target: PCS 

HM has a higher priority than PCS, so it 
preempts PCS when it is scheduled to 
run. 

 

4545



promising results when applied to managing dependencies at 
the architecture level [17]. 

A. Representing Multi-view Dependencies 
Fig. 6 captures dependencies among the architectural 

elements for the SMS architecture. Fig. 6a depicts 
dependencies based entirely on the module view shown in 
Fig. 2. The table row for each module shows its dependent 
modules, and the columns show what other modules it 
depends on. The cells indicate the type of dependency based 
on those captured in Table 3. 

Partitioning algorithms [15] can be used to produce a 
matrix in which the rows and columns are ordered so that 
items use only other items below or to their right. In the 
absence of cyclic dependencies, all items would produce a 
lower triangular matrix; any dependencies above the matrix 
diagonal indicate a cyclic dependency between the modules. 

Within the matrix, a value in a cell can be used to indicate 
the number and types of dependencies from the column item 
to the row item. Therefore, when a module’s row is populated 
with a large number of dependencies, this indicates a module 
that is heavily used by many other items (afferent coupling). 
In turn, when a modules’s column is populated by a large 
number of dependencies, this indicates that a module uses 
many other items (efferent coupling). 

Fig. 6b augments the dependencies based on additional 
views of the architecture described in Figs. 3, 4, and 5. Since 
the DSM shows the modules of SMS, we mapped elements 
from other views such as process PCS_APP and thread PCS 
to the module PCS, thread HM to module HM, device ACT 
to module ACT, and device MOTOR to module MOTOR. 
We accordingly converted the dependencies among these 
elements to dependencies among the mapped modules. 

As is evident from Fig. 6b, several dependencies emerge 
when we consider additional views: 

• Aggregate (A) dependencies emerge among modules 
DesiredPositionState, CommandedPositionState, and 
ActualPositionState from the data-model view in Fig. 3, 
indicating that at startup completion and at command 
completion, the actual position of the stepper motor must 
be the same as the position commanded by the ECS. 

• Sequence of Control (S) dependencies emerge among 
modules MOTOR, ACT, and PCS from the view in Fig. 
4, indicating that commands must be completed within 
certain time constraints. 

• Location (L) and Physical Resource Behavior (P) 
dependencies emerge between modules HM and PCS, 
shown in Fig. 5. They are co-located and share CPU 
resources, implying that they could slow each other down. 

The approach is fairly lightweight, yielding information 
useful for capturing and communicating different types of 
interrelationships among the elements. Identifying such 
dependencies based on multiple views is a significant input 
to change impact analysis, as we will see in the next section. 

B. Dependency Impact Analysis 
We use the DSMs to understand the implications of 

changes needed to achieve the end-to-end concerns of 
managing safety-critical testing, latency, and cost of change. 

1) Safety-Critical Testing: Dependency models aid in 
determining what parts of the system should undergo 
retesting when a change is made. Fig. 7 shows a clustering of 
the DSM based on how interdependent the modules are. 

As can be seen from the clustering of the DSMs, all 
modules appear less interdependent in the module view-
based DSM in Fig. 7a than in the multiple views-based DSM 
in Fig. 7b. A retesting strategy based on Fig. 7a is, therefore, 
likely to test far fewer modules than may be necessary. For 
example, if a change is made to module ACT, Fig. 7a would 
suggest testing its dependent module MOTOR. However, 
Fig. 7b suggests also including HM and PCS since they are 
part of the same cluster of highly interdependent modules. 
Such analysis is beneficial during evaluation of 
recertification costs when changes are made to various parts 
of a safety-critical system. 

2) Propagating Faults: Dependency models aid in 
determining faults likely to propagate within the system if the 
concerns associated with these dependencies are not 
completely addressed when designing the architecture (Table 
7). The safety information is based on the Error Model Annex 
of AADL [11], which provides the capability to specify faults 
within the architecture and their impact on other components. 

The newly discovered dependencies that led to the 
enhanced model are also the ones related to the satisfaction 
of Scenarios 3 through 6 (Table 2), which deal with the end-
to-end latency of command completion by the SMS. Hence, 
the multi-view dependency model provides input to this type 
of fault propagation analysis for determining satisfaction of 
timing concerns, which could otherwise be missed. 

 
(a) 

 
(b) 

Fig. 6. DSM based on (a) module view and (b) multiple views. 

4646



3) Cost of Change: Dependency models aid in managing 
change. Should the existing architecture be evolved to satisfy 
the change scenarios, these additional dependencies can be 
used to determine the modules that a change may affect. We 
show these dependencies among the change scenarios for 
SMS and the corresponding modules that are impacted using 
a multi-domain matrix (MDM) [16] in Fig. 8. The MDM 
shows dependencies among the scenarios (top-left quadrant), 
the modules (bottom-right quadrant), and the scenarios and 
modules that satisfy them (top-right quadrant). 

Analyzing Scenario 3, the MDM indicates that four 
modules are directly affected. The DSM based on the module 
view alone (Fig. 6a) shows there is no propagation of 
changes. It implies that making a change is localized to each 
of the four modules directly responsible for satisfying this 
requirement. The DSM based on multiple views (Fig. 6b) 
shows the semantic coherence among the three modules for 
position state through the aggregation dependency. We 
capture this distinction in Fig. 9. 

The model in Fig. 9b shows that DesiredPositionState, 
CommandedPositionState, and ActualPositionState are more 
tightly coupled, as indicated by the aggregation dependency. 
PCS updates its CommandedPositionState immediately after 
directing ACT, assuming that the commanded number of 
steps will actually be executed by ACT and MOTOR. 
Although MOTOR signals ACT every time it completes the 
execution of a step, ACT can time out if it does not receive 
the signal in a timely manner. When a command sequence is 
complete, DesiredPositionState, CommandedPositionState, 
and ActualPositionState should have the same values, but 
nothing in the architecture guarantees this. Developers must 

TABLE 7. DEPENDENCIES AND POTENTIAL FOR PROPAGATING FAULTS

Dependency Potential Fault  
Type: Aggregate (A)
Source: DesiredPositionState 
Target: ActualPositionState 
Description: Must be identical after 
startup and after every completion of a 
position change command. 

Type: Value Error
Description: No guarantee they 
will be the same. 

Type: Aggregate (A) 
Source: CommandedPositionState 
Target: ActualPositionState 
Description: Must be identical after 
startup and after every completion of a 
position change command. 

Type: Value Error
Description: No guarantee they 
will be the same. 

Type: Sequence of Control (S)
Source: PCS_APP 
Target: ACT 
Description: ACT must complete 
execution within a single frame. 

Type: Timing Error
Description: ACT does not 
guarantee complete execution of 
a command within a single 
frame. 

Type: Sequence of Control (S)
Source: ACT 
Target: PCS_APP 
Description: A new command from 
PCS_APP should not arrive before 
ACT has completed the previous one. 

Type: Timing & Rate Error
Description: ACT does not 
buffer commands and aborts 
processing the current command 
to respond to the newly arrived 
command. 

Type: Sequence of Control (S)
Source: ACT 
Target: MOTOR 
Description: MOTOR must maintain 
an execution rate of MaxStepCount per 
frame. 

Type: Timing Error
Description: MOTOR does not 
guarantee this execution rate. 

Type: Sequence of Control (S)
Source: ACT 
Target: MOTOR 
Description: ACT receives a step 
execution completion signal from 
MOTOR. 

Type: Timing Error
Description: ACT times out if 
it does not receive a completion 
signal from MOTOR in a timely 
fashion. 

Type: Location (L)
Source: HM 
Target: PCS 
Description: HM and PCS run within 
the same process and ECU. 

Type: Process Failure 
Description: Failure of HM 
may impact the correct 
functioning of PCS since they 
are co-located threads within the 
same process. 

Type: Physical Resource Behavior (P) 
Source: HM 
Target: PCS 
Description: HM has a higher priority 
than PCS, so it preempts PCS when 
scheduled to run. 

Type: Timing Error 
Description: HM preempts PCS 
periodically and, therefore, can 
slow down PCS. 

 

Fig. 8. MDM showing dependencies among requirements and the 
architectural elements that must satisfy them.  

 
(a) 

 
(b) 

Fig. 7. (a) Module view-based DSM and (b) multiple views-based DSM 
with clusters of interdependent modules shown by dark borders. 

4747



coordinate a change to the architecture to satisfy Scenario 3, 
since a change to one module is not necessarily localized and 
may propagate to the other two modules. 

Analyzing Scenarios 4, 5, and 6, the MDM indicates that 
three modules are directly affected. The DSM based on the 
module view (Fig. 6a) shows that control and data flow 
propagate change among seven different modules. The DSM 
based on multiple views (Fig. 6b) shows that these modules 
are much more tightly coupled. We capture this distinction in 
Fig. 10. Comparing the two models shows that PCS, ACT, 
and MOTOR are more tightly coupled through this sequence 
of flow dependency. The comparison also shows that an 
additional module, HM, should be considered. Colocation of 
threads and their effect on the completion time of PCS due to 
preemption indicate that Scenarios 4, 5, and 6 are not 
completely satisfied by the architecture. Before developers 
make a change to the architecture to satisfy these scenarios, 
they should consider the ripple effects of these additional 
dependencies. 

V. DISCUSSION 
Our study included working with the development team 

while they undertook the refactoring effort for the system. As 

they did a trade-off analysis to find the best solution to change 
scenarios (Table 2), their approach was influenced by the 
existing tools that segregate the dependencies differently than 
the approach we have presented in the architectural multi-
view dependency analysis. Existing tools focus largely on 
data and control coupling, which limits the view of the system 
to that of Fig. 7a, showing modules that are fairly decoupled 
with no critical interfaces. Yet the issues that were most 
important to the refactoring of the safety-critical system 
required the type of analysis based on the view in Fig. 7b. 

When exposed to multi-view dependency analysis, the 
development team found that the approach provided a more 
focused input to change impact analysis. It engaged them 
much more effectively to find critical problems by exposing 
dependencies such as those listed in Table 1 and pushed them 
to think beyond data and control flow. The architect 
summarized the team’s take-away as follows: 

“This was an architectural problem where two separately 
developed systems [ECS and SMS] were coming together and 
their interface was not properly defined. Independently, each 
development team did the correct thing. It was at the 
architectural level that the failure was introduced and found. 
The interesting aspect is, when you focus on the internal 
dependencies of the systems and their inputs and outputs, we 
were doing the correct thing against the requirements. Multi-
view dependency analysis says there are a whole lot of other 
relationships. The traditional approach of the existing tools 
segregates the dependencies differently than the architectural 
multi-view dependency analysis approach. This forces people 
to go beyond the traditional view where, if there is no data 
coupling, then there is no critical dependency. 

The ‘aha’ moment for me was not that this is how we can solve 
the problems, but rather this could help engage people to find 
the problems before they can become problems. The 
dependency table [Table 1] becomes an input; stop thinking 
about data and control flow only; there is other stuff too.” 

The approach also improved the quality of the 
development team’s change impact analysis by using a 
unified model to address dependency dimensions that 
determine the impact of module and architectural changes on 
other modules and on the dependency structure. It fit within 
their goals of safety-critical development because it is 
conservative: it found more dependencies with potential 
critical impact than fewer. The architect alluded to the fact 
that they used the dependency analysis approach later: 

“There is no room for additional modeling or analysis. Each 
new model increases the complexity of keeping them all in sync 
non-linearly—probably closer to exponentially. Ideally, we 
would only ever have a single model of the system so that we 
don’t have to worry and maintain disparate versions/views of 
the same thing. If any approach will work, it cannot be 
augmenting existing processes by adding new tools and 
models, but it should be replacing existing tools. Today, rather 
than more tools, more concrete, lightweight approaches are 
more useful. In fact, we used the dependency table [Table 1] 
after the fact to avoid other issues going forward. Going 
through major components and categorizing them as low and 
high risk using these dependency types as a starting point break 
down the barrier and increase adoption possibilities of starting 
to think architecturally.” 

 
(a) 

 
(b) 

Fig. 9. Dependency model of Scenario 3 constructed using DSM based 
on (a) module view and (b) multiple views. Labels on the edges show the 
type of dependency as described in Table 1. 

 
(a) 

 
(b) 

Fig. 10. Dependency model of Scenarios 4, 5, and 6 constructed using 
DSM based on (a) module view and (b) multiple views. Labels on the 
edges show the type of dependency as described in Table 1. 

4848



VI. RELATED WORK 
Previous research has focused on dependency analysis to 

assist analyzing maintainability, modifiability, change 
impact, traceability, security, and testing. Existing practices 
and tools, however, focus largely on an implementation-
based module view of the system, which not only limits the 
kinds of dependencies that can be analyzed but also neglects 
trade-offs [5]. Our previous experience corroborates this. For 
example, we conducted a comparative stability analysis on 
the module view of a safety-critical system that focused on 
data and control dependencies. The refactored system 
showed a slight deterioration in stability compared to its 
predecessor, giving the impression that the effort was not cost 
effective. It was only when the refactored effort was analyzed 
with respect to the safety-critical testing levels of the 
components and mapped back to the implementation 
elements that the trade-offs were properly understood [12]. 

It is widely recognized that to get a holistic understanding 
of a system’s quality, a multi-view perspective is essential 
[7][18]. Progress has been limited because industry is mostly 
driven to use tools that map closely to the quality concerns of 
highest priority [19] [20]. Research has focused on improving 
documentation approaches driven by the limited capabilities 
of existing documentation tools and approaches for cross-
referencing related information about a system [21]. 

Existing work emphasizes the need to better manage 
dependencies. Studies include understanding dependencies to 
better manage architecture modifiability and maintainability 
[5][22], to advance safety-critical testing and modeling [12]
[23], to understand build and deployment-time issues [24], 
and to improve system and architecture visibility [17][25]
[26]. Challenges uncovered include the need to add 
dependencies manually [27][28], augment the information in 
a dependency matrix [8], or use run-time information while 
evaluating a system [29]. Tools also exist for evaluating 
quality attributes related to run time (e.g., by evaluating 
network performance and latency [30] or system 
schedulability [10]) using a dedicated representation. 

All these approaches, however, require establishing a new 
model of the system, which is not only time consuming but 
also costly as engineers must be trained to use disparate 
modeling languages with different semantics and must 
manually maintain their consistency. Moreover, they do not 
start with a clear understanding of semantics of architectural 
dependencies. Previous research has uncovered the lack of 
such common semantic understanding of different 
architectural dependencies in software development [5][27]. 

Using a DSM approach to visualize dependencies has 
become an integral part of mainstream architectural tools 
[18]. DSMs are single-domain square matrices, meaning that 
relations are defined between instances of the same type (e.g., 
software modules). To reach deeper conclusions about inter- 
and intra-domain dependencies in a dual-domain context, 
such as between different architectural elements and 
requirements, an MDM representation is needed [1]. The 
application of MDM to software analysis to date has been 
limited to mapping requirements to modularity concerns 
based on information from the module view [22][31]. 

VII. CONCLUSIONS 
We presented a case study of a safety-critical system that 

motivated the need for an analysis approach to model 
architecturally significant dependencies from module, run-
time, and deployment views of the system. Through our 
engagement with this study, we demonstrated the following: 

• Identifying key multi-view dependencies and mapping 
them to a module view of elements and dependencies 
allow developers to concretely assess the impact of 
change and recognize system elements that must be 
developed further. 

• Without such a model to guide the identification of well-
defined dependencies, the current concerns and tools at 
hand drive the focus of analysis. We observed that the 
emphasis of model-driven engineering tools on state 
transitions encourages engineers to focus on data flow 
and events. As a result, they miss data entity relationships, 
resource behavior, and deployment-related dependencies. 

• The modeling approaches and tools used by developers 
often do not identify all dependencies. Support for 
assisting developers to easily extract and monitor key 
dependencies that cause ripple effects in multiple aspects 
of a system (e.g., in ability to track run-time performance, 
propagation of faults, and cost of change) is essential. 
Lightweight, semantically well-defined techniques have a 
greater possibility of providing a focused analysis 
context. Our dependency guide is a first cut at this. 

This study is based on a real system and its artifacts. 
There is a possible threat to internal validity due to variables 
that emerge from the developers’ experience with developing 
control systems and using their tools, which could have 
caused some of the issues identified. We minimized the 
impact of this by extracting the aspects of the stepper motor 
system that are generalizable to open-loop control systems. 
The stepper motor is a fairly common subsystem in control 
systems, representative enough for the dependencies we 
captured; hence, it poses minimal threats to external validity. 

Our study reveals an evolving strategy to provide more 
situated information for architecture decision making during 
development using dependency analysis to complement 
model-based approaches. The architect of the project put the 
real challenge for future work in his words as follows: 

“A common language to discuss key design dependencies is 
something keenly lacking among developers—many of whom 
have no architectural training or experience. Additionally, 
‘software architecture’ is an overloaded term in practice. For 
instance, in Software Considerations in Airborne Systems and 
Equipment Certification (DO-178B) [32], architecture is 
defined basically as allocation between requirements and 
design components. While this isn’t exactly wrong, it certainly 
isn’t complete and makes my life difficult dealing with multiple 
meanings of the term as I discuss it with the teams.” 

Despite an ample amount of research in architectural 
analysis and dependency management, these techniques are 
still not at a maturity level that can be used at ease in practice. 
Researchers should take this reality into consideration in 
designing their research questions. 

4949



Introducing yet another tool to industry environments is a 
hard sell unless it is proven to replace and improve other 
tools. However, techniques that supplement existing 
development approaches, such as a common definition and 
understanding of architectural dependencies, can offer 
improvements. As a community, we should strive to improve 
the semantic accuracy of architectural dependencies implied 
by a multi-view perspective. 

ACKNOWLEDGMENT 
This material is based upon work funded and supported by the Department 
of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon 
University for the operation of the Software Engineering Institute, a 
federally funded research and development center. References herein to any 
specific commercial product, process, or service by trade name, trade mark, 
manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by Carnegie Mellon University 
or its Software Engineering Institute. [Distribution Statement A] This 
material has been approved for public release and unlimited distribution. 
Please see Copyright notice for non-US Government use and distribution. 
DM-0003205. 

We thank Tamara Marshall-Keim for her feedback and expert input. 

REFERENCES 
[1] J. Bartolomei, M. Cokus, J. Dahlgren, R. de Neufville, D. Maldonado, 

and J. Wilds, Analysis and Application of Design Structure Matrix, 
Domain Mapping Matrix, and Engineering System Matrix 
Frameworks. Cambridge: Massachusetts Institute of Technology, 
2007. 

[2] T. R. Browning, “Applying the design structure matrix to system 
decomposition and integration problems: a review and new 
directions,” IEEE T. Eng. Manage., vol. 48, pp. 292–306, Aug. 2001. 

[3] Esterel Technologies. SCADE Suite. http://www.esterel-
technologies.com. 

[4] Systems and Software Engineering – Systems and Software Quality 
Requirements and Evaluation (SQuaRE) – System and Software 
Quality Models, ISO/IEC 25010:2011. Geneva, Switzerland: 
ISO/IEC, 2001.  

[5] Z. Li, P. Liang, P. Avgeriou, N. Guelfi, and A. Amaptzoglou, “An 
empirical investigation of modularity metrics for indicating 
architectural technical debt,” in Proc. 10th Int. ACM SIGSOFT Conf. 
Quality of Software Architectures. New York: ACM, 2014, pp. 119–
128. 

[6] D. Tofan, M. Galster, and P. Avgeriou, “Difficulty of architectural 
decisions: a survey with professional architects,” Lect. Notes Comput. 
Sc., vol. 7957, pp. 192–199, 2013. 

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, et 
al., Documenting Software Architectures: Views and Beyond, 2nd ed. 
Upper Saddle River, NJ: Addison-Wesley, 2011. 

[8] H. Koziolek, “Sustainability evaluation of software architectures: a 
systematic review,” in Proc. 7th Int. ACM/SIGSOFT Conf. Quality of 
Software Architecture. New York: ACM, 2011, pp. 3–12. 

[9] P. Feiler, L. Wrage, and J. Hansson, “System architecture virtual 
integration: a case study,” presented at the Embedded Real-Time 
Software and Systems Conference. Toulouse, France, May 2010. 

[10] S. Li, F. Singhoff, S. Rubini, and M. Bourdellès, “Applicability of 
real-time schedulability analysis on a software radio protocol,” ACM 
SIGAda Lett., vol. 32, pp. 61–68, Dec. 2012. 

[11] SAE Architecture Analysis and Design Language (AADL): As-2c 
Architecture Analysis and Design Language (AS5506/1). http://
standards.sae.org/as5506/1/ 

[12] R. L. Nord, I. Ozkaya, R. S. Sangwan, and R. J. Koontz, 
“Architectural dependency analysis to understand rework costs for 
safety-critical systems,” in ICSE Companion. New York: ACM, 2014, 
pp. 185–194. 

[13] R. S. Sangwan and C. J. Neill, “How business goals drive architectural 
design,” Computer, vol. 40, pp. 85–87, Aug. 2007. 

[14] P. Feiler and D. Gluch, Model-Based Engineering with AADL: An 
Introduction to the SAE Architecture Analysis & Design Language. 
Upper Saddle River, NJ: Addison-Wesley, 2012. 

[15] U. Lindemann, M. Maurer, and T. Braun, Structural Complexity 
Management: An Approach for the Field of Product Design. Berlin: 
Springer, 2010. 

[16] S. Kortler, B. Helms, M. Berkovich, U. Lindemann, K. Shea, J. M. 
Leimeister, et al., “Using MDM-methods in order to improve 
managing of iterations in design processes,” 12th Int. Dependency and 
Structure Modelling Conf. Cambridge, UK, July 2010. 

[17] C. Hinsman, N. Sangal, and J. Stafford, “Achieving agility through 
architecture visibility,” in Proc. 5th Int. Conf. Quality of Software 
Architectures: Architectures for Adaptive Software Systems. Berlin: 
Springer, 2009, pp. 116–129. 

[18] A. Telea, L. Voinea, and H. Sassenburg, “Visual tools for software 
architecture understanding: a stakeholder perspective,” IEEE 
Software, vol. 27, pp. 46–53, Nov./Dec. 2010. 

[19] B. Hailpern and P. Tarr, “Model-driven development: the good, the 
bad, and the ugly,” IBM Syst. J., vol. 45, pp. 451–461, July 2006. 

[20] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What 
industry needs from architectural languages: a survey,” IEEE T. 
Software Eng., vol. 39, pp. 869–891, May 2013. 

[21] A. Tang, P. Liang, and H. van Vliet, “Software architecture 
documentation: the road ahead,” in Proc. 9th Working IEEE/IFIP 
Conf. Software Architecture. Washington, DC: IEEE, 2011, pp. 252–
255. 

[22] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant'Anna, “From 
retrospect to prospect: assessing modularity and stability from 
software architecture,” in Proc. Joint 8th Work. IEEE/IFIP Conf. 
Software Architecture and 3rd European Conf. Software Architecture. 
Washington, DC: IEEE, 2009, pp. 269–272. 

[23] F. Cadoret, E. Borde, S. Gardoll, and L. Pautet, “Design patterns for 
rule-based refinement of safety critical embedded systems models,” 
presented at the Int. Conf. Eng. Complex Comput. Syst. Paris, France, 
July 2012. 

[24] J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali, 
“Searching for build debt: experiences managing technical debt at 
Google,” in Third Int. Workshop Manag. Tech. Debt. Washington, 
DC: IEEE, 2012, pp. 1–6. 

[25] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the 
structure of complex software designs: an empirical study of open 
source and proprietary code,” Manage. Sci., vol. 52, pp. 1015–1030, 
July 2006. 

[26] R. S. Sangwan and C. J. Neill, “Characterizing essential and incidental 
complexity in software architectures,” in Proc. Joint 8th Work. 
IEEE/IFIP Conf. Software Architecture and 3rd Eur. Conf. Software 
Architecture. Washington, DC: IEEE, 2009, pp. 265–268. 

[27] T. Callo, P. van der Spek, and P. Avgeriou, “A practice-driven 
systematic review of dependency analysis solutions,” Empir. Softw. 
Eng., vol. 16, pp. 544–586, Oct. 2011. 

[28] C. Riva, P. Selonen, T. Systa, and X. Jianli, “UML-based reverse 
engineering and model analysis approaches for software architecture 
maintenance,” in Proc. 20th IEEE Int. Conf. Software Maintenance. 
Washington, DC: IEEE, 2004, pp. 50–59. 

[29] H. Koziolek, B. Schlich, and C. Bilich, “A large-scale industrial case 
study on architecture-based software reliability analysis,” in IEEE 
21st Int. Symp. Software Rel. Eng. Washington, DC: IEEE, 2010, pp. 
279–288. 

[30] D. Sharman and A. Yassine, “Characterizing complex product 
architectures,” Syst. Eng. J., vol. 7, pp. 35–60, Mar. 2004. 

[31] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software 
modularity violations,” in Proc. 33rd Int. Conf. Software Engineering. 
New York: ACM, 2011, pp. 411–420. 

[32] Software Considerations in Airborne Systems and Equipment 
Certification (DO-178B). Washington, DC: RTCA, Inc., and 
Malakoff, France: EUROCAE, 1992. 

 

5050


